1
|
Zhu W, Li G, Shi H, Ruan Y, Liu C. Transcriptome and Metabolome Analyses Reveal the Regulatory Mechanism of TC1a in the Sucrose and Starch Synthesis Pathways in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:3402. [PMID: 39683196 DOI: 10.3390/plants13233402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins, originally identified in mammals, have since been found in most plants. TRAF proteins in plants have been shown to be involved in cellular autophagy, immunity, drought resistance, and ABA induction. However, the role in regulating sucrose and starch metabolism has not been reported. In this study, we confirmed that TC1a can regulate sucrose and starch metabolism through gene editing, phenotypic observation, transcriptomics and metabolomics analyses. Initially, 200 and 81 TRAF proteins were identified in rapeseed (Brassica napus L.) and Arabidopsis thaliana, respectively, and divided into five classes. We found that overexpression of TC1a inhibited root length, plant height, flowering, and leaf development in A. thaliana. Additionally, 12 differentially expressed genes (DEGs) related to sucrose and starch metabolism pathways were identified in overexpressing and knockout plants, respectively. Six differentially accumulated metabolites (DAMs)-fructose, sucrose, glucose, trehalose, maltose, and 6-phosphate fructose-were identified using widely targeted metabolomics analysis. The results show that TC1a affects the growth and development of Arabidopsis, and induces the expression of sucrose and starch synthase and hydrolases, providing a foundation for further research into its molecular mechanisms.
Collapse
Affiliation(s)
- Wenjun Zhu
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Guangze Li
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Han Shi
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Liu
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Liu T, Zheng Y, Zhou S, Wang Y, Lei X, Xie L, Lin Q, Chang C, Xiao S, Qiu R, Qi H. 14-3-3 proteins inhibit autophagy by regulating SINAT-mediated proteolysis of ATG6 in Arabidopsis. BMC PLANT BIOLOGY 2024; 24:1148. [PMID: 39609744 PMCID: PMC11605875 DOI: 10.1186/s12870-024-05854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Autophagy is a conserved cellular process crucial for recycling cytoplasmic components and maintaining cellular homeostasis in eukaryotes. During autophagy, the formation of a protein complex involving AUTOPHAGY-RELATED PROTEIN 6 (ATG6) and phosphatidylinositol 3-kinase is pivotal for recruiting proteins involved in phagophore expansion. However, the intricate molecular mechanism regulating this protein complex in plants remains elusive. RESULTS Here, we aimed to unravel the molecular regulation of autophagy dynamics in Arabidopsis thaliana by investigating the involvement of the scaffold proteins 14-3-3λ and 14-3-3κ in regulating the proteolysis of ATG6. Phenotypic analyses revealed that 14-3-3λ and 14-3-3κ overexpression lines exhibited increased sensitivity to nutrient starvation, premature leaf senescence, and a decrease in starvation-induced autophagic vesicles, resembling the phenotypes of autophagy-defective mutants, suggesting the potential roles of 14-3-3 proteins in regulating autophagy in plants. Furthermore, our investigation unveiled the involvement of 14-3-3λ and 14-3-3κ in the RING finger E3 ligase SINAT1-mediated ubiquitination and destabilization of ATG6 in vivo. We also observed repressed turnover of ATG6 and translocation of GFP-ATG6 to mCherry-ATG8a-labelled punctate structures in the autophagy-defective mutant, which suggesting that ATG6 is probably a target of autophagy. Additionally, 14-3-3λ and 14-3-3κ interacted with Tumor necrosis factor Receptor Associated Factor 1a (TRAF1a) to promote the stability of TRAF1a in vivo under nutrient-rich conditions, suggesting a feedback regulation of autophagy. These findings demonstrate that 14-3-3λ and 14-3-3κ serve as scaffold proteins to regulate autophagy by facilitating the SINAT1-mediated proteolysis of ATG6, involving both direct and indirect mechanisms, in plants. CONCLUSIONS 14-3-3 proteins regulate autophagy by directly or indirectly binding to ATG6 and SINAT1 to promote ubiquitination and degradation of ATG6. 14-3-3 proteins are involved in modulating autophagy dynamics by facilitating SINAT1-mediated ubiquitination and degradation of ATG6.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yuping Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shunkang Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xue Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Changqing Chang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Wu J, Zheng H, Dong Y, Zhao F, Zhai Y, Yang H, Gong W, Hui W, Urano D, Wang J. The conserved transcriptional regulation mechanism of ADH1 gene in Zanthoxylum armatum to waterlogging stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109133. [PMID: 39326225 DOI: 10.1016/j.plaphy.2024.109133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Waterlogging stress negatively affects plant growth and survival. However, the ability of Zanthoxylum armatum, a valuable tree species, to tolerate and adapt to waterlogging stress remains poorly understood. Here we report how alcohol dehydrogenase 1 (ZaADH1) confers waterlogging stress tolerance in Z. armatum. ZaADH1 expression was induced after waterlogging treatment. ZaADH1 overexpression increased waterlogging stress by modulating the metabolite levels of the ADH enzyme, soluble sugar, and trehalose, promoting glycolysis and carbohydrate metabolism. The overexpression of ZaADH1 in Arabidopsis thaliana increased the total plant area and chlorophyll content, thereby increasing resistance to waterlogging stress. Physiological and overexpression transcriptome analyses in A. thaliana indicated that ZaADH1 overexpressing lines generated more carbohydrates to meet energy demands, employing a "static" strategy to increase tolerance to waterlogging stress, which confirms the conservation of the ADH1 response to waterlogging stress and represents a potential crucial measure for improving waterlogging tolerance in Z. armatum.
Collapse
Affiliation(s)
- Jiaojiao Wu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China; College of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, China; Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Hao Zheng
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yating Dong
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Feiyan Zhao
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yafang Zhai
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hua Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Wenkai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore.
| | - Jingyan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Ro N, Oh H, Ko HC, Yi J, Na YW, Haile M. Genome-Wide Analysis of Fruit Color and Carotenoid Content in Capsicum Core Collection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2562. [PMID: 39339537 PMCID: PMC11435234 DOI: 10.3390/plants13182562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
This study investigated carotenoid content and fruit color variation in 306 pepper accessions from diverse Capsicum species. Red-fruited accessions were predominant (245 accessions), followed by orange (35) and yellow (20). Carotenoid profiles varied significantly across accessions, with capsanthin showing the highest mean concentration (239.12 μg/g), followed by β-cryptoxanthin (63.70 μg/g) and zeaxanthin (63.25 μg/g). Total carotenoid content ranged from 7.09 to 2566.67 μg/g, emphasizing the diversity within the dataset. Correlation analysis revealed complex relationships between carotenoids, with strong positive correlations observed between total carotenoids and capsanthin (r = 0.94 ***), β-cryptoxanthin (r = 0.87 ***), and zeaxanthin (r = 0.84 ***). Principal component analysis (PCA) identified two distinct carotenoid groups, accounting for 67.6% of the total variance. A genome-wide association study (GWAS) identified 91 significant single nucleotide polymorphisms (SNPs) associated with fruit color (15 SNPs) and carotenoid content (76 SNPs). These SNPs were distributed across all chromosomes, with varying numbers on each. Among individual carotenoids, α-carotene was associated with 28 SNPs, while other carotenoids showed different numbers of associated SNPs. Candidate genes encoding diverse proteins were identified near significant SNPs, potentially contributing to fruit color variation and carotenoid accumulation. These included pentatricopeptide repeat-containing proteins, mitochondrial proton/calcium exchangers, E3 ubiquitin-protein ligase SINAT2, histone-lysine N-methyltransferase, sucrose synthase, and various enzymes involved in metabolic processes. Seven SNPs exhibited pleiotropic effects on multiple carotenoids, particularly β-cryptoxanthin and capsanthin. The findings of this study provide insights into the genetic architecture of carotenoid biosynthesis and fruit color in peppers, offering valuable resources for targeted breeding programs aimed at enhancing the nutritional and sensory attributes of pepper varieties.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyeonseok Oh
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Ho-Cheol Ko
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-Wang Na
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
6
|
Chen Q, Zhou S, Qu M, Yang Y, Chen Q, Meng X, Fan H. Cucumber (Cucumis sativus L.) translationally controlled tumor protein interacts with CsRab11A and promotes activation of target of rapamycin in response to Podosphaera xanthii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:332-347. [PMID: 38700955 DOI: 10.1111/tpj.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The target of rapamycin (TOR) kinase serves as a central regulator that integrates nutrient and energy signals to orchestrate cellular and organismal physiology in both animals and plants. Despite significant advancements having been made in understanding the molecular and cellular functions of plant TOR kinases, the upstream regulators that modulate TOR activity are not yet fully elucidated. In animals, the translationally controlled tumor protein (TCTP) is recognized as a key player in TOR signaling. This study reveals that two TCTP isoforms from Cucumis sativus, when introduced into Arabidopsis, are instrumental in balancing growth and defense mechanisms against the fungal pathogen Golovinomyces cichoracearum. We hypothesize that plant TCTPs act as upstream regulators of TOR in response to powdery mildew caused by Podosphaera xanthii in Cucumis. Our research further uncovers a stable interaction between CsTCTP and a small GTPase, CsRab11A. Transient transformation assays indicate that CsRab11A is involved in the defense against P. xanthii and promotes the activation of TOR signaling through CsTCTP. Moreover, our findings demonstrate that the critical role of TOR in plant disease resistance is contingent upon its regulated activity; pretreatment with a TOR inhibitor (AZD-8055) enhances cucumber plant resistance to P. xanthii, while pretreatment with a TOR activator (MHY-1485) increases susceptibility. These results suggest a sophisticated adaptive response mechanism in which upstream regulators, CsTCTP and CsRab11A, coordinate to modulate TOR function in response to P. xanthii, highlighting a novel aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Qiumin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mengqi Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yun Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qinglei Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Sharma I, Talakayala A, Tiwari M, Asinti S, Kirti PB. A synchronized symphony: Intersecting roles of ubiquitin proteasome system and autophagy in cellular degradation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108700. [PMID: 38781635 DOI: 10.1016/j.plaphy.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Eukaryotic cells have evolved dynamic quality control pathways and recycling mechanisms for cellular homeostasis. We discuss here, the two major systems for quality control, the ubiquitin-proteasome system (UPS) and autophagy that regulate cellular protein and organelle turnover and ensure efficient nutrient management, cellular integrity and long-term wellbeing of the plant. Both the pathways rely on ubiquitination signal to identify the targets for proteasomal and autophagic degradation, yet they use distinct degradation machinery to process these cargoes. Nonetheless, both UPS and autophagy operate together as an interrelated quality control mechanism where they communicate with each other at multiple nodes to coordinate and/or compensate the recycling mechanism particularly under development and environmental cues. Here, we provide an update on the cellular machinery of autophagy and UPS, unravel the nodes of their crosstalk and particularly highlight the factors responsible for their differential deployment towards protein, macromolecular complexes and organelles.
