1
|
Hess WR, Wilde A, Mullineaux CW. Does mRNA targeting explain gene retention in chloroplasts? TRENDS IN PLANT SCIENCE 2025; 30:147-155. [PMID: 39443276 DOI: 10.1016/j.tplants.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
During their evolution from cyanobacteria, plastids have relinquished most of their genes to the host cell nucleus, but have retained a core set of genes that are transcribed and translated within the organelle. Previous explanations have included incompatible codon or base composition, problems importing certain proteins across the double membrane, or the need for tight regulation in concert with the redox status of the electron transport chain. In this opinion article we propose the 'mRNA targeting hypothesis'. Studies in cyanobacteria suggest that mRNAs encoding core photosynthetic proteins have features that are crucial for membrane targeting and coordination of early steps in complex assembly. We propose that the requirement for intimate involvement of mRNA molecules at the thylakoid surface explains the retention of core photosynthetic genes in chloroplasts.
Collapse
Affiliation(s)
- Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Shen C, Xu H, Huang WZ, Zhao Q, Zhu RL. Is RNA editing truly absent in the complex thalloid liverworts (Marchantiopsida)? Evidence of extensive RNA editing from Cyathodium cavernarum. THE NEW PHYTOLOGIST 2024; 242:2817-2831. [PMID: 38587065 DOI: 10.1111/nph.19750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
RNA editing is a crucial modification in plants' organellar transcripts that converts cytidine to uridine (C-to-U; and sometimes uridine to cytidine) in RNA molecules. This post-transcriptional process is controlled by the PLS-class protein with a DYW domain, which belongs to the pentatricopeptide repeat (PPR) protein family. RNA editing is widespread in land plants; however, complex thalloid liverworts (Marchantiopsida) are the only group reported to lack both RNA editing and DYW-PPR protein. The liverwort Cyathodium cavernarum (Marchantiopsida, Cyathodiaceae), typically found in cave habitats, was newly found to have 129 C-to-U RNA editing sites in its chloroplast and 172 sites in its mitochondria. The Cyathodium genus, specifically C. cavernarum, has a large number of PPR editing factor genes, including 251 DYW-type PPR proteins. These DYW-type PPR proteins may be responsible for C-to-U RNA editing in C. cavernarum. Cyathodium cavernarum possesses both PPR DYW proteins and RNA editing. Our analysis suggests that the remarkable RNA editing capability of C. cavernarum may have been acquired alongside the emergence of DYW-type PPR editing factors. These findings provide insight into the evolutionary pattern of RNA editing in land plants.
Collapse
Affiliation(s)
- Chao Shen
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Xu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wen-Zhuan Huang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiong Zhao
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Tiantong National Station of Forest Ecosystem, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Nymark M, Finazzi G, Volpe C, Serif M, Fonseca DDM, Sharma A, Sanchez N, Sharma AK, Ashcroft F, Kissen R, Winge P, Bones AM. Loss of CpFTSY Reduces Photosynthetic Performance and Affects Insertion of PsaC of PSI in Diatoms. PLANT & CELL PHYSIOLOGY 2023; 64:583-603. [PMID: 36852859 DOI: 10.1093/pcp/pcad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/16/2023]
Abstract
The chloroplast signal recognition particle (CpSRP) receptor (CpFTSY) is a component of the CpSRP pathway that post-translationally targets light-harvesting complex proteins (LHCPs) to the thylakoid membranes in plants and green algae containing chloroplasts derived from primary endosymbiosis. In plants, CpFTSY also plays a major role in the co-translational incorporation of chloroplast-encoded subunits of photosynthetic complexes into the thylakoids. This role has not been demonstrated in green algae. So far, its function in organisms with chloroplasts derived from secondary endosymbiotic events has not been elucidated. Here, we report the generation and characterization of mutants lacking CpFTSY in the diatom Phaeodactylum tricornutum. We found that this protein is not involved in inserting LHCPs into thylakoid membranes, indicating that the post-translational part of the CpSRP pathway is not active in this group of microalgae. The lack of CpFTSY caused an increased level of photoprotection, low electron transport rates, inefficient repair of photosystem II (PSII), reduced growth, a strong decline in the PSI subunit PsaC and upregulation of proteins that might compensate for a non-functional co-translational CpSRP pathway during light stress conditions. The phenotype was highly similar to the one described for diatoms lacking another component of the co-translational CpSRP pathway, the CpSRP54 protein. However, in contrast to cpsrp54 mutants, only one thylakoid membrane protein, PetD of the Cytb6f complex, was downregulated in cpftsy. Our results point to a minor role for CpFTSY in the co-translational CpSRP pathway, suggesting that other mechanisms may partially compensate for the effect of a disrupted CpSRP pathway.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim 7010, Norway
| | - Giovanni Finazzi
- Cell & Plant Physiology Laboratory, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble 38000, France
| | - Charlotte Volpe
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim 7010, Norway
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Davi de Miranda Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St. Olavs Hospital, The University Hospital in Trondheim, Trondheim N-7491, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St. Olavs Hospital, The University Hospital in Trondheim, Trondheim N-7491, Norway
| | - Nicolas Sanchez
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Amit Kumar Sharma
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Felicity Ashcroft
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
4
|
Srinivasan K, Banerjee A, Baid P, Dhur A, Sengupta J. Ribosome-membrane crosstalk: Co-translational targeting pathways of proteins across membranes in prokaryotes and eukaryotes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:163-198. [PMID: 35034718 DOI: 10.1016/bs.apcsb.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ribosomes are the molecular machine of living cells designed for decoding mRNA-encoded genetic information into protein. Being sophisticated machinery, both in design and function, the ribosome not only carries out protein synthesis, but also coordinates several other ribosome-associated cellular processes. One such process is the translocation of proteins across or into the membrane depending on their secretory or membrane-associated nature. These proteins comprise a large portion of a cell's proteome and act as key factors for cellular survival as well as several crucial functional pathways. Protein transport to extra- and intra-cytosolic compartments (across the eukaryotic endoplasmic reticulum (ER) or across the prokaryotic plasma membrane) or insertion into membranes majorly occurs through an evolutionarily conserved protein-conducting channel called translocon (eukaryotic Sec61 or prokaryotic SecYEG channels). Targeting proteins to the membrane-bound translocon may occur via post-translational or co-translational modes and it is often mediated by recognition of an N-terminal signal sequence in the newly synthesizes polypeptide chain. Co-translational translocation is coupled to protein synthesis where the ribosome-nascent chain complex (RNC) itself is targeted to the translocon. Here, in the light of recent advances in structural and functional studies, we discuss our current understanding of the mechanistic models of co-translational translocation, coordinated by the actively translating ribosomes, in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Krishnamoorthi Srinivasan
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aneek Banerjee
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priya Baid
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ankit Dhur
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jayati Sengupta
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
5
|
SRPassing Co-translational Targeting: The Role of the Signal Recognition Particle in Protein Targeting and mRNA Protection. Int J Mol Sci 2021; 22:ijms22126284. [PMID: 34208095 PMCID: PMC8230904 DOI: 10.3390/ijms22126284] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/13/2023] Open
Abstract
Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of life. It consists of one protein and one noncoding RNA in some bacteria. It is more complex in eukaryotes and consists of six proteins and one noncoding RNA in mammals. In the eukaryotic cytoplasm, SRP co-translationally targets proteins to the endoplasmic reticulum and prevents misfolding and aggregation of the secretory proteins in the cytoplasm. It was demonstrated recently that SRP also possesses an earlier unknown function, the protection of mRNAs of secretory proteins from degradation. In this review, we analyze the progress in studies of SRPs from different organisms, SRP biogenesis, its structure, and function in protein targeting and mRNA protection.
