1
|
Ghahremani M, Park J, Anderson EM, Marty-Howard NJ, Mullen RT, Plaxton WC. Lectin AtGAL1 interacts with high-mannose glycoform of the purple acid phosphatase AtPAP26 secreted by phosphate-starved Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:1158-1166. [PMID: 30341950 DOI: 10.1111/pce.13463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Mina Ghahremani
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, South Korea
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Naomi J Marty-Howard
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Razzak MA, Lee J, Lee DW, Kim JH, Yoon HS, Hwang I. Expression of seven carbonic anhydrases in red alga Gracilariopsis chorda and their subcellular localization in a heterologous system, Arabidopsis thaliana. PLANT CELL REPORTS 2019; 38:147-159. [PMID: 30446790 DOI: 10.1007/s00299-018-2356-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/07/2018] [Indexed: 05/07/2023]
Abstract
Red alga, Gracilariopsis chorda, contains seven carbonic anhydrases that can be grouped into α-, β- and γ-classes. Carbonic anhydrases (CAHs) are metalloenzymes that catalyze the reversible hydration of CO2. These enzymes are present in all living organisms and play roles in various cellular processes, including photosynthesis. In this study, we identified seven CAH genes (GcCAHs) from the genome sequence of the red alga Gracilariopsis chorda and characterized them at the molecular, cellular and biochemical levels. Based on sequence analysis, these seven isoforms were categorized into four α-class, one β-class, and two γ-class isoforms. RNA sequencing revealed that of the seven CAHs isoforms, six genes were expressed in G. chorda in light at room temperature. In silico analysis revealed that these seven isoforms localized to multiple subcellular locations such as the ER, mitochondria and cytosol. When expressed as green fluorescent protein fusions in protoplasts of Arabidopsis thaliana leaf cells, these seven isoforms showed multiple localization patterns. The four α-class GcCAHs with an N-terminal hydrophobic leader sequence localized to the ER and two of them were further targeted to the vacuole. GcCAHβ1 with no noticeable signal sequence localized to the cytosol. The two γ-class GcCAHs also localized to the cytosol, despite the presence of a predicted presequence. Based on these results, we propose that the red alga G. chorda also employs multiple CAH isoforms for various cellular processes such as photosynthesis.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jeong Hee Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul, 130-701, South Korea
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 130-701, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
3
|
Geem KR, Kim DH, Lee DW, Kwon Y, Lee J, Kim JH, Hwang I. Jasmonic acid-inducible TSA1 facilitates ER body formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:267-280. [PMID: 30267434 DOI: 10.1111/tpj.14112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 05/28/2023]
Abstract
Members of the Brassicales contain an organelle, the endoplasmic reticulum (ER) body, which is derived from the ER. Recent studies have shed light on the biogenesis of the ER body and its physiological role in plants. However, formation of the ER body and its physiological role are not fully understood. Here, we investigated the physiological role of TSK-associating protein 1 (TSA1), a close homolog of NAI2 that is involved in ER body formation, and provide evidence that it is involved in ER body biogenesis under wound-related stress conditions. TSA1 is N-glycosylated and localizes to the ER body as a luminal protein. TSA1 was highly induced by the plant hormone, methyl jasmonate (MeJA). Ectopic expression of TSA1:GFP induced ER body formation in root tissues of transgenic Arabidopsis thaliana and in leaf tissues of Nicotiana benthamiana. TSA1 and NAI2 formed a heterocomplex and showed an additive effect on ER body formation in N. benthamiana. MeJA treatment induced ER body formation in leaf tissues of nai2 and tsa1 plants, but not nai2/tsa1 double-mutant plants. However, constitutive ER body formation was altered in young seedlings of nai2 plants but not tsa1 plants. Based on these results, we propose that TSA1 plays a critical role in MeJA-induced ER body formation in plants.
Collapse
Affiliation(s)
- Kyoung Rok Geem
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jeong Hee Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 130-701, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
4
|
MYC-type transcription factors, MYC67 and MYC70, interact with ICE1 and negatively regulate cold tolerance in Arabidopsis. Sci Rep 2018; 8:11622. [PMID: 30072714 PMCID: PMC6072781 DOI: 10.1038/s41598-018-29722-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 07/12/2018] [Indexed: 11/08/2022] Open
Abstract
The expression of hundreds of genes is induced by low temperatures via a cold signaling pathway. ICE1, a MYC-type transcription factor, plays an important role in the induction of CBF3/DREB1A to control cold-responsive genes and cold tolerance. To elucidate other molecular factors, a yeast 2-hybrid screening was performed. Two MYC-type transcription factors, MYC67 and MYC70, were identified as ICE1-interacting proteins. The myc mutants were more tolerant to freezing temperatures than wild type. CBF3/DREB1A and other cold-responsive genes were up-regulated in the myc mutants. Overexpression of the MYC genes increased the cold sensitivity and down-regulated the expression of cold-responsive genes. The MYC proteins interacted with the cis-elements in the CBF3/DREB1A promoter, probably to interfere interaction between ICE1 and the cis-elements. Taken together, these results demonstrate that MYC67 and MYC70, ICE1 interactors, negatively regulate cold-responsive genes and cold tolerance.
Collapse
|
5
|
Liu Y, Zhang A, Yin H, Meng Q, Yu X, Huang S, Wang J, Ahmad R, Liu B, Xu ZY. Trithorax-group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5 function in abscisic acid and dehydration stress responses. THE NEW PHYTOLOGIST 2018; 217:1582-1597. [PMID: 29250818 DOI: 10.1111/nph.14933] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/02/2017] [Indexed: 05/10/2023]
Abstract
Trithorax-group proteins (TrxGs) play essential regulatory roles in chromatin modification to activate transcription. Although TrxGs have been shown to be extensively involved in the activation of developmental genes, how the specific TrxGs function in the dehydration and abscisic acid (ABA)-mediated modulation of downstream gene expression remains unknown. Here, we report that two evolutionarily conserved Arabidopsis thaliana TrxGs, ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5, play essential roles in the drought stress response. atx4 and atx5 single loss-of-function mutants showed drought stress-tolerant and ABA-hypersensitive phenotypes during seed germination and seedling development, while the atx4 atx5 double mutant displayed further exacerbation of the phenotypes. Genome-wide RNA-sequencing analyses showed that ATX4 and ATX5 regulate the expression of genes functioning in dehydration stress. Intriguingly, ABA-HYPERSENSITIVE GERMINATION 3 (AHG3), an essential negative regulator of ABA signaling, acts genetically downstream of ATX4 and ATX5 in response to ABA. ATX4 and ATX5 directly bind to the AHG3 locus and trimethylate histone H3 of Lys 4 (H3K4). Moreover, ATX4 and ATX5 occupancies at AHG3 are dramatically increased under ABA treatment, and are also essential for RNA polymerase II (RNAPII) occupancies. Our findings reveal novel molecular functions of A. thaliana TrxGs in dehydration stress and ABA responses.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Hao Yin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Qingxiang Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaoming Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Rafiq Ahmad
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
6
|
Kim SY, Hyoung S, So WM, Shin JS. The novel transcription factor TRP interacts with ZFP5, a trichome initiation-related transcription factor, and negatively regulates trichome initiation through gibberellic acid signaling. PLANT MOLECULAR BIOLOGY 2018; 96:315-326. [PMID: 29335898 DOI: 10.1007/s11103-018-0697-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
The trichome-related protein (TRP) is a novel transcription factor (TF) that negatively regulates trichome initiation-related TFs through gibberellin (GA) signaling. Trichomes, which are outgrowths of leaf epidermal cells, provide the plant with a first line of defense against damage from herbivores and reduce transpiration. The initiation and development of trichomes are regulated by a network of positively or negatively regulating transcription factors (TFs). However, little information is currently available on transcriptional regulation related to trichome formation. Here, we report a novel TF Trichome-Related Protein (TRP) that was observed to negatively regulate the trichome initiation-related TFs through gibberellic acid (GA) signaling. ProTRP:GUS revealed that TRP was only expressed in the trichome. The TRP loss-of-function mutant (trp) had an increased number of trichomes on the flower, cauline leaves, and main inflorescence stems compared to the wild-type. In contrast, TRP overexpression lines (TRP-Ox) exhibited a decreased number of trichomes on cauline leaves and main inflorescence stem following treatment with exogenous GA. Moreover, the expressions of trichome initiation regulators (GIS, GIS2, ZFP8, GL1, and GL3) increased in trp plants but decreased in TRP-Ox lines after GA treatment. TRP was observed to physically interact with ZFP5, a C2H2 TF that controls trichome cell development through GA signaling, both in vivo and in vitro. Based on these results, we suggest that TRP functions upstream of the trichome initiation regulators and represses the binding of ZFP5 to the ZFP8 promoter.