Collapse
Affiliation(s)
- Isha Sharma
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India, 502324.
| | - Ashwini Talakayala
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India, 502324
| | - Manish Tiwari
- CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sarath Asinti
- Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - P B Kirti
- Agri Biotech Foundation, Rajendranagar, 500030, Hyderabad, India
| |
Collapse
|
8
|
Zhu T, Wei C, Yu Y, Zhang Z, Zhu J, Liang Z, Song X, Fu W, Cui Y, Wang ZY, Li C. The BAS chromatin remodeler determines brassinosteroid-induced transcriptional activation and plant growth in Arabidopsis. Dev Cell 2024; 59:924-939.e6. [PMID: 38359831 PMCID: PMC11003849 DOI: 10.1016/j.devcel.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Brassinosteroid (BR) signaling leads to the nuclear accumulation of the BRASSINAZOLE-RESISTANT 1 (BZR1) transcription factor, which plays dual roles in activating or repressing the expression of thousands of genes. BZR1 represses gene expression by recruiting histone deacetylases, but how it activates transcription of BR-induced genes remains unclear. Here, we show that BR reshapes the genome-wide chromatin accessibility landscape, increasing the accessibility of BR-induced genes and reducing the accessibility of BR-repressed genes in Arabidopsis. BZR1 physically interacts with the BRAHMA-associated SWI/SNF (BAS)-chromatin-remodeling complex on the genome and selectively recruits the BAS complex to BR-activated genes. Depletion of BAS abrogates the capacities of BZR1 to increase chromatin accessibility, activate gene expression, and promote cell elongation without affecting BZR1's ability to reduce chromatin accessibility and expression of BR-repressed genes. Together, these data identify that BZR1 recruits the BAS complex to open chromatin and to mediate BR-induced transcriptional activation of growth-promoting genes.
Collapse
Affiliation(s)
- Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chuangqi Wei
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Synthetic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiameng Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-food Canada, London, ON N5V 4T3, Canada
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
9
|
Lei Y, Yu Y, Fu W, Zhu T, Wu C, Zhang Z, Yu Z, Song X, Xu J, Liang Z, Lü P, Li C. BCL7A and BCL7B potentiate SWI/SNF-complex-mediated chromatin accessibility to regulate gene expression and vegetative phase transition in plants. Nat Commun 2024; 15:935. [PMID: 38296999 PMCID: PMC10830565 DOI: 10.1038/s41467-024-45250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are multi-subunit machineries that establish and maintain chromatin accessibility and gene expression by regulating chromatin structure. However, how the remodeling activities of SWI/SNF complexes are regulated in eukaryotes remains elusive. B-cell lymphoma/leukemia protein 7 A/B/C (BCL7A/B/C) have been reported as subunits of SWI/SNF complexes for decades in animals and recently in plants; however, the role of BCL7 subunits in SWI/SNF function remains undefined. Here, we identify a unique role for plant BCL7A and BCL7B homologous subunits in potentiating the genome-wide chromatin remodeling activities of SWI/SNF complexes in plants. BCL7A/B require the catalytic ATPase BRAHMA (BRM) to assemble with the signature subunits of the BRM-Associated SWI/SNF complexes (BAS) and for genomic binding at a subset of target genes. Loss of BCL7A and BCL7B diminishes BAS-mediated genome-wide chromatin accessibility without changing the stability and genomic targeting of the BAS complex, highlighting the specialized role of BCL7A/B in regulating remodeling activity. We further show that BCL7A/B fine-tune the remodeling activity of BAS complexes to generate accessible chromatin at the juvenility resetting region (JRR) of the microRNAs MIR156A/C for plant juvenile identity maintenance. In summary, our work uncovers the function of previously elusive SWI/SNF subunits in multicellular eukaryotes and provides insights into the mechanisms whereby plants memorize the juvenile identity through SWI/SNF-mediated control of chromatin accessibility.
Collapse
Affiliation(s)
- Yawen Lei
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Caihong Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhihao Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zewang Yu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianqu Xu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peitao Lü
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
10
|
Huang L, Wen X, Jin L, Han H, Guo H. HOOKLESS1 acetylates AUTOPHAGY-RELATED PROTEIN18a to promote autophagy during nutrient starvation in Arabidopsis. THE PLANT CELL 2023; 36:136-157. [PMID: 37823521 PMCID: PMC10734606 DOI: 10.1093/plcell/koad252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Acetylation is an important posttranslational modification (PTM) that regulates almost all core processes of autophagy in yeast and mammals. However, the role of protein acetylation in plant autophagy and the underlying regulatory mechanisms remain unclear. Here, we show the essential role of the putative acetyltransferase HOOKLESS1 (HLS1) in acetylation of the autophagy-related protein ATG18a, a key autophagy component that regulates autophagosome formation in Arabidopsis (Arabidopsis thaliana). Loss of HLS1 function suppressed starvation-induced autophagy and increased plant susceptibility to nutrient deprivation. We discovered that HLS1 physically interacts with and directly acetylates ATG18a both in vitro and in vivo. In contrast, mutating putative active sites in HLS1 inhibited ATG18a acetylation and suppressed autophagy upon nutrient deprivation. Accordingly, overexpression of ATG18a mutant variants with lower acetylation levels inhibited the binding activity of ATG18a to PtdIns(3)P and autophagosome formation under starvation conditions. Moreover, HLS1-modulated autophagy was uncoupled from its function in hook development. Taken together, these findings shed light on a key regulator of autophagy and further elucidate the importance of PTMs in modulating autophagy in plants.
