1
|
Chaowongdee S, Vannatim N, Malichan S, Kuncharoen N, Tongyoo P, Siriwan W. Roles of WRKY Transcription Factors in Response to Sri Lankan Cassava Mosaic Virus Infection in Susceptible and Tolerant Cassava Cultivars. PLANTS (BASEL, SWITZERLAND) 2025; 14:1159. [PMID: 40284047 PMCID: PMC12030686 DOI: 10.3390/plants14081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Cassava mosaic disease (CMD) is caused by viruses such as Sri Lankan cassava mosaic virus (SLCMV). It poses a significant threat to the cassava (Manihot esculenta) yield in Southeast Asia. Here, we investigated the expression of WRKY transcription factors (TFs) in SLCMV-infected cassava cultivars KU 50 (tolerant) and R 11 (susceptible) at 21, 32, and 67 days post-inoculation (dpi), representing the early, middle/recovery, and late infection stages, respectively. The 34 identified WRKYs were classified into the following six groups based on the functions of their homologs in the model plant Arabidopsis thaliana (AtWRKYs): plant defense; plant development; hormone signaling (abscisic, salicylic, and jasmonic acid); reactive oxygen species production; basal immune mechanisms; and other related hormones, metabolites, and abiotic stress responses. Regarding the protein interactions of the identified WRKYs, based on the interactions of their homologs (AtWRKYs), WRKYs increased reactive oxygen species production, leading to salicylic acid accumulation and systemic acquired resistance (SAR) against SLCMV. Additionally, some WRKYs were involved in defense-related mitogen-activated protein kinase signaling and abiotic stress responses. Furthermore, crosstalk among WRKYs reflected the robustly restricted viral multiplication in the tolerant cultivar, contributing to CMD recovery. This study highlights the crucial roles of WRKYs in transcriptional reprogramming, innate immunity, and responses to geminivirus infections in cassava, providing valuable insights to enhance disease resistance in cassava and, potentially, other crops.
Collapse
Affiliation(s)
- Somruthai Chaowongdee
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Nattachai Vannatim
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Nattakorn Kuncharoen
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Pumipat Tongyoo
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok 10900, Thailand;
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand
| | - Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| |
Collapse
|
2
|
Li C, Xia Y, Xiang F, Cao S, Zhou M, Wang K, Zou Y, Li M, Zheng Y. β-Aminobutyric acid activates SA-signalling systemic acquired resistance in peach fruit by suppressing the circadian clock associated protein1. Int J Biol Macromol 2025; 300:140040. [PMID: 39828166 DOI: 10.1016/j.ijbiomac.2025.140040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Circadian clock regulates plant development and physiology by anticipating daily environmental changes. Here we studied the core clock protein involved in β-aminobutyric acid (BABA)-inducible systemic acquired resistance (SAR) resistance to Rhizopus stolonifer in peach fruit. BABA elicitation barely primed the accumulation of jasmonate or ethylene, whose regulation was associated with morning-loop gene expression. Notably, BABA-induced resistance depended on the upregulation of salicylic acid (SA) signalling, accompanied by increased transcription of specific evening-loop genes. Through Y2H screening, pull-down and co-IP analyses, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a morning-expressed clock protein repressed by BABA, was identified as an interacting partner of NPR1 in regulating SA-dependent SAR. A CUT&Tag analysis indicated that the association of CCA1 with its target genes, which are enriched in EE or CBS motifs, was involved in SA pathway. Furthermore, EMSA, DLR, Y3H and Co-ip assays suggested that CCA1 did not directly affect the expression of SA-inducible genes but instead hindered the interaction between NPR1 and TGA1. Overexpression of PpCCA1 attenuated the transcription of SA-responsive PR genes, while mutation of PpCCA1 elevated these expressions. Collectively, PpCCA1 functions as a negative regulator of NPR1-dependent SA signalling through antagonistic crosstalk with the NPR1-TGA1 system, but BABA activates SAR by suppressing PpCCA1 in peach fruit.
Collapse
Affiliation(s)
- Chunhong Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China
| | - Yijia Xia
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China; Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, People's Republic of China
| | - Fei Xiang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China
| | - Shifeng Cao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China
| | - Minghua Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China
| | - Kaituo Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China; Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, People's Republic of China.
| | - Yanyu Zou
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, People's Republic of China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Meilin Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China; College of Food, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Zhang Y, Ge Y, Sun K, Pan L, Liang Z, Wang P, Cai Y, Wang S. Identification and Application of the Heptad Repeat Domain in the CPR5 Protein for Enhancing Plant Immunity. MOLECULAR PLANT PATHOLOGY 2025; 26:e70059. [PMID: 39910736 PMCID: PMC11798864 DOI: 10.1111/mpp.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Plant resistance to pathogens can be significantly enhanced through genetic modification, thereby reducing the reliance on chemical pesticides. CONSTITUTIVE EXPRESSER OF PATHOGENESIS-RELATED GENES 5 (CPR5) serves as a key negative regulator of plant immunity. Here we explored the functional domains of the CPR5 protein with the goal of dampening its activity to bolster plant immunity. Using hexapeptide asparagine-alanine-alanine-isoleucine-arginine-serine (NAAIRS) linker-scanning analysis, we identified a heptad repeat domain (HRD) in the middle region of the CPR5 protein, which is highly conserved across the plant kingdom. The HRD is predicted to form an α-helix structure and acts as an interface for CPR5 dimerization. Intriguingly, overexpression of the HRD in Arabidopsis wild-type plants resulted in a phenotype similar to the cpr5 mutant and led to an enhancement of plant immunity, indicating that the introduced HRDs disrupt the native CPR5 dimers, thereby relieving the suppression of plant immunity. Furthermore, expression of the HRD under the control of a pathogen-inducible promoter significantly improved the resistance of cotton plants to Verticillium dahliae, a destructive wilt pathogen affecting cotton production worldwide. These findings suggest that downregulating CPR5 activity by the pathogen-inducible expression of its HRD could be a promising approach for strengthening plant immunity.
Collapse
Affiliation(s)
- Yuehui Zhang
- Shanghai Collaborative Innovation Centre of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yuting Ge
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesHenan UniversityKaifengChina
| | - Keke Sun
- Shanghai Songjiang Jiuting No. 3 Primary SchoolShanghaiChina
| | - Leiwen Pan
- Shanghai Collaborative Innovation Centre of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Zhilin Liang
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesHenan UniversityKaifengChina
- No. 107 High School of ZhengzhouZhengzhouChina
| | - Ping Wang
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesHenan UniversityKaifengChina
| | - Yingfan Cai
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesHenan UniversityKaifengChina
| | - Shui Wang
- Shanghai Collaborative Innovation Centre of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
4
|
Keppler A, Roulier M, Pfeilmeier S, Petti GC, Sintsova A, Maier BA, Bortfeld-Miller M, Sunagawa S, Zipfel C, Vorholt JA. Plant microbiota feedbacks through dose-responsive expression of general non-self response genes. NATURE PLANTS 2025; 11:74-89. [PMID: 39627368 PMCID: PMC11757152 DOI: 10.1038/s41477-024-01856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/22/2024] [Indexed: 01/25/2025]
Abstract
The ability of plants to perceive and react to biotic and abiotic stresses is critical for their health. We recently identified a core set of genes consistently induced by members of the leaf microbiota, termed general non-self response (GNSR) genes. Here we show that GNSR components conversely impact leaf microbiota composition. Specific strains that benefited from this altered assembly triggered strong plant responses, suggesting that the GNSR is a dynamic system that modulates colonization by certain strains. Examination of the GNSR to live and inactivated bacteria revealed that bacterial abundance, cellular composition and exposure time collectively determine the extent of the host response. We link the GNSR to pattern-triggered immunity, as diverse microbe- or danger-associated molecular patterns cause dynamic GNSR gene expression. Our findings suggest that the GNSR is the result of a dose-responsive perception and signalling system that feeds back to the leaf microbiota and contributes to the intricate balance of plant-microbiome interactions.
Collapse
Affiliation(s)
| | | | | | | | - Anna Sintsova
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
5
|
Shim S, Kang IJ, You HJ, Kim H, Lee S. Transcriptome Comparison between Resistant and Susceptible Soybean Cultivars in Response to Inoculation of Phytophthora sojae. THE PLANT PATHOLOGY JOURNAL 2024; 40:641-655. [PMID: 39639668 PMCID: PMC11626037 DOI: 10.5423/ppj.oa.09.2024.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
Phytophthora root and stem rot, caused by Phytophthora sojae, considerably reduces soybean yield worldwide. Our previous study identified two genomic regions on chromosome 18 (2.1-2.6 and 53.1-53.3 Mbp) that confer resistance to the P. sojae isolate 2457, through linkage analysis using progenies derived from the Daepung × Socheong2 population. These two regions contained 51 and 19 annotated genes, respectively. However, the specific gene responsible for resistance to P. sojae isolate 2457 has yet to be identified. In this study, we performed a comparative transcriptomic analysis of Socheong2 and Daepung, two Korean soybean varieties identified as resistant and susceptible to P. sojae isolate 2457, respectively. RNA sequencing was conducted on tissue samples collected at 0, 6, and 12 hours after inoculation (HAI), and significant differences in the expression of defense-related genes were observed across time points and between the two cultivars. Genes associated with the jasmonic acid, salicylic acid, ethylene, and systemic acquired resistance pathways were upregulated in both cultivars at 6 and 12 HAI compared to 0 HAI, with these biological processes were more strongly upregulated in Socheong2 compared to Daepung at 6 and 12 HAI. A comparison of differentially expressed genes (DEGs) and candidate genes within the previously identified QTL regions revealed an ortholog of the HS1 PRO-1 2 gene from Arabidopsis thaliana among the upregulated DEGs in Socheong2, particularly at 12 HAI compared to 0 HAI. This study will aid in targeted breeding efforts to develop soybean varieties with improved resistance to P. sojae.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon 16613, Korea
| | - Hee Jin You
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hangil Kim
- Department of Forest Environment Protection, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
6
|
Hao X, Liu F, Liu L, Wu H, Liang Z, Zhao W, Wang Y, Gu Q, Kang B. Zucchini yellow mosaic virus-induced hypersensitive response is associated with pathogenesis-related 1 protein expression and confers resistance in watermelon. PLANT CELL REPORTS 2024; 43:277. [PMID: 39528740 DOI: 10.1007/s00299-024-03364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE The pathogenesis-related 1 gene of watermelon responds to the infection of ZYMV and contributes to the resistance of its host. Zucchini yellow mosaic virus (ZYMV; family Potyviridae) is a single-stranded positive-sense RNA virus that is a serious threat to cucurbits. Previously, we observed a hypersensitivity response (HR) in the systemic leaves of the 938-16-B watermelon line infected with ZYMV, distinct from the typical HR at infected sites. In this study, we confirmed that ZYMV accumulation in 938-16-B was significantly lower than in the susceptible line H1. Upon inoculation, the entry of ZYMV-eGFP into mesophyll cells is restricted into necrotic spots in leaves, indicating that resistance to ZYMV in 938-16-B is linked to the HR. Further, grafting experiments between 938-16-B and susceptible varieties were performed, and revealed an HR induction in susceptible varieties, suggesting the transfer of resistance signal(s) from 938-16-B to susceptible varieties. Through RNA-sequencing and proteomics analyses of the H1 scions on 938-16-B rootstock, a pathogenesis-related 1 (ClPR1) gene was identified. Specifically, ClPR1 expression is unique to ZYMV-infected 938-16-B. Repression of the expression of ClPR1 prevents an HR in 938-16-B. Conversely, overexpression of ClPR1 in susceptible varieties significantly reduces ZYMV accumulation, but an HR was not induced in susceptible line. Besides the virus, jasmonic acid (JA) can also trigger an HR in 938-16-B. Intriguingly, the expression of ClPR1 (Cla97C02G034020) is induced in both of 938-16-B and H1 by MeJA, rather than salicylic acid. These results suggest that HR is associated with the expression of ClPR1 and contributes to resistance to ZYMV in 938-16-B.