Collapse
Affiliation(s)
- Soo Youn Kim
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sujin Hyoung
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Won Mi So
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Razzak MA, Lee DW, Yoo YJ, Hwang I. Evolution of rubisco complex small subunit transit peptides from algae to plants. Sci Rep 2017; 7:9279. [PMID: 28839179 PMCID: PMC5571161 DOI: 10.1038/s41598-017-09473-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/26/2017] [Indexed: 11/09/2022] Open
Abstract
Chloroplasts evolved from a free-living cyanobacterium acquired by the ancestor of all photosynthetic eukaryotes, including algae and plants, through a single endosymbiotic event. During endosymbiotic conversion, the majority of genes in the endosymbiont were transferred to the host nucleus and many of the proteins encoded by these genes must therefore be transported into the chloroplast after translation in the cytosol. Chloroplast-targeted proteins contain a targeting signal, named the transit peptide (TP), at the N-terminus. However, the evolution of TPs is not well understood. In this study, TPs from RbcS (rubisco small subunit) were compared between lower and higher eukaryotes. Chlamydomonas reinhardtii RbcS (CrRbcS) TP was non-functional in Arabidopsis. However, inclusion of a critical sequence motif, FP-RK, from Arabidopsis thaliana RbcS (AtRbcS) TP allowed CrRbcS TP to deliver proteins into plant chloroplasts. The position of the FP-RK motif in CrRbcS TP was critical for function. The QMMVW sequence motif in CrRbcS TP was crucial for its transport activity in plants. CrRbcS TPs containing additional plant motifs remained functional in C. reinhardtii. These results suggest that TPs evolved by acquiring additional sequence motifs to support protein targeting to chloroplasts during evolution of land plants from algae.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun-Joo Yoo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
8
|
D'Ippólito S, Arias LA, Casalongué CA, Pagnussat GC, Fiol DF. The DC1-domain protein VACUOLELESS GAMETOPHYTES is essential for development of female and male gametophytes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:261-275. [PMID: 28107777 DOI: 10.1111/tpj.13486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain-containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine- and histidine-rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC). In Arabidopsis, both male and female gametophytes are characterized by the formation of a large vacuole early in development; this is absent in vlg mutant plants. As a consequence, development is arrested in embryo sacs and pollen grains at the first mitotic division. VLG is specifically located in multivesicular bodies or pre-vacuolar compartments, and our results suggest that vesicular fusion is affected in the mutants, disrupting vacuole formation. Supporting this idea, AtPVA12 - a member of the SNARE vesicle-associated protein family and previously related to a sterol-binding protein, was identified as a VLG interactor. A role for VLG is proposed mediating vesicular fusion in plants as part of the sterol trafficking machinery required for vacuole biogenesis in plants.
Collapse
Affiliation(s)
- Sebastián D'Ippólito
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Leonardo Agustín Arias
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Claudia Anahí Casalongué
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| |
Collapse
|
9
|
Deficiency of the eIF4E isoform nCBP limits the cell-to-cell movement of a plant virus encoding triple-gene-block proteins in Arabidopsis thaliana. Sci Rep 2017; 7:39678. [PMID: 28059075 PMCID: PMC5216350 DOI: 10.1038/srep39678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/25/2016] [Indexed: 01/19/2023] Open
Abstract
One of the important antiviral genetic strategies used in crop breeding is recessive resistance. Two eukaryotic translation initiation factor 4E family genes, eIF4E and eIFiso4E, are the most common recessive resistance genes whose absence inhibits infection by plant viruses in Potyviridae, Carmovirus, and Cucumovirus. Here, we show that another eIF4E family gene, nCBP, acts as a novel recessive resistance gene in Arabidopsis thaliana toward plant viruses in Alpha- and Betaflexiviridae. We found that infection by Plantago asiatica mosaic virus (PlAMV), a potexvirus, was delayed in ncbp mutants of A. thaliana. Virus replication efficiency did not differ between an ncbp mutant and a wild type plant in single cells, but viral cell-to-cell movement was significantly delayed in the ncbp mutant. Furthermore, the accumulation of triple-gene-block protein 2 (TGB2) and TGB3, the movement proteins of potexviruses, decreased in the ncbp mutant. Inoculation experiments with several viruses showed that the accumulation of viruses encoding TGBs in their genomes decreased in the ncbp mutant. These results indicate that nCBP is a novel member of the eIF4E family recessive resistance genes whose loss impairs viral cell-to-cell movement by inhibiting the efficient accumulation of TGB2 and TGB3.
Collapse
|
10
|
Cai B, Kong X, Zhong C, Sun S, Zhou XF, Jin YH, Wang Y, Li X, Zhu Z, Jin JB. SUMO E3 Ligases GmSIZ1a and GmSIZ1b regulate vegetative growth in soybean . JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:2-14. [PMID: 27762067 PMCID: PMC5248596 DOI: 10.1111/jipb.12504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/18/2016] [Indexed: 05/08/2023]
Abstract
SIZ1 is a small ubiquitin-related modifier (SUMO) E3 ligase that mediates post-translational SUMO modification of target proteins and thereby regulates developmental processes and hormonal and environmental stress responses in Arabidopsis. However, the role of SUMO E3 ligases in crop plants is largely unknown. Here, we identified and characterized two Glycine max (soybean) SUMO E3 ligases, GmSIZ1a and GmSIZ1b. Expression of GmSIZ1a and GmSIZ1b was induced in response to salicylic acid (SA), heat, and dehydration treatment, but not in response to cold, abscisic acid (ABA), and NaCl treatment. Although GmSIZ1a was expressed at higher levels than GmSIZ1b, both genes encoded proteins with SUMO E3 ligase activity in vivo. Heterologous expression of GmSIZ1a or GmSIZ1b rescued the mutant phenotype of Arabidopsis siz1-2, including dwarfism, constitutively activated expression of pathogen-related genes, and ABA-sensitive seed germination. Simultaneous downregulation of GmSIZ1a and GmSIZ1b (GmSIZ1a/b) using RNA interference (RNAi)-mediated gene silencing decreased heat shock-induced SUMO conjugation in soybean. Moreover, GmSIZ1RNAi plants exhibited reduced plant height and leaf size. However, unlike Arabidopsis siz1-2 mutant plants, flowering time and SA levels were not significantly altered in GmSIZ1RNAi plants. Taken together, our results indicate that GmSIZ1a and GmSIZ1b mediate SUMO modification and positively regulate vegetative growth in soybean.
Collapse
Affiliation(s)
- Bin Cai
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyThe Chinese Academy of SciencesBeijing 100093China
| | - Xiangxiong Kong
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyThe Chinese Academy of SciencesBeijing 100093China
| | - Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing 100081China
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing 100081China
| | - Xiao Feng Zhou
- Department of Ornamental HorticultureChina Agricultural UniversityBeijing 100193China
| | - Yin Hua Jin
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyThe Chinese Academy of SciencesBeijing 100093China
| | - Youning Wang
- State Key Laboratory of Agricultural MicrobiologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan 430070China
| | - Xia Li
- State Key Laboratory of Agricultural MicrobiologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan 430070China
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing 100081China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyThe Chinese Academy of SciencesBeijing 100093China
| |
Collapse
|
11
|
Huck NV, Leissing F, Majovsky P, Buntru M, Aretz C, Flecken M, Müller JPJ, Vogel S, Schillberg S, Hoehenwarter W, Conrath U, Beckers GJM. Combined 15N-Labeling and TandemMOAC Quantifies Phosphorylation of MAP Kinase Substrates Downstream of MKK7 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2050. [PMID: 29276520 PMCID: PMC5727051 DOI: 10.3389/fpls.2017.02050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/15/2017] [Indexed: 05/22/2023]
Abstract
Reversible protein phosphorylation is a widespread posttranslational modification that plays a key role in eukaryotic signal transduction. Due to the dynamics of protein abundance, low stoichiometry and transient nature of protein phosphorylation, the detection and accurate quantification of substrate phosphorylation by protein kinases remains a challenge in phosphoproteome research. Here, we combine tandem metal-oxide affinity chromatography (tandemMOAC) with stable isotope 15N metabolic labeling for the measurement and accurate quantification of low abundant, transiently phosphorylated peptides by mass spectrometry. Since tandemMOAC is not biased toward the enrichment of acidophilic, basophilic, or proline-directed kinase substrates, the method is applicable to identify targets of all these three types of protein kinases. The MKK7-MPK3/6 module, for example, is involved in the regulation of plant development and plant basal and systemic immune responses, but little is known about downstream cascade components. Using our here described phosphoproteomics approach we identified several MPK substrates downstream of the MKK7-MPK3/6 phosphorylation cascade in Arabidopsis. The identification and validation of dynamin-related protein 2 as a novel phosphorylation substrate of the MKK7-MPK3/6 module establishes a novel link between MPK signaling and clathrin-mediated vesicle trafficking.
Collapse
Affiliation(s)
- Nicola V. Huck
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Franz Leissing
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Petra Majovsky
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Matthias Buntru
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Christina Aretz
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Mirkko Flecken
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Jörg P. J. Müller
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Simon Vogel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | - Uwe Conrath
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Gerold J. M. Beckers
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Gerold J. M. Beckers,
| |
Collapse
|
12
|
Kong X, Luo X, Qu GP, Liu P, Jin JB. Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability . JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:15-29. [PMID: 27925396 DOI: 10.1111/jipb.12509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
The initiation of flowering is tightly regulated by the endogenous and environment signals, which is crucial for the reproductive success of flowering plants. It is well known that autonomous and vernalization pathways repress transcription of FLOWERING LOCUS C (FLC), a focal floral repressor, but how its protein stability is regulated remains largely unknown. Here, we found that mutations in a novel Arabidopsis SUMO protease 1 (ASP1) resulted in a strong late-flowering phenotype under long-days, but to a lesser extent under short-days. ASP1 localizes in the nucleus and exhibited a SUMO protease activity in vitro and in vivo. The conserved Cys-577 in ASP1 is critical for its enzymatic activity, as well as its physiological function in the regulation of flowering time. Genetic and gene expression analyses demonstrated that ASP1 promotes transcription of positive regulators of flowering, such as FT, SOC1 and FD, and may function in both CO-dependent photoperiod pathway and FLC-dependent pathways. Although the transcription level of FLC was not affected in the loss-of-function asp1 mutant, the protein stability of FLC was increased in the asp1 mutant. Taken together, this study identified a novel bona fide SUMO protease, ASP1, which positively regulates transition to flowering at least partly by repressing FLC protein stability.
