1
|
Pandey SK, Maurya JP, Aryal B, Drynda K, Nair A, Miskolczi P, Singh RK, Wang X, Ma Y, de Souza Moraes T, Bayer EM, Farcot E, Bassel GW, Band LR, Bhalerao RP. A regulatory module mediating temperature control of cell-cell communication facilitates tree bud dormancy release. EMBO J 2024; 43:5793-5812. [PMID: 39363036 PMCID: PMC11612439 DOI: 10.1038/s44318-024-00256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
The control of cell-cell communication via plasmodesmata (PD) plays a key role in plant development. In tree buds, low-temperature conditions (LT) induce a switch in plasmodesmata from a closed to an open state, which restores cell-to-cell communication in the shoot apex and releases dormancy. Using genetic and cell-biological approaches, we have identified a previously uncharacterized transcription factor, Low-temperature-Induced MADS-box 1 (LIM1), as an LT-induced, direct upstream activator of the gibberellic acid (GA) pathway. The LIM1-GA module mediates low temperature-induced plasmodesmata opening, by negatively regulating callose accumulation to promote dormancy release. LIM1 also activates expression of FT1 (FLOWERING LOCUS T), another LT-induced factor, with LIM1-FT1 forming a coherent feedforward loop converging on low-temperature regulation of gibberellin signaling in dormancy release. Mathematical modeling and experimental validation suggest that negative feedback regulation of LIM1 by gibberellin could play a crucial role in maintaining the robust temporal regulation of bud responses to low temperature. These results reveal genetic factors linking temperature control of cell-cell communication with regulation of seasonally-aligned growth crucial for adaptation of trees.
Collapse
Affiliation(s)
- Shashank K Pandey
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Jay Prakash Maurya
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- Plant Development and Molecular Biology Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Bibek Aryal
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Kamil Drynda
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Aswin Nair
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Pal Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Rajesh Kumar Singh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Xiaobin Wang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yujiao Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- Shandong Academy of Grape, Jinan, Shandong, 250100, P. R. China
| | - Tatiana de Souza Moraes
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Etienne Farcot
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Leah R Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden.
| |
Collapse
|
2
|
Xue C, Zhang L, Li H, Liu Z, Zhang Y, Liu M, Zhao J. The effector PHYL1 JWB from Candidatus Phytoplasma ziziphi induces abnormal floral development by destabilising flower development proteins. PLANT, CELL & ENVIRONMENT 2024; 47:4963-4976. [PMID: 39119795 DOI: 10.1111/pce.15079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Phytoplasmas can induce complex and substantial phenotypic changes in their hosts in ways that favour their colonisation, but the mechanisms underlying these changes remain largely unknown. Jujube witches' broom (JWB) disease is a typical phytoplasma disease causing great economic loss in Chinese jujube (Ziziphus jujuba Mill.). Here, we reported an effector, PHYL1JWB from Candidatus Phytoplasma ziziphi, which implicated in inducing abnormal floral organogenesis. Utilising a combination of in vivo and in vitro methods, we investigated the influence of PHYL1JWB on the proteins associated with floral development. Our findings reveal that PHYL1JWB facilitates the proteasome-mediated degradation of essential flower morphogenetic regulators, including AP1, SEP1, SEP2, SEP3, SEP4, CAL, and AGL6, through a distinctive pathway that is dependent on the activity of the 26S proteasome, thus obviating the requirement for lysine ubiquitination of the substrates. Further, the Y2H analysis showed that the leucine at position 75th in second α helix of PHYL1JWB is fundamental for the interactions of PHYL1JWB with AP1 and SEP1-4 in jujube and Arabidopsis. Our research carry profound implications for elucidating the contribution of PHYL1JWB to the aberrant floral development in diseased jujube, and help to establish a robust theoretical underpinning for the prophylaxis and therapy of JWB disease.
Collapse
Affiliation(s)
- Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Shanxi Sericulture Science Research Institute, Shanxi Agricultural University, Yuncheng, Shanxi, China
| | - Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
3
|
Thoris K, Correa Marrero M, Fiers M, Lai X, Zahn I, Jiang X, Mekken M, Busscher S, Jansma S, Nanao M, de Ridder D, van Dijk AJ, Angenent G, Immink RH, Zubieta C, Bemer M. Uncoupling FRUITFULL's functions through modification of a protein motif identified by co-ortholog analysis. Nucleic Acids Res 2024; 52:13290-13304. [PMID: 39475190 PMCID: PMC11602133 DOI: 10.1093/nar/gkae963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Many plant transcription factors (TFs) are multifunctional and regulate growth and development in more than one tissue. These TFs can generally associate with different protein partners depending on the tissue type, thereby regulating tissue-specific target gene sets. However, how interaction specificity is ensured is still largely unclear. Here, we examine protein-protein interaction specificity using subfunctionalized co-orthologs of the FRUITFULL (FUL) subfamily of MADS-domain TFs. In Arabidopsis, FUL is multifunctional, playing important roles in flowering and fruiting, whereas these functions have partially been divided in the tomato co-orthologs FUL1 and FUL2. By linking protein sequence and function, we discovered a key amino acid motif that determines interaction specificity of MADS-domain TFs, which in Arabidopsis FUL determines the interaction with AGAMOUS and SEPALLATA proteins, linked to the regulation of a subset of targets. This insight offers great opportunities to dissect the biological functions of multifunctional MADS TFs.
Collapse
Affiliation(s)
- Kai Thoris
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Miguel Correa Marrero
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Martijn Fiers
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, Université Grenoble Alpes, INRAE, IRIG, CEA, 38000 Grenoble, Grenoble, France
| | - Iris E Zahn
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Mark Mekken
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stefan Busscher
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stuart Jansma
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Max Nanao
- Structural Biology, European Synchrotron Radiation Facility, 71 ave. des Martyrs, 38000 Grenoble, France
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, Université Grenoble Alpes, INRAE, IRIG, CEA, 38000 Grenoble, Grenoble, France
| | - Marian Bemer
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
4
|
Ma YQ, Li Q, Cheng H, Hou XF, Tan XM, Meng Q, Huang X, Chang W, Yang L, Xu ZQ. Alternative splicing variants of IiSEP3 in Isatis indigotica are involved in floral transition and flower development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109153. [PMID: 39342659 DOI: 10.1016/j.plaphy.2024.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The SEPALLATA3 genes regulate several aspects of plant development. This study identified four distinct splicing isoforms of the SEPALLATA3 gene in Isatis indigotica (I. indigotica). IiSEP3-1 and IiSEP3-2 have eight exons and were named as IiSEP3-2/1. However, IiSEP3-3 and IiSEP3-4 with the missing sixth exon were labeled IiSEP3ΔK3. Furthermore, the IiSEP3-1 and IiSEP3-4 amino acids sequences lack the V90. IiSEP3 splicing variants were primarily expressed in floral organs, with petals showing the highest expression. Ectopic expression of IiSEP3-2 or IiSEP3-3 may cause early flowering and reduce the number of sepals, petals, and stamens. The ectopic expression of IiSEP3-2 resulted in cauline leaves and sepals converting to carpelloid structures. In contrast, the four floral whorls prematurely wilted, and the entire flower displayed an abortive state when IiSEP3-3 was expressed ectopically. Silencing the IiSEP3 gene of I. indigotica employing VIGS (tobacco rattle virus-mediated virus-induced gene silencing) technology using the TRV-IiSEP3-2/1 vector delayed flowering time and reduced the number of petals and stamens. Plants silenced with TRV-IiSEP3ΔK3 also exhibited similar phenotypes, including fewer sepals. The transcriptome analysis of silenced plants (TRV-IiSEP3-2/1 treatment group) indicated significant alterations in 1861 genes, with 1035 upregulated and 826 downregulated. TRV-IiSEP3ΔK3 treatment altered the expression of 2063 genes in plants, with 1289 genes upregulated and 774 genes transcription inhibited. Y2H and BIFC experiments revealed that IiSEP3-2 and IiSEP3-3 had distinct interacting proteins. Thus, we can conclude that IiSEP3-2 and IiSEP3-3 interact with different proteins, affecting floral transition and organ development in I. indigotica.
Collapse
Affiliation(s)
- Yan-Qin Ma
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions Key Laboratory of Ministry of Agriculture Rural Affairs, Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, People's Republic of China; Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Qi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Hao Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Xiao-Fang Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Wei Chang
- Sichuan Institute of Edible Fungi, Chengdu, People's Republic of China, 610066
| | - Liang Yang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions Key Laboratory of Ministry of Agriculture Rural Affairs, Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, People's Republic of China.
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069.
| |
Collapse
|
5
|
Song W, Xie Y, Liu B, Huang Y, Cheng Z, Zhao Z, Tian D, Geng Y, Guo J, Li C, She D, Zhong Y, Li M, Liu L, Chen J, Sun C, Zhang X, Zhou Z, Lai J, Xin M, Yan L, Zhao J, Zhang X. Single nucleotide polymorphisms in SEPALLATA 2 underlie fruit length variation in cucurbits. THE PLANT CELL 2024; 36:4607-4621. [PMID: 39133577 PMCID: PMC11448892 DOI: 10.1093/plcell/koae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024]
Abstract
Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.
Collapse
Affiliation(s)
- Weiyuan Song
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yang Xie
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Yuxiang Huang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zilong Zhao
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Di Tian
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yan Geng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jingyu Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chuang Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Daixi She
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yanting Zhong
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Min Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Liu Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jiacai Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chengzhen Sun
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Ming Xin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin 150030, P. R.China
| | - Liying Yan
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| |
Collapse
|
6
|
Zamorano-Curaqueo M, Valenzuela-Riffo F, Herrera R, Moya-León MA. Characterization of FchAGL9 and FchSHP, two MADS-boxes related to softening of Fragaria chiloensis fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108985. [PMID: 39084168 DOI: 10.1016/j.plaphy.2024.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Fragaria chiloensis is a Chilean native species that softens intensively during its ripening. Its softening is related to cell wall disassembly due to the participation of cell wall degrading enzymes. Softening of F. chiloensis fruit can be accelerated by ABA treatment which is accompanied by the increment in the expression of key cell wall degrading genes, however the molecular machinery involved in the transcriptional regulation has not been studied until now. Therefore, the participation of two MADS-box transcription factors belonging to different subfamilies, FchAGL9 and FchSHP, was addressed. Both TFs are members of type-II MADS-box family (MIKC-type) and localized in the nucleus. FchAGL9 and FchSHP are expressed only in flower and fruit tissues, rising as the fruit softens with the highest expression level at C3-C4 stages. EMSA assays demonstrated that FchAGL9 binds to CArG sequences of RIN and SQM, meanwhile FchSHP interacts only with RIN. Bimolecular fluorescence complementation and yeast two-hybrid assays confirmed FchAGL9-FchAGL9 and FchAGL9-FchSHP interactions. Hetero-dimer structure was built through homology modeling concluding that FchSHP monomer binds to DNA. Functional validation by Luciferase-dual assays indicated that FchAGL9 transactivates FchRGL and FchPG's promoters, meanwhile FchSHP transactivates those of FchEXP2, FchRGL and FchPG. Over-expression of FchAGL9 in C2 F. chiloensis fruit rises FchEXP2 and FchEXP5 transcripts, meanwhile the over-expression of FchSHP also increments FchXTH1 and FchPL; in both cases there is a down-regulation of FchRGL and FchPG. In summary, we provided evidence of FchAGL9 and FchSHP participating in the transcription regulation associated to F. chiloensis's softening.