Collapse
Affiliation(s)
- Xiaoyuan Hao
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Fengnan Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Liming Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Huijie Wu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Zhiling Liang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Wei Zhao
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qinsheng Gu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Baoshan Kang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, Henan, China.
| |
Collapse
|
7
|
Wu X, Wang L, Xing Q, Zhao Y, Qi H. CmPIF8-CmERF27-CmACS10-mediated ethylene biosynthesis modulates red light-induced powdery mildew resistance in oriental melon. PLANT, CELL & ENVIRONMENT 2024; 47:4135-4150. [PMID: 38923433 DOI: 10.1111/pce.15015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Powdery mildew is a serious fungal disease in protected melon cultivation that affects the growth, development and production of melon plants. Previous studies have shown that red light can improve oriental melon seedlings resistance to powdery mildew. Here, after inoculation with Podosphaera xanthii, an obligate fungal pathogen eliciting powdery mildew, we found that red light pretreatment increased ethylene production and this improved the resistance of melon seedlings to powdery mildew, and the ethylene biosynthesis gene CmACS10 played an important role in this process. By analysing the CmACS10 promoter, screening yeast one-hybrid library, it was found that CmERF27 positively regulated the expression of CmACS10, increased powdery mildew resistance and interacted with PHYTOCHROME INTERACTING FACTOR8 (CmPIF8) at the protein level to participate in the regulation of ethylene biosynthesis to respond to the red light-induced resistance to P. xanthii, Furthermore, CmPIF8 also directly targeted the promoter of CmACS10, negatively participated in this process. In summary, this study revealed the specific mechanism by which the CmPIF8-CmERF27-CmACS10 module regulates red light-induced ethylene biosynthesis to resist P. xanthii infection, elucidate the interaction between light and plant hormones under biological stress, provide a reference and genetic resources for breeding of disease-resistant melon plants.
Collapse
Affiliation(s)
- Xutong Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Lixia Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Qiaojuan Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yaping Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| |
Collapse
|
8
|
Wang J, Eulgem T. Growth deficiency and enhanced basal immunity in Arabidopsis thaliana mutants of EDM2, EDM3 and IBM2 are genetically interlinked. PLoS One 2024; 19:e0291705. [PMID: 38329997 PMCID: PMC10852260 DOI: 10.1371/journal.pone.0291705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
Mutants of the Arabidopsis thaliana genes, EDM2 (Enhanced Downy Mildew 2), EDM3 (Enhanced Downy Mildew 3) and IBM2 (Increase in Bonsai Methylation 2) are known to show defects in a diverse set of defense and developmental processes. For example, they jointly exhibit enhanced levels of basal defense and stunted growth. Here we show that these two phenotypes are functionally connected by their dependency on the salicylic acid biosynthesis gene SID2 and the basal defense regulatory gene PAD4. Stunted growth of edm2, edm3 and ibm2 plants is a consequence of up-regulated basal defense. Constitutively enhanced activity of reactive oxygen species-generating peroxidases, we observed in these mutants, appears also to contribute to both, their enhanced basal defense and their growth retardation phenotypes. Furthermore, we found the histone H3 demethylase gene IBM1, a direct regulatory target of EDM2, EDM3 and IBM2, to be at least partially required for the basal defense and growth-related effects observed in these mutants. We recently reported that EDM2, EDM3 and IBM2 coordinate basal immunity with the timing of the floral transition by gradually reducing the extent of this defense mechanism prior to flowering. Together with these observations, data presented here show that at least some of the diverse phenotypic effects in edm2, edm3 and ibm2 mutants are genetically interlinked and functionally connected. Our new results show that repression of basal immunity by EDM2, EDM3 and IBM2 limits negative impact on growth and development.
Collapse
Affiliation(s)
- Jianqiang Wang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Thomas Eulgem
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| |
Collapse
|
9
|
Khan MF, Umar UUD, Alrefaei AF, Rao MJ. Elicitor-Driven Defense Mechanisms: Shielding Cotton Plants against the Onslaught of Cotton Leaf Curl Multan Virus (CLCuMuV) Disease. Metabolites 2023; 13:1148. [PMID: 37999244 PMCID: PMC10673074 DOI: 10.3390/metabo13111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Salicylic acid (SA), benzothiadiazole (BTH), and methyl jasmonate (MeJA) are potential elicitors found in plants, playing a crucial role against various biotic and abiotic stresses. The systemic acquired resistance (SAR) mechanism was evaluated in cotton plants for the suppression of Cotton leaf curl Multan Virus (CLCuMuV) by the exogenous application of different elicitors. Seven different treatments of SA, MeJA, and BTH were applied exogenously at different concentrations and combinations. In response to elicitors treatment, enzymatic activities such as SOD, POD, CAT, PPO, PAL, β-1,3 glucanse, and chitinase as biochemical markers for resistance were determined from virus-inoculated and uninoculated cotton plants of susceptible and tolerant varieties, respectively. CLCuMuV was inoculated on cotton plants by whitefly (Bemesia tabaci biotype Asia II-1) and detected by PCR using specific primers for the coat protein region and the Cotton leaf curl betasatellite (CLCuMuBV)-associated component of CLCuMuV. The development of disease symptoms was observed and recorded on treated and control plants. The results revealed that BTH applied at a concentration of 1.1 mM appeared to be the most effective treatment for suppressing CLCuMuV disease in both varieties. The enzymatic activities in both varieties were not significantly different, and the disease was almost equally suppressed in BTH-treated cotton plants following virus inoculation. The beta satellite and coat protein regions of CLCuMuV were not detected by PCR in the cotton plants treated with BTH at either concentration. Among all elicitors, 1.1 mM BTH was proven to be the best option for inducing resistance after the onset of CLCuMuV infection and hence it could be part of the integrated disease management program against Cotton leaf curl virus.
Collapse
Affiliation(s)
- Muhammad Fahad Khan
- Department of Plant Pathology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 32200, Pakistan
| | - Ummad Ud Din Umar
- Department of Plant Pathology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Junaid Rao
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Jeong HW, Ryu TH, Lee HJ, Kim KH, Jeong RD. DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants. THE PLANT PATHOLOGY JOURNAL 2023; 39:449-465. [PMID: 37817492 PMCID: PMC10580055 DOI: 10.5423/ppj.oa.08.2023.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense- and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.
Collapse
Affiliation(s)
- Hwi-Won Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Tae Ho Ryu
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| |
Collapse
|
11
|
Wang J, Eulgem T. The Arabidopsis RRM domain proteins EDM3 and IBM2 coordinate the floral transition and basal immune responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:128-143. [PMID: 37347678 DOI: 10.1111/tpj.16364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
The transition from vegetative to reproductive development (floral transition) is a costly process in annual plants requiring increased investments in metabolic resources. The Arabidopsis thaliana (Arabidopsis) PHD finger protein EDM2 and RRM domain proteins EDM3 and IBM2 are known to form chromatin-associated complexes controlling transcript processing. We are reporting that distinct splice isoforms of EDM3 and IBM2 cooperate in the coordination of the floral transition with basal immune responses. These cooperating splice isoforms, termed EDM3L and IBM2L, control the intensity of basal immunity and, via a separate pathway, the timing of the floral transition. During the developmental phase prior to the floral transition expression of EDM3L and IBM2L strongly and gradually increases, while these isoforms simultaneously down-regulate expression of the floral suppressor gene FLC and promote the transition to reproductive growth. At the same time these accumulating EDM3 and IBM2 splice isoforms gradually suppress basal immunity against the virulent Noco2 isolate of the pathogenic oomycete Hyaloperonospora arabidopsidis and down-regulate expression of a set of defense-associated genes and immune receptor genes. We are providing clear evidence for a functional link between the floral transition and basal immunity in the annual plant Arabidopsis. Coordination of these two biological processes, which compete for metabolic resources, is likely critical for plant survival and reproductive success.
Collapse
Affiliation(s)
- Jianqiang Wang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
12
|
Gandhi A, Oelmüller R. Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses. Int J Mol Sci 2023; 24:14762. [PMID: 37834209 PMCID: PMC10573068 DOI: 10.3390/ijms241914762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany;
| |
Collapse
|
13
|
Shirai M, Eulgem T. Molecular interactions between the soilborne pathogenic fungus Macrophomina phaseolina and its host plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1264569. [PMID: 37780504 PMCID: PMC10539690 DOI: 10.3389/fpls.2023.1264569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Mentioned for the first time in an article 1971, the occurrence of the term "Macrophomina phaseolina" has experienced a steep increase in the scientific literature over the past 15 years. Concurrently, incidences of M. phaseolina-caused crop diseases have been getting more frequent. The high levels of diversity and plasticity observed for M. phasolina genomes along with a rich equipment of plant cell wall degrading enzymes, secondary metabolites and putative virulence effectors as well as the unusual longevity of microsclerotia, their asexual reproduction structures, make this pathogen very difficult to control and crop protection against it very challenging. During the past years several studies have emerged reporting on host defense measures against M. phaseolina, as well as mechanisms of pathogenicity employed by this fungal pathogen. While most of these studies have been performed in crop systems, such as soybean or sesame, recently interactions of M. phaseolina with the model plant Arabidopsis thaliana have been described. Collectively, results from various studies are hinting at a complex infection cycle of M. phaseolina, which exhibits an early biotrophic phase and switches to necrotrophy at later time points during the infection process. Consequently, responses of the hosts are complex and seem coordinated by multiple defense-associated phytohormones. However, at this point no robust and strong host defense mechanism against M. phaseolina has been described.
Collapse
Affiliation(s)
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany & Plant Sciences, University of California at Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Wang Y, Zhao J, Chen Q, Zheng K, Deng X, Gao W, Pei W, Geng S, Deng Y, Li C, Chen Q, Qu Y. Quantitative trait locus mapping and identification of candidate genes for resistance to Verticillium wilt in four recombinant inbred line populations of Gossypium hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111562. [PMID: 36509244 DOI: 10.1016/j.plantsci.2022.111562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 05/16/2023]
Abstract
Improving resistance to Verticillium wilt is of great significance for achieving high and stable yields of Upland cotton (Gossypium hirsutum). To deeply understand the genetic basis of cotton resistance to Verticillium wilt, Verticillium wilt-resistant Upland Lumianyan 28 and four Verticillium wilt-susceptible Acala cotton cultivars were used to create four recombinant inbred line (RIL) populations of 469 families through nested hybridization. Phenotypic data collected in five stressful environments were used to select resistant and sensitive lines and create a mixed pool of extreme phenotypes for BSA-seq. A total of 8 QTLs associated with Verticillium wilt resistance were identified on 4 chromosomes, of which qVW-A12-5 was detected simultaneously in the RIL populations and in one of the RIL populations and was identified for the first time. According to the sequence comparison and transcriptome analysis of candidate genes in the QTL interval between parents and pools, 4 genes were identified in the qVW-A12-5 interval. qRT-PCR of parental and phenotypically extreme lines revealed that Gh_CPR30 was induced by and may be a candidate gene for resistance to Verticillium wilt in G. hirsutum. Furthermore, VIGS technology revealed that the disease severity index (DSI) of the Gh_CPR30-silenced plants was significantly higher than that of the control. These results indicate that the Gh_CPR30 gene plays an important role in the resistance of G. hirsutum to Verticillium wilt, and the study provides a molecular basis for analyzing the molecular mechanism underlying G. hirsutum resistance to Verticillium wilt.