Collapse
Affiliation(s)
- Xiangxiong Kong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gao-Ping Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
13
|
Lee KR, Lee Y, Kim EH, Lee SB, Roh KH, Kim JB, Kang HC, Kim HU. Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from Perilla frutescens var. frutescens. PLANT CELL REPORTS 2016; 35:2523-2537. [PMID: 27637203 DOI: 10.1007/s00299-016-2053-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/05/2016] [Indexed: 05/26/2023]
Abstract
We described identification, expression, subcellular localization, and functions of genes that encode fatty acid desaturase enzymes in Perilla frutescens var. frutescens. Perilla (Perilla frutescens var. frutescens) seeds contain approximately 40 % of oil, of which α-linolenic acid (18:3) comprise more than 60 % in seed oil and 56 % of total fatty acids (FAs) in leaf, respectively. In perilla, endoplasmic reticulum (ER)-localized and chloroplast-localized ω-3 FA desaturase genes (PfrFAD3 and PfrFAD7, respectively) have already been reported, however, microsomal oleate 12-desaturase gene (PfrFAD2) has not yet. Here, four perilla FA desaturase genes, PfrFAD2-1, PfrFAD2-2, PfrFAD3-2 and PfrFAD7-2, were newly identified and characterized using random amplification of complementary DNA ends and sequence data from RNAseq analysis, respectively. According to the data of transcriptome and gene cloning, perilla expresses two PfrFAD2 and PfrFAD3 genes, respectively, coding for proteins that possess three histidine boxes, transmembrane domains, and an ER retrieval motif at its C-terminal, and two chloroplast-localized ω-3 FA desaturase genes, PfrFAD7-1 and PfrFAD7-2. Arabidopsis protoplasts transformed with perilla genes fused to green fluorescence protein gene demonstrated that PfrFAD2-1 and PfrFAD3-2 were localized in the ER, and PfrFAD7-1 and PfrFAD7-2 were localized in the chloroplasts. PfrFAD2 and perilla ω-3 FA desaturases were functional in budding yeast (Saccharomyces cerevisiae) indicated by the presence of 18:2 and 16:2 in yeast harboring the PfrFAD2 gene. 18:2 supplementation of yeast harboring ω-3 FA desaturase gene led to the production of 18:3. Therefore, perilla expresses two functional FAD2 and FAD3 genes, and two chloroplast-localized ω-3 FA desaturase genes, which support an evidence that P. frutescens cultivar is allotetraploid plant.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Yongjik Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Eun-Ha Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Seul-Bee Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Kyung Hee Roh
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jong-Bum Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Han-Chul Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
14
|
Hashimoto M, Neriya Y, Keima T, Iwabuchi N, Koinuma H, Hagiwara-Komoda Y, Ishikawa K, Himeno M, Maejima K, Yamaji Y, Namba S. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:120-131. [PMID: 27402258 DOI: 10.1111/tpj.13265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
One of the plant host resistance machineries to viruses is attributed to recessive alleles of genes encoding critical host factors for virus infection. This type of resistance, also referred to as recessive resistance, is useful for revealing plant-virus interactions and for breeding antivirus resistance in crop plants. Therefore, it is important to identify a novel host factor responsible for robust recessive resistance to plant viruses. Here, we identified a mutant from an ethylmethane sulfonate (EMS)-mutagenized Arabidopsis population which confers resistance to plantago asiatica mosaic virus (PlAMV, genus Potexvirus). Based on map-based cloning and single nucleotide polymorphism analysis, we identified a premature termination codon in a functionally unknown gene containing a GYF domain, which binds to proline-rich sequences in eukaryotes. Complementation analyses and robust resistance to PlAMV in a T-DNA mutant demonstrated that this gene, named Essential for poteXvirus Accumulation 1 (EXA1), is indispensable for PlAMV infection. EXA1 contains a GYF domain and a conserved motif for interaction with eukaryotic translation initiation factor 4E (eIF4E), and is highly conserved among monocot and dicot species. Analysis using qRT-PCR and immunoblotting revealed that EXA1 was expressed in all tissues, and was not transcriptionally responsive to PlAMV infection in Arabidopsis plants. Moreover, accumulation of PlAMV and a PlAMV-derived replicon was drastically diminished in the initially infected cells by the EXA1 deficiency. Accumulation of two other potexviruses also decreased in exa1-1 mutant plants. Our results provided a functional annotation to GYF domain-containing proteins by revealing the function of the highly conserved EXA1 gene in plant-virus interactions.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Keima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nozomu Iwabuchi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroaki Koinuma
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuka Hagiwara-Komoda
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuya Ishikawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misako Himeno
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
15
|
Zhang H, Li J. From Cytosol to the Apoplast: The Hygromycin Phosphotransferase (HYG(R)) Model in Arabidopsis. Methods Mol Biol 2016; 1459:81-90. [PMID: 27665552 DOI: 10.1007/978-1-4939-3804-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
The process by which proteins are secreted via endoplasmic reticulum (ER)/Golgi-independent mechanism is conveniently called unconventional protein secretion. Recent studies have revealed that unconventional protein secretion operates in plants, but little is known about its underlying mechanism and function. This chapter provides methods we have used to analyze unconventional character of hygromycin phosphotransferase (HYG(R)) secretion in plant cells. Following isolation of protoplasts from HYG (R) -GFP-transgenic plants and incubation with brefeldin A (BFA), an inhibitor of conventional secretory pathway, we easily obtain protein extracts from protoplasts and culture medium separately. These proteins are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by Western blot analysis with anti-GFP antibodies.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Jinjin Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
16
|
Yoo YJ, Lee HK, Han W, Kim DH, Lee MH, Jeon J, Lee DW, Lee J, Lee Y, Lee J, Kim JS, Cho Y, Han JK, Hwang I. Interactions between Transmembrane Helices within Monomers of the Aquaporin AtPIP2;1 Play a Crucial Role in Tetramer Formation. MOLECULAR PLANT 2016; 9:1004-1017. [PMID: 27142778 DOI: 10.1016/j.molp.2016.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Aquaporin (AQP) is a water channel protein found in various subcellular membranes of both prokaryotic and eukaryotic cells. The physiological functions of AQPs have been elucidated in many organisms. However, understanding their biogenesis remains elusive, particularly regarding how they assemble into tetramers. Here, we investigated the amino acid residues involved in the tetramer formation of the Arabidopsis plasma membrane AQP AtPIP2;1 using extensive amino acid substitution mutagenesis. The mutant proteins V41A/E44A, F51A/L52A, F87A/I91A, F92A/I93A, V95A/Y96A, and H216A/L217A, harboring alanine substitutions in the transmembrane (TM) helices of AtPIP2;1 polymerized into multiple oligomeric complexes with a variable number of subunits greater than four. Moreover, these mutant proteins failed to traffic to the plasma membrane, instead of accumulating in the endoplasmic reticulum (ER). Structure-based modeling revealed that these residues are largely involved in interactions between TM helices within monomers. These results suggest that inter-TM interactions occurring both within and between monomers play crucial roles in tetramer formation in the AtPIP2;1 complex. Moreover, the assembly of AtPIP2;1 tetramers is critical for their trafficking from the ER to the plasma membrane, as well as water permeability.
Collapse
Affiliation(s)
- Yun-Joo Yoo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hyun Kyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Wonhee Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon 57922, Korea
| | - Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jouhyun Jeon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yongjik Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Juhun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jin Seok Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
17
|
Naramoto S, Dainobu T, Tokunaga H, Kyozuka J, Fukuda H. Cellular and developmental function of ACAP type ARF-GAP proteins are diverged in plant cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:309-314. [PMID: 31274992 PMCID: PMC6565945 DOI: 10.5511/plantbiotechnology.16.0309a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/09/2016] [Indexed: 05/29/2023]
Abstract
Vesicle transport is crucial for various cellular functions and development of multicellular organisms. ARF-GAP is one of the key regulators of vesicle transport and is diverse family of proteins. Arabidopsis has 15 ARF-GAP proteins and four members are classified as ACAP type ARF-GAP proteins. Our previous study identified that VASCULAR NETWORK DEFECTIVE3 (VAN3), an ACAP ARF-GAP, played crucial roles in leaf vascular formation. However, it remains question how other members of plant ACAP ARF-GAPs function in cellular and developmental processes. To characterize these, we analyzed spatial expression pattern and subcellular localization of VAN3 and three other ACAPs, so called VAN3-like proteins (VALs). Expression pattern analysis revealed that they were expressed in distinctive developmental processes. Subcellular localization analysis in protoplast cells indicated that in contrast to VAN3, which localizes on trans-Golgi networks/early endosomes (TGNs/EEs), VAL1 and VAL2 were localized on ARA6-labelled endosomes, and VAL3 resided mainly in the cytoplasm. These results indicated that VAN3 and VALs are differently expressed in a tissue level and function in different intracellular compartments, in spite of their significant sequence similarities. These findings suggested functional divergence among plant ACAPs. Cellular localizations of all members of animal ACAP proteins are identical. Therefore our findings also suggested that plant evolved ACAP proteins in plant specific manner.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Tomoko Dainobu
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hiroki Tokunaga
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Junko Kyozuka
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Yoon DH, Lee SS, Park HJ, Lyu JI, Chong WS, Liu JR, Kim BG, Ahn JC, Cho HS. Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:69-82. [PMID: 26453745 PMCID: PMC4682425 DOI: 10.1093/jxb/erv421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
AtCYP19-4 (also known as CYP5) was previously identified as interacting in vitro with GNOM, a member of a large family of ARF guanine nucleotide exchange factors that is required for proper polar localization of the auxin efflux carrier PIN1. The present study demonstrated that OsCYP19-4, a gene encoding a putative homologue of AtCYP19-4, was up-regulated by several stresses and showed over 10-fold up-regulation in response to cold. The study further demonstrated that the promoter of OsCYP19-4 was activated in response to cold stress. An OsCYP19-4-GFP fusion protein was targeted to the outside of the plasma membrane via the endoplasmic reticulum as determined using brefeldin A, a vesicle trafficking inhibitor. An in vitro assay with a synthetic substrate oligomer confirmed that OsCYP19-4 had peptidyl-prolyl cis-trans isomerase activity, as was previously reported for AtCYP19-4. Rice plants overexpressing OsCYP19-4 showed cold-resistance phenotypes with significantly increased tiller and spike numbers, and consequently enhanced grain weight, compared with wild-type plants. Based on these results, the authors suggest that OsCYP19-4 is required for developmental acclimation to environmental stresses, especially cold. Furthermore, the results point to the potential of manipulating OsCYP19-4 expression to enhance cold tolerance or to increase biomass.