Collapse
Affiliation(s)
- Macarena Zamorano-Curaqueo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Felipe Valenzuela-Riffo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Raúl Herrera
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - María A Moya-León
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile.
| |
Collapse
|
7
|
Hugouvieux V, Blanc-Mathieu R, Janeau A, Paul M, Lucas J, Xu X, Ye H, Lai X, Le Hir S, Guillotin A, Galien A, Yan W, Nanao M, Kaufmann K, Parcy F, Zubieta C. SEPALLATA-driven MADS transcription factor tetramerization is required for inner whorl floral organ development. THE PLANT CELL 2024; 36:3435-3450. [PMID: 38771250 PMCID: PMC11371193 DOI: 10.1093/plcell/koae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
MADS transcription factors are master regulators of plant reproduction and flower development. The SEPALLATA (SEP) subfamily of MADS transcription factors is required for the development of floral organs and plays roles in inflorescence architecture and development of the floral meristem. SEPALLATAs act as organizers of MADS complexes, forming both heterodimers and heterotetramers in vitro. To date, the MADS complexes characterized in angiosperm floral organ development contain at least 1 SEPALLATA protein. Whether DNA binding by SEPALLATA-containing dimeric MADS complexes is sufficient for launching floral organ identity programs, however, is not clear as only defects in floral meristem determinacy were observed in tetramerization-impaired SEPALLATA mutant proteins. Here, we used a combination of genome-wide-binding studies, high-resolution structural studies of the SEP3/AGAMOUS (AG) tetramerization domain, structure-based mutagenesis and complementation experiments in Arabidopsis (Arabidopsis thaliana) sep1 sep2 sep3 and sep1 sep2 sep3 ag-4 plants transformed with versions of SEP3 encoding tetramerization mutants. We demonstrate that while SEP3 heterodimers can bind DNA both in vitro and in vivo and recognize the majority of SEP3 wild-type-binding sites genome-wide, tetramerization is required not only for floral meristem determinacy but also for floral organ identity in the second, third, and fourth whorls.
Collapse
Affiliation(s)
- Veronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Romain Blanc-Mathieu
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Aline Janeau
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Michel Paul
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Jeremy Lucas
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Hailong Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuelei Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sarah Le Hir
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Audrey Guillotin
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Antonin Galien
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Wenhao Yan
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Max Nanao
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - François Parcy
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
8
|
Sun M, Wang D, Li Y, Niu M, Liu C, Liu L, Wang J, Li J. Genome-wide identification and expression pattern analysis of MIKC-Type MADS-box genes in Chionanthus retusus, an androdioecy plant. BMC Genomics 2024; 25:662. [PMID: 38956488 PMCID: PMC11220994 DOI: 10.1186/s12864-024-10569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The MADS-box gene family is widely distributed in the plant kingdom, and its members typically encoding transcription factors to regulate various aspects of plant growth and development. In particular, the MIKC-type MADS-box genes play a crucial role in the determination of floral organ development and identity recognition. As a type of androdioecy plant, Chionanthus retusus have unique gender differentiation. Manifested as male individuals with only male flowers and female individuals with only bisexual flowers. However, due to the lack of reference genome information, the characteristics of MIKC-type MADS-box genes in C. retusus and its role in gender differentiation of C. retusus remain largely unknown. Therefore, it is necessary to identify and characterize the MADS-box gene family within the genome of the C. retusus. RESULTS In this study, we performed a genome-wide identification and analysis of MIKC-type MADS-box genes in C. retusus (2n = 2x = 46), utilizing the latest reference genome, and studied its expression pattern in individuals of different genders. As a result, we identified a total of 61 MIKC-type MADS-box genes in C. retusus. 61 MIKC-type MADS-box genes can be divided into 12 subfamilies and distributed on 18 chromosomes. Genome collinearity analysis revealed their conservation in evolution, while gene structure, domains and motif analysis indicated their conservation in structure. Finally, based on their expression patterns in floral organs of different sexes, we have identified that CrMADS45 and CrMADS60 may potentially be involved in the gender differentiation of C. retusus. CONCLUSIONS Our studies have provided a general understanding of the conservation and characteristics of the MIKC-type MADS-box genes family in C. retusus. And it has been demonstrated that members of the AG subfamily, CrMADS45 and CrMADS60, may play important roles in the gender differentiation of C. retusus. This provides a reference for future breeding efforts to improve flower types in C. retusus and further investigate the role of MIKC-type MADS-box genes in gender differentiation.
Collapse
Affiliation(s)
- Maotong Sun
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Dongyue Wang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Ying Li
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Muge Niu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Cuishuang Liu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Laishuo Liu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Jinnan Wang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China.
| | - Jihong Li
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China.
| |
Collapse
|
9
|
Zhang R, Zhang J, Xu YX, Sun JM, Dai SJ, Shen H, Yan YH. Dynamic evolution of MADS-box genes in extant ferns via large-scale phylogenomic analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1410554. [PMID: 38974983 PMCID: PMC11224435 DOI: 10.3389/fpls.2024.1410554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
Introduction Several studies of MADS-box transcription factors in flowering plants have been conducted, and these studies have indicated that they have conserved functions in floral organ development; MIKC-type MADS-box genes has been proved to be expanded in ferns, however, few systematic studies of these transcription factors have been conducted in non-seed plants. Although ferns and seed plants are sister groups, they exhibit substantial morphological differences. Methods Here, we clarified the evolution of MADS-box genes across 71 extant fern species using available transcriptome, genome, and gene expression data. Results We obtained a total of 2,512 MADS-box sequences, ranging from 9 to 89 per species. The most recent common ancestor (MRCA) of ferns contained approximately three type I genes and at least 5-6 type II MADS-box genes. The domains, motifs, expression of type I and type II proteins, and the structure of the both type genes were conserved in ferns as to other land plants. Within type II genes, MIKC*-type proteins are involved in gametophyte development in ferns; MIKCC-type proteins have broader expression patterns in ferns than in seed plants, and these protein sequences are likely conserved in extant seed plants and ferns because of their diverse roles in diploid sporophyte development. More than 90% of MADS-box genes are type II genes, and MIKCC genes, especially CRM1 and CRM6-like genes, have undergone a large expansion in leptosporangiate ferns; the diverse expression patterns of these genes might be related to the fuctional diversification and increased complexity of the plant body plan. Tandem duplication of CRM1 and CRM6-like genes has contributed to the expansion of MIKCC genes. Conclusion or Discussion This study provides new insights into the diversity, evolution, and functions of MADS-box genes in extant ferns.
Collapse
Affiliation(s)
- Rui Zhang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jiao Zhang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yue-Xia Xu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Jun-Mei Sun
- School of Science, Qiongtai Normal University, Haikou, Hainan, China
| | - Shao-Jun Dai
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Hui Shen
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yue-Hong Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| |
Collapse
|
10
|
Bowman JL, Moyroud E. Reflections on the ABC model of flower development. THE PLANT CELL 2024; 36:1334-1357. [PMID: 38345422 PMCID: PMC11062442 DOI: 10.1093/plcell/koae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/07/2024] [Indexed: 05/02/2024]
Abstract
The formulation of the ABC model by a handful of pioneer plant developmental geneticists was a seminal event in the quest to answer a seemingly simple question: how are flowers formed? Fast forward 30 years and this elegant model has generated a vibrant and diverse community, capturing the imagination of developmental and evolutionary biologists, structuralists, biochemists and molecular biologists alike. Together they have managed to solve many floral mysteries, uncovering the regulatory processes that generate the characteristic spatio-temporal expression patterns of floral homeotic genes, elucidating some of the mechanisms allowing ABC genes to specify distinct organ identities, revealing how evolution tinkers with the ABC to generate morphological diversity, and even shining a light on the origins of the floral gene regulatory network itself. Here we retrace the history of the ABC model, from its genesis to its current form, highlighting specific milestones along the way before drawing attention to some of the unsolved riddles still hidden in the floral alphabet.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, VIC 3800, Australia
| | - Edwige Moyroud
- The Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
11
|
Feng X, Zheng J, Irisarri I, Yu H, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JMR, Dadras A, Zegers JMS, Rieseberg TP, Dhabalia Ashok A, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang X, Li FW, Rensing SA, Ben Ari J, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang J, Mutwil M, de Vries J, Yin Y. Genomes of multicellular algal sisters to land plants illuminate signaling network evolution. Nat Genet 2024; 56:1018-1031. [PMID: 38693345 PMCID: PMC11096116 DOI: 10.1038/s41588-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/25/2024] [Indexed: 05/03/2024]
Abstract
Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.
Collapse
Affiliation(s)
- Xuehuan Feng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Zhejiang Lab, Hangzhou, China
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg, Hamburg, Germany
| | - Huihui Yu
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Yunnan, China
| | - Bo Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zahin Ali
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, France
| | - Janine M R Fürst-Jansen
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Armin Dadras
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jaccoline M S Zegers
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Tim P Rieseberg
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Amra Dhabalia Ashok
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Tatyana Darienko
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maaike J Bierenbroodspot
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Lydia Gramzow
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora', Málaga, Spain
| | - Orestis Nousias
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tang Li
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Elisabeth Fitzek
- Computational Biology, Department of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - W Scott Grayburn
- Northern Illinois University, Molecular Core Lab, Department of Biological Sciences, DeKalb, IL, USA
| | - Nina Rittmeier
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Charlotte Permann
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Florian Rümpler
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Günter Theißen
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - Jeffrey P Mower
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
| | - Maike Lorenz
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Experimental Phycology and Culture Collection of Algae at Goettingen University, Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg and Aquatic Ecophysiology and Phycology, Hamburg, Germany
| | - Lori Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard D Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Xiyin Wang
- North China University of Science and Technology, Tangshan, China
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Julius Ben Ari
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Noa Keren
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Assaf Mosquna
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, France
| | - Chi Zhang
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, NE, USA
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, USA
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany.
- University of Goettingen, Goettingen Center for Molecular Biosciences, Goettingen, Germany.