Collapse
Affiliation(s)
- Yuxiang Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Qin Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Kai Zheng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Xiaojuan Deng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Wenju Gao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shiwei Geng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Yahui Deng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Chunping Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830052, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Yanying Qu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China.
| |
Collapse
|
15
|
Ding LN, Li YT, Wu YZ, Li T, Geng R, Cao J, Zhang W, Tan XL. Plant Disease Resistance-Related Signaling Pathways: Recent Progress and Future Prospects. Int J Mol Sci 2022; 23:ijms232416200. [PMID: 36555841 PMCID: PMC9785534 DOI: 10.3390/ijms232416200] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Plant-pathogen interactions induce a signal transmission series that stimulates the plant's host defense system against pathogens and this, in turn, leads to disease resistance responses. Plant innate immunity mainly includes two lines of the defense system, called pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). There is extensive signal exchange and recognition in the process of triggering the plant immune signaling network. Plant messenger signaling molecules, such as calcium ions, reactive oxygen species, and nitric oxide, and plant hormone signaling molecules, such as salicylic acid, jasmonic acid, and ethylene, play key roles in inducing plant defense responses. In addition, heterotrimeric G proteins, the mitogen-activated protein kinase cascade, and non-coding RNAs (ncRNAs) play important roles in regulating disease resistance and the defense signal transduction network. This paper summarizes the status and progress in plant disease resistance and disease resistance signal transduction pathway research in recent years; discusses the complexities of, and interactions among, defense signal pathways; and forecasts future research prospects to provide new ideas for the prevention and control of plant diseases.
Collapse
|
16
|
Bano N, Aalam S, Bag SK. Tubby-like proteins (TLPs) transcription factor in different regulatory mechanism in plants: a review. PLANT MOLECULAR BIOLOGY 2022; 110:455-468. [PMID: 36255595 DOI: 10.1007/s11103-022-01301-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
Tubby-like proteins (TLPs) transcription factors are found in single-celled to multi-cellular eukaryotes in the form of large multigene families. TLPs are identified through a specific signature of carboxyl terminal tubby domain, required for plasma membrane tethering and amino terminal F-box domain communicate as functional SCF-type E3 ligases. The comprehensive distribution of TLP gene family members in diverse species indicates some conserved functions of TLPs in multicellular organisms. Plant TLPs have higher gene members than animals and these members reported important role in multiple physiological and developmental processes and various environmental stress responses. Although the TLPs are suggested to be a putative transcription factors but their functional mechanism is not much clear. This review provides significant recent updates on TLP-mediated regulation with an insight into its functional roles, origin and evolution and also phytohormones related regulation to combat with various stresses and its involvement in adaptive stress response in crop plants.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahre Aalam
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Yoo SJ, Choi HJ, Noh SW, Cecchini NM, Greenberg JT, Jung HW. Genetic requirements for infection-specific responses in conferring disease resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1068438. [PMID: 36523630 PMCID: PMC9745044 DOI: 10.3389/fpls.2022.1068438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 06/01/2023]
Abstract
Immunity in plants arises from defense regulatory circuits that can be conceptualized as modules. Both the types (and isolates) of pathogen and the repertoire of plant receptors may cause different modules to be activated and affect the magnitude of activation. Two major defense enzymes of Arabidopsis are ALD1 and ICS1/SID2. ALD1 is an aminotransferase needed for producing the metabolites pipecolic acid, hydroxy-pipecolic acid, and possibly other defense signals. ICS1/SID2 produces isochorismate, an intermediate in the synthesis of salicylic acid (SA) and SA-derivatives. Metabolites resulting from the activation of these enzymes are found in petiole exudates and may serve as priming signals for systemic disease resistance in Arabidopsis. Mutants lacking ALD1 are known to have reduced SA accumulation. To further investigate the role of ALD1 in relation to the SA-related module, immunity phenotypes of double mutants that disrupt ALD1 and ICS1/SID2 or SA perception by NPR1 were compared with each single mutant after infection by different Pseudomonas strains. Exudates collected from these mutants after infection were also evaluated for their ability to confer disease resistance when applied to wild-type plants. During infection with virulent or attenuated strains, the loss of ALD1 does not increase the susceptibility of npr1 or sid2 mutants, suggesting the main role of ALD1 in this context is in amplifying the SA-related module. In contrast, after an infection that leads to strong pathogen recognition via the cytoplasmic immune receptor RPS2, ALD1 acts additively with both NPR1 and ICS1/SID2 to suppress pathogen growth. The additive effects are observed in early basal defense responses as well as SA-related events. Thus, there are specific conditions that dictate whether the modules independently contribute to immunity to provide additive protection during infection. In the exudate experiments, intact NPR1 and ICS1/SID2, but not ALD1 in the donor plants were needed for conferring immunity. Mixing exudates showed that loss of SID2 yields exudates that suppress active exudates from wild-type or ald1 plants. This indicates that ICS1/SID2 may not only lead to positive defense signals, but also prevent a suppressive signal(s).
Collapse
Affiliation(s)
- Sung-Je Yoo
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
| | - Hyo Ju Choi
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
| | - Seong Woo Noh
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Nicolás M. Cecchini
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Ho Won Jung
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| |
Collapse
|
18
|
Mao L, Ge L, Ye X, Xu L, Si W, Ding T. ZmGLP1, a Germin-like Protein from Maize, Plays an Important Role in the Regulation of Pathogen Resistance. Int J Mol Sci 2022; 23:ijms232214316. [PMID: 36430797 PMCID: PMC9699084 DOI: 10.3390/ijms232214316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
A gene encoding a protein similar to germin-like proteins (GLPs) was obtained from maize (Zea mays) and designated as ZmGLP1. Based on the ZmGLP1 conserved domain and phylogenetic status, ZmGLP1 was grouped into GLP subfamily b and has high similarity to OsGLP8-14 from Oryza sativa. ZmGLP1 is expressed in different maize tissues during different growth stages and is mainly expressed in the stems and leaves. The induced expression patterns confirmed that ZmGLP1 is differentially expressed under abiotic and hormone stress; it had an early response to jasmonic acid (JA) and ethephon (ET) but a late response to salicylic acid (SA) and was significantly upregulated under Bipolaris maydis infection. The overexpression of ZmGLP1 in Arabidopsis improved the resistance to biotrophic Pseudomonas syringae pv. tomato DC3000 (PstDC3000) and necrotrophic Sclerotinia sclerotiorum by inducing the expression of JA signaling-related genes. Moreover, the hydrogen peroxide (H2O2) content increased due to the overexpression of ZmGLP1 in Arabidopsis after pathogen infection. Compared to the wild-type control, the H2O2 content of ZmGLP1-overexpressing Arabidopsis infected by PstDC3000 increased significantly but was lower in transgenic plants infected with S. sclerotiorum. Furthermore, high-performance liquid chromatography-tandem mass (HPLC-MS/MS) spectrometry showed that the JA contents of ZmGLP1-overexpressing Arabidopsis markedly increased after pathogen infection. However, the improved resistance of ZmGLP1-overexpressing Arabidopsis pretreated with the JA biosynthetic inhibitor, sodium diethyldithiocarbamate trihydrate (DIECA), was suppressed. Based on these findings, we speculate that ZmGLP1 plays an important role in the regulation of Arabidopsis resistance to biotrophic PstDC3000 and necrotrophic S. sclerotiorum; the regulatory effects are achieved by inducing plant oxidative burst activity and activation of the JA signaling pathway.
Collapse
Affiliation(s)
- Lixue Mao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Lijie Ge
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xinchun Ye
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Li Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ting Ding
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Correspondence: or ; Tel.: +86-551-6578-6464; Fax: +86-551-6578-6021
| |
Collapse
|
19
|
Zhang J, Wang X, Dong X, Wang F, Cao L, Li S, Liu Z, Zhang X, Guo YD, Zhao B, Zhang N. Expression analysis and functional characterization of tomato Tubby-like protein family. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111454. [PMID: 36089197 DOI: 10.1016/j.plantsci.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Tubby-like protein (TLP) plays an important role in plant growth and development. In this investigation, the characteristics of 11 members in the SlTLP family were studied. SlTLP genes were classified into two subgroups, and the members containing the F-box domain were renamed SlTLFPs. Subcellular localization indicated that most of the SlTLPs were localized in the nucleus. Expression pattern analysis revealed that eight genes (SlTLFP1, 3, 5, 7-10, and SlTLP11) showed differential expression across various tissues, while SlTLFP2, 4, and 6 were widely expressed in all the organs tested. Most SlTLP genes were induced by biotic and abiotic stress treatments such as Botrytis cinerea, temperature, MeJA, and ABA. TLP proteins in tomato have no transcriptional activation activity, and most members with an F-box domain could interact with SUPPRESSOR OF KINETOCHORE PROTEIN 1 (SlSkp1) or Cullin1 (Cul1) or both. Experiments on CRISPR edited SlTLFP8 showed that the N-terminal F-box domain was necessary for its function such as DNA ploidy and stomata size regulation. Our findings suggested that the F-box domain interacts with Skp1 and Cul1 to form the SCF complex, suggesting that SlTLFPs, at least SlTLFP8, function mainly through the F-box domain as an E3 ligase.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xinman Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaonan Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lingling Cao
- Beijing Agricultural Technology Extension Station, Beijing 100029, China
| | - Shuangtao Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Ziji Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xichun Zhang
- School of Plant Science and Technology, Beijing Agricultural University, Beijing 102206, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572000, China.
| |
Collapse
|
20
|
Yang C, Huang Y, Lv P, Antwi-Boasiako A, Begum N, Zhao T, Zhao J. NAC Transcription Factor GmNAC12 Improved Drought Stress Tolerance in Soybean. Int J Mol Sci 2022; 23:ijms231912029. [PMID: 36233329 PMCID: PMC9570484 DOI: 10.3390/ijms231912029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
NAC transcription factors (TFs) could regulate drought stresses in plants; however, the function of NAC TFs in soybeans remains unclear. To unravel NAC TF function, we established that GmNAC12, a NAC TF from soybean (Glycine max), was involved in the manipulation of stress tolerance. The expression of GmNAC12 was significantly upregulated more than 10-fold under drought stress and more than threefold under abscisic acid (ABA) and ethylene (ETH) treatment. In order to determine the function of GmNAC12 under drought stress conditions, we generated GmNAC12 overexpression and knockout lines. The present findings showed that under drought stress, the survival rate of GmNAC12 overexpression lines increased by more than 57% compared with wild-type plants, while the survival rate of GmNAC12 knockout lines decreased by at least 46%. Furthermore, a subcellular localisation analysis showed that the GmNAC12 protein is concentrated in the nucleus of the tobacco cell. In addition, we used a yeast two-hybrid assay to identify 185 proteins that interact with GmNAC12. Gene ontology (GO) and KEGG analysis showed that GmNAC12 interaction proteins are related to chitin, chlorophyll, ubiquitin–protein transferase, and peroxidase activity. Hence, we have inferred that GmNAC12, as a key gene, could positively regulate soybean tolerance to drought stress.