Collapse
Affiliation(s)
- Dae Hwa Yoon
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea Department of Pharmacology, College of Medicine, Seonam University, Namwon 590-170, Korea
| | - Sang Sook Lee
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Hyun Ji Park
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Jae Il Lyu
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873, Korea
| | - Won Seog Chong
- Department of Pharmacology, College of Medicine, Seonam University, Namwon 590-170, Korea
| | - Jang Ryol Liu
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873, Korea
| | - Beom-Gi Kim
- Molecular Breeding Division, National Academy of Agricultural Science, RDA, Jeonju 560-500, Korea
| | - Jun Cheul Ahn
- Department of Pharmacology, College of Medicine, Seonam University, Namwon 590-170, Korea
| | - Hye Sun Cho
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| |
Collapse
|
19
|
Rottet S, Devillers J, Glauser G, Douet V, Besagni C, Kessler F. Identification of Plastoglobules as a Site of Carotenoid Cleavage. FRONTIERS IN PLANT SCIENCE 2016; 7:1855. [PMID: 28018391 PMCID: PMC5161054 DOI: 10.3389/fpls.2016.01855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/24/2016] [Indexed: 05/18/2023]
Abstract
Carotenoids play an essential role in light harvesting and protection from excess light. During chloroplast senescence carotenoids are released from their binding proteins and are eventually metabolized. Carotenoid cleavage dioxygenase 4 (CCD4) is involved in carotenoid breakdown in senescing leaf and desiccating seed, and is part of the proteome of plastoglobules (PG), which are thylakoid-associated lipid droplets. Here, we demonstrate that CCD4 is functionally active in PG. Leaves of Arabidopsis thaliana ccd4 mutants constitutively expressing CCD4 fused to yellow fluorescent protein showed strong fluorescence in PG and reduced carotenoid levels upon dark-induced senescence. Lipidome-wide analysis indicated that β-carotene, lutein, and violaxanthin were the principle substrates of CCD4 in vivo and were cleaved in senescing chloroplasts. Moreover, carotenoids were shown to accumulate in PG of ccd4 mutant plants during senescence, indicating translocation of carotenoids to PG prior to degradation.
Collapse
Affiliation(s)
- Sarah Rottet
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Julie Devillers
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of NeuchâtelNeuchâtel, Switzerland
| | - Véronique Douet
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Céline Besagni
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
- *Correspondence: Felix Kessler,
| |
Collapse
|
20
|
Moon SJ, Han SY, Kim DY, Yoon IS, Shin D, Byun MO, Kwon HB, Kim BG. Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield. PLANT MOLECULAR BIOLOGY 2015; 89:421-31. [PMID: 26394867 DOI: 10.1007/s11103-015-0378-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/10/2015] [Indexed: 05/23/2023]
Abstract
Over-expression of group A bZIP transcription factor genes in plants improves abiotic stress tolerance but usually reduces yields. Thus, there have been several efforts to overcome yield penalty in transgenic plants. In this study, we characterized that expression of the hot pepper (Capsicum annuum) gene CaBZ1, which encodes a group S bZIP transcription factor, was induced by salt and osmotic stress as well as abscisic acid (ABA). Transgenic potato (Solanum tuberosum) plants over-expressing CaBZ1 exhibited reduced rates of water loss and faster stomatal closure than non transgenic potato plants under drought and ABA treatment conditions. CaBZ1 over-expression in transgenic potato increased the expression of ABA- and stress-related genes (such as CYP707A1, CBF and NAC-like genes) and improved drought stress tolerance. Interestingly, over-expression of CaBZ1 in potato did not produce undesirable growth phenotypes in major agricultural traits such as plant height, leaf size and tuber formation under normal growth conditions. The transgenic potato plants also had higher tuber yields than non transgenic potato plants under drought stress conditions. Thus, CaBZ1 may be useful for improving drought tolerance in tuber crops. This might be the first report of the production of transgenic potato with improved tuber yields under drought conditions.
Collapse
Affiliation(s)
- Seok-Jun Moon
- Molecular Breeding Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea
| | - Se-Youn Han
- Molecular Breeding Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea
| | - Dool-Yi Kim
- Crop Foundation Research Division, National Institute of Crop Science, RDA, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - In Sun Yoon
- Molecular Breeding Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea
| | - Dongjin Shin
- Paddy Crop Research Division, Department of Southern Area, National Institute of Crop Science, RDA, Miryang, 627-803, Republic of Korea
| | - Myung-Ok Byun
- Molecular Breeding Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea
| | - Hawk-Bin Kwon
- Department of Biomedical Sciences, Sunmoon University, Asan, 336-708, Republic of Korea
| | - Beom-Gi Kim
- Molecular Breeding Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea.
| |
Collapse
|
21
|
Chaparro-Garcia A, Schwizer S, Sklenar J, Yoshida K, Petre B, Bos JIB, Schornack S, Jones AME, Bozkurt TO, Kamoun S. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2. PLoS One 2015; 10:e0137071. [PMID: 26348328 PMCID: PMC4562647 DOI: 10.1371/journal.pone.0137071] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways.
Collapse
Affiliation(s)
| | - Simon Schwizer
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Kentaro Yoshida
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Benjamin Petre
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Jorunn I. B. Bos
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | | | - Tolga O. Bozkurt
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
22
|
Abscisic acid transporters cooperate to control seed germination. Nat Commun 2015; 6:8113. [PMID: 26334616 PMCID: PMC4569717 DOI: 10.1038/ncomms9113] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/20/2015] [Indexed: 12/19/2022] Open
Abstract
Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues.
Collapse
|
23
|
Minami A, Tominaga Y, Furuto A, Kondo M, Kawamura Y, Uemura M. Arabidopsis dynamin-related protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development of freezing tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:501-14. [PMID: 26095877 DOI: 10.1111/tpj.12907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 05/24/2023]
Abstract
The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin-related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol-enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye-labelled plasma membrane, providing evidence that DRP1E localizes non-uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol-enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.
Collapse
Affiliation(s)
- Anzu Minami
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Yoko Tominaga
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Akari Furuto
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Mariko Kondo
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Yukio Kawamura
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Matsuo Uemura
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
24
|
Kim DH, Lee JE, Xu ZY, Geem KR, Kwon Y, Park JW, Hwang I. Cytosolic targeting factor AKR2A captures chloroplast outer membrane-localized client proteins at the ribosome during translation. Nat Commun 2015; 6:6843. [PMID: 25880450 DOI: 10.1038/ncomms7843] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/04/2015] [Indexed: 01/30/2023] Open
Abstract
In eukaryotic cells, organellar proteome biogenesis is pivotal for cellular function. Chloroplasts contain a complex proteome, the biogenesis of which includes post-translational import of nuclear-encoded proteins. However, the mechanisms determining when and how nascent chloroplast-targeted proteins are sorted in the cytosol are unknown. Here, we establish the timing and mode of interaction between ankyrin repeat-containing protein 2 (AKR2A), the cytosolic targeting factor of chloroplast outer membrane (COM) proteins, and its interacting partners during translation at the single-molecule level. The targeting signal of a nascent AKR2A client protein residing in the ribosomal exit tunnel induces AKR2A binding to ribosomal RPL23A. Subsequently, RPL23A-bound AKR2A binds to the targeting signal when it becomes exposed from ribosomes. Failure of AKR2A binding to RPL23A in planta severely disrupts protein targeting to the COM; thus, AKR2A-mediated targeting of COM proteins is coupled to their translation, which in turn is crucial for biogenesis of the entire chloroplast proteome.