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
12
|
Wang J, Ma X, Hu Y, Feng G, Guo C, Zhang X, Ma H. Regulation of micro- and small-exon retention and other splicing processes by GRP20 for flower development. NATURE PLANTS 2024; 10:66-85. [PMID: 38195906 PMCID: PMC10808074 DOI: 10.1038/s41477-023-01605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Pre-mRNA splicing is crucial for gene expression and depends on the spliceosome and splicing factors. Plant exons have an average size of ~180 nucleotides and typically contain motifs for interactions with spliceosome and splicing factors. Micro exons (<51 nucleotides) are found widely in eukaryotes and in genes for plant development and environmental responses. However, little is known about transcript-specific regulation of splicing in plants and about the regulators for micro exon splicing. Here we report that glycine-rich protein 20 (GRP20) is an RNA-binding protein and required for splicing of ~2,100 genes including those functioning in flower development and/or environmental responses. Specifically, GRP20 is required for micro-exon retention in transcripts of floral homeotic genes; these micro exons are conserved across angiosperms. GRP20 is also important for small-exon (51-100 nucleotides) splicing. In addition, GRP20 is required for flower development. Furthermore, GRP20 binds to poly-purine motifs in micro and small exons and a spliceosome component; both RNA binding and spliceosome interaction are important for flower development and micro-exon retention. Our results provide new insights into the mechanisms of micro-exon retention in flower development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biology, Eberly College of Science, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Xinwei Ma
- Department of Biology, Eberly College of Science, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yi Hu
- Department of Biology, Eberly College of Science, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Guanhua Feng
- Department of Biology, Eberly College of Science, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Chunce Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, China
| | - Xin Zhang
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Eberly College of Science, Pennsylvania State University, University Park, PA, USA
| | - Hong Ma
- Department of Biology, Eberly College of Science, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
13
|
Lin Y, Qi X, Wan Y, Chen Z, Fang H, Liang C. Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model. BMC Genomics 2023; 24:447. [PMID: 37553575 PMCID: PMC10408238 DOI: 10.1186/s12864-023-09509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mβ, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.
Collapse
Affiliation(s)
- Yi Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yan Wan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
14
|
Maika JE, Krämer B, Strotmann VI, Wellmer F, Weidtkamp-Peters S, Stahl Y, Simon R. One pattern analysis (OPA) for the quantitative determination of protein interactions in plant cells. PLANT METHODS 2023; 19:73. [PMID: 37501124 PMCID: PMC10375638 DOI: 10.1186/s13007-023-01049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND A commonly used approach to study the interaction of two proteins of interest (POIs) in vivo is measuring Förster Resonance Energy Transfer (FRET). This requires the expression of the two POIs fused to two fluorescent proteins that function as a FRET pair. A precise way to record FRET is Fluorescence Lifetime IMaging (FLIM) which generates quantitative data that, in principle, can be used to resolve both complex structure and protein affinities. However, this potential resolution is often lost in many experimental approaches. Here we introduce a novel tool for FLIM data analysis of multiexponential decaying donor fluorophores, one pattern analysis (OPA), which allows to obtain information about protein affinity and complex arrangement by extracting the relative amplitude of the FRET component and the FRET transfer efficiency from other FRET parameters. RESULTS As a proof of concept for OPA, we used FLIM-FRET, or FLIM-FRET in combination with BiFC to reassess the dimerization and tetramerization properties of known interacting MADS-domain transcription factors in Nicotiana benthamiana leaf cells and Arabidopsis thaliana flowers. Using the OPA tool and by extracting protein BINDING efficiencies from FRET parameters to dissect MADS-domain protein interactions in vivo in transient N. benthamiana experiments, we could show that MADS-domain proteins display similar proximities within dimeric or tetrameric complexes but bind with variable affinities. By combining FLIM with BiFC, we were able to identify SEPALLATA3 as a mediator for tetramerization between the other MADS-domain factors. OPA also revealed that in vivo expression from native promoters at low levels in Arabidopsis flower meristems, makes in situ complex formation of MADS-domain proteins barely detectable. CONCLUSIONS We conclude that MADS-domain protein interactions are transient in situ and may involve additional, so far unknown interaction mediators. We conclude that OPA can be used to separate protein binding from information about proximity and orientation of the interacting proteins in their complexes. Visualization of individual protein interactions within the underlying interaction networks in the native environment is still restrained if expression levels are low and will require continuous improvements in fluorophore labelling, instrumentation set-ups and analysis tools.
Collapse
Affiliation(s)
- Jan Eric Maika
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Benedikt Krämer
- PicoQuant GmbH, Rudower Chaussee 29 (IGZ), 12489, Berlin, Germany
| | - Vivien I Strotmann
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Stefanie Weidtkamp-Peters
- Centre for Advanced Imaging, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
15
|
Kang JE, Jun JH, Kwon JH, Lee JH, Hwang K, Kim S, Jeong N. Arabidopsis Transcription Regulatory Factor Domain/Domain Interaction Analysis Tool-Liquid/Liquid Phase Separation, Oligomerization, GO Analysis: A Toolkit for Interaction Data-Based Domain Analysis. Genes (Basel) 2023; 14:1476. [PMID: 37510380 PMCID: PMC10379056 DOI: 10.3390/genes14071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Although a large number of databases are available for regulatory elements, a bottleneck has been created by the lack of bioinformatics tools to predict the interaction modes of regulatory elements. To reduce this gap, we developed the Arabidopsis Transcription Regulatory Factor Domain/Domain Interaction Analysis Tool-liquid/liquid phase separation (LLPS), oligomerization, GO analysis (ART FOUNDATION-LOG), a useful toolkit for protein-nucleic acid interaction (PNI) and protein-protein interaction (PPI) analysis based on domain-domain interactions (DDIs). LLPS, protein oligomerization, the structural properties of protein domains, and protein modifications are major components in the orchestration of the spatiotemporal dynamics of PPIs and PNIs. Our goal is to integrate PPI/PNI information into the development of a prediction model for identifying important genetic variants in peaches. Our program unified interdatabase relational keys based on protein domains to facilitate inference from the model species. A key advantage of this program lies in the integrated information of related features, such as protein oligomerization, LOG analysis, structural characterizations of domains (e.g., domain linkers, intrinsically disordered regions, DDIs, domain-motif (peptide) interactions, beta sheets, and transmembrane helices), and post-translational modification. We provided simple tests to demonstrate how to use this program, which can be applied to other eukaryotic organisms.
Collapse
Affiliation(s)
- Jee Eun Kang
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Ji Hae Jun
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Jung Hyun Kwon
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Ju-Hyun Lee
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Kidong Hwang
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Sungjong Kim
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Namhee Jeong
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| |
Collapse
|
16
|
Käppel S, Rümpler F, Theißen G. Cracking the Floral Quartet Code: How Do Multimers of MIKC C-Type MADS-Domain Transcription Factors Recognize Their Target Genes? Int J Mol Sci 2023; 24:8253. [PMID: 37175955 PMCID: PMC10178880 DOI: 10.3390/ijms24098253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
MADS-domain transcription factors (MTFs) are involved in the control of many important processes in eukaryotes. They are defined by the presence of a unique and highly conserved DNA-binding domain, the MADS domain. MTFs bind to double-stranded DNA as dimers and recognize specific sequences termed CArG boxes (such as 5'-CC(A/T)6GG-3') and similar sequences that occur hundreds of thousands of times in a typical flowering plant genome. The number of MTF-encoding genes increased by around two orders of magnitude during land plant evolution, resulting in roughly 100 genes in flowering plant genomes. This raises the question as to how dozens of different but highly similar MTFs accurately recognize the cis-regulatory elements of diverse target genes when the core binding sequence (CArG box) occurs at such a high frequency. Besides the usual processes, such as the base and shape readout of individual DNA sequences by dimers of MTFs, an important sublineage of MTFs in plants, termed MIKCC-type MTFs (MC-MTFs), has evolved an additional mechanism to increase the accurate recognition of target genes: the formation of heterotetramers of closely related proteins that bind to two CArG boxes on the same DNA strand involving DNA looping. MC-MTFs control important developmental processes in flowering plants, ranging from root and shoot to flower, fruit and seed development. The way in which MC-MTFs bind to DNA and select their target genes is hence not only of high biological interest, but also of great agronomic and economic importance. In this article, we review the interplay of the different mechanisms of target gene recognition, from the ordinary (base readout) via the extravagant (shape readout) to the idiosyncratic (recognition of the distance and orientation of two CArG boxes by heterotetramers of MC-MTFs). A special focus of our review is on the structural prerequisites of MC-MTFs that enable the specific recognition of target genes.
Collapse
Affiliation(s)
| | | | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.K.); (F.R.)
| |
Collapse
|
17
|
Kitazawa Y, Iwabuchi N, Maejima K, Matsumoto O, Suzuki M, Matsuyama J, Koinuma H, Oshima K, Namba S, Yamaji Y. Random mutagenesis-based screening of the interface of phyllogen, a bacterial phyllody-inducing effector, for interaction with plant MADS-box proteins. FRONTIERS IN PLANT SCIENCE 2023; 14:1058059. [PMID: 37056494 PMCID: PMC10086140 DOI: 10.3389/fpls.2023.1058059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
To understand protein function deeply, it is important to identify how it interacts physically with its target. Phyllogen is a phyllody-inducing effector that interacts with the K domain of plant MADS-box transcription factors (MTFs), which is followed by proteasome-mediated degradation of the MTF. Although several amino acid residues of phyllogen have been identified as being responsible for the interaction, the exact interface of the interaction has not been elucidated. In this study, we comprehensively explored interface residues based on random mutagenesis using error-prone PCR. Two novel residues, at which mutations enhanced the affinity of phyllogen to MTF, were identified. These residues, and all other known interaction-involved residues, are clustered together at the surface of the protein structure of phyllogen, indicating that they constitute the interface of the interaction. Moreover, in silico structural prediction of the protein complex using ColabFold suggested that phyllogen interacts with the K domain of MTF via the putative interface. Our study facilitates an understanding of the interaction mechanisms between phyllogen and MTF.
Collapse
Affiliation(s)
- Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Juri Matsuyama
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Feng X, Zheng J, Irisarri I, Yu H, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JM, Dadras A, Zegers JM, Rieseberg TP, Ashok AD, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang X, Li FW, Rensing SA, Ari JB, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang J, Mutwil M, de Vries J, Yin Y. Chromosome-level genomes of multicellular algal sisters to land plants illuminate signaling network evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526407. [PMID: 36778228 PMCID: PMC9915684 DOI: 10.1101/2023.01.31.526407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.