Collapse
|
6
|
Pyrih J, Pánek T, Durante IM, Rašková V, Cimrhanzlová K, Kriegová E, Tsaousis AD, Eliáš M, Lukeš J. Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria. Mol Biol Evol 2021; 38:3170-3187. [PMID: 33837778 PMCID: PMC8321541 DOI: 10.1093/molbev/msab090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
The main bacterial pathway for inserting proteins into the plasma membrane relies on the signal recognition particle (SRP), composed of the Ffh protein and an associated RNA component, and the SRP-docking protein FtsY. Eukaryotes use an equivalent system of archaeal origin to deliver proteins into the endoplasmic reticulum, whereas a bacteria-derived SRP and FtsY function in the plastid. Here we report on the presence of homologs of the bacterial Ffh and FtsY proteins in various unrelated plastid-lacking unicellular eukaryotes, namely Heterolobosea, Alveida, Goniomonas, and Hemimastigophora. The monophyly of novel eukaryotic Ffh and FtsY groups, predicted mitochondrial localization experimentally confirmed for Naegleria gruberi, and a strong alphaproteobacterial affinity of the Ffh group, collectively suggest that they constitute parts of an ancestral mitochondrial signal peptide-based protein-targeting system inherited from the last eukaryotic common ancestor, but lost from the majority of extant eukaryotes. The ability of putative signal peptides, predicted in a subset of mitochondrial-encoded N. gruberi proteins, to target a reporter fluorescent protein into the endoplasmic reticulum of Trypanosoma brucei, likely through their interaction with the cytosolic SRP, provided further support for this notion. We also illustrate that known mitochondrial ribosome-interacting proteins implicated in membrane protein targeting in opisthokonts (Mba1, Mdm38, and Mrx15) are broadly conserved in eukaryotes and nonredundant with the mitochondrial SRP system. Finally, we identified a novel mitochondrial protein (MAP67) present in diverse eukaryotes and related to the signal peptide-binding domain of Ffh, which may well be a hitherto unrecognized component of the mitochondrial membrane protein-targeting machinery.
Collapse
Affiliation(s)
- Jan Pyrih
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ignacio Miguel Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Kristýna Cimrhanzlová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Kriegová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
7
|
Nymark M, Grønbech Hafskjold MC, Volpe C, Fonseca DDM, Sharma A, Tsirvouli E, Serif M, Winge P, Finazzi G, Bones AM. Functional studies of CpSRP54 in diatoms show that the mechanism of thylakoid protein insertion differs from that in plants and green algae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:113-132. [PMID: 33372269 DOI: 10.1111/tpj.15149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The chloroplast signal recognition particle 54 kDa (CpSRP54) protein is a member of the CpSRP pathway known to target proteins to thylakoid membranes in plants and green algae. Loss of CpSRP54 in the marine diatom Phaeodactylum tricornutum lowers the accumulation of a selection of chloroplast-encoded subunits of photosynthetic complexes, indicating a role in the co-translational part of the CpSRP pathway. In contrast to plants and green algae, absence of CpSRP54 does not have a negative effect on the content of light-harvesting antenna complex proteins and pigments in P. tricornutum, indicating that the diatom CpSRP54 protein has not evolved to function in the post-translational part of the CpSRP pathway. Cpsrp54 KO mutants display altered photophysiological responses, with a stronger induction of photoprotective mechanisms and lower growth rates compared to wild type when exposed to increased light intensities. Nonetheless, their phenotype is relatively mild, thanks to the activation of mechanisms alleviating the loss of CpSRP54, involving upregulation of chaperones. We conclude that plants, green algae, and diatoms have evolved differences in the pathways for co-translational and post-translational insertion of proteins into the thylakoid membranes.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Marthe Caroline Grønbech Hafskjold
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Davi de Miranda Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Giovanni Finazzi
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble (IRIG), CEA-Grenoble, Grenoble, 38000, France
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| |
Collapse
|
8
|
Harris AJ, Goldman AD. The very early evolution of protein translocation across membranes. PLoS Comput Biol 2021; 17:e1008623. [PMID: 33684113 PMCID: PMC7987157 DOI: 10.1371/journal.pcbi.1008623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/23/2021] [Accepted: 12/10/2020] [Indexed: 11/18/2022] Open
Abstract
In this study, we used a computational approach to investigate the early evolutionary history of a system of proteins that, together, embed and translocate other proteins across cell membranes. Cell membranes comprise the basis for cellularity, which is an ancient, fundamental organizing principle shared by all organisms and a key innovation in the evolution of life on Earth. Two related requirements for cellularity are that organisms are able to both embed proteins into membranes and translocate proteins across membranes. One system that accomplishes these tasks is the signal recognition particle (SRP) system, in which the core protein components are the paralogs, FtsY and Ffh. Complementary to the SRP system is the Sec translocation channel, in which the primary channel-forming protein is SecY. We performed phylogenetic analyses that strongly supported prior inferences that FtsY, Ffh, and SecY were all present by the time of the last universal common ancestor of life, the LUCA, and that the ancestor of FtsY and Ffh existed before the LUCA. Further, we combined ancestral sequence reconstruction and protein structure and function prediction to show that the LUCA had an SRP system and Sec translocation channel that were similar to those of extant organisms. We also show that the ancestor of Ffh and FtsY that predated the LUCA was more similar to FtsY than Ffh but could still have comprised a rudimentary protein translocation system on its own. Duplication of the ancestor of FtsY and Ffh facilitated the specialization of FtsY as a membrane bound receptor and Ffh as a cytoplasmic protein that could bind nascent proteins with specific membrane-targeting signal sequences. Finally, we analyzed amino acid frequencies in our ancestral sequence reconstructions to infer that the ancestral Ffh/FtsY protein likely arose prior to or just after the completion of the canonical genetic code. Taken together, our results offer a window into the very early evolutionary history of cellularity.