Collapse
Affiliation(s)
- Li Huang
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xing Wen
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Lian Jin
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Huihui Han
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Roche J, Guérin C, Dupuits C, Elmodafar C, Goupil P, Mouzeyar S. In silico analysis of the Seven IN Absentia (SINA) genes in bread wheat sheds light on their structure in plants. PLoS One 2023; 18:e0295021. [PMID: 38127955 PMCID: PMC10734943 DOI: 10.1371/journal.pone.0295021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Seven IN Absentia (SINA) is a small family of genes coding for ubiquitin-ligases that play major roles in regulating various plant growth and developmental processes, as well as in plant response to diverse biotic and abiotic stresses. Here, we studied the SINA genes family in bread wheat Triticum aestivum which is a culture of major importance for food security worldwide. One hundred and forty-one SINA family genes have been identified in bread wheat and showed that their number is very high compared to other plant species such as A. thaliana or rice. The expansion of this family seems to have been more important in monocots than in eudicots. In bread wheat, the chromosome 3 distal region is the site of a massive amplification of the SINA family, since we found that 83 of the 141 SINA genes are located on this chromosome in the Chinese Spring variety. This amplification probably occurred as a result of local duplications, followed by sequences divergence. The study was then extended to 4856 SINA proteins from 97 plant species. Phylogenetic and structural analyses identified a group of putative ancestral SINA proteins in plants containing a 58 aminoacid specific signature. Based on sequence homology and the research of that "Ancestral SINA motif" of 58 amino acids, a methodological process has been proposed and lead to the identification of functional SINA genes in a large family such as the Triticae that might be used for other species. Finally, tis paper gives a comprehensive overview of wheat gene family organization and functionalization taken the SINA genes as an example.
Collapse
Affiliation(s)
- Jane Roche
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont-Auvergne, INRAe, Clermont–Ferrand, France
| | - Claire Guérin
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont-Auvergne, INRAe, Clermont–Ferrand, France
| | - Céline Dupuits
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont-Auvergne, INRAe, Clermont–Ferrand, France
| | - Cherkaoui Elmodafar
- Faculté des Sciences et Techniques, Centre d’Agrobiotechnologie et Bioingénierie, Université Cadi Ayyad, Marrakech, Morocco
| | - Pascale Goupil
- UMR A547 Physiologie Intégrative de l’Arbre en environnement Fluctuant, Université Clermont-Auvergne, INRAe, Clermont–Ferrand, France
| | - Said Mouzeyar
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont-Auvergne, INRAe, Clermont–Ferrand, France
| |
Collapse
|
12
|
Wang Q, Zhou X, He S, Wang W, Ma D, Wang Y, Zhang H. Receptor Plants Alleviated Allelopathic Stress from Invasive Chenopodium ambrosioides L. by Upregulating the Production and Autophagy of Their Root Border Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3810. [PMID: 38005707 PMCID: PMC10674979 DOI: 10.3390/plants12223810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Chenopodium ambrosioides L. is an invasive plant native to the Neotropics that has seriously threatened the ecological security of China, and allelopathy is one of the mechanisms underlying its successful invasion. Maize (Zea mays L.) and soybean (Glycine max (L.) Merr.), as the main food crops, are usually affected by C. ambrosioides in their planting areas. The purpose of this study was to investigate the ultrastructure, autophagy, and release-related gene expression of receptor plant root border cells (RBCs) after exposure to volatile oil from C. ambrosioides and its main component α-terpene, which were studied using maize and soybean as receptor plants. The volatiles inhibited root growth and promoted a brief increase in the number of RBCs. As the volatile concentration increased, the organelles in RBCs were gradually destroyed, and intracellular autophagosomes were produced and continuously increased in number. Transcriptomic analysis revealed that genes involved in the synthesis of the plasma membrane and cell wall components in receptor root cells were significantly up-regulated, particularly those related to cell wall polysaccharide synthesis. Meanwhile, polygalacturonase and pectin methylesterases (PME) exhibited up-regulated expression, and PME activity also increased. The contribution of α-terpene to this allelopathic effect of C. ambrosioides volatile oil exceeded 70%. Based on these results, receptor plant root tips may increase the synthesis of cell wall substances while degrading the intercellular layer, accelerating the generation and release of RBCs. Meanwhile, their cells survived through autophagy of RBCs, indicating the key role of RBCs in alleviating allelopathic stress from C. ambrosioides volatiles.
Collapse
Affiliation(s)
- Qiang Wang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Xijie Zhou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Shengli He
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Wenguo Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Danwei Ma
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Yu Wang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Hong Zhang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| |
Collapse
|
13
|
Zhang B, Huang S, Guo Z, Meng Y, Li X, Tian Y, Chen W. Salicylic acid accelerates carbon starvation-induced leaf senescence in Arabidopsis thaliana by inhibiting autophagy through Nonexpressor of pathogenesis-related genes 1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111859. [PMID: 37673221 DOI: 10.1016/j.plantsci.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
In plants, leaf senescence is regulated by several factors, including age and carbon starvation. The molecular mechanism of age-regulated developmental leaf senescence differs from that of carbon starvation-induced senescence. Salicylic acid (SA) and Nonexpressor of pathogenesis-related genes 1 (NPR1) play important roles in promoting developmental leaf senescence. However, the relationship between SA signaling and carbon starvation-induced leaf senescence is not currently well understood. Here, we used Arabidopsis thaliana as material and found that carbon starvation-induced leaf senescence was accelerated in the SA dihydroxylase mutants s3hs5h compared to the Columbia ecotype (Col). Exogenous SA treatment significantly promoted carbon starvation-induced leaf senescence, especially in NPR1-GFP. Increasing the endogenous SA and overexpression of NPR1 inhibited carbon starvation-induced autophagy. However, mutation of NPR1 delayed carbon starvation-induced leaf senescence, increased autophagosome production and accelerated autophagic degradation of the Neighbor of BRCA1 gene 1 (NBR1). In conclusion, SA promotes carbon starvation-induced leaf senescence by inhibiting autophagy via NPR1.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zetian Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xue Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
14
|
Xue Q, Shen C, Liu Q, Liu P, Guo D, Zheng L, Liu J, Liu C, Ye Q, Wang T, Dong J. The PtdIns3P phosphatase MtMP promotes symbiotic nitrogen fixation via mitophagy in Medicago truncatula. iScience 2023; 26:107752. [PMID: 37954141 PMCID: PMC10638472 DOI: 10.1016/j.isci.2023.107752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/07/2023] [Accepted: 08/24/2023] [Indexed: 11/14/2023] Open
Abstract
Symbiotic nitrogen fixation is a complex process in which legumes interact with rhizobia under nitrogen starvation. In this study, we found that myotubularin phosphatase (MtMP) is mainly expressed in roots and nodules in Medicago truncatula. MtMP promotes autophagy by dephosphorylating PtdIns3P on autophagosomes. The mp mutants inoculated with rhizobia showed a significant reduction in nitrogenase activity and significantly higher number of mitochondria than those of wild-type plants under nitrogen starvation, indicating that MtMP is involved in mitophagy of the infection zone. Mitophagy may provide carbon skeletons and nitrogen for the development of bacteroids and the reprogramming of infected cells. In conclusion, we found, for the first time, that myotubularin phosphatase is involved in autophagy in plants. MtMP-involved autophagy plays an active role in symbiotic nitrogen fixation. These results deepen our understanding of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Qixia Xue
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chen Shen
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peng Liu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Da Guo
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lihua Zheng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinling Liu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Liu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Agbemafle W, Wong MM, Bassham DC. Transcriptional and post-translational regulation of plant autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6006-6022. [PMID: 37358252 PMCID: PMC10575704 DOI: 10.1093/jxb/erad211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
In response to changing environmental conditions, plants activate cellular responses to enable them to adapt. One such response is autophagy, in which cellular components, for example proteins and organelles, are delivered to the vacuole for degradation. Autophagy is activated by a wide range of conditions, and the regulatory pathways controlling this activation are now being elucidated. However, key aspects of how these factors may function together to properly modulate autophagy in response to specific internal or external signals are yet to be discovered. In this review we discuss mechanisms for regulation of autophagy in response to environmental stress and disruptions in cell homeostasis. These pathways include post-translational modification of proteins required for autophagy activation and progression, control of protein stability of the autophagy machinery, and transcriptional regulation, resulting in changes in transcription of genes involved in autophagy. In particular, we highlight potential connections between the roles of key regulators and explore gaps in research, the filling of which can further our understanding of the autophagy regulatory network in plants.