Collapse
Affiliation(s)
- Xuehuan Feng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Jinfang Zheng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Iker Irisarri
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Huihui Yu
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
| | - Bo Zheng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Zahin Ali
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sophie de Vries
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| | - Janine M.R. Fürst-Jansen
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Jaccoline M.S. Zegers
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tim P. Rieseberg
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Maaike J. Bierenbroodspot
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Lydia Gramzow
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B. Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (UMA-CSIC)
| | - Orestis Nousias
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Tang Li
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Elisabeth Fitzek
- Computational Biology, Department of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - W. Scott Grayburn
- Northern Illinois University, Molecular Core Lab, Department of Biological Sciences, DeKalb, IL 60115, USA
| | - Nina Rittmeier
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Charlotte Permann
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Florian Rümpler
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - John M. Archibald
- Dalhousie University, Department of Biochemistry and Molecular Biology, 5850 College Street, Halifax NS B3H 4R2, Canada
| | - Günter Theißen
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - Jeffrey P. Mower
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
| | - Maike Lorenz
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Experimental Phycology and Culture Collection of Algae at Goettingen University (EPSAG), Nikolausberger Weg 18, 37073 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Lori Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xiyin Wang
- North China University of Science and Technology
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Cornell University, Plant Biology Section, Ithaca, NY, USA
| | - Stefan A. Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Julius Ben Ari
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Noa Keren
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Assaf Mosquna
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| | - Chi Zhang
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, NE 68588, USA
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jan de Vries
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Yanbin Yin
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| |
Collapse
|
19
|
Chahtane H, Lai X, Tichtinsky G, Rieu P, Arnoux-Courseaux M, Cancé C, Marondedze C, Parcy F. Flower Development in Arabidopsis. Methods Mol Biol 2023; 2686:3-38. [PMID: 37540352 DOI: 10.1007/978-1-0716-3299-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Like in other angiosperms, the development of flowers in Arabidopsis starts right after the floral transition, when the shoot apical meristem (SAM) stops producing leaves and makes flowers instead. On the flanks of the SAM emerge the flower meristems (FM) that will soon differentiate into the four main floral organs, sepals, petals, stamens, and pistil, stereotypically arranged in concentric whorls. Each phase of flower development-floral transition, floral bud initiation, and floral organ development-is under the control of specific gene networks. In this chapter, we describe these different phases and the gene regulatory networks involved, from the floral transition to the floral termination.
Collapse
Affiliation(s)
- Hicham Chahtane
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Institut de Recherche Pierre Fabre, Green Mission Pierre Fabre, Conservatoire Botanique Pierre Fabre, Soual, France
| | - Xuelei Lai
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Wuhan, China
| | | | - Philippe Rieu
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Coralie Cancé
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
| | - Claudius Marondedze
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Senga, Gweru, Zimbabwe
| | - François Parcy
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France.
| |
Collapse
|
20
|
Dreni L, Ferrándiz C. Tracing the Evolution of the SEPALLATA Subfamily across Angiosperms Associated with Neo- and Sub-Functionalization for Reproductive and Agronomically Relevant Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2934. [PMID: 36365387 PMCID: PMC9656651 DOI: 10.3390/plants11212934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
SEPALLATA transcription factors (SEP TFs) have been extensively studied in angiosperms as pivotal components of virtually all the MADS-box tetrameric complex master regulators of floral organ identities. However, there are published reports that suggest that some SEP members also regulate earlier reproductive events, such as inflorescence meristem determinacy and inflorescence architecture, with potential for application in breeding programs in crops. The SEP subfamily underwent a quite complex pattern of duplications during the radiation of the angiosperms. Taking advantage of the many whole genomic sequences now available, we present a revised and expanded SEP phylogeny and link it to the known functions of previously characterized genes. This snapshot supports the evidence that the major SEP3 clade is highly specialized for the specification of the three innermost floral whorls, while its sister LOFSEP clade is functionally more versatile and has been recruited for diverse roles, such as the regulation of extra-floral bract formation and inflorescence determinacy and shape. This larger pool of angiosperm SEP genes confirms previous evidence that their evolution was driven by whole-genome duplications rather than small-scale duplication events. Our work may help to identify those SEP lineages that are the best candidates for the improvement of inflorescence traits, even in far distantly related crops.
Collapse
|
21
|
Heisler MG, Jönsson H, Wenkel S, Kaufmann K. Context-specific functions of transcription factors controlling plant development: From leaves to flowers. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102262. [PMID: 35952407 DOI: 10.1016/j.pbi.2022.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Plant development is regulated by transcription factors that often act in more than one process and stage of development. Yet the molecular mechanisms that govern the functional diversity and specificity of these proteins remains far from understood. Flower development provides an ideal context to study these mechanisms since the development of distinct floral organs depends on similar but distinct combinations of transcriptional regulators. Recent work also highlights the importance of leaf polarity regulators as additional key factors in flower initiation, floral organ morphogenesis, and possibly floral organ positioning. A detailed understanding of how these factors work in combination will enable us to address outstanding questions in flower development including how distinct shapes and positions of floral organs are generated. Experimental approaches and computer-based modeling will be required to characterize gene-regulatory networks at the level of single cells.
Collapse
Affiliation(s)
- Marcus G Heisler
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK; Computational Biology and Biological Physics, Lund University, Sweden
| | - Stephan Wenkel
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kerstin Kaufmann
- Humboldt-Universität zu Berlin, Institute of Biology, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
22
|
Vignati E, Lipska M, Dunwell JM, Caccamo M, Simkin AJ. Fruit Development in Sweet Cherry. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121531. [PMID: 35736682 PMCID: PMC9227597 DOI: 10.3390/plants11121531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 05/19/2023]
Abstract
Fruits are an important source of vitamins, minerals and nutrients in the human diet. They also contain several compounds of nutraceutical importance that have significant antioxidant and anti-inflammatory roles, which can protect the consumer from diseases, such as cancer, and cardiovascular disease as well as having roles in reducing the build-up of LDL-cholesterol in blood plasma and generally reduce the risks of disease and age-related decline in health. Cherries contain high concentrations of bioactive compounds and minerals, including calcium, phosphorous, potassium and magnesium, and it is, therefore, unsurprising that cherry consumption has a positive impact on health. This review highlights the development of sweet cherry fruit, the health benefits of cherry consumption, and the options for increasing consumer acceptance and consumption.
Collapse
Affiliation(s)
- Edoardo Vignati
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Marzena Lipska
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Mario Caccamo
- NIAB, Cambridge Crop Research, Lawrence Weaver Road, Cambridge CB3 0LE, UK;
| | - Andrew J. Simkin
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence:
| |
Collapse
|
23
|
Harel-Beja R, Ophir R, Sherman A, Eshed R, Rozen A, Trainin T, Doron-Faigenboim A, Tal O, Bar-Yaakov I, Holland D. The Pomegranate Deciduous Trait Is Genetically Controlled by a PgPolyQ- MADS Gene. FRONTIERS IN PLANT SCIENCE 2022; 13:870207. [PMID: 35574086 PMCID: PMC9100744 DOI: 10.3389/fpls.2022.870207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
The pomegranate (Punica granatum L.) is a deciduous fruit tree that grows worldwide. However, there are variants, which stay green in mild winter conditions and are determined evergreen. The evergreen trait is of commercial and scientific importance as it extends the period of fruit production and provides opportunity to identify genetic functions that are involved in sensing environmental cues. Several different evergreen pomegranate accessions from different genetic sources grow in the Israeli pomegranate collection. The leaves of deciduous pomegranates begin to lose chlorophyll during mid of September, while evergreen accessions continue to generate new buds. When winter temperature decreases 10°C, evergreen variants cease growing, but as soon as temperatures arise budding starts, weeks before the response of the deciduous varieties. In order to understand the genetic components that control the evergreen/deciduous phenotype, several segregating populations were constructed, and high-resolution genetic maps were assembled. Analysis of three segregating populations showed that the evergreen/deciduous trait in pomegranate is controlled by one major gene that mapped to linkage group 3. Fine mapping with advanced F3 and F4 populations and data from the pomegranate genome sequences revealed that a gene encoding for a putative and unique MADS transcription factor (PgPolyQ-MADS) is responsible for the evergreen trait. Ectopic expression of PgPolyQ-MADS in Arabidopsis generated small plants and early flowering. The deduced protein of PgPolyQ-MADS includes eight glutamines (polyQ) at the N-terminus. Three-dimensional protein model suggests that the polyQ domain structure might be involved in DNA binding of PgMADS. Interestingly, all the evergreen pomegranate varieties contain a mutation within the polyQ that cause a stop codon at the N terminal. The polyQ domain of PgPolyQ-MADS resembles that of the ELF3 prion-like domain recently reported to act as a thermo-sensor in Arabidopsis, suggesting that similar function could be attributed to PgPolyQ-MADS protein in control of dormancy. The study of the evergreen trait broadens our understanding of the molecular mechanism related to response to environmental cues. This enables the development of new cultivars that are better adapted to a wide range of climatic conditions.
Collapse
Affiliation(s)
- Rotem Harel-Beja
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Ron Ophir
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ravit Eshed
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ada Rozen
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Taly Trainin
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ofir Tal
- Institute of Plant Sciences, Newe Ya’ar Research Center, The Agricultural Research Organization - The Volcani Center, Ramat Yishai, Israel
| | - Irit Bar-Yaakov
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Doron Holland
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| |
Collapse
|
24
|
Kitazawa Y, Iwabuchi N, Maejima K, Sasano M, Matsumoto O, Koinuma H, Tokuda R, Suzuki M, Oshima K, Namba S, Yamaji Y. A phytoplasma effector acts as a ubiquitin-like mediator between floral MADS-box proteins and proteasome shuttle proteins. THE PLANT CELL 2022; 34:1709-1723. [PMID: 35234248 PMCID: PMC9048881 DOI: 10.1093/plcell/koac062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 06/01/2023]
Abstract
Plant pathogenic bacteria have developed effectors to manipulate host cell functions to facilitate infection. A certain number of effectors use the conserved ubiquitin-proteasome system in eukaryotic to proteolyze targets. The proteasome utilization mechanism is mainly mediated by ubiquitin interaction with target proteins destined for degradation. Phyllogens are a family of protein effectors produced by pathogenic phytoplasmas that transform flowers into leaves in diverse plants. Here, we present a noncanonical mechanism for phyllogen action that involves the proteasome and is ubiquitin-independent. Phyllogens induce proteasomal degradation of floral MADS-box transcription factors (MTFs) in the presence of RADIATION-SENSITIVE23 (RAD23) shuttle proteins, which recruit ubiquitinated proteins to the proteasome. Intracellular localization analysis revealed that phyllogen induced colocalization of MTF with RAD23. The MTF/phyllogen/RAD23 ternary protein complex was detected not only in planta but also in vitro in the absence of ubiquitin, showing that phyllogen directly mediates interaction between MTF and RAD23. A Lys-less nonubiquitinated phyllogen mutant induced degradation of MTF or a Lys-less mutant of MTF. Furthermore, the method of sequential formation of the MTF/phyllogen/RAD23 protein complex was elucidated, first by MTF/phyllogen interaction and then RAD23 recruitment. Phyllogen recognized both the evolutionarily conserved tetramerization region of MTF and the ubiquitin-associated domain of RAD23. Our findings indicate that phyllogen functionally mimics ubiquitin as a mediator between MTF and RAD23.