Collapse
Affiliation(s)
- AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, Oberlin, Ohio, United States of America
| | - Aaron David Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, Oberlin, Ohio, United States of America
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Xu X, Ouyang M, Lu D, Zheng C, Zhang L. Protein Sorting within Chloroplasts. Trends Cell Biol 2020; 31:9-16. [PMID: 33121860 DOI: 10.1016/j.tcb.2020.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Chloroplasts have multiple suborganellar membranes. Correct and efficient translocation of chloroplast proteins from their site of synthesis into or across membranes to their functional compartments are fundamental processes. In recent years, several new components and regulatory mechanisms involved in chloroplast protein import and sorting have been explored. Moreover, the formation of liquid-liquid phase transition (LLPT) has been recently reported as a novel mechanism for regulating chloroplast protein sorting. Here, we overview the recent advances of both nuclear- and chloroplast-encoded protein trafficking to their final destination within chloroplasts, and discuss the novel components and regulatory mechanisms of intrachloroplast sorting. Furthermore, we propose that LLPT may be a universal and conserved mechanism for driving organelle protein trafficking and organelle biogenesis.
Collapse
Affiliation(s)
- Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Min Ouyang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China.
| |
Collapse
|
10
|
Steinberg R, Origi A, Natriashvili A, Sarmah P, Licheva M, Walker PM, Kraft C, High S, Luirink J, Shi WQ, Helmstädter M, Ulbrich MH, Koch HG. Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. PLoS Biol 2020; 18:e3000874. [PMID: 32997663 PMCID: PMC7549839 DOI: 10.1371/journal.pbio.3000874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/12/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Small membrane proteins represent a largely unexplored yet abundant class of proteins in pro- and eukaryotes. They essentially consist of a single transmembrane domain and are associated with stress response mechanisms in bacteria. How these proteins are inserted into the bacterial membrane is unknown. Our study revealed that in Escherichia coli, the 27-amino-acid-long model protein YohP is recognized by the signal recognition particle (SRP), as indicated by in vivo and in vitro site-directed cross-linking. Cross-links to SRP were also observed for a second small membrane protein, the 33-amino-acid-long YkgR. However, in contrast to the canonical cotranslational recognition by SRP, SRP was found to bind to YohP posttranslationally. In vitro protein transport assays in the presence of a SecY inhibitor and proteoliposome studies demonstrated that SRP and its receptor FtsY are essential for the posttranslational membrane insertion of YohP by either the SecYEG translocon or by the YidC insertase. Furthermore, our data showed that the yohP mRNA localized preferentially and translation-independently to the bacterial membrane in vivo. In summary, our data revealed that YohP engages an unique SRP-dependent posttranslational insertion pathway that is likely preceded by an mRNA targeting step. This further highlights the enormous plasticity of bacterial protein transport machineries.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Princess M. Walker
- Department of Chemistry, Ball State University, Muncie, Indiana, United States of America
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Stephen High
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Joen Luirink
- Molecular Microbiology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wei. Q. Shi
- Department of Chemistry, Ball State University, Muncie, Indiana, United States of America
| | - Martin Helmstädter
- Internal Medicine IV, Department of Medicine, Medical Center − University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian H. Ulbrich
- Internal Medicine IV, Department of Medicine, Medical Center − University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Lon Protease Removes Excess Signal Recognition Particle Protein in Escherichia coli. J Bacteriol 2020; 202:JB.00161-20. [PMID: 32366590 DOI: 10.1128/jb.00161-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Correct targeting of membrane proteins is essential for membrane integrity, cell physiology, and viability. Cotranslational targeting depends on the universally conserved signal recognition particle (SRP), which is a ribonucleoprotein complex comprised of the protein component Ffh and the 4.5S RNA in Escherichia coli About 25 years ago it was reported that Ffh is an unstable protein, but the underlying mechanism has never been explored. Here, we show that Lon is the primary protease responsible for adjusting the cellular Ffh level. When overproduced, Ffh is particularly prone to degradation during transition from exponential to stationary growth and the cellular Ffh amount is lowest in stationary phase. The Ffh protein consists of two domains, the NG domain, responsible for GTP hydrolysis and docking to the membrane receptor FtsY, and the RNA-binding M domain. We find that the NG domain alone is stable, whereas the isolated M domain is degraded. Consistent with the importance of Lon in this process, the M domain confers synthetic lethality to the lon mutant. The Ffh homolog from the model plant Arabidopsis thaliana, which forms a protein-protein complex rather than a protein-RNA complex, is stable, suggesting that the RNA-binding ability residing in the M domain of E. coli Ffh is important for proteolysis. Our results support a model in which excess Ffh not bound to 4.5S RNA is subjected to proteolysis until an appropriate Ffh concentration is reached. The differential proteolysis adjusts Ffh levels to the cellular demand and maintains cotranslational protein transport and membrane integrity.IMPORTANCE Since one-third of all bacterial proteins reside outside the cytoplasm, protein targeting to the appropriate address is an essential process. Cotranslational targeting to the membrane relies on the signal recognition particle (SRP), which is a protein-RNA complex in bacteria. We report that the protein component Ffh is a substrate of the Lon protease. Regulated proteolysis of Ffh provides a simple mechanism to adjust the concentration of the essential protein to the cellular demand. This is important because elevated or depleted SRP levels negatively impact protein targeting and bacterial fitness.