Collapse
Affiliation(s)
- William Agbemafle
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Min May Wong
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
16
|
Lu H, Niu X, Fan Y, Yuan Y, Huang L, Zhao B, Liu Y, Xiao F. The extensin protein SAE1 plays a role in leaf senescence and is targeted by the ubiquitin ligase SINA4 in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5635-5652. [PMID: 37368909 DOI: 10.1093/jxb/erad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/25/2023] [Indexed: 06/29/2023]
Abstract
Extensins are hydroxyproline-rich glycoproteins and generally play a structural role in cell wall integrity. In this study, we determined a novel role of tomato (Solanum lycopersicum) SENESCENCE-ASSOCIATED EXTENSIN1 (SAE1) in leaf senescence. Both gain- and loss-of-function analyses suggest that SAE1 plays a positive role in leaf senescence in tomato. Transgenic plants overexpressing SAE1 (SAE1-OX) exhibited premature leaf senescence and enhanced dark-induced senescence, whereas SAE1 knockout (SAE1-KO) plants displayed delayed development-dependent and dark-induced leaf senescence. Heterologous overexpression of SlSAE1 in Arabidopsis also led to premature leaf senescence and enhanced dark-induced senescence. In addition, the SAE1 protein was found to interact with the tomato ubiquitin ligase SlSINA4, and SlSINA4 promoted SAE1 degradation in a ligase-dependent manner when co-expressed in Nicotiana benthamiana leaves, suggesting that SlSINA4 controls SAE1 protein levels via the ubiquitin-proteasome pathway. Introduction of an SlSINA4-overexpression construct into the SAE1-OX tomato plants consistently completely eliminated accumulation of the SAE1 protein and suppressed the phenotypes conferred by overexpression of SAE1. Taken together, our results suggest that the tomato extensin SAE1 plays a positive role in leaf senescence and is regulated by the ubiquitin ligase SINA4.
Collapse
Affiliation(s)
- Han Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Youhong Fan
- Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yulin Yuan
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Li Huang
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- School of Horticulture, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| |
Collapse
|
17
|
Lei P, Yu F, Liu X. Recent advances in cellular degradation and nuclear control of leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5472-5486. [PMID: 37453102 DOI: 10.1093/jxb/erad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Senescence is the final stage of plant growth and development, and is a highly regulated process at the molecular, cellular, and organismal levels. When triggered by age, hormonal, or environmental cues, plants actively adjust their metabolism and gene expression to execute the progression of senescence. Regulation of senescence is vital for the reallocation of nutrients to sink organs, to ensure reproductive success and adaptations to stresses. Identification and characterization of hallmarks of leaf senescence are of great importance for understanding the molecular regulatory mechanisms of plant senescence, and breeding future crops with more desirable senescence traits. Tremendous progress has been made in elucidating the genetic network underpinning the metabolic and cellular changes in leaf senescence. In this review, we focus on three hallmarks of leaf senescence - chlorophyll and chloroplast degradation, loss of proteostasis, and activation of senescence-associated genes (SAGs), and discuss recent findings of the molecular players and the crosstalk of senescence pathways.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
18
|
Tang X, Hou Y, Jiang F, Lang H, Li J, Cheng J, Wang L, Liu X, Zhang H. Genome-wide characterization of SINA E3 ubiquitin ligase family members and their expression profiles in response to various abiotic stresses and hormones in kiwifruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107891. [PMID: 37459805 DOI: 10.1016/j.plaphy.2023.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 08/13/2023]
Abstract
SINA (Seven in absentia) proteins in the subtype of E3 ubiquitin ligase family have important functions in regulating the growth and development as well as in response to abiotic and biotic stresses in plants. However, the characteristics and possible functions of SINA family proteins in kiwifruit are not studied. In this research, a total number of 11 AcSINA genes in the kiwifruit genome were identified. Chromosome location and multiple sequence alignment analyses indicated that they were unevenly distributed on 10 chromosomes and all contained the typical N-terminal RING domain and C-terminal SINA domain. Phylogenetic, gene structure and collinear relationship analyses revealed that they were highly conserved with the same gene structure, and have gone through segmental duplication events. Expression pattern analyses demonstrated that all AcSINAs were ubiquitously expressed in roots, stems and leaves, and were responsive to different abiotic and plant hormone treatments with overlapped but distinct expression patterns. Further yeast two-hybrid and Arabidopsis transformation analyses demonstrated most AcSINAs interacted with itself or other AcSINA members to form homo- or heterodimers, and ectopic expression of AcSINA2 in Arabidopsis led to hypersensitive growth phenotype of transgenic seedlings to ABA treatment. Our results reveal that AcSINAs take part in the response to various abiotic stresses and hormones, and provide important information for the functional elucidation of AcSINAs in vine fruit plants.
Collapse
Affiliation(s)
- Xiaoli Tang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Yaqiong Hou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Fudong Jiang
- Yantai Academy of Agricultural Sciences, 26 West Gangcheng Avenue, Yantai, Shandong, 265559, China
| | - Hongshan Lang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Jieshan Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Xiaohua Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 5 Qingdao Avenue, Yantai, 265503, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China.
| |
Collapse
|
19
|
Raffeiner M, Zhu S, González-Fuente M, Üstün S. Interplay between autophagy and proteasome during protein turnover. TRENDS IN PLANT SCIENCE 2023; 28:698-714. [PMID: 36801193 DOI: 10.1016/j.tplants.2023.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Protein homeostasis is epitomized by an equilibrium between protein biosynthesis and degradation: the 'life and death' of proteins. Approximately one-third of newly synthesized proteins are degraded. As such, protein turnover is required to maintain cellular integrity and survival. Autophagy and the ubiquitin-proteasome system (UPS) are the two principal degradation pathways in eukaryotes. Both pathways orchestrate many cellular processes during development and upon environmental stimuli. Ubiquitination of degradation targets is used as a 'death' signal by both processes. Recent findings revealed a direct functional link between both pathways. Here, we summarize key findings in the field of protein homeostasis, with an emphasis on the newly revealed crosstalk between both degradation machineries and how it is decided which pathway facilitates target degradation.
Collapse
Affiliation(s)
- Margot Raffeiner
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Shanshuo Zhu
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Manuel González-Fuente
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Suayib Üstün
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany.
| |
Collapse
|
20
|
Dai Y, Ma S, Guo Y, Zhang X, Liu D, Gao Y, Zhai C, Chen Q, Xiao S, Zhang Z, Yu L. Evolution and Expression of the Meprin and TRAF Homology Domain-Containing Gene Family in Solanaceae. Int J Mol Sci 2023; 24:ijms24108782. [PMID: 37240124 DOI: 10.3390/ijms24108782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Meprin and TRAF homology (MATH)-domain-containing proteins are pivotal in modulating plant development and environmental stress responses. To date, members of the MATH gene family have been identified only in a few plant species, including Arabidopsis thaliana, Brassica rapa, maize, and rice, and the functions of this gene family in other economically important crops, especially the Solanaceae family, remain unclear. The present study identified and analyzed 58 MATH genes from three Solanaceae species, including tomato (Solanum lycopersicum), potato (Solanum tuberosum), and pepper (Capsicum annuum). Phylogenetic analysis and domain organization classified these MATH genes into four groups, consistent with those based on motif organization and gene structure. Synteny analysis found that segmental and tandem duplication might have contributed to MATH gene expansion in the tomato and the potato, respectively. Collinearity analysis revealed high conservation among Solanaceae MATH genes. Further cis-regulatory element prediction and gene expression analysis showed that Solanaceae MATH genes play essential roles during development and stress response. These findings provide a theoretical basis for other functional studies on Solanaceae MATH genes.
Collapse
Affiliation(s)
- Yangshuo Dai
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Sirui Ma
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yixian Guo
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xue Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Di Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Gao
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chendong Zhai
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qinfang Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenfei Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lujun Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Fang F, Zhou W, Liu Y, Song Z, Zheng S, Wang F, Lu Z, Qi D, Li B, Sun N, Tang X, Zhang J, Zhan R, Wang L, Zhang H. Characterization of RING-type ubiquitin SINA E3 ligases and their responsive expression to salt and osmotic stresses in Brassica napus. PLANT CELL REPORTS 2023; 42:859-877. [PMID: 36788135 DOI: 10.1007/s00299-023-02996-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/02/2023] [Indexed: 05/06/2023]
Abstract
SINA (Seven in absentia) proteins in the subtype of E3 ubiquitin ligase family play a crucial role in plant growth and development. However, their functions in response to salt and osmotic stresses in oil crops are still largely unknown. In this study, a total number of 23 BnaSINAs were identified in the rapeseed genome. Chromosome location and collinear relationship analyses revealed that they were unevenly distributed on 13 chromosomes, and have gone through 22 segmental duplication events under purifying selection. Phylogenetic and gene structural analyses indicated that they belonged to five main groups, and those in the same subgroup showed similar gene structure. All BnaSINAs were predicted to form homo- or heterodimers. Except BnaSINA7, BnaSINA11, BnaSINA17 and BnaSINA18, which lacked the N-terminal RING finger, all BnaSINAs contained a conserved C-terminal SINA domain, a typical structural feature of the RING-type E3 ligase family. Transcriptional expression analyses demonstrated that most BnaSINAs were ubiquitously expressed in roots, stems, leaves, flowers, pods and seeds, and all were responsive to salt and osmotic stresses. Further, yeast two-hybrid and Arabidopsis mutant complementation analyses demonstrated that BnaSINA4 interacted with BnaSINA17 to form heterodimer, and expression of BnaSINA17 in the Arabidopsis sina2 mutant restored its growth resistance to salt and osmotic stresses. Our findings provide an important genetic foundation for the functional elucidation of BnaSINAs and a novel gene resource for the breeding of new oil crop cultivars with improved abiotic stress resistance.