Collapse
Affiliation(s)
- Dae Heon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jae-Eun Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Zheng-Yi Xu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyoung Rok Geem
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yun Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Joon Won Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
25
|
Yang H, Stierhof YD, Ludewig U. The putative Cationic Amino Acid Transporter 9 is targeted to vesicles and may be involved in plant amino acid homeostasis. FRONTIERS IN PLANT SCIENCE 2015; 6:212. [PMID: 25883600 PMCID: PMC4381505 DOI: 10.3389/fpls.2015.00212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/16/2015] [Indexed: 05/29/2023]
Abstract
Amino acids are major primary metabolites. Their uptake, translocation, compartmentation, and re-mobilization require a diverse set of cellular transporters. Here, the broadly expressed gene product of CATIONIC AMINO ACID TRANSPORTER 9 (CAT9) was identified as mainly localized to vesicular membranes that are involved in vacuolar trafficking, including those of the trans-Golgi network. In order to probe whether and how these compartments are involved in amino acid homeostasis, a loss-of-function cat9-1 mutant and ectopic over-expressor plants were isolated. Under restricted nitrogen supply in soil, cat9-1 showed a chlorotic phenotype, which was reversed in the over-expressors. The total soluble amino acid pools were affected in the mutants, but this was only significant under poor nitrogen supply. Upon nitrogen starvation, the soluble amino acid leaf pools were lower in the over-expressor, compared with cat9-1. Over-expression generally affected total soluble amino acid concentrations, slightly delayed development, and finally improved the survival upon severe nitrogen starvation. The results potentially identify a novel function of vesicular amino acid transport mediated by CAT9 in the cellular nitrogen-dependent amino acid homeostasis.
Collapse
Affiliation(s)
- Huaiyu Yang
- Nutritional Crop Physiology, Institute of Crop Science, University of HohenheimStuttgart, Germany
| | - York-Dieter Stierhof
- Zentrum für Molekularbiologie der Pflanzen, University of TübingenTübingen, Germany
| | - Uwe Ludewig
- Nutritional Crop Physiology, Institute of Crop Science, University of HohenheimStuttgart, Germany
| |
Collapse
|
26
|
Gendre D, Jonsson K, Boutté Y, Bhalerao RP. Journey to the cell surface--the central role of the trans-Golgi network in plants. PROTOPLASMA 2015; 252:385-98. [PMID: 25187082 DOI: 10.1007/s00709-014-0693-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/21/2014] [Indexed: 05/11/2023]
Abstract
The secretion of proteins, lipids, and carbohydrates to the cell surface is essential for plant development and adaptation. Secreted substances synthesized at the endoplasmic reticulum pass through the Golgi apparatus and trans-Golgi network (TGN) en route to the plasma membrane via the conventional secretion pathway. The TGN is morphologically and functionally distinct from the Golgi apparatus. The TGN is located at the crossroads of many trafficking pathways and regulates a range of crucial processes including secretion to the cell surface, transport to the vacuole, and the reception of endocytic cargo. This review outlines the TGN's central role in cargo secretion, showing that its behavior is more complex and controlled than the bulk-flow hypothesis suggests. Its formation, structure, and maintenance are discussed along with the formation and release of secretory vesicles.
Collapse
Affiliation(s)
- Delphine Gendre
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden,
| | | | | | | |
Collapse
|
27
|
Lee G, Na YJ, Yang BG, Choi JP, Seo YB, Hong CP, Yun CH, Kim DH, Sohn EJ, Kim JH, Sung YC, Kim YK, Jang MH, Hwang I. Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:62-72. [PMID: 25065685 DOI: 10.1111/pbi.12235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
Pandemics in poultry caused by the highly pathogenic avian influenza (HPAI) A virus occur too frequently globally, and there is growing concern about the HPAI A virus due to the possibility of a pandemic among humans. Thus, it is important to develop a vaccine against HPAI suitable for both humans and animals. Various approaches are underway to develop such vaccines. In particular, an edible vaccine would be a convenient way to vaccinate poultry because of the behaviour of the animals. However, an edible vaccine is still not available. In this study, we developed a strategy of effective vaccination of mice by the oral administration of transgenic Arabidopsis plants (HA-TG) expressing haemagglutinin (HA) in the endoplasmic reticulum (ER). Expression of HA in the ER resulted in its high-level accumulation, N-glycosylation, protection from proteolytic degradation and long-term stability. Oral administration of HA-TG with saponin elicited high levels of HA-specific systemic IgG and mucosal IgA responses in mice, which resulted in protection against a lethal influenza virus infection with attenuated inflammatory symptoms. Based on these results, we propose that oral administration of freeze-dried leaf powders from transgenic plants expressing HA in the ER together with saponin is an attractive strategy for vaccination against influenza A virus.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Administration, Oral
- Animals
- Antibody Formation/drug effects
- Antibody Formation/immunology
- Antibody Specificity/drug effects
- Antibody Specificity/immunology
- Antigens, Viral/immunology
- Arabidopsis/genetics
- Dose-Response Relationship, Immunologic
- Endoplasmic Reticulum/metabolism
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunity, Humoral/drug effects
- Immunity, Mucosal/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Plants, Genetically Modified
- Pneumonia/immunology
- Pneumonia/pathology
- Pneumonia/prevention & control
- Pneumonia/virology
- Recombinant Fusion Proteins/metabolism
- Saponins/immunology
- Vaccination
Collapse
Affiliation(s)
- Goeun Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea; Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Baek D, Cha JY, Kang S, Park B, Lee HJ, Hong H, Chun HJ, Kim DH, Kim MC, Lee SY, Yun DJ. The Arabidopsis a zinc finger domain protein ARS1 is essential for seed germination and ROS homeostasis in response to ABA and oxidative stress. FRONTIERS IN PLANT SCIENCE 2015; 6:963. [PMID: 26583028 PMCID: PMC4631831 DOI: 10.3389/fpls.2015.00963] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/22/2015] [Indexed: 05/05/2023]
Abstract
The phytohormone abscisic acid (ABA) induces accumulation of reactive oxygen species (ROS), which can disrupt seed dormancy and plant development. Here, we report the isolation and characterization of an Arabidopsis thaliana mutant called ars1 (aba and ros sensitive 1) that showed hypersensitivity to ABA during seed germination and to methyl viologen (MV) at the seedling stage. ARS1 encodes a nuclear protein with one zinc finger domain, two nuclear localization signal (NLS) domains, and one nuclear export signal (NES). The ars1 mutants showed reduced expression of a gene for superoxide dismutase (CSD3) and enhanced accumulation of ROS after ABA treatment. Transient expression of ARS1 in Arabidopsis protoplasts strongly suppressed ABA-mediated ROS production. Interestingly, nuclear-localized ARS1 translocated to the cytoplasm in response to treatment with ABA, H2O2, or MV. Taken together, these results suggest that ARS1 modulates seed germination and ROS homeostasis in response to ABA and oxidative stress in plants.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Songhwa Kang
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Bokyung Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Hyo-Jung Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Hyewon Hong
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Hyun Jin Chun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A UniversityBusan, South Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
- *Correspondence: Dae-Jin Yun,
| |
Collapse
|
29
|
Huang J, Fujimoto M, Fujiwara M, Fukao Y, Arimura SI, Tsutsumi N. Arabidopsis dynamin-related proteins, DRP2A and DRP2B, function coordinately in post-Golgi trafficking. Biochem Biophys Res Commun 2014; 456:238-44. [PMID: 25462567 DOI: 10.1016/j.bbrc.2014.11.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/24/2022]
Abstract
Dynamin-related proteins (DRPs) are large GTPases involved in a wide range of cellular membrane remodeling processes. In Arabidopsis thaliana, two paralogous land plant-specific type DRPs, DRP2A and DRP2B, are thought to participate in the regulation of post-Golgi trafficking. Here, we examined their molecular properties and functional relationships. qRT-PCR and GUS assays showed that DRP2A and DRP2B were expressed ubiquitously, although their expressions were strongest around root apical meristems and vascular bundles. Yeast two-hybrid, bi-molecular fluorescent complementation, and co-immunoprecipitation mass spectrometry analyses revealed that DRP2A and DRP2B interacted with each other. In observations with confocal laser scanning microscopy and variable incidence angle fluorescent microscopy, fluorescent fusions of DRP2A and DRP2B almost completely co-localized and were mainly localized to endocytic vesicle formation sites of the plasma membrane, clathrin-enriched trans-Golgi network and the cell plate in root epidermal cells. Treatments with wortmannin, an inhibitor of phosphatidylinositol 3-/4-kinases, latrunculin B, an inhibitor of actin polymerization, and oryzalin, an inhibitor of microtubule polymerization, increased the resident time of DRP2A and DRP2B on the plasma membrane. These results show that DRP2A and DRP2B function coordinately in multiple pathways of post-Golgi trafficking in phosphatidylinositol 3- or 4-kinase and cytoskeleton polymerization-dependent manners.
Collapse
Affiliation(s)
- Jiahe Huang
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayuki Fujiwara
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoichiro Fukao
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Japan Science and Technology Agency (JST), CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
30
|
Hagiwara-Komoda Y, Sugiyama T, Yamashita Y, Onouchi H, Naito S. The N-terminal cleavable pre-sequence encoded in the first exon of cystathionine γ-synthase contains two different functional domains for chloroplast targeting and regulation of gene expression. PLANT & CELL PHYSIOLOGY 2014; 55:1779-1792. [PMID: 25146485 DOI: 10.1093/pcp/pcu110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chloroplast transit peptide sequences (cTPs) located in the N-terminal region of nuclear-encoded chloroplast proteins are essential for their sorting, and are generally cleaved from the proteins after their import into the chloroplasts. The Arabidopsis thaliana cystathionine γ-synthase (CGS), the first committed enzyme of methionine biosynthesis, is a nuclear-encoded chloroplast protein. Arabidopsis CGS possesses an N-terminal extension region that is dispensable for enzymatic activity. This N-terminal extension contains the cTP and several functional domains including an MTO1 region, the cis-element for post-transcriptional feedback regulation of CGS1 that codes for CGS. A previous report suggested that the cTP cleavage site of CGS is located upstream of the MTO1 region. However, the region required for protein sorting has not been analyzed. In this study, we carried out functional analyses to elucidate the region required for chloroplast targeting by using a chimeric protein, Ex1:GFP, in which the CGS1 exon 1 coding region containing the N-terminal extension was tagged with green fluorescent protein. The sequence upstream of the MTO1 region was responsible for efficient chloroplast targeting and for avoidance of missorting to the mitochondria. Our data also showed that the major N-terminus of Ex1:GFP is Ala91, which is located immediately downstream of the MTO1 region, and the MTO1 region is not retained in the mature Ex1:GFP accumulated in the chloroplast. These findings suggest that the N-terminal cleavable pre-sequence harbors dual functions in protein sorting and in regulating gene expression. Our study highlights the unique properties of Arabidopsis CGS cTP among chloroplast-targeted proteins.