Collapse
|
12
|
Ruiz-Márvez E, Ramírez CA, Rodríguez ER, Flórez MM, Delgado G, Guzmán F, Gómez-Puertas P, Requena JM, Puerta CJ. Molecular Characterization of Tc964, A Novel Antigenic Protein from Trypanosoma cruzi. Int J Mol Sci 2020; 21:E2432. [PMID: 32244527 PMCID: PMC7177413 DOI: 10.3390/ijms21072432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 11/16/2022] Open
Abstract
The Tc964 protein was initially identified by its presence in the interactome associated with the LYT1 mRNAs, which code for a virulence factor of Trypanosoma cruzi. Tc964 is annotated in the T. cruzi genome as a hypothetical protein. According to phylogenetic analysis, the protein is conserved in the different genera of the Trypanosomatidae family; however, recognizable orthologues were not identified in other groups of organisms. Therefore, as a first step, an in-depth molecular characterization of the Tc946 protein was carried out. Based on structural predictions and molecular dynamics studies, the Tc964 protein would belong to a particular class of GTPases. Subcellular fractionation analysis indicated that Tc964 is a nucleocytoplasmic protein. Additionally, the protein was expressed as a recombinant protein in order to analyze its antigenicity with sera from Chagas disease (CD) patients. Tc964 was found to be antigenic, and B-cell epitopes were mapped by the use of synthetic peptides. In parallel, the Leishmania major homologue (Lm964) was also expressed as recombinant protein and used for a preliminary evaluation of antigen cross-reactivity in CD patients. Interestingly, Tc964 was recognized by sera from Chronic CD (CCD) patients at different stages of disease severity, but no reactivity against this protein was observed when sera from Colombian patients with cutaneous leishmaniasis were analyzed. Therefore, Tc964 would be adequate for CD diagnosis in areas where both infections (CD and leishmaniasis) coexist, even though additional assays using larger collections of sera are needed in order to confirm its usefulness for differential serodiagnosis.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Márvez
- Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40- 62, Bogotá, Colombia; (E.R.-M.); (C.A.R.); (E.R.R.)
| | - César Augusto Ramírez
- Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40- 62, Bogotá, Colombia; (E.R.-M.); (C.A.R.); (E.R.R.)
| | - Eliana Rocío Rodríguez
- Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40- 62, Bogotá, Colombia; (E.R.-M.); (C.A.R.); (E.R.R.)
| | - Magda Mellisa Flórez
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 # 45-01, Bogota; Colombia; (M.M.F.); (G.D.)
| | - Gabriela Delgado
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 # 45-01, Bogota; Colombia; (M.M.F.); (G.D.)
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaiso, Avenida Universidad 2373223, Curauma, Valparaiso-Chile;
| | - Paulino Gómez-Puertas
- Grupo de Modelado Molecular del Centro de Biología Molecular Severo Ochoa, Microbes in Health and Welfare Department, Universidad Autónoma de Madrid (CBMSO, CSIC-UAM), 28049 Madrid, Spain;
| | - José María Requena
- Grupo Regulación de la Expresión Génica en Leishmania del Centro de Biología Molecular Severo Ochoa, Molecular Biology Department, Universidad Autónoma de Madrid (CBMSO, CSIC-UAM), 28049 Madrid, Spain;
| | - Concepción J. Puerta
- Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40- 62, Bogotá, Colombia; (E.R.-M.); (C.A.R.); (E.R.R.)
| |
Collapse
|
13
|
Nymark M, Volpe C, Hafskjold MCG, Kirst H, Serif M, Vadstein O, Bones AM, Melis A, Winge P. Loss of ALBINO3b Insertase Results in Truncated Light-Harvesting Antenna in Diatoms. PLANT PHYSIOLOGY 2019; 181:1257-1276. [PMID: 31467163 PMCID: PMC6836812 DOI: 10.1104/pp.19.00868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/10/2019] [Indexed: 05/13/2023]
Abstract
The family of chloroplast ALBINO3 (ALB3) proteins function in the insertion and assembly of thylakoid membrane protein complexes. Loss of ALB3b in the marine diatom Phaeodactylum tricornutum leads to a striking change of cell color from the normal brown to green. A 75% decrease of the main fucoxanthin-chlorophyll a/c-binding proteins was identified in the alb3b strains as the cause of changes in the spectral properties of the mutant cells. The alb3b lines exhibit a truncated light-harvesting antenna phenotype with reduced amounts of light-harvesting pigments and require a higher light intensity for saturation of photosynthesis. Accumulation of photoprotective pigments and light-harvesting complex stress-related proteins was not negatively affected in the mutant strains, but still the capacity for nonphotochemical quenching was lower compared with the wild type. In plants and green algae, ALB3 proteins interact with members of the chloroplast signal recognition particle pathway through a Lys-rich C-terminal domain. A novel conserved C-terminal domain was identified in diatoms and other stramenopiles, questioning if ALB3b proteins have the same interaction partners as their plant/green algae homologs.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | - Henning Kirst
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
14
|
Hristou A, Gerlach I, Stolle DS, Neumann J, Bischoff A, Dünschede B, Nowaczyk MM, Zoschke R, Schünemann D. Ribosome-Associated Chloroplast SRP54 Enables Efficient Cotranslational Membrane Insertion of Key Photosynthetic Proteins. THE PLANT CELL 2019; 31:2734-2750. [PMID: 31444312 PMCID: PMC6881123 DOI: 10.1105/tpc.19.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/12/2019] [Accepted: 08/22/2019] [Indexed: 05/20/2023]
Abstract
Key proteins of the photosynthetic complexes are encoded in the chloroplast genome and cotranslationally inserted into the thylakoid membrane. However, the molecular details of this process are largely unknown. Here, we demonstrate by ribosome profiling that the conserved chloroplast signal recognition particle subunit (cpSRP54) is required for efficient cotranslational targeting of several central photosynthetic proteins, such as the PSII PsbA (D1) subunit, in Arabidopsis (Arabidopsis thaliana). High-resolution analysis of membrane-associated and soluble ribosome footprints revealed that the SRP-dependent membrane targeting of PsbA is already initiated at an early translation step before exposure of the nascent chain from the ribosome. In contrast to cytosolic SRP, which contacts the ribosome close to the peptide tunnel exit site, analysis of the cpSRP54/ribosome binding interface revealed a direct interaction of cpSRP54 and the ribosomal subunit uL4, which is not located at the tunnel exit site but forms a part of the internal peptide tunnel wall by a loop domain. The plastid-specific C-terminal tail region of cpSRP54 plays a crucial role in uL4 binding. Our data indicate a novel mechanism of SRP-dependent membrane protein transport with the cpSRP54/uL4 interaction as a central element in early initiation of cotranslational membrane targeting.