Collapse
Affiliation(s)
- Fengyan Fang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Wenlong Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Songfeng Zheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Fei Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Zeyu Lu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Dazhuang Qi
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Nan Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Xiaoli Tang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, 265400, Shandong, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Renhui Zhan
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China.
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, 265400, Shandong, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China.
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, 265400, Shandong, China.
| |
Collapse
|
22
|
He Y, Gao J, Luo M, Gao C, Lin Y, Wong HY, Cui Y, Zhuang X, Jiang L. VAMP724 and VAMP726 are involved in autophagosome formation in Arabidopsis thaliana. Autophagy 2023; 19:1406-1423. [PMID: 36130166 PMCID: PMC10240985 DOI: 10.1080/15548627.2022.2127240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy, an evolutionarily conserved degradative process essential for cell homeostasis and development in eukaryotes, involves autophagosome formation and fusion with a lysosome/vacuole. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play important roles in regulating autophagy in mammals and yeast, but relatively little is known about SNARE function in plant autophagy. Here we identified and characterized two Arabidopsis SNAREs, AT4G15780/VAMP724 and AT1G04760/VAMP726, involved in plant autophagy. Phenotypic analysis showed that mutants of VAMP724 and VAMP726 are sensitive to nutrient-starved conditions. Live-cell imaging on mutants of VAMP724 and VAMP726 expressing YFP-ATG8e showed the formation of abnormal autophagic structures outside the vacuoles and compromised autophagic flux. Further immunogold transmission electron microscopy and electron tomography (ET) analysis demonstrated a direct connection between the tubular autophagic structures and the endoplasmic reticulum (ER) in vamp724-1 vamp726-1 double mutants. Further transient co-expression, co-immunoprecipitation and double immunogold TEM analysis showed that ATG9 (autophagy related 9) interacts and colocalizes with VAMP724 and VAMP726 in ATG9-positive vesicles during autophagosome formation. Taken together, VAMP724 and VAMP726 regulate autophagosome formation likely working together with ATG9 in Arabidopsis.Abbreviations: ATG, autophagy related; BTH, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester; Conc A, concanamycin A; EM, electron microscopy; ER, endoplasmic reticulum; FRET, Förster/fluorescence resonance energy transfer; MS, Murashige and Skoog; MVB, multivesicular body; PAS, phagophore assembly site; PM, plasma membrane; PVC, prevacuolar compartment; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TEM, transmission electron microscopy; TGN, trans-Golgi network; WT, wild-type.
Collapse
Affiliation(s)
- Yilin He
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayang Gao
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mengqian Luo
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Youshun Lin
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Yan Wong
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
23
|
Ao K, Rohmann PFW, Huang S, Li L, Lipka V, Chen S, Wiermer M, Li X. Puncta-localized TRAF domain protein TC1b contributes to the autoimmunity of snc1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:591-612. [PMID: 36799433 DOI: 10.1111/tpj.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Immune receptors play important roles in the perception of pathogens and initiation of immune responses in both plants and animals. Intracellular nucleotide-binding domain leucine-rich repeat (NLR)-type receptors constitute a major class of receptors in vascular plants. In the Arabidopsis thaliana mutant suppressor of npr1-1, constitutive 1 (snc1), a gain-of-function mutation in the NLR gene SNC1 leads to SNC1 overaccumulation and constitutive activation of defense responses. From a CRISPR/Cas9-based reverse genetics screen in the snc1 autoimmune background, we identified that mutations in TRAF CANDIDATE 1b (TC1b), a gene encoding a protein with four tumor necrosis factor receptor-associated factor (TRAF) domains, can suppress snc1 phenotypes. TC1b does not appear to be a general immune regulator as it is not required for defense mediated by other tested immune receptors. TC1b also does not physically associate with SNC1, affect SNC1 accumulation, or affect signaling of the downstream helper NLRs represented by ACTIVATED DISEASE RESISTANCE PROTEIN 1-L2 (ADR1-L2), suggesting that TC1b impacts snc1 autoimmunity in a unique way. TC1b can form oligomers and localizes to punctate structures of unknown function. The puncta localization of TC1b strictly requires its coiled-coil (CC) domain, whereas the functionality of TC1b requires the four TRAF domains in addition to the CC. Overall, we uncovered the TRAF domain protein TC1b as a novel positive contributor to plant immunity.
Collapse
Affiliation(s)
- Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Philipp F W Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Shuai Huang
- Department of Molecular Genetics, College of Arts and Sciences, Ohio State University, Columbus, Ohio, 43210, USA
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Central Microscopy Facility of the Faculty of Biology and Psychology, University of Goettingen, D-37077, Goettingen, Germany
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
24
|
Kim JH, Jung H, Song K, Lee HN, Chung T. The phosphatidylinositol 3-phosphate effector FYVE3 regulates FYVE2-dependent autophagy in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1160162. [PMID: 37008475 PMCID: PMC10050702 DOI: 10.3389/fpls.2023.1160162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Phosphatidylinositol 3-phosphate (PI3P) is a signaling phospholipid that play a key role in endomembrane trafficking, specifically autophagy and endosomal trafficking. However, the mechanisms underlying the contribution of PI3P downstream effectors to plant autophagy remain unknown. Known PI3P effectors for autophagy in Arabidopsis thaliana include ATG18A (Autophagy-related 18A) and FYVE2 (Fab1p, YOTB, Vac1p, and EEA1 2), which are implicated in autophagosome biogenesis. Here, we report that FYVE3, a paralog of plant-specific FYVE2, plays a role in FYVE2-dependent autophagy. Using yeast two-hybrid and bimolecular fluorescence complementation assays, we determined that the FYVE3 protein was associated with autophagic machinery containing ATG18A and FYVE2, by interacting with ATG8 isoforms. The FYVE3 protein was transported to the vacuole, and the vacuolar delivery of FYVE3 relies on PI3P biosynthesis and the canonical autophagic machinery. Whereas the fyve3 mutation alone barely affects autophagic flux, it suppresses defective autophagy in fyve2 mutants. Based on the molecular genetics and cell biological data, we propose that FYVE3 specifically regulates FYVE2-dependent autophagy.
Collapse
|
25
|
Xie LJ, Wang JH, Liu HS, Yuan LB, Tan YF, Tan WJ, Zhou Y, Chen QF, Qi H, Li JF, Chen YQ, Qiu RL, Chen MX, Xiao S. MYB30 integrates light signals with antioxidant biosynthesis to regulate plant responses during postsubmergence recovery. THE NEW PHYTOLOGIST 2023; 237:2238-2254. [PMID: 36513604 DOI: 10.1111/nph.18674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Submergence is an abiotic stress that limits agricultural production world-wide. Plants sense oxygen levels during submergence and postsubmergence reoxygenation and modulate their responses. Increasing evidence suggests that completely submerged plants are often exposed to low-light stress, owing to the depth and turbidity of the surrounding water; however, how light availability affects submergence tolerance remains largely unknown. Here, we showed that Arabidopsis thaliana MYB DOMAIN PROTEIN30 (MYB30) is an important transcription factor that integrates light signaling and postsubmergence stress responses. MYB DOMAIN PROTEIN30 protein abundance decreased upon submergence and accumulated during reoxygenation. Under submergence conditions, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a central regulator of light signaling, caused the ubiquitination and degradation of MYB30. In response to desubmergence, however, light-induced MYB30 interacted with MYC2, a master transcription factor involved in jasmonate signaling, and activated the expression of the VITAMIN C DEFECTIVE1 (VTC1) and GLUTATHIONE SYNTHETASE1 (GSH1) gene families to enhance antioxidant biosynthesis. Consistent with this, the myb30 knockout mutant showed increased sensitivity to submergence, which was partially rescued by overexpression of VTC1 or GSH1. Thus, our findings uncover the mechanism by which the COP1-MYB30 module integrates light signals with cellular oxidative homeostasis to coordinate plant responses to postsubmergence stress.