Collapse
Affiliation(s)
- Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Momoka Sasano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo 184-8584, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
25
|
Ma L, Yan Y. GhSOC1s Evolve to Respond Differently to the Environmental Cues and Promote Flowering in Partially Independent Ways. FRONTIERS IN PLANT SCIENCE 2022; 13:882946. [PMID: 35519808 PMCID: PMC9067242 DOI: 10.3389/fpls.2022.882946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Gossypium hirsutum is most broadly cultivated in the world due to its broader adaptation to the environment and successful breeding of early maturity varieties. However, how cotton responds to environmental cues to adjust flowering time to achieve reproductive success is largely unknown. SOC1 functions as an essential integrator for the endogenous and exogenous signals to maximize reproduction. Thus we identified six SOC1-like genes in Gossypium that clustered into two groups. GhSOC1-1 contained a large intron and clustered with monocot SOC1s, while GhSOC1-2/3 were close to dicot SOC1s. GhSOC1s expression gradually increased during seedling development suggesting their conserved function in promoting flowering, which was supported by the early flowering phenotype of 35S:GhSOC1-1 Arabidopsis lines and the delayed flowering of cotton silencing lines. Furthermore, GhSOC1-1 responded to short-day and high temperature conditions, while GhSOC1-2 responded to long-day conditions. GhSOC1-3 might function to promote flowering in response to low temperature and cold. Taken together, our results demonstrate that GhSOC1s respond differently to light and temperature and act cooperatively to activate GhLFY expression to promote floral transition and enlighten us in cotton adaptation to environment that is helpful in improvement of cotton maturity.
Collapse
|
26
|
Strader L, Weijers D, Wagner D. Plant transcription factors - being in the right place with the right company. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102136. [PMID: 34856504 PMCID: PMC8844091 DOI: 10.1016/j.pbi.2021.102136] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 05/15/2023]
Abstract
Transcriptional regulation underlies many of the growth and developmental processes that shape plants as well as their adaptation to their environment. Key to transcriptional control are transcription factors, DNA-binding proteins that serve two essential functions: to find the appropriate DNA contact sites in their target genes; and to recruit other proteins to execute transcriptional transactions. In recent years, protein structural, genomic, bioinformatic, and proteomic analyses have led to new insights into how these central functions are regulated. Here, we review new findings relating to plant transcription factor function and to their role in shaping transcription in the context of chromatin.
Collapse
Affiliation(s)
- Lucia Strader
- Department of Biology, Duke University, Durham, NC, USA
| | - Dolf Weijers
- Wageningen University, Laboratory of Biochemistry, Wageningen, the Netherlands
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Cai Y, Wang L, Ogutu CO, Yang Q, Luo B, Liao L, Zheng B, Zhang R, Han Y. The MADS-box gene PpPI is a key regulator of the double-flower trait in peach. PHYSIOLOGIA PLANTARUM 2021; 173:2119-2129. [PMID: 34537956 DOI: 10.1111/ppl.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Double flower is an invaluable trait in ornamental peach, but the mechanism underlying its development remains largely unknown. Here, we report the roles of ABCE model genes in double flower development in peach. A total of nine ABCE regulatory genes, including eight MADS-box genes and one AP2/EREBP gene, were identified in the peach genome. Subcellular localization assay showed that all the ABCE proteins were localized in the nucleus. Four genes, PpAP1, PpAP3, PpSEP3, and PpPI, showed a difference in expression levels between single and double flowers. Ectopic overexpression of PpPI increased petal number in Arabidopsis, while transgenic lines overexpressing PpAP3 or PpSEP3 were morphologically similar to wild-type. Ectopic overexpression of PpAP1 resulted in a significant decrease in the number of basal leaves and caused early flowering. These results suggest that PpPI is likely crucial for double flower development in peach. In addition, double flowers have petaloid sepals and stamens, and single flower could occasionally change to be double flower by converting stamens to petals in peach, suggesting that the double-flower trait is likely to have evolved from an ancestral single-flower structure. Our results provide new insights into mechanisms underlying the double-flower trait in peach.
Collapse
Affiliation(s)
- Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Collins Otieno Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Qiurui Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Binwen Luo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ruoxi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nat Commun 2021; 12:4760. [PMID: 34362909 PMCID: PMC8346517 DOI: 10.1038/s41467-021-24978-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
The MADS transcription factors (TF) are an ancient eukaryotic protein family. In plants, the family is divided into two main lineages. Here, we demonstrate that DNA binding in both lineages absolutely requires a short amino acid sequence C-terminal to the MADS domain (M domain) called the Intervening domain (I domain) that was previously defined only in type II lineage MADS. Structural elucidation of the MI domains from the floral regulator, SEPALLATA3 (SEP3), shows a conserved fold with the I domain acting to stabilise the M domain. Using the floral organ identity MADS TFs, SEP3, APETALA1 (AP1) and AGAMOUS (AG), domain swapping demonstrate that the I domain alters genome-wide DNA-binding specificity and dimerisation specificity. Introducing AG carrying the I domain of AP1 in the Arabidopsis ap1 mutant resulted in strong complementation and restoration of first and second whorl organs. Taken together, these data demonstrate that the I domain acts as an integral part of the DNA-binding domain and significantly contributes to the functional identity of the MADS TF. MADS transcription factors regulate multiple aspects of plant development. Here the authors show that the intervening I domain is conserved in both type I and type II plant MADS lineages and contributes to the functional identity of the protein by influencing both DNA binding activity and dimerisation specificity.
Collapse
|
29
|
Zhao W, Zhang LL, Xu ZS, Fu L, Pang HX, Ma YZ, Min DH. Genome-Wide Analysis of MADS-Box Genes in Foxtail Millet ( Setaria italica L.) and Functional Assessment of the Role of SiMADS51 in the Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:659474. [PMID: 34262576 PMCID: PMC8273297 DOI: 10.3389/fpls.2021.659474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 05/26/2023]
Abstract
MADS-box transcription factors play vital roles in multiple biological processes in plants. At present, a comprehensive investigation into the genome-wide identification and classification of MADS-box genes in foxtail millet (Setaria italica L.) has not been reported. In this study, we identified 72 MADS-box genes in the foxtail millet genome and give an overview of the phylogeny, chromosomal location, gene structures, and potential functions of the proteins encoded by these genes. We also found that the expression of 10 MIKC-type MADS-box genes was induced by abiotic stresses (PEG-6000 and NaCl) and exogenous hormones (ABA and GA), which suggests that these genes may play important regulatory roles in response to different stresses. Further studies showed that transgenic Arabidopsis and rice (Oryza sativa L.) plants overexpressing SiMADS51 had reduced drought stress tolerance as revealed by lower survival rates and poorer growth performance under drought stress conditions, which demonstrated that SiMADS51 is a negative regulator of drought stress tolerance in plants. Moreover, expression of some stress-related genes were down-regulated in the SiMADS51-overexpressing plants. The results of our study provide an overall picture of the MADS-box gene family in foxtail millet and establish a foundation for further research on the mechanisms of action of MADS-box proteins with respect to abiotic stresses.
Collapse
Affiliation(s)
- Wan Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Li-Li Zhang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Liang Fu
- Xinxiang Academy of Agricultural Sciences of He’nan Province, Xinxiang, China
| | - Hong-Xi Pang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| |
Collapse
|
30
|
Orchid B sister gene PeMADS28 displays conserved function in ovule integument development. Sci Rep 2021; 11:1205. [PMID: 33441740 PMCID: PMC7806631 DOI: 10.1038/s41598-020-79877-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022] Open
Abstract
The ovules and egg cells are well developed to be fertilized at anthesis in many flowering plants. However, ovule development is triggered by pollination in most orchids. In this study, we characterized the function of a Bsister gene, named PeMADS28, isolated from Phalaenopsis equestris, the genome-sequenced orchid. Spatial and temporal expression analysis showed PeMADS28 predominantly expressed in ovules between 32 and 48 days after pollination, which synchronizes with integument development. Subcellular localization and protein–protein interaction analyses revealed that PeMADS28 could form a homodimer as well as heterodimers with D-class and E-class MADS-box proteins. In addition, ectopic expression of PeMADS28 in Arabidopsis thaliana induced small curled rosette leaves, short silique length and few seeds, similar to that with overexpression of other species’ Bsister genes in Arabidopsis. Furthermore, complementation test revealed that PeMADS28 could rescue the phenotype of the ABS/TT16 mutant. Together, these results indicate the conserved function of BsisterPeMADS28 associated with ovule integument development in orchid.
Collapse
|
31
|
Martínez-Gómez J, Galimba KD, Coté EY, Sullivan AM, Di Stilio VS. Spontaneous homeotic mutants and genetic control of floral organ identity in a ranunculid. Evol Dev 2020; 23:197-214. [PMID: 33179410 DOI: 10.1111/ede.12357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022]
Abstract
The regulation of floral organ identity was investigated using a forward genetic approach in five floral homeotic mutants of Thalictrum, a noncore eudicot. We hypothesized that these mutants carry defects in the floral patterning genes. Mutant characterization comprised comparative floral morphology and organ identity gene expression at early and late developmental stages, followed by sequence analysis of coding and intronic regions to identify transcription factor binding sites and protein-protein interaction (PPI) motifs. Mutants exhibited altered expression of floral MADS-box genes, which further informed the function of paralogs arising from gene duplications not found in reference model systems. The ensuing modified BCE models for the mutants supported instances of neofunctionalization (e.g., B-class genes expressed ectopically in sepals), partial redundancy (E-class), or subfunctionalization (C-class) of paralogs. A lack of deleterious mutations in the coding regions of candidate floral MADS-box genes suggested that cis-regulatory or trans-acting mutations are at play. Consistent with this hypothesis, double-flower mutants had transposon insertions or showed signs of transposon activity in the regulatory intron of AGAMOUS (AG) orthologs. Single amino acid substitutions were also found, yet they did not fall on any of the identified DNA binding or PPI motifs. In conclusion, we present evidence suggesting that transposon activity and regulatory mutations in floral homeotic genes likely underlie the striking phenotypes of these Thalictrum floral homeotic mutants.