Collapse
Affiliation(s)
- Yuka Hagiwara-Komoda
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan These authors contributed equally to this work. Present address: Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Tomoya Sugiyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan These authors contributed equally to this work. Present address: Chugai Pharmaceutical Co., Ltd., API Process Development Department, Tokyo, 115-8543 Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| |
Collapse
|
31
|
Kang Y, Jelenska J, Cecchini NM, Li Y, Lee MW, Kovar DR, Greenberg JT. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathog 2014; 10:e1004232. [PMID: 24968323 PMCID: PMC4072799 DOI: 10.1371/journal.ppat.1004232] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/22/2014] [Indexed: 01/17/2023] Open
Abstract
A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.
Collapse
Affiliation(s)
- Yongsung Kang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Nicolas M. Cecchini
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Yujie Li
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Min Woo Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
32
|
Yang H, Krebs M, Stierhof YD, Ludewig U. Characterization of the putative amino acid transporter genes AtCAT2, 3 &4: the tonoplast localized AtCAT2 regulates soluble leaf amino acids. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:594-601. [PMID: 24709150 DOI: 10.1016/j.jplph.2013.11.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 05/03/2023]
Abstract
The plant vacuole constitutes a large transient storage compartment for nutrients, proteins and metabolites, and is a major cellular sink for toxic waste compounds. Amino acids can cross the vacuolar membrane via specific transport proteins, which are molecularly not well characterized. Two members of a small subfamily of the cationic amino acid transporters, AtCAT2 and AtCAT4, were primarily localized at the tonoplast when tagged with GFP. The closely related AtCAT3, by contrast, was detected in the endoplasmic reticulum membrane. The exchange of a di-acidic motif at the carboxy-tail affected their sub-cellular localization, with larger effects visible in transiently transformed protoplasts compared to stably expressing plant lines. The genes have broad, partially overlapping tissue expression, with CAT2 dominating in most tissues. Loss-of-function mutants of individual CATs showed no visible phenotype under various conditions, but the overall tissue concentration of amino acids was increased in soil-grown cat2 mutants. The data suggest that CAT2 is a critical target of leaf amino acid concentrations and manipulation of this tonoplast transporter can significantly alter total tissue amino acid concentrations.
Collapse
Affiliation(s)
- Huaiyu Yang
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany; Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Melanie Krebs
- Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - York-Dieter Stierhof
- Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany; Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany.
| |
Collapse
|
33
|
Hwang SM, Kim DW, Woo MS, Jeong HS, Son YS, Akhter S, Choi GJ, Bahk JD. Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. PLANT, CELL & ENVIRONMENT 2014; 37:1202-22. [PMID: 24313737 DOI: 10.1111/pce.12228] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/16/2013] [Indexed: 05/17/2023]
Abstract
Although heat-shock transcription factors are well characterized in the heat stress-related pathway, they are poorly understood in other stress responses. Here, we functionally characterized AtHsfA6a in the presence of exogenous abscisic acid (ABA) and under high salinity and dehydration conditions. AtHsfA6a expression under normal conditions is very low, but was highly induced by exogenous ABA, NaCl and drought. Unexpectedly, the levels of AtHsfA6a transcript were not significantly altered under heat and cold stresses. Electrophoretic mobility shift assays and transient transactivation assays indicated that AtHsfA6a is transcriptionally regulated by ABA-responsive element binding factor/ABA-responsive element binding protein, which are key regulators of the ABA signalling pathway. Additionally, fractionation and protoplast transient assays showed that AtHsfA6a was in cytoplasm and nucleus simultaneously; however, under conditions of high salinity the majority of AtHsfA6A was in the nucleus. Furthermore, at both seed germination and seedlings stage, plants overexpressing AtHsfA6a were hypersensitive to ABA and exhibited enhanced tolerance against salt and drought stresses. Finally, the microarray and qRT-PCR analyses revealed that many stress-responsive genes were up-regulated in the plants overexpressing AtHsfA6a. Taken together, the data strongly suggest that AtHsfA6a acts as a transcriptional activator of stress-responsive genes via the ABA-dependent signalling pathway.
Collapse
Affiliation(s)
- Sung Min Hwang
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju, 660-701, Korea; Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology, Deajeon, 305-600, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Fujimoto M, Tsutsumi N. Dynamin-related proteins in plant post-Golgi traffic. FRONTIERS IN PLANT SCIENCE 2014; 5:408. [PMID: 25237312 PMCID: PMC4154393 DOI: 10.3389/fpls.2014.00408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/31/2014] [Indexed: 05/21/2023]
Abstract
Membrane traffic between two organelles begins with the formation of transport vesicles from the donor organelle. Dynamin-related proteins (DRPs), which are large multidomain GTPases, play crucial roles in vesicle formation in post-Golgi traffic. Numerous in vivo and in vitro studies indicate that animal dynamins, which are members of DRP family, assemble into ring- or helix-shaped structures at the neck of a bud site on the donor membrane, where they constrict and sever the neck membrane in a GTP hydrolysis-dependent manner. While much is known about DRP-mediated trafficking in animal cells, little is known about it in plant cells. So far, two structurally distinct subfamilies of plant DRPs (DRP1 and DRP2) have been found to participate in various pathways of post-Golgi traffic. This review summarizes the structural and functional differences between these two DRP subfamilies, focusing on their molecular, cellular and developmental properties. We also discuss the molecular networks underlying the functional machinery centering on these two DRP subfamilies. Furthermore, we hope that this review will provide direction for future studies on the mechanisms of vesicle formation that are not only unique to plants but also common to eukaryotes.
Collapse
Affiliation(s)
- Masaru Fujimoto
- *Correspondence: Masaru Fujimoto, Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan e-mail:
| | | |
Collapse
|
35
|
Kim Y, Lee G, Jeon E, Sohn EJ, Lee Y, Kang H, Lee DW, Kim DH, Hwang I. The immediate upstream region of the 5'-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. Nucleic Acids Res 2013; 42:485-98. [PMID: 24084084 PMCID: PMC3874180 DOI: 10.1093/nar/gkt864] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5′-untranslated region (5′-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5′-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions −1 to −21 of the 5′-UTRs in Arabidopsis genes. In particular, the A residue in the 5′-UTR from positions −1 to −5 was required for a high-level translational efficiency. In contrast, the T residue in the 5′-UTR from positions −1 to −5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the −1 to −21 region of the 5′-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes.
Collapse
Affiliation(s)
- Younghyun Kim
- Department of Life Sciences, School of Bioscience and Bioengineering and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li J, Han Y, Zhao Q, Li C, Xie Q, Chong K, Xu Y. The E3 ligase AtRDUF1 positively regulates salt stress responses in Arabidopsis thaliana. PLoS One 2013; 8:e71078. [PMID: 23951086 PMCID: PMC3741333 DOI: 10.1371/journal.pone.0071078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/26/2013] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination is an important post-translational protein modification that is known to play critical roles in diverse biological processes in eukaryotes. The RING E3 ligases function in ubiquitination pathways, and are involved in a large diversity of physiological processes in higher plants. The RING domain-containing E3 ligase AtRDUF1 was previously identified as a positive regulator of ABA-mediated dehydration stress response in Arabidopsis. In this study, we report that AtRDUF1 is involved in plant responses to salt stress. AtRDUF1 expression is upregulated by salt treatment. Overexpression of AtRDUF1 in Arabidopsis results in an insensitivity to salt and osmotic stresses during germination and seedling growth. A double knock-out mutant of AtRDUF1 and its close homolog AtRDUF2 (atrduf1atrduf2) was hypersensitive to salt treatment. The expression levels of the stress-response genes RD29B, RD22, and KIN1 are more sensitive to salt treatment in AtRDUF1 overexpression plants. In summary, our data show that AtRDUF1 positively regulates responses to salt stress in Arabidopsis.
Collapse
Affiliation(s)
- Junhua Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yingying Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biology, College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang, China
| | - Qingzhen Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunhua Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
37
|
Szydlowski N, Bürkle L, Pourcel L, Moulin M, Stolz J, Fitzpatrick TB. Recycling of pyridoxine (vitamin B6) by PUP1 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:40-52. [PMID: 23551747 DOI: 10.1111/tpj.12195] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 05/06/2023]
Abstract
Vitamin B6 is a cofactor for more than 140 essential enzymatic reactions and was recently proposed as a potent antioxidant, playing a role in the photoprotection of plants. De novo biosynthesis of the vitamin has been described relatively recently and is derived from simple sugar precursors as well as glutamine. In addition, the vitamin can be taken up from exogenous sources in a broad range of organisms, including plants. However, specific transporters have been identified only in yeast. Here we assess the ability of the family of Arabidopsis purine permeases (PUPs) to transport vitamin B6. Several members of the family complement the growth phenotype of a Saccharomyces cerevisiae mutant strain impaired in both de novo biosynthesis of vitamin B6 as well as its uptake. The strongest activity was observed with PUP1 and was confirmed by direct measurement of uptake in yeast as well as in planta, defining PUP1 as a high affinity transporter for pyridoxine. At the tissue level the protein is localised to hydathodes and here we use confocal microscopy to illustrate that at the cellular level it is targeted to the plasma membrane. Interestingly, we observe alterations in pyridoxine recycling from the guttation sap upon overexpression of PUP1 and in a pup1 mutant, consistent with the role of the protein in retrieval of pyridoxine. Furthermore, combining the pup1 mutant with a vitamin B6 de novo biosynthesis mutant (pdx1.3) corroborates that PUP1 is involved in the uptake of the vitamin.