Collapse
Affiliation(s)
- Li-Juan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Hong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hui-Shan Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li-Bing Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi-Fang Tan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei-Juan Tan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ying Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qin-Fang Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Feng Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yue-Qin Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Mo-Xian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
26
|
Yang J, Mao T, Geng Z, Xue W, Ma L, Jin Y, Guo P, Qiu Z, Wang L, Yu C, Sheng Y, Zhang J, Zhang H. Constitutive expression of AtSINA2 from Arabidopsis improves grain yield, seed oil and drought tolerance in transgenic soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:444-453. [PMID: 36758291 DOI: 10.1016/j.plaphy.2023.01.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The SEVEN IN Absentia (SINA), a typical member of the RING E3 ligase family, plays a crucial role in plant growth, development and response to abiotic stress. However, its biological functions in oil crops are still unknown. Previously, we reported that overexpression of AtSINA2 in Arabidopsis positively regulated the drought tolerance of transgenic plants. In this work, we demonstrate that ectopic expression of AtSINA2 in soybean improved the shoot growth, grain yield, drought tolerance and seed oil content in transgenic plants. Compared to wild type, transgenic soybean produced greater shoot biomass and grain yield, and showed improved seed oil and drought tolerance. Physiological analyses exhibited that the increased drought tolerance of transgenic plants was accompanied with a higher chlorophyll content, and a lower malondialdehyde accumulation and water loss during drought stress. Further transcriptomic analyses revealed that the expressions of genes related to plant growth, flowering and stress response were up- or down-regulated in transgenic soybean under both normal and drought stress conditions. Our findings imply that AtSINA2 improved both agricultural production and drought tolerance, and it can be used as a candidate gene for the genetic engineering of new soybean cultivars with improved grain yield and drought resistance.
Collapse
Affiliation(s)
- Jin Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Zigui Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Wenwen Xue
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Lan Ma
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, China
| | - Yu Jin
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Pan Guo
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Zitong Qiu
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China.
| |
Collapse
|
27
|
Yu P, Hua Z. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Int J Mol Sci 2023; 24:ijms24032221. [PMID: 36768543 PMCID: PMC9917186 DOI: 10.3390/ijms24032221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquitin-26S proteasome system and autophagy are two major protein degradation machineries encoded in all eukaryotic organisms. While the UPS is responsible for the turnover of short-lived and/or soluble misfolded proteins under normal growth conditions, the autophagy-lysosomal/vacuolar protein degradation machinery is activated under stress conditions to remove long-lived proteins in the forms of aggregates, either soluble or insoluble, in the cytoplasm and damaged organelles. Recent discoveries suggested an integrative function of these two seemly independent systems for maintaining the proteome homeostasis. One such integration is represented by their reciprocal degradation, in which the small 76-amino acid peptide, ubiquitin, plays an important role as the central signaling hub. In this review, we summarized the current knowledge about the activity control of proteasome and autophagosome at their structural organization, biophysical states, and turnover levels from yeast and mammals to plants. Through comprehensive literature studies, we presented puzzling questions that are awaiting to be solved and proposed exciting new research directions that may shed light on the molecular mechanisms underlying the biological function of protein degradation.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
28
|
Qi H, Lei X, Wang Y, Yu S, Liu T, Zhou SK, Chen JY, Chen QF, Qiu RL, Jiang L, Xiao S. 14-3-3 proteins contribute to autophagy by modulating SINAT-mediated degradation of ATG13. THE PLANT CELL 2022; 34:4857-4876. [PMID: 36053201 PMCID: PMC9709989 DOI: 10.1093/plcell/koac273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 05/07/2023]
Abstract
In multicellular eukaryotes, autophagy is a conserved process that delivers cellular components to the vacuole or lysosome for recycling during development and stress responses. Induction of autophagy activates AUTOPHAGY-RELATED PROTEIN 1 (ATG1) and ATG13 to form a protein kinase complex that initiates autophagosome formation. However, the detailed molecular mechanism underlying the regulation of this protein complex in plants remains unclear. Here, we determined that in Arabidopsis thaliana, the regulatory proteins 14-3-3λ and 14-3-3κ redundantly modulate autophagy dynamics by facilitating SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA (SINAT)-mediated proteolysis of ATG13a and ATG13b. 14-3-3λ and 14-3-3κ directly interacted with SINATs and ATG13a/b in vitro and in vivo. Compared to wild-type (WT), the 14-3-3λ 14-3-3κ double mutant showed increased tolerance to nutrient starvation, delayed leaf senescence, and enhanced starvation-induced autophagic vesicles. Moreover, 14-3-3s were required for SINAT1-mediated ubiquitination and degradation of ATG13a. Consistent with their roles in ATG degradation, the 14-3-3λ 14-3-3κ double mutant accumulated higher levels of ATG1a/b/c and ATG13a/b than the WT upon nutrient deprivation. Furthermore, the specific association of 14-3-3s with phosphorylated ATG13a was crucial for ATG13a stability and formation of the ATG1-ATG13 complex. Thus, our findings demonstrate that 14-3-3λ and 14-3-3κ function as molecular adaptors to regulate autophagy by modulating the homeostasis of phosphorylated ATG13.
Collapse
Affiliation(s)
- Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xue Lei
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shan Yu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ting Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shun-Kang Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jin-Yu Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qin-Fang Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shi Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
29
|
Guan B, Jiang YT, Lin DL, Lin WH, Xue HW. Phosphatidic acid suppresses autophagy through competitive inhibition by binding GAPC (glyceraldehyde-3-phosphate dehydrogenase) and PGK (phosphoglycerate kinase) proteins. Autophagy 2022; 18:2656-2670. [PMID: 35289711 PMCID: PMC9629070 DOI: 10.1080/15548627.2022.2046449] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macroautophagy/autophagy is a finely-regulated process in which cytoplasm encapsulated within transient organelles termed autophagosomes is delivered to lysosomes or vacuoles for degradation. Phospholipids, particularly phosphatidic acid (PA) that functions as a second messenger, play crucial and differential roles in autophagosome formation; however, the underlying mechanism remains largely unknown. Here we demonstrated that PA inhibits autophagy through competitive inhibition of the formation of ATG3 (autophagy-related)-ATG8e and ATG6-VPS34 (vacuolar protein sorting 34) complexes. PA bound to GAPC (glyceraldehyde-3-phosphate dehydrogenase) or PGK (phosphoglycerate kinase) and promoted their interaction with ATG3 or ATG6, which further attenuated the interactions of ATG3-ATG8e or ATG6-VPS34, respectively. Structural and mutational analyses revealed the mechanism of PA binding with GAPCs and PGK3, and that GAPCs or ATG8e competitively interacted with ATG3, and PGK3 or VPS34 competitively interacted with ATG6, at the same binding interface. These results elucidate the molecular mechanism of how PA inhibits autophagy through binding GAPC or PGK3 proteins and expand the understanding of the functional mode of PA, demonstrating the importance of phospholipids in plant autophagy and providing a new perspective for autophagy regulation by phospholipids.Abbreviation: ATG: autophagy-related; BiFC: bimolecular fluorescence complementation; co-IP: co-immunoprecipitation; Con A: concanamycin A; ER: endoplasmic reticulum; EZ: elongation zone; FRET-FLIM: fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GST: glutathione S-transferase; MDC: monodansylcadaverine; MZ: meristem zone; PA: phosphatidic acid; PAS: phagophore assembly site; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PGK3: phosphoglycerate kinase; PtdIns3K: phosphatidylinositol 3-kinase; PLD: phospholipase D; TEM: transmission electron microscopy; TOR: target of rapamycin; VPS34: vacuolar protein sorting 34; WT: wild type; Y2H: yeast two-hybrid.