Collapse
Affiliation(s)
- Athina Hristou
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Ines Gerlach
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dominique S Stolle
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Jennifer Neumann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Annika Bischoff
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
15
|
Ševcíková T, Yurchenko T, Fawley KP, Amaral R, Strnad H, Santos LMA, Fawley MW, Eliáš M. Plastid Genomes and Proteins Illuminate the Evolution of Eustigmatophyte Algae and Their Bacterial Endosymbionts. Genome Biol Evol 2019; 11:362-379. [PMID: 30629162 PMCID: PMC6367104 DOI: 10.1093/gbe/evz004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2019] [Indexed: 12/26/2022] Open
Abstract
Eustigmatophytes, a class of stramenopile algae (ochrophytes), include not only the extensively studied biotechnologically important genus Nannochloropsis but also a rapidly expanding diversity of lineages with much less well characterized biology. Recent discoveries have led to exciting additions to our knowledge about eustigmatophytes. Some proved to harbor bacterial endosymbionts representing a novel genus, Candidatus Phycorickettsia, and an operon of unclear function (ebo) obtained by horizontal gene transfer from the endosymbiont lineage was found in the plastid genomes of still other eustigmatophytes. To shed more light on the latter event, as well as to generally improve our understanding of the eustigmatophyte evolutionary history, we sequenced plastid genomes of seven phylogenetically diverse representatives (including new isolates representing undescribed taxa). A phylogenomic analysis of plastid genome-encoded proteins resolved the phylogenetic relationships among the main eustigmatophyte lineages and provided a framework for the interpretation of plastid gene gains and losses in the group. The ebo operon gain was inferred to have probably occurred within the order Eustigmatales, after the divergence of the two basalmost lineages (a newly discovered hitherto undescribed strain and the Pseudellipsoidion group). When looking for nuclear genes potentially compensating for plastid gene losses, we noticed a gene for a plastid-targeted acyl carrier protein that was apparently acquired by horizontal gene transfer from Phycorickettsia. The presence of this gene in all eustigmatophytes studied, including representatives of both principal clades (Eustigmatales and Goniochloridales), is a genetic footprint indicating that the eustigmatophyte-Phycorickettsia partnership started no later than in the last eustigmatophyte common ancestor.
Collapse
Affiliation(s)
- Tereza Ševcíková
- Department of Biology and Ecology Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tatiana Yurchenko
- Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Ostrava, Czech Republic
| | - Karen P Fawley
- Division of Sciences and Mathematics, University of the Ozarks, Clarksville, Arkansas
| | - Raquel Amaral
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the CAS, v.v.i., Prague, Czech Republic
| | - Lilia M A Santos
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Marvin W Fawley
- Division of Sciences and Mathematics, University of the Ozarks, Clarksville, Arkansas.,School of Mathematical and Natural Sciences, University of Arkansas at Monticello, Monticello, Arkansas
| | - Marek Eliáš
- Department of Biology and Ecology Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
16
|
Ziehe D, Dünschede B, Schünemann D. Molecular mechanism of SRP-dependent light-harvesting protein transport to the thylakoid membrane in plants. PHOTOSYNTHESIS RESEARCH 2018; 138:303-313. [PMID: 29956039 PMCID: PMC6244792 DOI: 10.1007/s11120-018-0544-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/20/2018] [Indexed: 05/26/2023]
Abstract
The light-harvesting chlorophyll a/b binding proteins (LHCP) belong to a large family of membrane proteins. They form the antenna complexes of photosystem I and II and function in light absorption and transfer of the excitation energy to the photosystems. As nuclear-encoded proteins, the LHCPs are imported into the chloroplast and further targeted to their final destination-the thylakoid membrane. Due to their hydrophobicity, the formation of the so-called 'transit complex' in the stroma is important to prevent their aggregation in this aqueous environment. The posttranslational LHCP targeting mechanism is well regulated through the interaction of various soluble and membrane-associated protein components and includes several steps: the binding of the LHCP to the heterodimeric cpSRP43/cpSRP54 complex to form the soluble transit complex; the docking of the transit complex to the SRP receptor cpFtsY and the Alb3 translocase at the membrane followed by the release and integration of the LHCP into the thylakoid membrane in a GTP-dependent manner. This review summarizes the molecular mechanisms and dynamics behind the posttranslational LHCP targeting to the thylakoid membrane of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
17
|
Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 2018; 8:17012. [PMID: 30451959 PMCID: PMC6242988 DOI: 10.1038/s41598-018-35389-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
Euglenophytes are a familiar algal group with green alga-derived secondary plastids, but the knowledge of euglenophyte plastid function and evolution is still highly incomplete. With this in mind we sequenced and analysed the transcriptome of the non-photosynthetic species Euglena longa. The transcriptomic data confirmed the absence of genes for the photosynthetic machinery, but provided candidate plastid-localised proteins bearing N-terminal bipartite topogenic signals (BTSs) of the characteristic euglenophyte type. Further comparative analyses including transcriptome assemblies available for photosynthetic euglenophytes enabled us to unveil salient aspects of the basic euglenophyte plastid infrastructure, such as plastidial targeting of several proteins as C-terminal translational fusions with other BTS-bearing proteins or replacement of the conventional eubacteria-derived plastidial ribosomal protein L24 by homologs of archaeo-eukaryotic origin. Strikingly, no homologs of any key component of the TOC/TIC system and the plastid division apparatus are discernible in euglenophytes, and the machinery for intraplastidial protein targeting has been simplified by the loss of the cpSRP/cpFtsY system and the SEC2 translocon. Lastly, euglenophytes proved to encode a plastid-targeted homolog of the termination factor Rho horizontally acquired from a Lambdaproteobacteria-related donor. Our study thus further documents a substantial remodelling of the euglenophyte plastid compared to its green algal progenitor.