Collapse
Affiliation(s)
- Chengfeng Yang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzhong Huang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- National Forage Breeding Innovation Base (JAAS), Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Peiyun Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Augustine Antwi-Boasiako
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Crops Research Institute, Council for Scientific and Industrial Research, Kumasi AK420, Ghana
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (T.Z.); (J.Z.)
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (T.Z.); (J.Z.)
| |
Collapse
|
21
|
Kim D, Riu M, Oh SK, Ryu CM. Extracellular self-RNA: A danger elicitor in pepper induces immunity against bacterial and viral pathogens in the field. FRONTIERS IN PLANT SCIENCE 2022; 13:864086. [PMID: 36226289 PMCID: PMC9549290 DOI: 10.3389/fpls.2022.864086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Plants and animals serve as hosts for microbes. To protect themselves from microbe-induced damage, plants and animals need to differentiate self-molecules/signals from non-self, microbe-derived molecules. Damage-associated molecular patterns (DAMPs) are danger signals released from the damaged host tissue or present on the surface of stressed cells. Although a self-extracellular DNA has previously been shown to act as a DAMP in different plant species, the existence of a self-extracellular RNA (eRNA) as a danger signal in plants remains unknown. Here, we firstly evaluated the ability of a pepper self-eRNA to activate immunity against viral and bacterial pathogens under field conditions. Pepper leaves pre-infiltrated with self-eRNA exhibited reduced titer of the naturally occurring Tomato spotted wilt virus and diminished symptoms of Xanthomonas axonopodis pv. vesicatoria infection through eliciting defense priming of abscisic acid signaling. At the end of the growing season at 90 days after transplanting, pepper plants treated with self- and non-self-eRNAs showed no difference in fruit yield. Taken together, our discovery demonstrated that self-eRNA can successfully activate plant systemic immunity without any growth penalty, indicating its potential as a novel disease management agent against a broad range of pathogenic microbes.
Collapse
Affiliation(s)
- Doyeon Kim
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Myoungjoo Riu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Sang-Keun Oh
- Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
22
|
Barda O, Levy M. IQD1 Involvement in Hormonal Signaling and General Defense Responses Against Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2022; 13:845140. [PMID: 35557724 PMCID: PMC9087847 DOI: 10.3389/fpls.2022.845140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
IQ Domain 1 (IQD1) is a novel Arabidopsis thaliana calmodulin-binding protein, which was found to be a positive regulator of glucosinolate (GS) accumulation and plant defense responses against insects. We demonstrate here that the IQD1 overexpressing line (IQD1 OXP ) was also more resistant also to the necrotrophic fungus Botrytis cinerea, whereas an IQD1 knockout line (iqd1-1) was much more sensitive. Furthermore, we showed that IQD1 is up-regulated by jasmonic acid (JA) and downregulated by salicylic acid (SA). A comparison of whole transcriptome expression between iqd1-1 and wild type plants revealed a substantial downregulation of genes involved in plant defense and hormone regulation. Further examination revealed a marked reduction of SA and increases in the levels of ethylene, JA and abscisic acid response genes in the iqd1-1 line. Moreover, quantification of SA, JA, and abscisic acids in IQD1 OXP and iqd1-1 lines relative to the wild type, showed a significant reduction in endogenous JA levels in the knockout line, simultaneously with increased SA levels. Relations between IQD1 OXP and mutants defective in plant-hormone response indicated that IQD1 cannot rescue the absence of NPR1 or impaired SA accumulation in the NahG line. IQD1 cannot rescue ein2 or eto1 mutations connected to the ethylene pathway involved in both defense responses against B. cinerea and in regulating GS accumulation. Furthermore, IQD1cannot rescue the aos, coi1 or jar1mutations, all involved in the defense response against B. cinerea and it depends on JAR1 to control indole glucosinolate accumulation. We also found that in the B. cinerea, which infected the iqd1-1 mutant, the most abundant upregulated group of proteins is involved in the degradation of complex carbohydrates, as correlated with the sensitivity of this mutant. In summary, our results suggest that IQD1 is an important A. thaliana defensive protein against B. cinerea that is integrated into several important pathways, such as those involved in plant defense and hormone responses.
Collapse
|
23
|
Torun H, Novák O, Mikulík J, Strnad M, Ayaz FA. The Effects of Exogenous Salicylic Acid on Endogenous Phytohormone Status in Hordeum vulgare L. under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050618. [PMID: 35270088 PMCID: PMC8912680 DOI: 10.3390/plants11050618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 05/04/2023]
Abstract
Acclimation to salt stress in plants is regulated by complex signaling pathways involving endogenous phytohormones. The signaling role of salicylic acid (SA) in regulating crosstalk between endogenous plant growth regulators' levels was investigated in barley (Hordeum vulgare L. 'Ince'; 2n = 14) leaves and roots under salt stress. Salinity (150 and 300 mM NaCl) markedly reduced leaf relative water content (RWC), growth parameters, and leaf water potential (LWP), but increased proline levels in both vegetative organs. Exogenous SA treatment did not significantly affect salt-induced negative effects on RWC, LWP, and growth parameters but increased the leaf proline content of plants under 150 mM salt stress by 23.1%, suggesting that SA enhances the accumulation of proline, which acts as a compatible solute that helps preserve the leaf's water status under salt stress. Changes in endogenous phytohormone levels were also investigated to identify agents that may be involved in responses to increased salinity and exogenous SA. Salt stress strongly affected endogenous cytokinin (CK) levels in both vegetative organs, increasing the concentrations of CK free bases, ribosides, and nucleotides. Indole-3-acetic acid (IAA, auxin) levels were largely unaffected by salinity alone, especially in barley leaves, but SA strongly increased IAA levels in leaves at high salt concentration and suppressed salinity-induced reductions in IAA levels in roots. Salt stress also significantly increased abscisic acid (ABA) and ethylene levels; the magnitude of this increase was reduced by treatment with exogenous SA. Both salinity and SA treatment reduced jasmonic acid (JA) levels at 300 mM NaCl but had little effect at 150 mM NaCl, especially in leaves. These results indicate that under high salinity, SA has antagonistic effects on levels of ABA, JA, ethylene, and most CKs, as well as basic morphological and physiological parameters, but has a synergistic effect on IAA, which was well exhibited by principal component analysis (PCA).
Collapse
Affiliation(s)
- Hülya Torun
- Faculty of Agriculture, Düzce University, 81620 Düzce, Turkey
- Correspondence: (H.T.); (M.S.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, CZ-78371 Olomouc, Czech Republic; (O.N.); (J.M.)
| | - Jaromír Mikulík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, CZ-78371 Olomouc, Czech Republic; (O.N.); (J.M.)
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, CZ-78371 Olomouc, Czech Republic; (O.N.); (J.M.)
- Correspondence: (H.T.); (M.S.)
| | - Faik Ahmet Ayaz
- Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey;
| |
Collapse
|
24
|
Kukawka R, Spychalski M, Stróżyk E, Byzia E, Zajac A, Kaczyński P, Łozowicka B, Pospieszny H, Smiglak M. Synthesis, characterization and biological activity of bifunctional ionic liquids based on dodine ion. PEST MANAGEMENT SCIENCE 2022; 78:446-455. [PMID: 34505331 DOI: 10.1002/ps.6639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Development of new plant protection strategies has become an urgent matter in modern agriculture, in view of the evidently proved negative effect of currently used active ingredients of pesticides. In recent years, much effort has been made to eliminate the use of pesticides established to be toxic to pollinators. RESULTS In this study, we present a group of new bifunctional ionic liquids based on dodine (N-dodecylguanidine) cation whose physical and biological properties have been modified relative to those of the commercially available N-dodecylguanidine acetate. The decreased level of residue of active substances in plant tissues reduces their availability to pollinators, which increases the safety of their use. Moreover, lower environmental impact in combination with high antifungal activity and an additional biological function, that is the systemic acquired resistance induction, are in line with the goals of sustainable agriculture. CONCLUSION The presented approach shows the possibility of derivatization of commonly used fungicide into the form of bifunctional salts whose physical and biological properties can be easily modified. The paper reports successful design and synthesis of new sustainable and green chemicals for the modern agriculture, being less toxic to the environment and human health but still effective against pathogens. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafal Kukawka
- Innosil Sp. z o.o, Rubiez 46, Poznan, 61-612, Poland
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Maciej Spychalski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Ewa Stróżyk
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Ewa Byzia
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Adrian Zajac
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Piotr Kaczyński
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chełmońskiego 22, Bialystok, 15-195, Poland
| | - Bożena Łozowicka
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chełmońskiego 22, Bialystok, 15-195, Poland
| | - Henryk Pospieszny
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
- Plant Protection Institute - National Research Institute, Department of Virology and Bacteriology, Węgorka 20, Poznan, 60-318, Poland
| | - Marcin Smiglak
- Innosil Sp. z o.o, Rubiez 46, Poznan, 61-612, Poland
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| |
Collapse
|
25
|
Wang X, Gao Y, Wu X, Wen X, Li D, Zhou H, Li Z, Liu B, Wei J, Chen F, Chen F, Zhang C, Zhang L, Xia Y. High-quality evergreen azalea genome reveals tandem duplication-facilitated low-altitude adaptability and floral scent evolution. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2544-2560. [PMID: 34375461 PMCID: PMC8633516 DOI: 10.1111/pbi.13680] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/27/2021] [Indexed: 05/17/2023]
Abstract
Azalea belongs to Rhododendron, which is one of the largest genera of flowering plants and is well known for the diversity and beauty in its more than 1000 woody species. Rhododendron contains two distinct groups: the most high-altitude and a few low-altitude species; however, the former group is difficult to be domesticated for urban landscaping, and their evolution and adaptation are little known. Rhododendron ovatum has broad adaptation in low-altitude regions but possesses evergreen characteristics like high-altitude species, and it has floral fragrance that is deficient in most cultivars. Here we report the chromosome-level genome assembly of R. ovatum, which has a total length of 549 Mb with scaffold N50 of 41 Mb and contains 41 264 predicted genes. Genomic micro-evolutionary analysis of R. ovatum in comparison with two high-altitude Rhododendron species indicated that the expansion genes in R. ovatum were significantly enriched in defence responses, which may account for its adaptability in low altitudes. The R. ovatum genome contains much more terpene synthase genes (TPSs) compared with the species that lost floral fragrance. The subfamily b members of TPS are involved in the synthesis of sesquiterpenes as well as monoterpenes and play a major role in flora scent biosynthesis and defence responses. Tandem duplication is the primary force driving expansion of defence-responsive genes for extensive adaptability to the low-altitude environments. The R. ovatum genome provides insights into low-altitude adaptation and gain or loss of floral fragrance for Rhododendron species, which are valuable for alpine plant domestication and floral scent breeding.