Collapse
Affiliation(s)
- Bin Guan
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, Xuhui, China
| | - Yu-Tong Jiang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China
| | - De-Li Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China,CONTACT Hong-Wei Xue Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, ofAgriculture, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China,Wen-Hui Lin School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
30
|
Yang MK, Zhu XJ, Chen CM, Guo X, Xu SX, Xu YR, Du SX, Xiao S, Mueller-Roeber B, Huang W, Chen L. The plant circadian clock regulates autophagy rhythm through transcription factor LUX ARRHYTHMO. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2135-2149. [PMID: 35962716 DOI: 10.1111/jipb.13343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is an evolutionarily conserved degradation pathway in eukaryotes; it plays a critical role in nutritional stress tolerance. The circadian clock is an endogenous timekeeping system that generates biological rhythms to adapt to daily changes in the environment. Accumulating evidence indicates that the circadian clock and autophagy are intimately interwoven in animals. However, the role of the circadian clock in regulating autophagy has been poorly elucidated in plants. Here, we show that autophagy exhibits a robust circadian rhythm in both light/dark cycle (LD) and in constant light (LL) in Arabidopsis. However, autophagy rhythm showed a different pattern with a phase-advance shift and a lower amplitude in LL compared to LD. Moreover, mutation of the transcription factor LUX ARRHYTHMO (LUX) removed autophagy rhythm in LL and led to an enhanced amplitude in LD. LUX represses expression of the core autophagy genes ATG2, ATG8a, and ATG11 by directly binding to their promoters. Phenotypic analysis revealed that LUX is responsible for improved resistance of plants to carbon starvation, which is dependent on moderate autophagy activity. Comprehensive transcriptomic analysis revealed that the autophagy rhythm is ubiquitous in plants. Taken together, our findings demonstrate that the LUX-mediated circadian clock regulates plant autophagy rhythms.
Collapse
Affiliation(s)
- Ming-Kang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Jie Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chu-Min Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xu Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shu-Xuan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Rou Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shen-Xiu Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam-Golm, Germany
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
31
|
Wang Q, Qin Q, Su M, Li N, Zhang J, Liu Y, Yan L, Hou S. Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis. THE PLANT CELL 2022; 34:4531-4553. [PMID: 35961047 PMCID: PMC9614501 DOI: 10.1093/plcell/koac251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/04/2022] [Indexed: 05/23/2023]
Abstract
Autophagy, a conserved pathway that carries out the bulk degradation of cytoplasmic material in eukaryotic cells, is critical for plant physiology and development. This process is tightly regulated by ATG13, a core component of the ATG1 kinase complex, which initiates autophagy. Although ATG13 is known to be dephosphorylated immediately after nutrient starvation, the phosphatase regulating this process is poorly understood. Here, we determined that the Arabidopsis (Arabidopsis thaliana) septuple mutant (topp-7m) and octuple mutant (topp-8m) of TYPE ONE PROTEIN PHOSPHATASE (TOPP) exhibited significantly reduced tolerance to fixed-carbon (C) starvation due to compromised autophagy activity. Genetic analysis placed TOPP upstream of autophagy. Interestingly, ATG13a was found to be an interactor of TOPP. TOPP directly dephosphorylated ATG13a in vitro and in vivo. We identified 18 phosphorylation sites in ATG13a by LC-MS. Phospho-dead ATG13a at these 18 sites significantly promoted autophagy and increased the tolerance of the atg13ab mutant to fixed-C starvation. The dephosphorylation of ATG13a facilitated ATG1a-ATG13a complex formation. Consistently, the recruitment of ATG13a for ATG1a was markedly inhibited in topp-7m-1. Finally, TOPP-controlled dephosphorylation of ATG13a boosted ATG1a phosphorylation. Taken together, our study reveals the crucial role of TOPP in regulating autophagy by stimulating the formation of the ATG1a-ATG13a complex by dephosphorylating ATG13a in Arabidopsis.
Collapse
Affiliation(s)
- Qiuling Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Qianqian Qin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Meifei Su
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Na Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jing Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yang Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Longfeng Yan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
32
|
Xiong J, Yang F, Yao X, Zhao Y, Wen Y, Lin H, Guo H, Yin Y, Zhang D. The deubiquitinating enzymes UBP12 and UBP13 positively regulate recovery after carbon starvation by modulating BES1 stability in Arabidopsis thaliana. THE PLANT CELL 2022; 34:4516-4530. [PMID: 35944221 PMCID: PMC9614486 DOI: 10.1093/plcell/koac245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BRI1-EMS-SUPPRESSOR1 (BES1), a core transcription factor in the brassinosteroid (BR) signaling pathway, primarily regulates plant growth and development by influencing BR-regulated gene expression. Several E3 ubiquitin (Ub) ligases regulate BES1 stability, but little is known about BES1 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain BES1 homeostasis. Here, we report that two Arabidopsis thaliana deubiquitinating enzymes, Ub-SPECIFIC PROTEASE (UBP) 12 and UBP13, interact with BES1. UBP12 and UBP13 removed Ub from polyubiquitinated BES1 to stabilize both phosphorylated and dephosphorylated forms of BES1. A double mutant, ubp12-2w ubp13-3, lacking UBP12 and UBP13 function showed both BR-deficient and BR-insensitive phenotypes, whereas transgenic plants overexpressing UBP12 or UBP13 exhibited an increased BR response. Expression of UBP12 and UPB13 was induced during recovery after carbon starvation, which led to BES1 accumulation and quick recovery of stressed plants. Our work thus establishes a mechanism by which UBP12 and UBP13 regulate BES1 protein abundance to enhance BR-regulated growth during recovery after carbon starvation.
Collapse
Affiliation(s)
- Jiawei Xiong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Fabin Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yu Wen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Hongqing Guo
- Department of Genetics, Development, and Cell Biology, Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
33
|
Nie Z, Wang B, Zhang Z, Jia Z, Xu R, Wang H, Zhou W, Gong Y. Genome-wide identification of the traf gene family in yellow catfish (Pelteobagrus fulvidraco) and analysis of their expression in response to bacterial challenge. JOURNAL OF FISH BIOLOGY 2022; 101:573-583. [PMID: 35653197 DOI: 10.1111/jfb.15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Tumour necrosis factor (TNF) receptor-associated factor (TRAF) is a receptor protein that has important functions in the immune system. Nonetheless, there have been few reports of traf genes in teleost fishes. The present study aimed to identify the traf genes from the genomic information of yellow catfish (Pelteobagrus fulvidraco). Eight traf genes were identified and named, which are distributed on different chromosomes but have similar conserved protein domains. Phylogenetic and syntenic analyses demonstrated conservation of traf genes during evolution. In addition, yellow catfish has the relatively rare traf1 and traf5 genes. Gene structure and motif analysis revealed the homology and distribution diversity of the traf genes. Quantitative real-time reverse transcription PCR was used to study the expression patterns of traf genes in healthy fish tissues and after infection by Aeromonas hydrophila. The results demonstrated significant changes in traf gene expression, indicating a potential role in innate immunity.
Collapse
Affiliation(s)
- Zhiwei Nie
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Wang
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhixuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zeming Jia
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Runjie Xu
- School of Art and Design, Zhejiang Sci-Tech University, Hangzhou, China
| | - Heyu Wang
- College of Food and Pharmaceutical Sciences, Ningbo, China
| | - Wei Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifu Gong
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
34
|
Degradation Mechanism of Autophagy-Related Proteins and Research Progress. Int J Mol Sci 2022; 23:ijms23137301. [PMID: 35806307 PMCID: PMC9266641 DOI: 10.3390/ijms23137301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, autophagy is the main pathway for nutrient recycling, which encapsulates parts of the cytoplasm and organelles in double-membrane vesicles, and then fuses with lysosomes/vacuoles to degrade them. Autophagy is a highly dynamic and relatively complex process influenced by multiple factors. Under normal growth conditions, it is maintained at basal levels. However, when plants are subjected to biotic and abiotic stresses, such as pathogens, drought, waterlogging, nutrient deficiencies, etc., autophagy is activated to help cells to survive under stress conditions. At present, the regulation of autophagy is mainly reflected in hormones, second messengers, post-transcriptional regulation, and protein post-translational modification. In recent years, the degradation mechanism of autophagy-related proteins has attracted much attention. In this review, we have summarized how autophagy-related proteins are degraded in yeast, animals, and plants, which will help us to have a more comprehensive and systematic understanding of the regulation mechanisms of autophagy. Moreover, research progress on the degradation of autophagy-related proteins in plants has been discussed.