Collapse
Affiliation(s)
| | - Kelsey D Galimba
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Erin Y Coté
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
32
|
Lai X, Stigliani A, Lucas J, Hugouvieux V, Parcy F, Zubieta C. Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing. Nucleic Acids Res 2020; 48:9637-9648. [PMID: 32890394 PMCID: PMC7515736 DOI: 10.1093/nar/gkaa729] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/18/2023] Open
Abstract
The MADS transcription factors (TF), SEPALLATA3 (SEP3) and AGAMOUS (AG) are required for floral organ identity and floral meristem determinacy. While dimerization is obligatory for DNA binding, SEP3 and SEP3–AG also form tetrameric complexes. How homo and hetero-dimerization and tetramerization of MADS TFs affect genome-wide DNA-binding and gene regulation is not known. Using sequential DNA affinity purification sequencing (seq-DAP-seq), we determined genome-wide binding of SEP3 homomeric and SEP3–AG heteromeric complexes, including SEP3Δtet-AG, a complex with a SEP3 splice variant, SEP3Δtet, which is largely dimeric and SEP3–AG tetramer. SEP3 and SEP3–AG share numerous bound regions, however each complex bound unique sites, demonstrating that protein identity plays a role in DNA-binding. SEP3–AG and SEP3Δtet-AG share a similar genome-wide binding pattern; however the tetrameric form could access new sites and demonstrated a global increase in DNA-binding affinity. Tetramerization exhibited significant cooperative binding with preferential distances between two sites, allowing efficient binding to regions that are poorly recognized by dimeric SEP3Δtet-AG. By intersecting seq-DAP-seq with ChIP-seq and expression data, we identified unique target genes bound either in SEP3–AG seq-DAP-seq or in SEP3/AG ChIP-seq. Seq-DAP-seq is a versatile genome-wide technique and complements in vivo methods to identify putative direct regulatory targets.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 38000 Grenoble, France
| | - Arnaud Stigliani
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 38000 Grenoble, France.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, DK-2200, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Denmark
| | - Jérémy Lucas
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 38000 Grenoble, France
| | - Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 38000 Grenoble, France
| | - François Parcy
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 38000 Grenoble, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 38000 Grenoble, France
| |
Collapse
|
33
|
Song Q, Bari A, Li H, Chen LL. Identification and analysis of micro-exons in AP2/ERF and MADS gene families. FEBS Open Bio 2020; 10:2564-2577. [PMID: 32986930 PMCID: PMC7714060 DOI: 10.1002/2211-5463.12990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 11/12/2022] Open
Abstract
Micro‐exons are a set of ultrashort exons with lengths ≤ 51 nucleotides. Our previous study revealed that micro‐exons were enriched in AP2 domains and K‐box domains, which are crucial components of AP2/ERF (APETALA2/ethylene‐responsive element‐binding protein) and MADS‐box (an acronym of MCM1, AGAMOUS, DEFICIENS and SRF) genes, respectively. In this study, we analyzed micro‐exons in the AP2/ERF family from 63 species and demonstrated that 76.8% of micro‐exons are concentrated in AP2 domains. Most micro‐exons appeared in the AP2 subfamily of all the terrestrial plants, but not algae. In addition, micro‐exons and AP2 domains are conserved and under negative selection. The MIKC gene is a typical MADS‐box gene family in terrestrial plants and includes one MADS‐box domain and one K‐box domain. A total of 92.3% of micro‐exons were observed in K‐box domains, and two micro‐exons usually encoded a region of K‐box domain, which is the key to MADS‐box protein polymerization. Furthermore, the micro‐exons of the K‐box domain had higher ratios of nonsynonymous mutations than those of the AP2 domains. Overall, here we explored the relationships and differences among micro‐exons in AP2/ERF and MADS families, and revealed potential functional roles of micro‐exons in these domains.
Collapse
Affiliation(s)
- Qi Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Amna Bari
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Huan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Iwabuchi N, Kitazawa Y, Maejima K, Koinuma H, Miyazaki A, Matsumoto O, Suzuki T, Nijo T, Oshima K, Namba S, Yamaji Y. Functional variation in phyllogen, a phyllody-inducing phytoplasma effector family, attributable to a single amino acid polymorphism. MOLECULAR PLANT PATHOLOGY 2020; 21:1322-1336. [PMID: 32813310 PMCID: PMC7488466 DOI: 10.1111/mpp.12981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Flower malformation represented by phyllody is a common symptom of phytoplasma infection induced by a novel family of phytoplasma effectors called phyllogens. Despite the accumulation of functional and structural phyllogen information, the molecular mechanisms of phyllody have not yet been integrated with their evolutionary aspects due to the limited data on their homologs across diverse phytoplasma lineages. Here, we developed a novel universal PCR-based approach to identify 25 phytoplasma phyllogens related to nine "Candidatus Phytoplasma" species, including four species whose phyllogens have not yet been identified. Phylogenetic analyses showed that the phyllogen family consists of four groups (phyl-A, -B, -C, and -D) and that the evolutionary relationships of phyllogens were significantly distinct from those of phytoplasmas, suggesting that phyllogens were transferred horizontally among phytoplasma strains and species. Although phyllogens belonging to the phyl-A, -C, and -D groups induced phyllody, the phyl-B group lacked the ability to induce phyllody. Comparative functional analyses of phyllogens revealed that a single amino acid polymorphism in phyl-B group phyllogens prevented interactions between phyllogens and A- and E-class MADS domain transcription factors (MTFs), resulting in the inability to degrade several MTFs and induce phyllody. Our finding of natural variation in the function of phytoplasma effectors provides new insights into molecular mechanisms underlying the aetiology of phytoplasma diseases.
Collapse
Affiliation(s)
- Nozomu Iwabuchi
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kensaku Maejima
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Akio Miyazaki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ouki Matsumoto
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takumi Suzuki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takamichi Nijo
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | | - Shigetou Namba
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
35
|
Alternative splicing and duplication of PI-like genes in maize. Gene 2020; 769:145064. [PMID: 32891770 DOI: 10.1016/j.gene.2020.145064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022]
Abstract
Alternative splicing and duplication provide the possibility of functional divergence of MADS-box genes. Compared with its Arabidopsis counterpart PI gene, Zmm16 in maize recruits a new role in carpel abortion and floral asymmetry, whereas the other two duplicated genes, Zmm18/29, have not yet been attributed to any function in flower development as a typical B class gene does. Here, alternatively spliced transcripts of three PIL genes were analyzed, among which we described the candidate functional isoforms and analyzed the potential effects of alternative splicing (AS) on protein-protein interactions as well, then their phylogenetic relationships with orthologs in typical grasses were further analyzed. Furthermore, we compared the cis-acting elements specific for three maize PIL genes, especially the elements related to methyl jasmonate (MeJA) and gibberellic acid (GA), both hormones involved in the sex-determination process in maize. Together with the results from the co-expression networks during reproductive organ development, we speculated that, due to duplication and alternative splicing, Zmm18/29 may play a role in GA- and MeJA-related developmental process. These results provide novel clues for experimental validation of the evolutional meaning of maize PIL genes.
Collapse
|
36
|
Aurin MB, Haupt M, Görlach M, Rümpler F, Theißen G. Structural Requirements of the Phytoplasma Effector Protein SAP54 for Causing Homeotic Transformation of Floral Organs. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1129-1141. [PMID: 32689871 DOI: 10.1094/mpmi-02-20-0028-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytoplasmas are intracellular bacterial plant pathogens that cause devastating diseases in crops and ornamental plants by the secretion of effector proteins. One of these effector proteins, termed SECRETED ASTER YELLOWS WITCHES' BROOM PROTEIN 54 (SAP54), leads to the degradation of a specific subset of floral homeotic proteins of the MIKC-type MADS-domain family via the ubiquitin-proteasome pathway. In consequence, the developing flowers show the homeotic transformation of floral organs into vegetative leaf-like structures. The molecular mechanism of SAP54 action involves binding to the keratin-like domain of MIKC-type proteins and to some RAD23 proteins, which translocate ubiquitylated substrates to the proteasome. The structural requirements and specificity of SAP54 function are poorly understood, however. Here, we report, based on biophysical and molecular biological analyses, that SAP54 folds into an α-helical structure. Insertion of helix-breaking mutations disrupts correct folding of SAP54 and compromises SAP54 binding to its target proteins and, concomitantly, its ability to evoke disease phenotypes in vivo. Interestingly, dynamic light scattering data together with electrophoretic mobility shift assays suggest that SAP54 preferentially binds to multimeric complexes of MIKC-type proteins rather than to dimers or monomers of these proteins. Together with data from literature, this finding suggests that MIKC-type proteins and SAP54 constitute multimeric α-helical coiled coils. Our investigations clarify the structure-function relationship of an important phytoplasma effector protein and may thus ultimately help to develop treatments against some devastating plant diseases.
Collapse
Affiliation(s)
- Marc-Benjamin Aurin
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Michael Haupt
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Matthias Görlach
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Florian Rümpler
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Günter Theißen
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
37
|
Dreni L, Ravasio A, Gonzalez-Schain N, Jacchia S, da Silva GJ, Ricagno S, Russo R, Caselli F, Gregis V, Kater MM. Functionally Divergent Splicing Variants of the Rice AGAMOUS Ortholog OsMADS3 Are Evolutionary Conserved in Grasses. FRONTIERS IN PLANT SCIENCE 2020; 11:637. [PMID: 32523596 PMCID: PMC7261849 DOI: 10.3389/fpls.2020.00637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/24/2020] [Indexed: 05/31/2023]
Abstract
Within the MADS-box gene family, the AGAMOUS-subfamily genes are particularly important for plant reproduction, because they control stamen and carpel identity. A number of studies in the last three decades have demonstrated that the AGAMOUS (AG) function has been conserved during land plant evolution. However, gene duplication events have led to subfunctionalization and neofunctionalization of AG-like genes in many species. Here we show that alternative splicing in Oryza sativa produces two variants of the AG ortholog OsMADS3 which differ in just one serine residue, S109. Interestingly, this alternative splicing variant is conserved and specific to the grass family. Since in eudicots the S109 residue is absent in AG proteins, stamen and carpel identity determination activity of the two rice isoforms was tested in Arabidopsis thaliana. These experiments revealed that only the eudicot-like OsMADS3 isoform, lacking the serine residue, had ability to specify stamens and carpels in ag mutant flowers, suggesting an important functional role for the serine residue at position 109 in AG proteins of grasses.