Collapse
|
18
|
Ziehe D, Dünschede B, Schünemann D. From bacteria to chloroplasts: evolution of the chloroplast SRP system. Biol Chem 2017; 398:653-661. [PMID: 28076289 DOI: 10.1515/hsz-2016-0292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023]
Abstract
Chloroplasts derive from a prokaryotic symbiont that lost most of its genes during evolution. As a result, the great majority of chloroplast proteins are encoded in the nucleus and are posttranslationally imported into the organelle. The chloroplast genome encodes only a few proteins. These include several multispan thylakoid membrane proteins which are synthesized on thylakoid-bound ribosomes and cotranslationally inserted into the membrane. During evolution, ancient prokaryotic targeting machineries were adapted and combined with novel targeting mechanisms to facilitate post- and cotranslational protein transport in chloroplasts. This review focusses on the chloroplast signal recognition particle (cpSRP) protein transport system, which has been intensively studied in higher plants. The cpSRP system derived from the prokaryotic SRP pathway, which mediates the cotranslational protein transport to the bacterial plasma membrane. Chloroplasts contain homologs of several components of the bacterial SRP system. The function of these conserved components in post- and/or cotranslational protein transport and chloroplast-specific modifications of these transport mechanisms are described. Furthermore, recent studies of cpSRP systems in algae and lower plants are summarized and their impact on understanding the evolution of the cpSRP system are discussed.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| |
Collapse
|
19
|
Jeong J, Baek K, Kirst H, Melis A, Jin E. Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:45-55. [DOI: 10.1016/j.bbabio.2016.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
20
|
Chandrasekar S, Shan SO. Anionic Phospholipids and the Albino3 Translocase Activate Signal Recognition Particle-Receptor Interaction during Light-harvesting Chlorophyll a/b-binding Protein Targeting. J Biol Chem 2016; 292:397-406. [PMID: 27895124 DOI: 10.1074/jbc.m116.752956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/14/2016] [Indexed: 01/12/2023] Open
Abstract
The universally conserved signal recognition particle (SRP) co-translationally delivers newly synthesized membrane and secretory proteins to the target cellular membrane. The only exception is found in the chloroplast of green plants, where the chloroplast SRP (cpSRP) post-translationally targets light-harvesting chlorophyll a/b-binding proteins (LHCP) to the thylakoid membrane. The mechanism and regulation of this post-translational mode of targeting by cpSRP remain unclear. Using biochemical and biophysical methods, here we show that anionic phospholipids activate the cpSRP receptor cpFtsY to promote rapid and stable cpSRP54·cpFtsY complex assembly. Furthermore, the stromal domain of the Alb3 translocase binds with high affinity to and regulates GTP hydrolysis in the cpSRP54·cpFtsY complex, suggesting that cpFtsY is primarily responsible for initial recruitment of the targeting complex to Alb3. These results suggest a new model for the sequential recruitment, remodeling, and unloading of the targeting complex at membrane translocase sites in the post-translational cpSRP pathway.
Collapse
Affiliation(s)
- Sowmya Chandrasekar
- From the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Shu-Ou Shan
- From the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
21
|
Chandrasekar S, Sweredoski MJ, Sohn CH, Hess S, Shan SO. Co-evolution of Two GTPases Enables Efficient Protein Targeting in an RNA-less Chloroplast Signal Recognition Particle Pathway. J Biol Chem 2016; 292:386-396. [PMID: 27895118 DOI: 10.1074/jbc.m116.752931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
The signal recognition particle (SRP) is an essential ribonucleoprotein particle that mediates the co-translational targeting of newly synthesized proteins to cellular membranes. The SRP RNA is a universally conserved component of SRP that mediates key interactions between two GTPases in SRP and its receptor, thus enabling rapid delivery of cargo to the target membrane. Notably, this essential RNA is bypassed in the chloroplast (cp) SRP of green plants. Previously, we showed that the cpSRP and cpSRP receptor GTPases (cpSRP54 and cpFtsY, respectively) interact efficiently by themselves without the SRP RNA. Here, we explore the molecular mechanism by which this is accomplished. Fluorescence analyses showed that, in the absence of SRP RNA, the M-domain of cpSRP54 both accelerates and stabilizes complex assembly between cpSRP54 and cpFtsY. Cross-linking coupled with mass spectrometry and mutational analyses identified a new interaction between complementarily charged residues on the cpFtsY G-domain and the vicinity of the cpSRP54 M-domain. These residues are specifically conserved in plastids, and their evolution coincides with the loss of SRP RNA in green plants. These results provide an example of how proteins replace the functions of RNA during evolution.
Collapse
Affiliation(s)
| | - Michael J Sweredoski
- the Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Chang Ho Sohn
- From the Division of Chemistry and Chemical Engineering and
| | - Sonja Hess
- the Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Shu-Ou Shan
- From the Division of Chemistry and Chemical Engineering and
| |
Collapse
|
22
|
Ziehe D, Dünschede B, Zenker M, Funke S, Nowaczyk MM, Schünemann D. The Chloroplast SRP Systems of Chaetosphaeridium globosum and Physcomitrella patens as Intermediates in the Evolution of SRP-Dependent Protein Transport in Higher Plants. PLoS One 2016; 11:e0166818. [PMID: 27861610 PMCID: PMC5115805 DOI: 10.1371/journal.pone.0166818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/05/2016] [Indexed: 11/19/2022] Open
Abstract
The bacterial signal recognition particle (SRP) mediates the cotranslational targeting of membrane proteins and is a high affinity complex consisting of a SRP54 protein subunit (Ffh) and an SRP RNA. The chloroplast SRP (cpSRP) pathway has adapted throughout evolution to enable the posttranslational targeting of the light harvesting chlorophyll a/b binding proteins (LHCPs) to the thylakoid membrane. In spermatophytes (seed plants), the cpSRP lacks the SRP RNA and is instead formed by a high affinity interaction of the conserved 54-kD subunit (cpSRP54) with the chloroplast-specific cpSRP43 protein. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane. However, in contrast to spermatophytes, plastid SRP RNAs were identified within all streptophyte lineages and in all chlorophyte branches. Furthermore, it was shown that cpSRP43 does not interact with cpSRP54 in chlorophytes (e.g., Chlamydomonas reinhardtii). In this study, we biochemically characterized the cpSRP system of the charophyte Chaetosphaeridium globosum and the bryophyte Physcomitrella patens. Interaction studies demonstrate low affinity binding of cpSRP54 to cpSRP43 (Kd ~10 μM) in Chaetosphaeridium globosum and Physcomitrella patens as well as relatively low affinity binding of cpSRP54 to cpSRP RNA (Kd ~1 μM) in Physcomitrella patens. CpSRP54/cpSRP43 complex formation in charophytes is supported by the finding that specific alterations in the second chromodomain of cpSRP43, that are conserved within charophytes and absent in land plants, do not interfere with cpSRP54 binding. Furthermore, our data show that the elongated apical loop structure of the Physcomitrella patens cpSRP RNA contributes to the low binding affinity between cpSRP54 and the cpSRP RNA.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Mira Zenker