Collapse
Affiliation(s)
- Nicolas Szydlowski
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Lukas Bürkle
- ETH Zurich, Institute of Agricultural Sciences, 8092, Zurich, Switzerland
| | - Lucille Pourcel
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Michael Moulin
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Jürgen Stolz
- Lehrstuhl für Ernährungsphysiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL) - Abteilung Biochemie, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85350, Freising, Germany
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
38
|
Lee JY, Sarowar S, Kim HS, Kim H, Hwang I, Kim YJ, Pai HS. Silencing of Nicotiana benthamiana Neuroblastoma-Amplified Gene causes ER stress and cell death. BMC PLANT BIOLOGY 2013; 13:69. [PMID: 23621803 PMCID: PMC3654999 DOI: 10.1186/1471-2229-13-69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/23/2013] [Indexed: 05/15/2023]
Abstract
BACKGROUND Neuroblastoma Amplified Gene (NAG) was identified as a gene co-amplified with the N-myc gene, whose genomic amplification correlates with poor prognosis of neuroblastoma. Later it was found that NAG is localized in endoplasmic reticulum (ER) and is a component of the syntaxin 18 complex that is involved in Golgi-to-ER retrograde transport in human cells. Homologous sequences of NAG are found in plant databases, but its function in plant cells remains unknown. RESULTS Nicotiana benthamania Neuroblastoma-Amplified Gene (NbNAG) encodes a protein of 2,409 amino acids that contains the secretory pathway Sec39 domain and is mainly localized in the ER. Silencing of NbNAG by virus-induced gene silencing resulted in growth arrest and acute plant death with morphological markers of programmed cell death (PCD), which include chromatin fragmentation and modification of mitochondrial membrane potential. NbNAG deficiency caused induction of ER stress genes, disruption of the ER network, and relocation of bZIP28 transcription factor from the ER membrane to the nucleus, similar to the phenotypes of tunicamycin-induced ER stress in a plant cell. NbNAG silencing caused defects in intracellular transport of diverse cargo proteins, suggesting that a blocked secretion pathway by NbNAG deficiency causes ER stress and programmed cell death. CONCLUSIONS These results suggest that NAG, a conserved protein from yeast to mammals, plays an essential role in plant growth and development by modulating protein transport pathway, ER stress response and PCD.
Collapse
Affiliation(s)
- Jae-Yong Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Sujon Sarowar
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee Seung Kim
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyeran Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Young Jin Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
39
|
Abstract
Recent progress in the identification and characterization of pectin biosynthetic proteins and the discovery of pectin domain-containing proteoglycans are changing our view of how pectin, the most complex family of plant cell wall polysaccharides, is synthesized. The functional confirmation of four types of pectin biosynthetic glycosyltransferases, the identification of multiple putative pectin glycosyl- and methyltransferases, and the characteristics of the GAUT1:GAUT7 homogalacturonan biosynthetic complex with its novel mechanism for retaining catalytic subunits in the Golgi apparatus and its 12 putative interacting proteins are beginning to provide a framework for the pectin biosynthetic process. We propose two partially overlapping hypothetical and testable models for pectin synthesis: the consecutive glycosyltransferase model and the domain synthesis model.
Collapse
Affiliation(s)
- Melani A Atmodjo
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712, USA.
| | | | | |
Collapse
|
40
|
Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene 2012; 511:38-45. [PMID: 23000066 DOI: 10.1016/j.gene.2012.09.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/17/2012] [Accepted: 09/12/2012] [Indexed: 12/26/2022]
Abstract
A screen conducted on both a suppression subtractive hybridization and a full length cDNA library made from a salinity tolerant bread wheat cultivar SR3 (Triticum aestivum cv. SR3) resulted in the recognition of TaERF4, a gene including both an AP2/ERF domain and a nuclear localization signal. The 982 bp TaERF4 cDNA comprised a 582 bp open reading frame, encoding a 193 residue polypeptide of molecular weight 20 kDa and calculated pI 8.48. A TaERF4-GFP fusion protein localized preferentially to the nuclei of Arabidopsis thaliana protoplasts. TaERF4 is a member of the B-1 group within the ERF sub-family and was not transactivatable in yeast. The presence of an ERF-associated amphiphilic repression (EAR) motif at its C-terminus suggests that TaERF4 is probably a transcription repressor. TaERF4 was inducible by exposure to salinity and osmotic stresses, but not to exogenously supplied abscisic acid (ABA). The heterologous constitutive expression of TaERF4 in Arabidopsis enhanced the level of sensitivity to salinity stress, possibly via the repression of tonoplast Na(+)/H(+) antiporter activity. There was no phenotype associated with the transgene's presence when plants were subjected to either osmotic stress or ABA treatment. TaERF4 appears to be a transcription repressor acting within the ABA-independent response to salinity stress.
Collapse
|
41
|
Huh SU, Lee SB, Kim HH, Paek KH. ATAF2, a NAC transcription factor, binds to the promoter and regulates NIT2 gene expression involved in auxin biosynthesis. Mol Cells 2012; 34:305-13. [PMID: 22965747 PMCID: PMC3887843 DOI: 10.1007/s10059-012-0122-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 11/26/2022] Open
Abstract
The transcription factor ATAF2, one of the plant specific NAC family genes, is known as repressor of pathogenesis-related genes and responsive to the diverse defense-related hormones, pathogen infection, and wounding stress. Furthermore, it is important to consider that tryptophan-dependant IAA biosynthesis pathway can be activated by wounding and pathogen. We found that ATAF2pro::GUS reporter was induced upon indole-3-acetonitrile (IAN) treatments. And ataf2 mutant showed reduced sensitivity to IAN whereas 35S::ATAF2 plants showed hyper-sensitivity to IAN. IAN biosynthesis required nitrilase involved in the conversion of IAN to an auxin, indole-3-acetic acid (IAA). We found that the NIT2 gene was repressed in ataf2 knockout plants. Expression of both ATAF2 and NIT2 genes was induced by IAN treatment. Transgenic plants overexpressing ATAF2 showed up-regulated NIT2 expression. ATAF2 activated promoter of the NIT2 gene in Arabidopsis protoplasts. Electrophoretic mobility shift assay revealed that NIT2 promoter region from position -117 to -82 contains an ATAF2 binding site where an imperfect palindrome sequence was critical to the protein-DNA interaction. These findings indicate that ATAF2 regulates NIT2 gene expression via NIT2 promoter binding.
Collapse
Affiliation(s)
- Sung Un Huh
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Suk-Bae Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Hwang Hyun Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Kyung-Hee Paek
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|
42
|
Lee DS, Lee KH, Jung S, Jo EJ, Han KH, Bae HJ. Synergistic effects of 2A-mediated polyproteins on the production of lignocellulose degradation enzymes in tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4797-810. [PMID: 22798663 PMCID: PMC3427999 DOI: 10.1093/jxb/ers159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cost-effective bioethanol production requires a supply of various low-cost enzymes that can hydrolyse lignocellulosic materials consisting of multiple polymers. Because plant-based enzyme expression systems offer low-cost and large-scale production, this study simultaneously expressed β-glucosidase (BglB), xylanase (XylII), exoglucanase (E3), and endoglucanase (Cel5A) in tobacco plants, which were individually fused with chloroplast-targeting transit peptides and linked via the 2A self-cleaving oligopeptideex from foot-and-mouth disease virus (FMDV) as follows: [RsBglB-2A-RaCel5A], [RsXylII-2A-RaCel5A], and [RsE3-2A-RaCel5A]. The enzymes were targeted to chloroplasts in tobacco cells and their activities were confirmed. Similarly to the results of a transient assay using Arabidopsis thaliana protoplasts, when XylII was placed upstream of the 2A sequence, the [RsXylII-2A-RaCel5A] transgenic tobacco plant had a more positive influence on expression of the protein placed downstream. The [RsBglB-2A-RaCel5A] and [RsE3-2A-RaCel5A] transgenic lines displayed higher activities towards carboxylmethylcellulose (CMC) compared to those in the [RsXylII-2A-RaCel5A] transgenic line. This higher activity was attributable to the synergistic effects of the different cellulases used. The [RsBglB-2A-RaCel5A] lines exhibited greater efficiency (35-74% increase) of CMC hydrolysis when the exoglucanase CBHII was added. Among the various exoglucanases, E3 showed higher activity with the crude extract of the [RsBglB-2A-RaCel5A] transgenic line. Transgenic expression of 2A-mediated multiple enzymes induced synergistic effects and led to more efficient hydrolysis of lignocellulosic materials for bioethanol production.