Collapse
Affiliation(s)
- Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yuan Gao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of life scienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaopei Wu
- The Southwest China of Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Xiaohui Wen
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Hong Zhou
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Zheng Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Bing Liu
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jianfen Wei
- Research & Development CenterHangzhou Landscaping IncorporatedHangzhouChina
| | - Fei Chen
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Feng Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Chengjun Zhang
- The Southwest China of Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
26
|
Cross-Tolerance and Autoimmunity as Missing Links in Abiotic and Biotic Stress Responses in Plants: A Perspective toward Secondary Metabolic Engineering. Int J Mol Sci 2021; 22:ijms222111945. [PMID: 34769374 PMCID: PMC8584326 DOI: 10.3390/ijms222111945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
Plants employ a diversified array of defense activities when they encounter stress. Continuous activation of defense pathways that were induced by mutation or altered expression of disease resistance genes and mRNA surveillance mechanisms develop abnormal phenotypes. These plants show continuous defense genes' expression, reduced growth, and also manifest tissue damage by apoptosis. These macroscopic abrasions appear even in the absence of the pathogen and can be attributed to a condition known as autoimmunity. The question is whether it is possible to develop an autoimmune mutant that does not fetch yield and growth penalty and provides enhanced protection against various biotic and abiotic stresses via secondary metabolic pathways' engineering. This review is a discussion about the common stress-fighting mechanisms, how the concept of cross-tolerance instigates propitious or protective autoimmunity, and how it can be achieved by engineering secondary metabolic pathways.
Collapse
|
27
|
Song H, Lin B, Huang Q, Sun T, Wang W, Liao J, Zhuo K. The Meloidogyne javanica effector Mj2G02 interferes with jasmonic acid signalling to suppress cell death and promote parasitism in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2021; 22:1288-1301. [PMID: 34339585 PMCID: PMC8435226 DOI: 10.1111/mpp.13111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 05/22/2023]
Abstract
Plant-parasitic nematodes can cause devastating damage to crops. These nematodes secrete effectors that suppress the host immune responses to enhance their survival. In this study, Mj2G02, an effector from Meloidogyne javanica, is described. In situ hybridization and transcriptional analysis showed that Mj2G02 was highly expressed in the early infection stages and exclusively expressed in the nematode subventral oesophageal gland cells. In planta RNA interference targeting Mj2G02 impaired M. javanica parasitism, and Mj2G02-transgenic Arabidopsis lines displayed more susceptibility to M. javanica. Using an Agrobacterium-mediated transient expression system and plant immune response assays, we demonstrated that Mj2G02 localized in the plant cell nuclei and could suppress Gpa2/RBP-1-induced cell death. Moreover, by RNA-Seq and quantitative reverse transcription PCR analyses, we showed that Mj2G02 was capable of interfering with the host jasmonic acid (JA) signalling pathway. Multiple jasmonate ZIM-domain (JAZ) genes were significantly upregulated, whereas the JAR1 gene and four JA-responsive genes, MYC3, UPI, THI2.1, and WRKY75, were significantly downregulated. In addition, HPLC analysis showed that the endogenous jasmonoyl-isoleucine (JA-Ile) level in Mj2G02-transgenic Arabidopsis lines was significantly decreased compared to that in wildtype plants. Our results indicate that the M. javanica effector Mj2G02 suppresses the plant immune response, therefore facilitating nematode parasitism. This process is probably mediated by a JA-Ile reduction and JAZ enhancement to repress JA-responsive genes.
Collapse
Affiliation(s)
- Handa Song
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Borong Lin
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory of Lingnan Modern AgricultureGuangzhouChina
| | - Qiuling Huang
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Tianlin Sun
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Wenjun Wang
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Jinling Liao
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Research Center of Plant Pest Management and Bioenvironmental Health TechnologyGuangdong Eco‐Engineering PolytechnicGuangzhouChina
| | - Kan Zhuo
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory of Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
28
|
Yassin M, Ton J, Rolfe SA, Valentine TA, Cromey M, Holden N, Newton AC. The rise, fall and resurrection of chemical-induced resistance agents. PEST MANAGEMENT SCIENCE 2021; 77:3900-3909. [PMID: 33729685 DOI: 10.1002/ps.6370] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Since the discovery that the plant immune system could be augmented for improved deployment against biotic stressors through the exogenous application of chemicals that lead to induced resistance (IR), many such IR-eliciting agents have been identified. Initially it was hoped that these chemical IR agents would be a benign alternative to traditional chemical biocides. However, owing to low efficacy and/or a realization that their benefits sometimes come at the cost of growth and yield penalties, chemical IR agents fell out of favour and were seldom used as crop protection products. Despite the lack of interest in agricultural use, researchers have continued to explore the efficacy and mechanisms of chemical IR. Moreover, as we move away from the approach of 'zero tolerance' toward plant pests and pathogens toward integrated pest management, chemical IR agents could have a place in the plant protection product list. In this review, we chart the rise and fall of chemical IR agents, and then explore a variety of strategies used to improve their efficacy and remediate their negative adverse effects. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mustafa Yassin
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
- James Hutton Institute, Dundee, UK
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | - Stephen A Rolfe
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | | | - Matthew Cromey
- Department of Plant Health, Royal Horticultural Society, Woking, UK
| | - Nicola Holden
- Scotland's Rural Colleges, Craibstone Estate, Aberdeen, UK
| | | |
Collapse
|
29
|
Pujara DS, Kim SI, Nam JC, Mayorga J, Elmore I, Kumar M, Koiwa H, Kang HG. Imaging-Based Resistance Assay Using Enhanced Luminescence-Tagged Pseudomonas syringae Reveals a Complex Epigenetic Network in Plant Defense Signaling Pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:990-1000. [PMID: 34010013 DOI: 10.1094/mpmi-12-20-0351-ta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-throughput resistance assays in plants have a limited selection of suitable pathogens. In this study, we developed a Pseudomonas syringae strain chromosomally tagged with the Nanoluc luciferase (NL) from the deep-sea shrimp Oplophorus gracilirostris, a bioluminescent marker significantly brighter than the conventional firefly luciferase. Our reporter strain tagged with NL was more than 100 times brighter than P. syringae tagged with the luxCDABE operon from Photorhabdus luminescens, one of the existing luciferase-based strains. In planta imaging was improved by using the surfactant Silwet L-77, particularly at a lower reporter concentration. Using this imaging system, more than 30 epigenetic mutants were analyzed for their resistance traits because the defense signaling pathway is known to be epigenetically regulated. SWC1, a defense-related chromatin remodeling complex, was found to be a positive defense regulator, which supported one of two earlier conflicting reports. Compromises in DNA methylation in the CG context led to enhanced resistance against virulent Pseudomonas syringae pv. tomato. Dicer-like and Argonaute proteins, important in the biogenesis and exerting the effector function of small RNAs, respectively, showed modest but distinct requirements for effector-triggered immunity and basal resistance to P. syringae pv. tomato. In addition, the transcriptional expression of an epigenetic component was found to be a significant predictor of its immunity contribution. In summary, this study showcased how a high-throughput resistance assay enabled by a pathogen strain with an improved luminescent reporter could provide insightful knowledge about complex defense signaling pathways.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dinesh S Pujara
- Department of Biology, Texas State University, San Marcos, TX 78666, U.S.A
| | - Sung-Il Kim
- Department of Biology, Texas State University, San Marcos, TX 78666, U.S.A
| | - Ji Chul Nam
- Department of Biology, Texas State University, San Marcos, TX 78666, U.S.A
| | - José Mayorga
- Department of Biology, Texas State University, San Marcos, TX 78666, U.S.A
| | | | - Manish Kumar
- Department of Biology, Texas State University, San Marcos, TX 78666, U.S.A
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, TX 77843, U.S.A
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX 78666, U.S.A
| |
Collapse
|
30
|
Li T, Wang Y, Shi Y, Gou X, Yang B, Qu J, Zhang X, Xue J, Xu S. Transcriptome profiling provides insights into the molecular mechanisms of maize kernel and silk development. BMC Genom Data 2021; 22:28. [PMID: 34418952 PMCID: PMC8379809 DOI: 10.1186/s12863-021-00981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background Maize kernel filling, which is closely related to the process of double fertilization and is sensitive to a variety of environmental conditions, is an important component of maize yield determination. Silk is an important tissue of maize ears that can discriminate pollen and conduct pollination. Therefore, investigating the molecular mechanisms of kernel development and silk senescence will provide important information for improving the pollination rate to obtain high maize yields. Results In this study, transcript profiles were determined in an elite maize inbred line (KA105) to investigate the molecular mechanisms functioning in self-pollinated and unpollinated maize kernels and silks. A total of 5285 and 3225 differentially expressed transcripts (DETs) were identified between self-pollinated and unpollinated maize in a kernel group and a silk group, respectively. We found that a large number of genes involved in key steps in the biosynthesis of endosperm storage compounds were upregulated after pollination in kernels, and that abnormal development and senescence appeared in unpollinated kernels (KUP). We also identified several genes with functions in the maintenance of silk structure that were highly expressed in silk. Further investigation suggested that the expression of autophagy-related genes and senescence-related genes is prevalent in maize kernels and silks. In addition, pollination significantly altered the expression levels of senescence-related and autophagy-related genes in maize kernels and silks. Notably, we identified some specific genes and transcription factors (TFs) that are highly expressed in single tissues. Conclusions Our results provide novel insights into the potential regulatory mechanisms of self-pollinated and unpollinated maize kernels and silks. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00981-4.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yapeng Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yaqin Shi
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xiaonan Gou
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Bingpeng Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
31
|
Pfeilmeier S, Petti GC, Bortfeld-Miller M, Daniel B, Field CM, Sunagawa S, Vorholt JA. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat Microbiol 2021; 6:852-864. [PMID: 34194036 PMCID: PMC7612668 DOI: 10.1038/s41564-021-00929-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
The plant microbiota consists of a multitude of microorganisms that can affect plant health and fitness. However, it is currently unclear how the plant shapes its leaf microbiota and what role the plant immune system plays in this process. Here, we evaluated Arabidopsis thaliana mutants with defects in different parts of the immune system for an altered bacterial community assembly using a gnotobiotic system. While higher-order mutants in receptors that recognize microbial features and in defence hormone signalling showed substantial microbial community alterations, the absence of the plant NADPH oxidase RBOHD caused the most pronounced change in the composition of the leaf microbiota. The rbohD knockout resulted in an enrichment of specific bacteria. Among these, we identified Xanthomonas strains as opportunistic pathogens that colonized wild-type plants asymptomatically but caused disease in rbohD knockout plants. Strain dropout experiments revealed that the lack of RBOHD unlocks the pathogenicity of individual microbiota members driving dysbiosis in rbohD knockout plants. For full protection, healthy plants require both a functional immune system and a microbial community. Our results show that the NADPH oxidase RBOHD is essential for microbiota homeostasis and emphasizes the importance of the plant immune system in controlling the leaf microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia A. Vorholt
- Corresponding author: Correspondence should be addressed to J.A.V. ()
| |
Collapse
|
32
|
Worsley SF, Macey MC, Prudence SMM, Wilkinson B, Murrell JC, Hutchings MI. Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome. Front Mol Biosci 2021; 8:686110. [PMID: 34222338 PMCID: PMC8241931 DOI: 10.3389/fmolb.2021.686110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
Streptomyces species are saprophytic soil bacteria that produce a diverse array of specialized metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere of the model plant Arabidopsis thaliana. Here, we set out to test the hypothesis that they are attracted to plant roots by root exudates, and specifically by the plant phytohormone salicylate, which they might use as a nutrient source. We confirmed a previously published report that salicylate over-producing cpr5 plants are colonized more readily by streptomycetes but found that salicylate-deficient sid2-2 and pad4 plants had the same levels of root colonization by Streptomyces bacteria as the wild-type plants. We then tested eight genome sequenced Streptomyces endophyte strains in vitro and found that none were attracted to or could grow on salicylate as a sole carbon source. We next used 13CO2 DNA stable isotope probing to test whether Streptomyces species can feed off a wider range of plant metabolites but found that Streptomyces bacteria were outcompeted by faster growing proteobacteria and did not incorporate photosynthetically fixed carbon into their DNA. We conclude that, given their saprotrophic nature and under conditions of high competition, streptomycetes most likely feed on more complex organic material shed by growing plant roots. Understanding the factors that impact the competitiveness of strains in the plant root microbiome could have consequences for the effective application of biocontrol strains.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Michael C Macey
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
33
|
How Wheat Pericarp Alter Fungal Growth and Toxigenicity Profiles. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Kordyum E, Hasenstein KH. Plant biology for space exploration - Building on the past, preparing for the future. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:1-7. [PMID: 33888282 DOI: 10.1016/j.lssr.2021.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
A review of past insights of space experiments with plants outlines basic space and gravity effects as well as gene expression. Efforts to grow plants in space gradually incorporated basic question on plant productivity, stress response and cultivation. The prospect of extended space missions as well as colonization of the Moon and Mars require better understanding and therefore research efforts on biomass productivity, substrate and water relations, atmospheric composition, pressure and temperature and substrate and volume (growth space) requirements. The essential combination of using plants not only for food production but also for regeneration of waste, and recycling of carbon and oxygen production requires integration of complex biological and engineering aspects. We combine a historical account of plant space research with considerations for future research on plant cultivation, selection, and productivity based on space-related environmental conditions.