Collapse
Affiliation(s)
- Ludovico Dreni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Andrea Ravasio
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Sara Jacchia
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Stefano Ricagno
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Rosaria Russo
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesca Caselli
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Veronica Gregis
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Martin M. Kater
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
38
|
Xia Y, Shi M, Chen W, Hu R, Jing D, Wu D, Wang S, Li Q, Deng H, Guo Q, Liang G. Expression Pattern and Functional Characterization of PISTILLATA Ortholog Associated With the Formation of Petaloid Sepals in Double-Flower Eriobotrya japonica (Rosaceae). FRONTIERS IN PLANT SCIENCE 2020; 10:1685. [PMID: 32010167 PMCID: PMC6978688 DOI: 10.3389/fpls.2019.01685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Double-flower Eriobotrya japonica, of which one phenotype is homeotic transformation of sepals into petals, is a new germplasm for revealing the molecular mechanisms underlying the floral organ transformation. Herein, we analyzed the sequence, expression pattern and functional characterization of EjPI, which encoded a B-class floral homeotic protein referred to as PISTILLATA ortholog, from genetically cognate single-flower and double-flower E. japonica. Phylogenetic analysis suggested that the EjPI gene was assigned to the rosids PI/GLO lineage. Analysis of protein sequence alignments showed that EjPI has typical domains of M, I, K, and C, and includes a distinctive PI motif at the C-terminal region. Compared with asterids PI/GLO lineage, the K1 and K3 subdomains of EjPI both contain a single amino acid difference. Subcellular localization of EjPI was determined to be in the nucleus. Expression pattern analysis revealed that EjPI expressed not only in petals, filament, and anther in single-flower E. japonica, but also in petaloid sepals in double-flower E. japonica. Meanwhile, there were high correlation between EjPI transcript level and petaloid area within a sepal. Furthermore, 35S::EjPI transgenic wild-type Arabidopsis caused the homeotic transformation of the first whorl sepals into petaloid sepals. Ectopic expression of EjPI in transgenic pi-1 mutant Arabidopsis rescued normal petals and stamens. These results suggest expression pattern of EjPI is associated with the formation of petaloid sepal. Our study provides the potential application of EjPI for biotechnical engineering to create petaloid sepals or regulate floral organ identity in angiosperms.
Collapse
Affiliation(s)
- Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, China
| | - Min Shi
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, China
| | - Weiwei Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, China
| | - Ruoqian Hu
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, China
| | - Shuming Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, China
| | - Qingfen Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Honghong Deng
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, China
| |
Collapse
|
39
|
Kumari N, Yadav S. Modulation of protein oligomerization: An overview. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:99-113. [DOI: 10.1016/j.pbiomolbio.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
|
40
|
Liao YT, Lin SS, Lin SJ, Sun WT, Shen BN, Cheng HP, Lin CP, Ko TP, Chen YF, Wang HC. Structural insights into the interaction between phytoplasmal effector causing phyllody 1 and MADS transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:706-719. [PMID: 31323156 DOI: 10.1111/tpj.14463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 05/21/2023]
Abstract
Phytoplasmas are bacterial plant pathogens which can induce severe symptoms including dwarfism, phyllody and virescence in an infected plant. Because phytoplasmas infect many important crops such as peanut and papaya they have caused serious agricultural losses. The phytoplasmal effector causing phyllody 1 (PHYL1) is an important phytoplasmal pathogenic factor which affects the biological function of MADS transcription factors by interacting with their K (keratin-like) domain, thus resulting in abnormal plant developments such as phyllody. Until now, lack of information on the structure of PHYL1 has prevented a detailed understanding of the binding mechanism between PHYL1 and the MADS transcription factors. Here, we present the crystal structure of PHYL1 from peanut witches'-broom phytoplasma (PHYL1PnWB ). This protein was found to fold into a unique α-helical hairpin with exposed hydrophobic residues on its surface that may play an important role in its biological function. Using proteomics approaches, we propose a binding mode of PHYL1PnWB with the K domain of the MADS transcription factor SEPALLATA3 (SEP3_K) and identify the residues of PHYL1PnWB that are important for this interaction. Furthermore, using surface plasmon resonance we measure the binding strength of PHYL1PnWB proteins to SEP3_K. Lastly, based on confocal images, we found that α-helix 2 of PHYL1PnWB plays an important role in PHYL1-mediated degradation of SEP3. Taken together, these results provide a structural understanding of the specific binding mechanism between PHYL1PnWB and SEP3_K.
Collapse
Affiliation(s)
- Yi-Ting Liao
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Center of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Shin-Jen Lin
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wan-Ting Sun
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Bing-Nan Shen
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Han-Pin Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Chan-Pin Lin
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Fan Chen
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hao-Ching Wang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
41
|
Vu NT, Kamiya K, Fukushima A, Hao S, Ning W, Ariizumi T, Ezura H, Kusano M. Comparative co-expression network analysis extracts the SlHSP70 gene affecting to shoot elongation of tomato. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:143-153. [PMID: 31768116 PMCID: PMC6854337 DOI: 10.5511/plantbiotechnology.19.0603a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tomato is one of vegetables crops that has the highest value in the world. Thus, researchers are continually improving the agronomical traits of tomato fruits. Auxins and gibberellins regulate plant growth and development. Aux/indole-3-acetic acid 9 (SlIAA9) and the gene encoding the DELLA protein (SlDELLA) are well-known genes that regulate plant growth and development, including fruit set and enlargement by cell division and cell expansion. The absence of tomato SlIAA9 and SlDELLA results in abnormal shoot growth and leaf shape and giving rise to parthenocarpy. To investigate the key regulators that exist up- or downstream of SlIAA9 and SlDELLA signaling pathways for tomato growth and development, we performed gene co-expression network analysis by using publicly available microarray data to extract genes that are directly connected to the SlIAA9 and SlDELLA nodes, respectively. Consequently, we chose a gene in the group of heat-shock protein (HSP)70s that was connected with the SlIAA9 node and SlDELLA node in each co-expression network. To validate the extent of effect of SlHSP70-1 on tomato growth and development, overexpressing lines of the target gene were generated. We found that overexpression of the targeted SlHSP70-1 resulted in internode elongation, but the overexpressing lines did not show abnormal leaf shape, fruit set, or fruit size when compared with that of the wild type. Our study suggests that the targeted SlHSP70-1 is likely to function in shoot growth, like SlIAA9 and SlDELLA, but it does not contribute to parthenocarpy as well as fruit set. Our study also shows that only a single SlHSP70 out of 25 homologous genes could change the shoot length.
Collapse
Affiliation(s)
- Nam Tuan Vu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ken Kamiya
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Shuhei Hao
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wang Ning
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Graduate School of Life and Environmental Science, Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Graduate School of Life and Environmental Science, Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Graduate School of Life and Environmental Science, Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Miyako Kusano
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Life and Environmental Science, Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- E-mail: Tel & Fax: +81-29-853-4809
| |
Collapse
|
42
|
Hugouvieux V, Silva CS, Jourdain A, Stigliani A, Charras Q, Conn V, Conn SJ, Carles CC, Parcy F, Zubieta C. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Res 2019; 46:4966-4977. [PMID: 29562355 PMCID: PMC6007258 DOI: 10.1093/nar/gky205] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/08/2018] [Indexed: 01/24/2023] Open
Abstract
The MADS transcription factors (TF) constitute an ancient family of TF found in all eukaryotes that bind DNA as obligate dimers. Plants have dramatically expanded the functional diversity of the MADS family during evolution by adding protein-protein interaction domains to the core DNA-binding domain, allowing the formation of heterotetrameric complexes. Tetramerization of plant MADS TFs is believed to play a central role in the evolution of higher plants by acting as one of the main determinants of flower formation and floral organ specification. The MADS TF, SEPALLATA3 (SEP3), functions as a central protein-protein interaction hub, driving tetramerization with other MADS TFs. Here, we use a SEP3 splice variant, SEP3Δtet, which has dramatically abrogated tetramerization capacity to decouple SEP3 tetramerization and DNA-binding activities. We unexpectedly demonstrate that SEP3 heterotetramer formation is required for correct termination of the floral meristem, but plays a lesser role in floral organogenesis. The heterotetramer formed by SEP3 and the MADS protein, AGAMOUS, is necessary to activate two target genes, KNUCKLES and CRABSCLAW, which are required for meristem determinacy. These studies reveal unique and highly specific roles of tetramerization in flower development and suggest tetramerization may be required to activate only a subset of target genes in closed chromatin regions.
Collapse
Affiliation(s)
- Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - Catarina S Silva
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble.,European Synchrotron Radiation Facility, Structural Biology Group, 71, Avenue des Martyrs, F-38000 Grenoble, France
| | - Agnès Jourdain
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - Arnaud Stigliani
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - Quentin Charras
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - Vanessa Conn
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble.,Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Sturt Road, Bedford Park 5042, South Australia, Australia
| | - Simon J Conn
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble.,Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Sturt Road, Bedford Park 5042, South Australia, Australia
| | - Cristel C Carles
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - François Parcy
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| |
Collapse
|
43
|
Hoffmeier A, Gramzow L, Bhide AS, Kottenhagen N, Greifenstein A, Schubert O, Mummenhoff K, Becker A, Theißen G. A Dead Gene Walking: Convergent Degeneration of a Clade of MADS-Box Genes in Crucifers. Mol Biol Evol 2019; 35:2618-2638. [PMID: 30053121 DOI: 10.1093/molbev/msy142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genes are "born," and eventually they "die." These processes shape the phenotypic evolution of organisms and are hence of great biological interest. If genes die in plants, they generally do so quite rapidly. Here, we describe the fate of GOA-like genes that evolve in a dramatically different manner. GOA-like genes belong to the subfamily of Bsister genes of MIKC-type MADS-box genes. Typical MIKC-type genes encode conserved transcription factors controlling plant development. We show that ABS-like genes, a clade of Bsister genes, are indeed highly conserved in crucifers (Brassicaceae) maintaining the ancestral function of Bsister genes in ovule and seed development. In contrast, their closest paralogs, the GOA-like genes, have been undergoing convergent gene death in Brassicaceae. Intriguingly, erosion of GOA-like genes occurred after millions of years of coexistence with ABS-like genes. We thus describe Delayed Convergent Asymmetric Degeneration, a so far neglected but possibly frequent pattern of duplicate gene evolution that does not fit classical scenarios. Delayed Convergent Asymmetric Degeneration of GOA-like genes may have been initiated by a reduction in the expression of an ancestral GOA-like gene in the stem group of Brassicaceae and driven by dosage subfunctionalization. Our findings have profound implications for gene annotations in genomics, interpreting patterns of gene evolution and using genes in phylogeny reconstructions of species.