Collapse
Affiliation(s)
- Dae-Seok Lee
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
- Department of Forest Products and Technology (Bk21 Program), Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Kwang-Ho Lee
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Sera Jung
- Department of Forest Products and Technology (Bk21 Program), Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Eun-Jin Jo
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Kyung-Hwan Han
- Department of Plant Molecular Biology, Michigan State UniversityUSA
| | - Hyeun-Jong Bae
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
- Department of Forest Products and Technology (Bk21 Program), Chonnam National UniversityGwangju 500–757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju
| |
Collapse
|
43
|
Li J, Chu H, Zhang Y, Mou T, Wu C, Zhang Q, Xu J. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS One 2012; 7:e34231. [PMID: 22457828 PMCID: PMC3311617 DOI: 10.1371/journal.pone.0034231] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/24/2012] [Indexed: 11/18/2022] Open
Abstract
Heading date and grain weight are two determining agronomic traits of crop yield. To date, molecular factors controlling both heading date and grain weight have not been identified. Here we report the isolation of a hemizygous mutation, heading and grain weight (hgw), which delays heading and reduces grain weight in rice. Analysis of hgw mutant phenotypes indicate that the hemizygous hgw mutation decreases latitudinal cell number in the lemma and palea, both composing the spikelet hull that is known to determine the size and shape of brown grain. Molecular cloning and characterization of the HGW gene showed that it encodes a novel plant-specific ubiquitin-associated (UBA) domain protein localized in the cytoplasm and nucleus, and functions as a key upstream regulator to promote expressions of heading date- and grain weight-related genes. Moreover, co-expression analysis in rice and Arabidopsis indicated that HGW and its Arabidopsis homolog are co-expressed with genes encoding various components of ubiquitination machinery, implying a fundamental role for the ubiquitination pathway in heading date and grain weight control.
Collapse
Affiliation(s)
- Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Huangwei Chu
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Yonghong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Tongmin Mou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jian Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
44
|
Kim SY, Jung YJ, Shin MR, Park JH, Nawkar GM, Maibam P, Lee ES, Kim KS, Paeng SK, Kim WY, Lee KO, Yun DJ, Kang CH, Lee SY. Molecular and functional properties of three different peroxiredoxin isotypes in Chinese cabbage. Mol Cells 2012; 33:27-33. [PMID: 22228209 PMCID: PMC3887738 DOI: 10.1007/s10059-012-2166-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/30/2011] [Accepted: 12/08/2011] [Indexed: 01/11/2023] Open
Abstract
Peroxiredoxins (Prxs), which are classified into three isotypes in plants, play important roles in protection systems as peroxidases or molecular chaperones. The three Prx isotypes of Chinese cabbage, namely C1C-Prx, C2C-Prx, and C-PrxII, have recently been identified and characterized. The present study compares their molecular properties and biochemical functions to gain insights into their concerted roles in plants. The three Prx isotype genes were differentially expressed in tissue- and developmental stage-specific manners. The transcript level of the C1C-Prx gene was abundant at the seed stage, but rapidly decreased after imbibitions. In contrast, the C2C-Prx transcript was not detected in the seeds, but its expression level increased at germination and was maintained thereafter. The C-PrxII transcript level was mild at the seed stage, rapidly increased for 10 days after imbibitions, and gradually disappeared thereafter. In the localization analysis using GFP-fusion proteins, the three isotypes showed different cellular distributions. C1C-Prx was localized in the cytosol and nucleus, whereas C2C-Prx and C-Prx were found mainly in the chloroplast and cytosol, respectively. In vitro thiol-dependent antioxidant assays revealed that the relative peroxidase activities of the isotypes were CPrxII > C2C-Prx > C1C-Prx. C1C-Prx and C2C-Prx, but not C-PrxII, prevented aggregation of malate dehydrogenase as a molecular chaperone. Taken together, these results suggest that the three isotypes of Prx play specific roles in the cells in timely and spatially different manners, but they also cooperate with each other to protect the plant.
Collapse
Affiliation(s)
- Sun Young Kim
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Young Jun Jung
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Mi Rim Shin
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Jung Hoon Park
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Ganesh M. Nawkar
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Punyakishore Maibam
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Kang-San Kim
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Woe Yeon Kim
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Kyun Oh Lee
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|
45
|
Jung C, Lee GJ, Jang M, Lee M, Lee J, Kang H, Sohn EJ, Hwang I. Identification of sorting motifs of AtβFruct4 for trafficking from the ER to the vacuole through the Golgi and PVC. Traffic 2011; 12:1774-92. [PMID: 21899678 DOI: 10.1111/j.1600-0854.2011.01276.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although much is known about the molecular mechanisms involved in transporting soluble proteins to the central vacuole, the mechanisms governing the trafficking of membrane proteins remain largely unknown. In this study, we investigated the mechanism involved in targeting the membrane protein, AtβFructosidase 4 (AtβFruct4), to the central vacuole in protoplasts. AtβFruct4 as a green fluorescent protein (GFP) fusion protein was transported as a membrane protein during transit from the endoplasmic reticulum (ER) through the Golgi apparatus and the prevacuolar compartment (PVC). The N-terminal cytosolic domain of AtβFruct4 was sufficient for transport from the ER to the central vacuole and contained sequence motifs required for trafficking. The sequence motifs, LL and PI, were found to be critical for ER exit, while the EEE and LCPYTRL sequence motifs played roles in trafficking primarily from the trans Golgi network (TGN) to the PVC and from the PVC to the central vacuole, respectively. In addition, actin filaments and AtRabF2a, a Rab GTPase, played critical roles in vacuolar trafficking at the TGN and PVC, respectively. On the basis of these results, we propose that the vacuolar trafficking of AtβFruct4 depends on multiple sequence motifs located at the N-terminal cytoplasmic domain that function as exit and/or sorting signals in different stages during the trafficking process.
Collapse
Affiliation(s)
- Chanjin Jung
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Du C, Xu Y, Wang Y, Chong K. Adenosine diphosphate ribosylation factor-GTPase-activating protein stimulates the transport of AUX1 endosome, which relies on actin cytoskeletal organization in rice root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:698-709. [PMID: 21631728 DOI: 10.1111/j.1744-7909.2011.01059.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polar auxin transport, which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers, mediates various processes of plant growth and development. Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein, GNOM. However, the mediation of auxin influx carrier recycling is poorly understood. Here, we report that overexpression of OsAGAP, an ARF-GTPase-activating protein in rice, stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1. AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption. Furthermore, OsAGAP is involved in actin cytoskeletal organization, and its overexpression tends to reduce the thickness and bundling of actin filaments. Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells, and was only slightly promoted when the actin filaments were completely disrupted by Lat B. Thus, we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.
Collapse
Affiliation(s)
- Cheng Du
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
47
|
Taylor NG. A role for Arabidopsis dynamin related proteins DRP2A/B in endocytosis; DRP2 function is essential for plant growth. PLANT MOLECULAR BIOLOGY 2011; 76:117-129. [PMID: 21461976 DOI: 10.1007/s11103-011-9773-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 03/24/2011] [Indexed: 05/29/2023]
Abstract
Endocytosis is an essential cellular process that allows cells to internalise proteins and lipid from the plasma membrane to change its composition and sense and respond to alterations in their extracellular environment. In animal cells, the protein dynamin is involved in membrane scission during endocytosis, allowing invaginating vesicles to become internalised. Arabidopsis encodes two proteins that have all the domains essential for function in the animal dynamins, Dynamin Related Proteins 2A and 2B (DRP2A and 2B). These proteins show very high sequence identity and are both expressed throughout the plant. Single mutants exhibited no obvious phenotypes but double mutants could be recovered as gametophytes carrying mutant copies of both DRP2A and DRP2B were not transmitted to the next generation. Immunolabelling localised DRP2A/B to the tips of root hairs, a site where rapid endocytosis takes place. Constitutive expression of a GTPase defective Dominant Negative form of DRP2A/B did not allow the recovery of plants expressing this protein at a detectable level, demonstrating an interference with endogenous dynamin. Using an inducible expression system Dominant Negative protein was transiently expressed at levels several fold that of the endogenous proteins. Inducible expression of the Dominant Negative protein resulted in reduced endocytosis at the tips of root hairs, as measured by internalisation of an endocytic tracer dye, and resulted in root hairs bulging and bursting. Together these data support a role for DRP2A/B in endocytosis in Arabidopsis, and demonstrates that the function of at least one of these closely related proteins is essential for plant growth.
Collapse
Affiliation(s)
- Neil G Taylor
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, UK.
| |
Collapse
|
48
|
Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MWY, Pimpl P, Jiang L. Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:882-96. [PMID: 21251105 DOI: 10.1111/j.1365-313x.2010.04469.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Lee DW, Hwang I. Transient expression and analysis of chloroplast proteins in Arabidopsis protoplasts. Methods Mol Biol 2011; 774:59-71. [PMID: 21822832 DOI: 10.1007/978-1-61779-234-2_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although chloroplasts have their own genome, most chloroplast proteins are encoded in the nuclear genome and are targeted to chloroplasts posttranslationally. In vitro import studies with isolated chloroplasts have been widely used and have helped to elucidate the complex mechanisms involved in protein targeting to chloroplasts. Recently, an in vivo targeting method using protoplasts emerged as an alternative method to investigate protein targeting into chloroplasts. The present study describes a set of principles and methods, including polyethylene glycol-mediated reporter plasmid transformation, fluorescence microscopy, immunocytochemistry, and Western blotting, for studying chloroplast interior and envelope membrane protein targeting using protoplasts isolated from Arabidopsis thaliana leaf tissues.
Collapse
Affiliation(s)
- Dong Wook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | |
Collapse
|