Collapse
Affiliation(s)
- Elizabeth Kordyum
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kiev, Ukraine, United States
| | - Karl H Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA, 70504-3602, United States.
| |
Collapse
|
35
|
Serrazina S, Machado H, Costa RL, Duque P, Malhó R. Expression of Castanea crenata Allene Oxide Synthase in Arabidopsis Improves the Defense to Phytophthora cinnamomi. FRONTIERS IN PLANT SCIENCE 2021; 12:628697. [PMID: 33659016 PMCID: PMC7917121 DOI: 10.3389/fpls.2021.628697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Allene oxide synthase (AOS) is a key enzyme of the jasmonic acid (JA) signaling pathway. The AOS gene was previously found to be upregulated in an Asian chestnut species resistant to infection by the oomycete Phytophthora cinnamomi (Castanea crenata), while lower expression values were detected in the susceptible European chestnut (Castanea sativa). Here, we report a genetic and functional characterization of the C. crenata AOS (CcAOS) upon its heterologous gene expression in a susceptible ecotype of Arabidopsis thaliana, which contains a single AOS gene. It was found that Arabidopsis plants expressing CcAOS delay pathogen progression and exhibit more vigorous growth in its presence. They also show upregulation of jasmonic acid and salicylic acid-related genes. As in its native species, heterologous CcAOS localized to plastids, as revealed by confocal imaging of the CcAOS-eGFP fusion protein in transgenic Arabidopsis roots. This observation was confirmed upon transient expression in Nicotiana benthamiana leaf epidermal cells. To further confirm a specific role of CcAOS in the defense mechanism against the pathogen, we performed crosses between transgenic CcAOS plants and an infertile Arabidopsis AOS knockout mutant line. It was found that plants expressing CcAOS exhibit normal growth, remain infertile but are significantly more tolerant to the pathogen than wild type plants. Together, our results indicate that CcAOS is an important player in plant defense responses against oomycete infection and that its expression in susceptible varieties may be a valuable tool to mitigate biotic stress responses.
Collapse
Affiliation(s)
- Susana Serrazina
- Faculdade de Ciências, BioISI – Biosystems & Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Machado
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Rita Lourenço Costa
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa—Tapada da Ajuda, Lisbon, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rui Malhó
- Faculdade de Ciências, BioISI – Biosystems & Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Song Z, Zhang C, Chen L, Jin P, Tetteh C, Zhou X, Gao Z, Zhang H. The Arabidopsis small G-protein AtRAN1 is a positive regulator in chitin-induced stomatal closure and disease resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:92-107. [PMID: 33191557 PMCID: PMC7749754 DOI: 10.1111/mpp.13010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 05/05/2023]
Abstract
Chitin, a fungal microbial-associated molecular pattern, triggers various defence responses in several plant systems. Although it induces stomatal closure, the molecular mechanisms of its interactions with guard cell signalling pathways are unclear. Based on screening of public microarray data obtained from the ATH1 Affymetrix and Arabidopsis eFP browser, we isolated a cDNA encoding a Ras-related nuclear protein 1 AtRAN1. AtRAN1 expression was enriched in guard cells in a manner consistent with involvement in the control of the stomatal movement. AtRAN1 mutation impaired chitin-induced stomatal closure and accumulation of reactive oxygen species and nitric oxide in guard cells. In addition, Atran1 mutant plants exhibited compromised chitin-enhanced plant resistance to both bacterial and fungal pathogens due to changes in defence-related genes. Furthermore, Atran1 mutant plants were hypersensitive to drought stress compared to Col-0 plants, and had lower levels of stress-responsive genes. These data demonstrate a previously uncharacterized signalling role for AtRAN1, mediating chitin-induced signalling.
Collapse
Affiliation(s)
- Zhiqiang Song
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Cheng Zhang
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Ling Chen
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Pinyuan Jin
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Charles Tetteh
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Xiuhong Zhou
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Zhimou Gao
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Huajian Zhang
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| |
Collapse
|
37
|
Marra R, Coppola M, Pironti A, Grasso F, Lombardi N, d’Errico G, Sicari A, Bolletti Censi S, Woo SL, Rao R, Vinale F. The Application of Trichoderma Strains or Metabolites Alters the Olive Leaf Metabolome and the Expression of Defense-Related Genes. J Fungi (Basel) 2020; 6:jof6040369. [PMID: 33339378 PMCID: PMC7766153 DOI: 10.3390/jof6040369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Biocontrol fungal strains of the genus Trichoderma can antagonize numerous plant pathogens and promote plant growth using different mechanisms of action, including the production of secondary metabolites (SMs). In this work we analyzed the effects of repeated applications of selected Trichoderma strains or SMs on young olive trees on the stimulation of plant growth and on the development of olive leaf spot disease caused by Fusicladium oleagineum. In addition, metabolomic analyses and gene expression profiles of olive leaves were carried out by LC-MS Q-TOF and real-time RT-PCR, respectively. A total of 104 phenolic compounds were detected from olive leave extracts and 20 were putatively identified. Targeted and untargeted approaches revealed significant differences in both the number and type of phenolic compounds accumulated in olive leaves after Trichoderma applications, as compared to water-treated plants. Different secoiridoids were less abundant in treated plants than in controls, while the accumulation of flavonoids (including luteolin and apigenin derivatives) increased following the application of specific Trichoderma strain. The induction of defense-related genes, and of genes involved in the synthesis of the secoiridoid oleuropein, was also analyzed and revealed a significant variation of gene expression according to the strain or metabolite applied.
Collapse
Affiliation(s)
- Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Correspondence: ; Tel.: +39-0812532253
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Angela Pironti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Filomena Grasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
| | - Giada d’Errico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Andrea Sicari
- Linfa S.c.a r.l., 89900 Vibo Valentia, Italy; (A.S.); (S.B.C.)
| | | | - Sheridan L. Woo
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Vinale
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Portici, 80055 Naples, Italy
| |
Collapse
|
38
|
Irigoyen S, Ramasamy M, Pant S, Niraula P, Bedre R, Gurung M, Rossi D, Laughlin C, Gorman Z, Achor D, Levy A, Kolomiets MV, Sétamou M, Badillo-Vargas IE, Avila CA, Irey MS, Mandadi KK. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nat Commun 2020; 11:5802. [PMID: 33199718 PMCID: PMC7669877 DOI: 10.1038/s41467-020-19631-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
A major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibacter spp., the presumptive causal agents of citrus greening, potato zebra chip and tomato vein greening diseases. Importantly, we leverage the microbial hairy roots for rapid, reproducible efficacy screening of multiple therapies. We identify six antimicrobial peptides, two plant immune regulators and eight chemicals which inhibit Candidatus Liberibacter spp. in plant tissues. The antimicrobials, either singly or in combination, can be used as near- and long-term therapies to control citrus greening, potato zebra chip and tomato vein greening diseases.
Collapse
Affiliation(s)
- Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | | | - Shankar Pant
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Agricultural Research Service, US Department of Agriculture, Stillwater, OK, USA
| | - Prakash Niraula
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Meena Gurung
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Denise Rossi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Corinne Laughlin
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Mamoudou Sétamou
- Texas A&M University-Kingsville, Citrus Center, Weslaco, TX, USA
| | - Ismael E Badillo-Vargas
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Carlos A Avila
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | | | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
39
|
Singewar K, Moschner CR, Hartung E, Fladung M. Identification and analysis of key genes involved in methyl salicylate biosynthesis in different birch species. PLoS One 2020; 15:e0240246. [PMID: 33031447 PMCID: PMC7544025 DOI: 10.1371/journal.pone.0240246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Species of the perennial woody plant genus Betula dominate subalpine forests and play a significant role in preserving biological diversity. In addition to their conventional benefits, birches synthesize a wide range of secondary metabolites having pharmacological significance. Methyl salicylate (MeSA) is one of these naturally occurring compounds constitutively produced by different birch species. MeSA is therapeutically important in human medicine for muscle injuries and joint pain. However, MeSA is now mainly produced synthetically due to a lack of information relating to MeSA biosynthesis and regulation. In this study, we performed a comprehensive bioinformatics analysis of two candidate genes mediating MeSA biosynthesis, SALICYLIC ACID METHYLTRANSFERASE (SAMT) and SALICYLIC ACID-BINDING PROTEIN 2 (SABP2), of high (B. lenta, B. alleghaniensis, B. medwediewii, and B. grossa) and low (B. pendula, B. utilis, B. alnoides, and B. nana) MeSA-producing birch species. Phylogenetic analyses of SAMT and SABP2 genes and homologous genes from other plant species confirmed their evolutionary relationships. Multiple sequence alignments of the amino acid revealed the occurrence of important residues for substrate specificity in SAMT and SABP2. The analysis of cis elements in different birches indicated a functional multiplicity of SAMT and SABP2 and provided insights into the regulation of both genes. We successfully developed six prominent single nucleotide substitution markers that were validated with 38 additional birch individuals to differentiate high and low MeSA-producing birch species. Relative tissue-specific expression analysis of SAMT in leaf and bark tissue of two high and two low MeSA-synthesizing birches revealed a high expression in the bark of both high MeSA-synthesizing birches. In contrast, SABP2 expression in tissues revealed indifferent levels of expression between species belonging to the two groups. The comparative expression and bioinformatics analyses provided vital information that could be used to apply plant genetic engineering technology in the mass production of organic MeSA.