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Silke Funke
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Marc M. Nowaczyk
- Cyanobacterial Membrane Protein Complexes, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| |
Collapse
|
23
|
|
24
|
Wild K, Bange G, Motiejunas D, Kribelbauer J, Hendricks A, Segnitz B, Wade RC, Sinning I. Structural Basis for Conserved Regulation and Adaptation of the Signal Recognition Particle Targeting Complex. J Mol Biol 2016; 428:2880-97. [PMID: 27241309 DOI: 10.1016/j.jmb.2016.05.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex with a key role in targeting and insertion of membrane proteins. The two SRP GTPases, SRP54 (Ffh in bacteria) and FtsY (SRα in eukaryotes), form the core of the targeting complex (TC) regulating the SRP cycle. The architecture of the TC and its stimulation by RNA has been described for the bacterial SRP system while this information is lacking for other domains of life. Here, we present the crystal structures of the GTPase heterodimers of archaeal (Sulfolobus solfataricus), eukaryotic (Homo sapiens), and chloroplast (Arabidopsis thaliana) SRP systems. The comprehensive structural comparison combined with Brownian dynamics simulations of TC formation allows for the description of the general blueprint and of specific adaptations of the quasi-symmetric heterodimer. Our work defines conserved external nucleotide-binding sites for SRP GTPase activation by RNA. Structural analyses of the GDP-bound, post-hydrolysis states reveal a conserved, magnesium-sensitive switch within the I-box. Overall, we provide a general model for SRP cycle regulation by RNA.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Gert Bange
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Domantas Motiejunas
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
| | - Judith Kribelbauer
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Astrid Hendricks
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Bernd Segnitz
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, INF 282, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Wang P, Grimm B. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. PHOTOSYNTHESIS RESEARCH 2015; 126:189-202. [PMID: 25957270 DOI: 10.1007/s11120-015-0154-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/30/2015] [Indexed: 05/23/2023]
Abstract
Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
26
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
27
|
Dumesic PA, Rosenblad MA, Samuelsson T, Nguyen T, Moresco JJ, Yates JR, Madhani HD. Noncanoncial signal recognition particle RNAs in a major eukaryotic phylum revealed by purification of SRP from the human pathogen Cryptococcus neoformans. Nucleic Acids Res 2015; 43:9017-27. [PMID: 26275773 PMCID: PMC4605306 DOI: 10.1093/nar/gkv819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/01/2015] [Indexed: 12/21/2022] Open
Abstract
Despite conservation of the signal recognition particle (SRP) from bacteria to man, computational approaches have failed to identify SRP components from genomes of many lower eukaryotes, raising the possibility that they have been lost or altered in those lineages. We report purification and analysis of SRP in the human pathogen Cryptococcus neoformans, providing the first description of SRP in basidiomycetous yeast. The C. neoformans SRP RNA displays a predicted structure in which the universally conserved helix 8 contains an unprecedented stem-loop insertion. Guided by this sequence, we computationally identified 152 SRP RNAs throughout the phylum Basidiomycota. This analysis revealed additional helix 8 alterations including single and double stem-loop insertions as well as loop diminutions affecting RNA structural elements that are otherwise conserved from bacteria to man. Strikingly, these SRP RNA features in Basidiomycota are accompanied by phylum-specific alterations in the RNA-binding domain of Srp54, the SRP protein subunit that directly interacts with helix 8. Our findings reveal unexpected fungal SRP diversity and suggest coevolution of the two most conserved SRP features-SRP RNA helix 8 and Srp54-in basidiomycetes. Because members of this phylum include important human and plant pathogens, these noncanonical features provide new targets for antifungal compound development.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Magnus A Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Tiffany Nguyen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
28
|
Abstract
Mitochondria are energy-producing organelles in eukaryotic cells considered to be of bacterial origin. The mitochondrial genome has evolved under selection for minimization of gene content, yet it is not known why not all mitochondrial genes have been transferred to the nuclear genome. Here, we predict that hydrophobic membrane proteins encoded by the mitochondrial genomes would be recognized by the signal recognition particle and targeted to the endoplasmic reticulum if they were nuclear-encoded and translated in the cytoplasm. Expression of the mitochondrially encoded proteins Cytochrome oxidase subunit 1, Apocytochrome b, and ATP synthase subunit 6 in the cytoplasm of HeLa cells confirms export to the endoplasmic reticulum. To examine the extent to which the mitochondrial proteome is driven by selective constraints within the eukaryotic cell, we investigated the occurrence of mitochondrial protein domains in bacteria and eukaryotes. The accessory protein domains of the oxidative phosphorylation system are unique to mitochondria, indicating the evolution of new protein folds. Most of the identified domains in the accessory proteins of the ribosome are also found in eukaryotic proteins of other functions and locations. Overall, one-third of the protein domains identified in mitochondrial proteins are only rarely found in bacteria. We conclude that the mitochondrial genome has been maintained to ensure the correct localization of highly hydrophobic membrane proteins. Taken together, the results suggest that selective constraints on the eukaryotic cell have played a major role in modulating the evolution of the mitochondrial genome and proteome.
Collapse
|
29
|
Abstract
The YidC/Alb3/Oxa1 family functions in the insertion and folding of proteins in the bacterial cytoplasmic membrane, the chloroplast thylakoid membrane, and the mitochondrial inner membrane. All members share a conserved region composed of five transmembrane regions. These proteins mediate membrane insertion of an assorted group of proteins, ranging from respiratory subunits in the mitochondria and light-harvesting chlorophyll-binding proteins in chloroplasts to ATP synthase subunits in bacteria. This review discusses the YidC/Alb3/Oxa1 protein family as well as their function in membrane insertion and two new structures of the bacterial YidC, which suggest a mechanism for membrane insertion by this family of insertases.