Collapse
Affiliation(s)
- Andrea Hoffmeier
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Lydia Gramzow
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Amey S Bhide
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nina Kottenhagen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Andreas Greifenstein
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Olesia Schubert
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Osnabrück, Germany
| | - Annette Becker
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Günter Theißen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
44
|
Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C. Structural Basis for Plant MADS Transcription Factor Oligomerization. Comput Struct Biotechnol J 2019; 17:946-953. [PMID: 31360333 PMCID: PMC6639411 DOI: 10.1016/j.csbj.2019.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022] Open
Abstract
MADS transcription factors (TFs) are DNA binding proteins found in almost all eukaryotes that play essential roles in diverse biological processes. While present in animals and fungi as a small TF family, the family has dramatically expanded in plants over the course of evolution, with the model flowering plant, Arabidopsis thaliana, possessing over 100 type I and type II MADS TFs. All MADS TFs contain a core and highly conserved DNA binding domain called the MADS or M domain. Plant MADS TFs have diversified this domain with plant-specific auxiliary domains. Plant type I MADS TFs have a highly diverse and largely unstructured Carboxy-terminal (C domain), whereas type II MADS have added oligomerization domains, called Intervening (I domain) and Keratin-like (K domain), in addition to the C domain. In this mini review, we describe the overall structure of the type II "MIKC" type MADS TFs in plants, with a focus on the K domain, a critical oligomerization module. We summarize the determining factors for oligomerization and provide mechanistic insights on how secondary structural elements are required for oligomerization capability and specificity. Using MADS TFs that are involved in flower organ specification as an example, we provide case studies and homology modeling of MADS TFs complex formation. Finally, we highlight outstanding questions in the field.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG, Grenoble, France
| | - Hussein Daher
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG, Grenoble, France
| | - Antonin Galien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG, Grenoble, France
| | - Veronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG, Grenoble, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG, Grenoble, France
| |
Collapse
|
45
|
Gou J, Tang C, Chen N, Wang H, Debnath S, Sun L, Flanagan A, Tang Y, Jiang Q, Allen RD, Wang ZY. SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass. THE NEW PHYTOLOGIST 2019; 222:1610-1623. [PMID: 30688366 DOI: 10.1111/nph.15712] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses. Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes. Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses. Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.
Collapse
Affiliation(s)
- Jiqing Gou
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Chaorong Tang
- Noble Research Institute, Ardmore, OK, 73401, USA
- Hainan University, Haiko, 570228, China
| | - Naichong Chen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Hui Wang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Smriti Debnath
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liang Sun
- Noble Research Institute, Ardmore, OK, 73401, USA
| | - Amy Flanagan
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuhong Tang
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Randy D Allen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Zeng-Yu Wang
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
46
|
Crystal structure of phyllogen, a phyllody-inducing effector protein of phytoplasma. Biochem Biophys Res Commun 2019; 513:952-957. [PMID: 31010685 DOI: 10.1016/j.bbrc.2019.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/20/2022]
Abstract
Phytoplasmas are plant pathogenic bacteria that often induce unique phyllody symptoms in which the floral organs are transformed into leaf-like structures. Recently, a novel family of bacterial effector genes, called phyllody-inducing genes (phyllogens), was identified as being involved in the induction of phyllody by degrading floral MADS-domain transcription factors (MTFs). However, the structural characteristics of phyllogens are unknown. In this study, we elucidated the crystal structure of PHYL1OY, a phyllogen of 'Candidatus Phytoplasma asteris' onion yellows strain, at a resolution of 2.4 Å. The structure of PHYL1 consisted of two α-helices connected by a random loop in a coiled-coil manner. In both α-helices, the distributions of hydrophobic residues were conserved among phyllogens. Amino acid insertion mutations into either α-helix resulted in the loss of phyllody-inducing activity and the ability of the phyllogen to degrade floral MTF. In contrast, the same insertion in the loop region did not affect either activity, indicating that both conserved α-helices are important for the function of phyllogens. This is the first report on the crystal structure of an effector protein of phytoplasmas.
Collapse
|
47
|
Xu Y, Yamaguchi N, Gan ES, Ito T. When to stop: an update on molecular mechanisms of floral meristem termination. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1711-1718. [PMID: 30916342 DOI: 10.1093/jxb/erz048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/06/2019] [Indexed: 05/17/2023]
Abstract
Flowers have fascinated humans for millennia, not only because of their beauty, but also because they give rise to fruits, from which most agricultural products are derived. In most angiosperms, the number and position of floral organs are morphologically and genetically defined, and their development is tightly controlled by complex regulatory networks to ensure reproductive success. How flower development is temporally initiated and spatially maintained has been widely researched. As the flower develops, the balance between proliferation and differentiation dynamically shifts towards organogenesis and termination of floral stem cell maintenance. In this review, we focus on recent findings that further reveal the intricate molecular mechanisms for precise timing of floral meristem termination.
Collapse
Affiliation(s)
- Yifeng Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Nara Institute of Science and Technology, Biological Sciences, Plant Stem Cell Regulation and Floral Patterning Laboratory, Takayama, Ikoma, Nara, Japan
| | - Nobutoshi Yamaguchi
- Nara Institute of Science and Technology, Biological Sciences, Plant Stem Cell Regulation and Floral Patterning Laboratory, Takayama, Ikoma, Nara, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Honcho, Kawaguchi-shi, Saitama, Japan
| | | | - Toshiro Ito
- Nara Institute of Science and Technology, Biological Sciences, Plant Stem Cell Regulation and Floral Patterning Laboratory, Takayama, Ikoma, Nara, Japan
| |
Collapse
|
48
|
Li S, Chen K, Grierson D. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. THE NEW PHYTOLOGIST 2019; 221:1724-1741. [PMID: 30328615 DOI: 10.1111/nph.15545] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1724 I. Introduction 1725 II. Ripening genes 1725 III. The importance of ethylene in controlling ripening 1727 IV. The importance of MADS-RIN in controlling ripening 1729 V. Interactions between components of the ripening regulatory network 1734 VI. Conclusions 1736 Acknowledgements 1738 Author contributions 1738 References 1738 SUMMARY: Understanding the regulation of fleshy fruit ripening is biologically important and provides insights and opportunities for controlling fruit quality, enhancing nutritional value for animals and humans, and improving storage and waste reduction. The ripening regulatory network involves master and downstream transcription factors (TFs) and hormones. Tomato is a model for ripening regulation, which requires ethylene and master TFs including NAC-NOR and the MADS-box protein MADS-RIN. Recent functional characterization showed that the classical RIN-MC gene fusion, previously believed to be a loss-of-function mutation, is an active TF with repressor activity. This, and other evidence, has highlighted the possibility that MADS-RIN itself is not important for ripening initiation but is required for full ripening. In this review, we discuss the diversity of components in the control network, their targets, and how they interact to control initiation and progression of ripening. Both hormones and individual TFs affect the status and activity of other network participants, which changes overall network signaling and ripening outcomes. MADS-RIN, NAC-NOR and ethylene play critical roles but there are still unanswered questions about these and other TFs. Further attention should be paid to relationships between ethylene, MADS-RIN and NACs in ripening control.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Don Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
49
|
NAMBA S. Molecular and biological properties of phytoplasmas. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:401-418. [PMID: 31406061 PMCID: PMC6766451 DOI: 10.2183/pjab.95.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phytoplasmas, a large group of plant-pathogenic, phloem-inhabiting bacteria were discovered by Japanese scientists in 1967. They are transmitted from plant to plant by phloem-feeding insect hosts and cause a variety of symptoms and considerable damage in more than 1,000 plant species. In the first quarter century following the discovery of phytoplasmas, their tiny cell size and the difficulty in culturing them hampered their biological classification and restricted research to ecological studies such as detection by electron microscopy and identification of insect vectors. In the 1990s, however, tremendous advances in molecular biology and related technologies encouraged investigation of phytoplasmas at the molecular level. In the last quarter century, molecular biology has revealed important properties of phytoplasmas. This review summarizes the history and current status of phytoplasma research, focusing on their discovery, molecular classification, diagnosis of phytoplasma diseases, reductive evolution of their genomes, characteristic features of their plasmids, molecular mechanisms of insect transmission, virulence factors, and chemotherapy.
Collapse
Affiliation(s)
- Shigetou NAMBA
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: S. Namba, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (e-mail: )
| |
Collapse
|
50
|
Balogh E, Halász J, Soltész A, Erös-Honti Z, Gutermuth Á, Szalay L, Höhn M, Vágújfalvi A, Galiba G, Hegedüs A. Identification, Structural and Functional Characterization of Dormancy Regulator Genes in Apricot ( Prunus armeniaca L.). FRONTIERS IN PLANT SCIENCE 2019; 10:402. [PMID: 31024581 PMCID: PMC6460505 DOI: 10.3389/fpls.2019.00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 05/12/2023]
Abstract
In the present study, we identified and characterized the apricot (Prunus armeniaca L.) homologs of three dormancy-related genes, namely the ParCBF1 (C-repeat binding factor), ParDAM5 (dormancy-associated MADS-BOX) and ParDAM6 genes. All highly conserved structural motifs and the 3D model of the DNA-binding domain indicate an unimpaired DNA-binding ability of ParCBF1. A phylogenetic analysis showed that ParCBF1 was most likely homologous to Prunus mume and Prunus dulcis CBF1. ParDAM5 also contained all characteristic domains of the type II (MIKCC) subfamily of MADS-box transcription factors. The homology modeling of protein domains and a phylogenetic analysis of ParDAM5 suggest its functional integrity. The amino acid positions or small motifs that are diagnostic characteristics of DAM5 and DAM6 were determined. For ParDAM6, only a small part of the cDNA was sequenced, which was sufficient for the quantification of gene expression. The expression of ParCBF1 showed close association with decreasing ambient temperatures in autumn and winter. The expression levels of ParDAM5 and ParDAM6 changed according to CBF1 expression rates and the fulfillment of cultivar chilling requirements (CR). The concomitant decrease of gene expression with endodormancy release is consistent with a role of ParDAM5 and ParDAM6 genes in dormancy induction and maintenance. Cultivars with higher CR and delayed flowering time showed higher expression levels of ParDAM5 and ParDAM6 toward the end of endodormancy. Differences in the timing of anther developmental stages between early- and late-flowering cultivars and two dormant seasons confirmed the genetically and environmentally controlled mechanisms of dormancy release in apricot generative buds. These results support that the newly identified apricot gene homologs have a crucial role in dormancy-associated physiological mechanisms.
Collapse
Affiliation(s)
- Eszter Balogh
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Júlia Halász
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Alexandra Soltész
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Zsolt Erös-Honti
- Department of Botany and Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Ádám Gutermuth
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - László Szalay
- Department of Pomology, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Mária Höhn
- Department of Botany and Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Attila Vágújfalvi
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Gábor Galiba
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Attila Hegedüs
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
- *Correspondence: Attila Hegedûs,
| |
Collapse
|