Collapse
Affiliation(s)
- Kiran Singewar
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Thünen Institute of Forest Genetics, Grosshansdorf, Schleswig-Holstein, Germany
| | - Christian R. Moschner
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Eberhard Hartung
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Grosshansdorf, Schleswig-Holstein, Germany
| |
Collapse
|
40
|
Yamamoto F, Iwanaga F, Al-Busaidi A, Yamanaka N. Roles of ethylene, jasmonic acid, and salicylic acid and their interactions in frankincense resin production in Boswellia sacra Flueck. trees. Sci Rep 2020; 10:16760. [PMID: 33028915 PMCID: PMC7541518 DOI: 10.1038/s41598-020-73993-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/25/2020] [Indexed: 12/02/2022] Open
Abstract
The roles of ethylene, jasmonic acid, and salicylic acid and their interactions in frankincense resin production in Boswellia sacra trees growing in the drylands of Oman were studied. On March 18 (Experiment 1) and September 17 (Experiment 2), 2018, 32-year-old B. sacra trees with multiple trunks were selected at the Agricultural Experiment Station, Sultan Qaboos University, Oman. Various lanolin pastes containing Ethrel, an ethylene-releasing compound; methyl jasmonate; sodium salicylate; and combinations of these compounds were applied to debarked wounds 15 mm in diameter on the trunks. After a certain period, the frankincense resin secreted from each wound was harvested and weighed. The anatomical characteristics of the resin ducts were also studied in the bark tissue near the upper end of each wound. The combination of Ethrel and methyl jasmonate greatly enhanced frankincense resin production within 7 days in both seasons. The application of methyl jasmonate alone, sodium salicylate alone or a combination of both did not affect resin production. These findings suggest a high possibility of artificial enhancement of frankincense resin production by the combined application of Ethrel and methyl jasmonate to B. sacra trees.
Collapse
Affiliation(s)
- Fukuju Yamamoto
- Arid Land Research Center, Tottori University, Hamasaka, Tottori, 1390, Japan
| | - Fumiko Iwanaga
- Faculty of Agriculture, Tottori University, Minami 4-101, Koyama, Tottori, Japan.
| | - Ahmed Al-Busaidi
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Muscat, 123, Oman
| | - Norikazu Yamanaka
- Arid Land Research Center, Tottori University, Hamasaka, Tottori, 1390, Japan
| |
Collapse
|
41
|
Jose J, Roy Choudhury S. Heterotrimeric G-proteins mediated hormonal responses in plants. Cell Signal 2020; 76:109799. [PMID: 33011291 DOI: 10.1016/j.cellsig.2020.109799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/27/2023]
Abstract
Phytohormones not only orchestrate intrinsic developmental programs from germination to senescence but also regulate environmental inputs through complex signalling pathways. Despite building an own signalling network, hormones mutually contribute several signalling systems, which are also essential for plant growth and development, defense, and responses to abiotic stresses. One of such important signalling cascades is G-proteins, which act as critical regulators of a wide range of fundamental cellular processes by transducing receptor signals to the intracellular environment. G proteins are composed of α, β, and γ subunits, and the molecular switching between active and inactive conformation of Gα controls the signalling cycle. The active GTP bound Gα and freed Gβγ have both independent and tightly coordinated roles in the regulation of effector molecules, thereby modulating multiple responses, including hormonal responses. Therefore, an interplay of hormones with G-proteins fine-tunes multiple biological processes of plants; however, their molecular mechanisms are largely unknown. Functional characterization of hormone biosynthesis, perception, and signalling components, as well as identification of few effector molecules of G-proteins and their interaction networks, reduces the complexity of the hormonal signalling networks related to G-proteins. In this review, we highlight a valuable insight into the mechanisms of how the G-protein signalling cascades connect with hormonal responses to regulate increased developmental flexibility as well as remarkable plasticity of plants.
Collapse
Affiliation(s)
- Jismon Jose
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India.
| |
Collapse
|
42
|
Briache FZ, Ennami M, Mbasani-Mansi J, Lozzi A, Abousalim A, Rodeny WE, Amri M, Triqui ZEA, Mentag R. Effects of Salicylic Acid and Indole Acetic Acid Exogenous Applications on Induction of Faba Bean Resistance against Orobanche crenata. THE PLANT PATHOLOGY JOURNAL 2020; 36:476-490. [PMID: 33082732 PMCID: PMC7542034 DOI: 10.5423/ppj.oa.03.2020.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 05/13/2023]
Abstract
The parasitic weed, Orobanche crenata, is one of the most devastating constraint for faba bean production in Mediterranean regions. Plant host defense induction was reported as one of the most appropriate control methods in many crops. The aim of this study was to elucidate the effect of salicylic acid (SA) and indole acetic acid (IAA) on the induction of faba bean resistance to O. crenata under the field and controlled experimental conditions. Both hormones were tested on two contrasting faba bean genotypes: Giza 843 (partially resistant to O. crenata) and Lobab (susceptible) at three different application methods (seed soaking, foliar spray, and the combination of both seed soaking and foliar spray). Soaking seeds in SA or IAA provided the highest protection levels reaching ~75% compared to the untreated control plants. Both elicitors limited the chlorophyll content decrease caused by O. crenata infestation and increased phenolic compound production in host plants. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were stimulated in the host plant roots especially in the susceptible genotype Lobab. The magnitude of induction was more obvious in infested than in non-infested plants. Histological study revealed that both SA and IAA decreased the number of attached O. crenata spikes which could be related to specific defense responses in the host plant roots.
Collapse
Affiliation(s)
- Fatima Zahra Briache
- Biotechnology Unit, CRRA-Rabat, National Institute of Agricultural Research (INRA), 00, Rabat, Morocco
- Department of Biotechnology and Plant Physiology, Faculty of Sciences, Mohammed V University, 1014, Rabat, Morocco
| | - Mounia Ennami
- Biotechnology Unit, CRRA-Rabat, National Institute of Agricultural Research (INRA), 00, Rabat, Morocco
| | - Joseph Mbasani-Mansi
- Biotechnology Unit, CRRA-Rabat, National Institute of Agricultural Research (INRA), 00, Rabat, Morocco
- Department of Biotechnology and Plant Physiology, Faculty of Sciences, Mohammed V University, 1014, Rabat, Morocco
| | - Assia Lozzi
- Department of Crop Production, Protection and Biotechnology, Institute of Agronomy and Veterinary Medicine Hassan II, 656, Rabat, Morocco
| | - Abdelhadi Abousalim
- Department of Crop Production, Protection and Biotechnology, Institute of Agronomy and Veterinary Medicine Hassan II, 656, Rabat, Morocco
| | - Walid El Rodeny
- Sakha Agricultural Research Station, Agricultural Research Center (ARC), 33717, Kafr El-Sheikh, Egypt
| | - Moez Amri
- Agro-sciences (AgBS), University Mohammed VI Polytechnic (UM6P), 4310, Benguerir, Morocco
| | - Zine El Abidine Triqui
- Department of Biotechnology and Plant Physiology, Faculty of Sciences, Mohammed V University, 1014, Rabat, Morocco
| | - Rachid Mentag
- Biotechnology Unit, CRRA-Rabat, National Institute of Agricultural Research (INRA), 00, Rabat, Morocco
- Corresponding author. FAX) +212-537775530, E-mail) , ORCID, Rachid Mentag https://orcid.org/0000-0002-2040-637X
| |
Collapse
|
43
|
Subedi P, Gattoni K, Liu W, Lawrence KS, Park SW. Current Utility of Plant Growth-Promoting Rhizobacteria as Biological Control Agents towards Plant-Parasitic Nematodes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1167. [PMID: 32916856 PMCID: PMC7569769 DOI: 10.3390/plants9091167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Plant-parasitic nematodes (PPN) are among the most economically and ecologically damaging pests, causing severe losses of crop production worldwide. Chemical-based nematicides have been widely used, but these may have adverse effects on human health and the environment. Hence, biological control agents (BCAs) have become an alternative option for controlling PPN, since they are environmentally friendly and cost effective. Lately, a major effort has been made to evaluate the potential of a commercial grade strain of plant growth-promoting rhizobacteria (PGPR) as BCAs, because emerging evidence has shown that PGPR can reduce PPN in infested plants through direct and/or indirect antagonistic mechanisms. Direct antagonism occurs by predation, release of antinematicidal metabolites and semiochemicals, competition for nutrients, and niche exclusion. However, the results of direct antagonism may be inconsistent due to unknown endogenous and exogenous factors that may prevent PGPR from colonizing plant's roots. On the other hand, indirect antagonism may occur from the induced systemic resistance (ISR) that primes whole plants to better fight against various biotic and abiotic constraints, actuating faster and/or stronger defense responses (adaption), enhancing their promise as BCAs. Hence, this review will briefly revisit (i) two modes of PGPR in managing PPN, and (ii) the current working models and many benefits of ISR, in the aim of reassessing current progresses and future directions for isolating more effective BCAs and/or developing better PPN management strategy.
Collapse
Affiliation(s)
| | | | | | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (P.S.); (K.G.); (W.L.)
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (P.S.); (K.G.); (W.L.)
| |
Collapse
|
44
|
García-Andrade J, González B, Gonzalez-Guzman M, Rodriguez PL, Vera P. The Role of ABA in Plant Immunity is Mediated through the PYR1 Receptor. Int J Mol Sci 2020; 21:ijms21165852. [PMID: 32824010 PMCID: PMC7461614 DOI: 10.3390/ijms21165852] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/13/2023] Open
Abstract
ABA is involved in plant responses to a broad range of pathogens and exhibits complex antagonistic and synergistic relationships with salicylic acid (SA) and ethylene (ET) signaling pathways, respectively. However, the specific receptor of ABA that triggers the positive and negative responses of ABA during immune responses remains unknown. Through a reverse genetic analysis, we identified that PYR1, a member of the family of PYR/PYL/RCAR ABA receptors, is transcriptionally upregulated and specifically perceives ABA during biotic stress, initiating downstream signaling mediated by ABA-activated SnRK2 protein kinases. This exerts a damping effect on SA-mediated signaling, required for resistance to biotrophic pathogens, and simultaneously a positive control over the resistance to necrotrophic pathogens controlled by ET. We demonstrated that PYR1-mediated signaling exerted control on a priori established hormonal cross-talk between SA and ET, thereby redirecting defense outputs. Defects in ABA/PYR1 signaling activated SA biosynthesis and sensitized plants for immune priming by poising SA-responsive genes for enhanced expression. As a trade-off effect, pyr1-mediated activation of the SA pathway blunted ET perception, which is pivotal for the activation of resistance towards fungal necrotrophs. The specific perception of ABA by PYR1 represented a regulatory node, modulating different outcomes in disease resistance.
Collapse
Affiliation(s)
| | | | | | | | - Pablo Vera
- Correspondence: ; Tel.: +34-963877884; Fax: +34-963877859
| |
Collapse
|
45
|
Faisal MB, Gechev TS, Mueller-Roeber B, Dijkwel PP. Putative alternative translation start site-encoding nucleotides of CPR5 regulate growth and resistance. BMC PLANT BIOLOGY 2020; 20:295. [PMID: 32600419 PMCID: PMC7322872 DOI: 10.1186/s12870-020-02485-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The Arabidopsis CONSTITUTIVE EXPRESSER of PATHOGENESIS-RELATED GENES 5 (CPR5) has recently been shown to play a role in gating as part of the nuclear pore complex (NPC). Mutations in CPR5 cause multiple defects, including aberrant trichomes, reduced ploidy levels, reduced growth and enhanced resistance to bacterial and fungal pathogens. The pleiotropic nature of cpr5 mutations implicates that the CPR5 protein affects multiple pathways. However, little is known about the structural features that allow CPR5 to affect the different pathways. RESULTS Our in silico studies suggest that in addition to three clusters of putative nuclear localization signals and four or five transmembrane domains, CPR5 contains two putative alternative translation start sites. To test the role of the methionine-encoding nucleotides implicated in those sites, metCPR5 cDNAs, in which the relevant nucleotides were changed to encode glutamine, were fused to the CPR5 native promoter and the constructs transformed to cpr5-2 plants to complement cpr5-compromised phenotypes. The control and metCPR5 constructs were able to complement all cpr5 phenotypes, although the extent of complementation depended on the specific complementing plant lines. Remarkably, plants transformed with metCPR5 constructs showed larger leaves and displayed reduced resistance when challenged to Pseudomonas syringae pv Pst DC3000, as compared to control plants. Thus, the methionine-encoding nucleotides regulate growth and resistance. We propose that structural features of the CPR5 N-terminus are implicated in selective gating of proteins involved in regulating the balance between growth and resistance. CONCLUSION Plants need to carefully balance the amount of resources used for growth and resistance. The Arabidopsis CPR5 protein regulates plant growth and immunity. Here we show that N-terminal features of CPR5 are involved in the regulation of the balance between growth and resistance. These findings may benefit efforts to improve plant yield, while maintaining optimal levels of disease resistance.