Collapse
Affiliation(s)
- Seth W Hennon
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raunak Soman
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Lu Zhu
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Ross E Dalbey
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
30
|
Walter B, Pieta T, Schünemann D. Arabidopsis thaliana mutants lacking cpFtsY or cpSRP54 exhibit different defects in photosystem II repair. FRONTIERS IN PLANT SCIENCE 2015; 6:250. [PMID: 25918516 PMCID: PMC4394663 DOI: 10.3389/fpls.2015.00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/27/2015] [Indexed: 05/24/2023]
Abstract
Photosystem II (PS II) is a multi subunit protein complex embedded in the thylakoid membrane of cyanobacteria and chloroplasts. As the PS II reaction center protein D1 is prone to a light induced damage that inhibits PS II function especially at elevated light intensities, a highly ordered repair process including synthesis, targeting and insertion of D1 has evolved. To elucidate the function of the chloroplast signal recognition particle subunits, cpSRP43 and cpSRP54, and the cpSRP-receptor cpFtsY in D1 biogenesis we investigated the efficiency of the PS II repair cycle in the corresponding mutants of Arabidopsis thaliana. Immunological analyses, PAM measurements and in vivo labeling experiments demonstrate an impaired replacement of damaged D1 in the cpftsy mutant, while the chaos and the ffc mutant lacking cpSRP43 and cpSRP54, respectively, were not or hardly affected. The defect in cpftsy was neither caused by an impaired psbA transcript accumulation, D1 translation initiation nor by an enhanced D1 degradation. Further experiments revealed a decreased amount of salt stable, thylakoid membrane-associated translating ribosomes in the cpftsy mutant, while the amount of membrane-associated translating ribosomes is unaltered in the chaos and the ffc mutants. Therefore, our data indicate that the lack of cpFtsY leads to an inefficient PS II repair cycle caused by an impaired binding of translating ribosomes to the thylakoid membrane.
Collapse
Affiliation(s)
- Björn Walter
- Molecular Biology of Plant Organelles, Ruhr-University BochumBochum, Germany
| | - Thomas Pieta
- Plant Cell Physiology and Molecular Biology, Ruhr-University BochumBochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University BochumBochum, Germany
| |
Collapse
|
31
|
Dünschede B, Träger C, Schröder CV, Ziehe D, Walter B, Funke S, Hofmann E, Schünemann D. Chloroplast SRP54 Was Recruited for Posttranslational Protein Transport via Complex Formation with Chloroplast SRP43 during Land Plant Evolution. J Biol Chem 2015; 290:13104-14. [PMID: 25833951 DOI: 10.1074/jbc.m114.597922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Indexed: 01/05/2023] Open
Abstract
In bacteria, membrane proteins are targeted cotranslationally via a signal recognition particle (SRP). During the evolution of higher plant chloroplasts from cyanobacteria, the SRP pathway underwent striking adaptations that enable the posttranslational transport of the abundant light-harvesting chlorophyll-a/b-binding proteins (LHCPs). The conserved 54-kDa SRP subunit in higher plant chloroplasts (cpSRP54) is not bound to an SRP RNA, an essential SRP component in bacteria, but forms a stable heterodimer with the chloroplast-specific cpSRP43. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane whereby cpSRP43 plays a central role. This study shows that the cpSRP system in the green alga Chlamydomonas reinhardtii differs significantly from that of higher plants as cpSRP43 is not complexed to cpSRP54 in Chlamydomonas and cpSRP54 is not involved in LHCP recognition. This divergence is attributed to altered residues within the cpSRP54 tail and the second chromodomain of cpSRP43 that are crucial for the formation of the binding interface in Arabidopsis. These changes are highly conserved among chlorophytes, whereas all land plants contain cpSRP proteins with typical interaction motifs. These data demonstrate that the coevolution of LHCPs and cpSRP43 occurred independently of complex formation with cpSRP54 and that the interaction between cpSRP54 and cpSRP43 evolved later during the transition from chlorophytes to land plants. Furthermore, our data show that in higher plants a heterodimeric form of cpSRP is required for the formation of a low molecular weight transit complex with LHCP.
Collapse
Affiliation(s)
| | | | | | | | - Björn Walter
- From the Molecular Biology of Plant Organelles and
| | - Silke Funke
- From the Molecular Biology of Plant Organelles and
| | - Eckhard Hofmann
- Protein Crystallography, Ruhr University Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
32
|
Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31:58-84. [DOI: 10.3109/09687688.2014.907455] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity. Biotechnol Adv 2014; 32:66-72. [DOI: 10.1016/j.biotechadv.2013.08.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/21/2022]
|
34
|
Rosenblad MA, Träger C, Träger C, Schünemann D, Schünemann D. Structural diversity of signal recognition particle RNAs in plastids. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.26848. [PMID: 24494244 PMCID: PMC4091067 DOI: 10.4161/psb.26848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 06/03/2023]
Abstract
One of the pathways for protein targeting to the plasma membrane in bacteria utilizes the co-translationally acting signal recognition particle (SRP), a universally conserved ribonucleoprotein complex consisting of a 54 kDa protein and a functional RNA. An interesting exception is the higher plant chloroplast SRP, which lacks the otherwise essential RNA component. Furthermore, green plant chloroplasts have an additional post-translational SRP-dependent transport system in which the chloroplast-specific cpSRP43 protein binds to imported substrate proteins and to the conserved 54 kDa SRP subunit (cpSRP54). While homologs to the bacterial SRP protein and RNA component previously have been identified in genome sequences of red algae and diatoms, a recent study investigated the evolution of the green plant SRP system.1 Analysis of hundreds of plastid and nuclear genomes showed a surprising pattern of multiple losses of the plastid SRP RNA during evolution and a widespread presence in all non-spermatophyte plants and green algae. Contrary to expectations, all green organisms that have an identified cpSRP RNA also contain a cpSRP43. Notably, the structure of the plastid SRP RNAs is much more diverse than that of bacterial SRP RNAs. The apical GNRA tetraloop is only conserved in organisms of the red lineage and basal organisms of the green lineage, whereas further chloroplast SRP RNAs are characterized by atypical, mostly enlarged apical loops.
Collapse
Affiliation(s)
- Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology; University of Gothenburg; Gothenburg, Sweden
| | - Chantal Träger
- Molecular Biology of Plant Organelles; Ruhr-University Bochum; Bochum, Germany
| | - Chantal Träger
- Molecular Biology of Plant Organelles; Ruhr-University Bochum; Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles; Ruhr-University Bochum; Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles; Ruhr-University Bochum; Bochum, Germany
| |
Collapse
|
35
|
Abstract
The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.
Collapse
Affiliation(s)
- David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kuang Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|