Collapse
Affiliation(s)
- Muhammad B Faisal
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Tsanko S Gechev
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Bernd Mueller-Roeber
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
46
|
Hernandez-Escribano L, Visser EA, Iturritxa E, Raposo R, Naidoo S. The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genomics 2020; 21:28. [PMID: 31914917 PMCID: PMC6950806 DOI: 10.1186/s12864-019-6444-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/30/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Fusarium circinatum, the causal agent of pitch canker disease, poses a serious threat to several Pinus species affecting plantations and nurseries. Although Pinus pinaster has shown moderate resistance to F. circinatum, the molecular mechanisms of defense in this host are still unknown. Phytohormones produced by the plant and by the pathogen are known to play a crucial role in determining the outcome of plant-pathogen interactions. Therefore, the aim of this study was to determine the role of phytohormones in F. circinatum virulence, that compromise host resistance. RESULTS A high quality P. pinaster de novo transcriptome assembly was generated, represented by 24,375 sequences from which 17,593 were full length genes, and utilized to determine the expression profiles of both organisms during the infection process at 3, 5 and 10 days post-inoculation using a dual RNA-sequencing approach. The moderate resistance shown by Pinus pinaster at the early time points may be explained by the expression profiles pertaining to early recognition of the pathogen, the induction of pathogenesis-related proteins and the activation of complex phytohormone signaling pathways that involves crosstalk between salicylic acid, jasmonic acid, ethylene and possibly auxins. Moreover, the expression of F. circinatum genes related to hormone biosynthesis suggests manipulation of the host phytohormone balance to its own benefit. CONCLUSIONS We hypothesize three key steps of host manipulation: perturbing ethylene homeostasis by fungal expression of genes related to ethylene biosynthesis, blocking jasmonic acid signaling by coronatine insensitive 1 (COI1) suppression, and preventing salicylic acid biosynthesis from the chorismate pathway by the synthesis of isochorismatase family hydrolase (ICSH) genes. These results warrant further testing in F. circinatum mutants to confirm the mechanism behind perturbing host phytohormone homeostasis.
Collapse
Affiliation(s)
- Laura Hernandez-Escribano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Eugenia Iturritxa
- NEIKER, Granja Modelo de Arkaute, Apdo 46, 01080, Vitoria-Gasteiz, Spain
| | - Rosa Raposo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Instituto de Gestión Forestal Sostenible (iuFOR), Universidad de Valladolid/INIA, Valladolid, Spain
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
47
|
Schroeder MM, Lai Y, Shirai M, Alsalek N, Tsuchiya T, Roberts P, Eulgem T. A novel Arabidopsis pathosystem reveals cooperation of multiple hormonal response-pathways in host resistance against the global crop destroyer Macrophomina phaseolina. Sci Rep 2019; 9:20083. [PMID: 31882671 PMCID: PMC6934584 DOI: 10.1038/s41598-019-56401-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/02/2019] [Indexed: 11/08/2022] Open
Abstract
Dubbed as a "global destroyer of crops", the soil-borne fungus Macrophomina phaseolina (Mp) infects more than 500 plant species including many economically important cash crops. Host defenses against infection by this pathogen are poorly understood. We established interactions between Mp and Arabidopsis thaliana (Arabidopsis) as a model system to quantitatively assess host factors affecting the outcome of Mp infections. Using agar plate-based infection assays with different Arabidopsis genotypes, we found signaling mechanisms dependent on the plant hormones ethylene, jasmonic acid and salicylic acid to control host defense against this pathogen. By profiling host transcripts in Mp-infected roots of the wild-type Arabidopsis accession Col-0 and ein2/jar1, an ethylene/jasmonic acid-signaling deficient mutant that exhibits enhanced susceptibility to this pathogen, we identified hundreds of genes potentially contributing to a diverse array of defense responses, which seem coordinated by complex interplay between multiple hormonal response-pathways. Our results establish Mp/Arabidopsis interactions as a useful model pathosystem, allowing for application of the vast genomics-related resources of this versatile model plant to the systematic investigation of previously understudied host defenses against a major crop plant pathogen.
Collapse
Affiliation(s)
- Mercedes M Schroeder
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, United States of America
| | - Yan Lai
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, United States of America
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Miwa Shirai
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, United States of America
| | - Natalie Alsalek
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, United States of America
- School of Pharmacy, University of California, San Francisco, San Francisco, California, United States of America
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Philip Roberts
- Institute of Integrative Genome Biology, Department of Nematology, University of California, Riverside, Riverside, California, United States of America
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, United States of America.
| |
Collapse
|
48
|
Costarelli A, Bianchet C, Ederli L, Salerno G, Piersanti S, Rebora M, Pasqualini S. Salicylic acid induced by herbivore feeding antagonizes jasmonic acid mediated plant defenses against insect attack. PLANT SIGNALING & BEHAVIOR 2019; 15:1704517. [PMID: 31852340 PMCID: PMC7012100 DOI: 10.1080/15592324.2019.1704517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 05/25/2023]
Abstract
We recently reported the transcriptomic signature of salicylic acid (SA) and jasmonic acid (JA) biosynthetic and responsive genes in Arabidopsis thaliana plants infested with the herbivore Eurydema oleracea. We demonstrated that insect feeding causes induction of both SA- and JA-mediated signaling pathways. Using transgenic SA-deficient NahG plants, we also showed antagonistic cross-talk between these two phytohormones. To gain more insight into the roles of the SA and JA pathways in plant defenses against E. oleracea, we report here on the dynamics of SA and JA levels in the wild-type genotype Col-0 and the transgenic Arabidopsis NahG mutant that does not accumulate SA. We show that SA strongly accumulates in the wild-type plants after 24 h of herbivore infestation, while JA levels do not change significantly. On the contrary, in the infested NahG plants, SA levels were not affected by E. oleracea feeding, whereas JA levels which were constitutively higher than the wild-type did not significantly change after 6 hours of herbivore feeding. Accordingly, when the wild-type and the jar1-1 mutant (which fails to accumulate JA-Ile) Arabidopsis plants were challenged with E. oleracea in a two-choice arena, the insect fed preferentially on the jar1-1 plants over the wild-type. These data support the conclusion that E. oleracea infestation strongly induces the SA pathway in the wild-type, thus antagonizing JA-mediated plant defenses against herbivory, as a strategy to suppress plant immunity.
Collapse
Affiliation(s)
- Alma Costarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Chantal Bianchet
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Gianandrea Salerno
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Silvana Piersanti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Manuela Rebora
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefania Pasqualini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
49
|
Zhu H, Li X, Xi D, Zhai W, Zhang Z, Zhu Y. Integrating long noncoding RNAs and mRNAs expression profiles of response to Plasmodiophora brassicae infection in Pakchoi (Brassica campestris ssp. chinensis Makino). PLoS One 2019; 14:e0224927. [PMID: 31805057 PMCID: PMC6894877 DOI: 10.1371/journal.pone.0224927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023] Open
Abstract
The biotrophic protist Plasmodiophora brassicae causes serious damage to Brassicaceae crops grown worldwide. However, the molecular mechanism of the Brassica rapa response remains has not been determined. Long noncoding RNA and mRNA expression profiles in response to Plasmodiophora brassicae infection were investigated using RNA-seq on the Chinese cabbage inbred line C22 infected with P. brassicae. Approximately 5,193 mRNAs were significantly differentially expressed, among which 1,345 were upregulated and 3,848 were downregulated. The GO enrichment analysis shows that most of these mRNAs are related to the defense response. Meanwhile, 114 significantly differentially expressed lncRNAs were identified, including 31 upregulated and 83 downregulated. Furthermore, a total of 2,344 interaction relationships were detected between 1,725 mRNAs and 103 lncRNAs with a correlation coefficient greater than 0.8. We also found 15 P. brassicaerelated mRNAs and 16 lncRNA interactions within the correlation network. The functional annotation showed that 15 mRNAs belong to defense response proteins (66.67%), protein phosphorylation (13.33%), root hair cell differentiation (13.33%) and regulation of salicylic acid biosynthetic process (6.67%). KEGG annotation showed that the vast majority of these genes are involved in the biosynthesis of secondary metabolism pathways and plant-pathogen interactions. These results provide a new perspective on lncRNA-mRNA network function and help to elucidate the molecular mechanism of P. brassicae infection.
Collapse
Affiliation(s)
- Hongfang Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Xiaofeng Li
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Dandan Xi
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Wen Zhai
- East China University of Technology, Nanchang, China
| | - Zhaohui Zhang
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Yuying Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
- * E-mail:
| |
Collapse
|
50
|
Cloning, Characterization and Expression of the Phenylalanine Ammonia-Lyase Gene (PaPAL) from Spruce Picea asperata. FORESTS 2019. [DOI: 10.3390/f10080613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phenylalanine ammonia-lyase (PAL) is the crucial enzyme of the phenylpropanoid pathway, which plays an important role in plant disease resistance. To understand the function of PAL in Picea asperata, in this study, the full-length cDNA sequence of the PAL gene from this species was isolated and named PaPAL. The gene contains a 2160-bp open reading frame (ORF) encoding 720 amino acids with a calculated molecular weight of 78.7 kDa and a theoretical isoelectric point of 5.88. The deduced PaPAL protein possesses the specific signature motif (GTITASGDLVPLSYIA) of phenylalanine ammonia-lyases. Multiple alignment analysis revealed that PaPAL has high identity with other plant PALs. The tertiary structure of PaPAL was predicted using PcPAL from Petroselinum crispum as a template, and the results suggested that PaPAL may have a similar function to that of PcPAL. Furthermore, phylogenetic analysis indicated that PaPAL has a close relationship with other PALs from the Pinaceae species. The optimal expression condition of recombinant PaPAL in Escherichia coli BL21 (DE3) was 0.2 mM IPTG (isopropyl β-D-thiogalactoside) at 16 °C for 4 h, and the molecular weight of recombinant PaPAL was found to be approximately 82 kDa. Recombinant PaPAL was purified and exhibited high PAL activity at optimal conditions of pH 8.6 and 60 °C. Quantitative real-time PCR (qRT-PCR) showed the PaPAL gene to be expressed in all tissues of P. asperata tested, with the highest expression level in the needles. The PaPAL gene was induced by the pathogen (Lophodermium piceae), which caused needle cast disease, indicating that it might be involved in defense against needle cast disease. These results provide a basis for understanding the molecular mechanisms of the PAL gene in the process of P. asperata disease resistance.
Collapse
|