Collapse
|
35
|
Sun J, Liang W, Ye S, Chen X, Zhou Y, Lu J, Shen Y, Wang X, Zhou J, Yu C, Yan C, Zheng B, Chen J, Yang Y. Whole-Transcriptome Analysis Reveals Autophagy Is Involved in Early Senescence of zj-es Mutant Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:899054. [PMID: 35720578 PMCID: PMC9204060 DOI: 10.3389/fpls.2022.899054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Senescence is a necessary stage of plant growth and development, and the early senescence of rice will lead to yield reduction and quality decline. However, the mechanisms of rice senescence remain obscure. In this study, we characterized an early-senescence rice mutant, designated zj-es (ZheJing-early senescence), which was derived from the japonica rice cultivar Zhejing22. The mutant zj-es exhibited obvious early-senescence phenotype, such as collapsed chloroplast, lesions in leaves, declined fertility, plant dwarf, and decreased agronomic traits. The ZJ-ES gene was mapped in a 458 kb-interval between the molecular markers RM5992 and RM5813 on Chromosome 3, and analysis suggested that ZJ-ES is a novel gene controlling rice early senescence. Subsequently, whole-transcriptome RNA sequencing was performed on zj-es and its wild-type rice to dissect the underlying molecular mechanism for early senescence. Totally, 10,085 differentially expressed mRNAs (DEmRNAs), 1,253 differentially expressed lncRNAs (DElncRNAs), and 614 differentially expressed miRNAs (DEmiRNAs) were identified, respectively, in different comparison groups. Based on the weighted gene co-expression network analysis (WGCNA), the co-expression turquoise module was found to be the key for the occurrence of rice early senescence. Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 14 lncRNAs possibly regulated 16 co-expressed mRNAs through 8 miRNAs, and enrichment analysis showed that most of the DEmRNAs and the targets of DElncRNAs and DEmiRNAs were involved in reactive oxygen species (ROS)-triggered autophagy-related pathways. Further analysis showed that, in zj-es, ROS-related enzyme activities were markedly changed, ROS were largely accumulated, autophagosomes were obviously observed, cell death was significantly detected, and lesions were notably appeared in leaves. Totally, combining our results here and the remaining research, we infer that ROS-triggered autophagy induces the programmed cell death (PCD) and its coupled early senescence in zj-es mutant rice.
Collapse
Affiliation(s)
- Jia Sun
- College of Life Science, Fujian A&F University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianfei Lu
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Ying Shen
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
36
|
Wang Y, Wang G, Xu W, Zhang Z, Sun X, Zhang S. Exogenous Melatonin Improves Pear Resistance to Botryosphaeria dothidea by Increasing Autophagic Activity and Sugar/Organic Acid Levels. PHYTOPATHOLOGY 2022; 112:1335-1344. [PMID: 34989595 DOI: 10.1094/phyto-11-21-0489-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pear is an important fruit tree worldwide, but it is often infected by the pathogen Botryosphaeria dothidea, which causes pear ring rot disease. To explore the effect of exogenous melatonin on the disease resistance of pear, we treated inoculated pear fruits with different concentrations of melatonin. The results showed that 100 μΜ of melatonin had the most significant effect with resistance to B. dothidea. In addition, melatonin treatment significantly reduced the diameter of disease lesions and enhanced the endogenous melatonin content in pears inoculated with B. dothidea. Compared with the control treatment, melatonin treatment suppressed increases in reactive oxygen species (ROS) and activated ROS-scavenging enzymes. Treatment with exogenous melatonin maintained ascorbic acid-glutathione at more reductive status. The expression levels of core autophagic genes and autophagosome formation were elevated by melatonin treatment in pear fruits. Silencing of PbrATG5 in Pyrus pyrifolia conferred sensitivity to inoculation that was only slightly attenuated by melatonin treatment. After inoculation with B. dothidea, exogenous melatonin treatment led to higher levels of soluble sugars and organic acids in pear fruits than H2O treatment. Overall, our results demonstrate that melatonin enhances resistance to B. dothidea by increasing autophagic activity and soluble sugar/organic acid accumulation.
Collapse
Affiliation(s)
- Yun Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoming Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Xu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenwu Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
37
|
Shedding Light on the Role of Phosphorylation in Plant Autophagy. FEBS Lett 2022; 596:2172-2185. [DOI: 10.1002/1873-3468.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/07/2022]
|
38
|
Wang Q, Hou S. The emerging roles of ATG1/ATG13 kinase complex in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153653. [PMID: 35255243 DOI: 10.1016/j.jplph.2022.153653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Autophagy is a conserved system from yeast to mammals that mediates the degradation and renovation of cellular components. This process is mainly driven by numerous autophagy-related (ATG) proteins. Among these components, the ATG1/ATG13 complex plays an essential role in initiating autophagy, sensing nutritional status signals, recruiting downstream ATG proteins to the autophagosome formation site, and governing autophagosome formation. In this review, we will focus on the ATG1/ATG13 kinase complex, summarizing and discussing the current views on the composition, structure, function, and regulation of this complex in plants.
Collapse
Affiliation(s)
- Qiuling Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
39
|
Qi H, Xia FN, Xiao S, Li J. TRAF proteins as key regulators of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:431-448. [PMID: 34676666 DOI: 10.1111/jipb.13182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles. They are characterized by their C-terminal region (TRAF-C domain) containing seven to eight anti-parallel β-sheets, also known as the meprin and TRAF-C homology (MATH) domain. Over the past few decades, significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants. Compared to other eukaryotic species, the Arabidopsis thaliana and rice (Oryza sativa) genomes encode many more TRAF/MATH domain-containing proteins; these plant proteins cluster into five classes: TRAF/MATH-only, MATH-BPM, MATH-UBP (ubiquitin protease), Seven in absentia (SINA), and MATH-Filament and MATH-PEARLI-4 proteins, suggesting parallel evolution of TRAF proteins in plants. Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes, such as vegetative and reproductive development, autophagosome formation, plant immunity, symbiosis, phytohormone signaling, and abiotic stress responses. Here, we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
40
|
Liu J, Chen Y, Wang WQ, Liu JH, Zhu CQ, Zhong YP, Zhang HQ, Liu XF, Yin XR. Transcription factors AcERF74/75 respond to waterlogging stress and trigger alcoholic fermentation-related genes in kiwifruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111115. [PMID: 34895544 DOI: 10.1016/j.plantsci.2021.111115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Kiwifruit plants have a fleshy, shallow root system which is sensitive to waterlogging stress, which results in a decrease in crop yield or even plants death. Although the waterlogging stress responses in kiwifruit have attracted much attention, the underlying molecular mechanism remains unclear. In this study, waterlogging led to drastic inhibition of root growth of 'Donghong' kiwifruit (Actinidia chinensis) plants grown in vitro, which was accompanied by significant elevation of endogenous acetaldehyde and ethanol contents. RNA-seq of roots of plants waterlogged for 0, 1 and 2 days revealed that a total of 149 genes were up- or down-regulated, including seven biosynthetic genes related to the glycolysis/gluconeogenesis pathway and 10 transcription factors. Analyses with real-time PCR, dual-luciferase assays and EMSA demonstrated that AcERF74 and AcERF75, two members of the ERF-VII subfamily, directly upregulated AcADH1 (alcohol dehydrogenase). Moreover, the overexpression of AcERF74/75 in transgenic calli resulted in dramatic increase of endogenous ethanol contents through the triggering of AcADH1 and AcADH2 expression. Although the AcPDC2 (pyruvate decarboxylase) expression was also enhanced in transgenic lines, the endogenous acetaldehyde contents showed no significant changes. These results illustrated that AcERF74/75 are two transcriptional activators on alcoholic fermentation related genes and are responsive to waterlogging stress in kiwifruit.
Collapse
Affiliation(s)
- Jiao Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Yue Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chang-Qing Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Yun-Peng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Hui-Qin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| |
Collapse
|
41
|
Paggi CA, Dudakovic A, Fu Y, Garces CG, Hevesi M, Galeano Garces D, Dietz AB, van Wijnen AJ, Karperien M. Autophagy Is Involved in Mesenchymal Stem Cell Death in Coculture with Chondrocytes. Cartilage 2021; 13:969S-979S. [PMID: 32693629 PMCID: PMC8721613 DOI: 10.1177/1947603520941227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Cartilage formation is stimulated in mixtures of chondrocytes and human adipose-derived mesenchymal stromal cells (MSCs) both in vitro and in vivo. During coculture, human MSCs perish. The goal of this study is to elucidate the mechanism by which adipose tissue-derived MSC cell death occurs in the presence of chondrocytes. METHODS Human primary chondrocytes were cocultured with human MSCs derived from 3 donors. The cells were cultured in monoculture or coculture (20% chondrocytes and 80% MSCs) in pellets (200,000 cells/pellet) for 7 days in chondrocyte proliferation media in hypoxia (2% O2). RNA sequencing was performed to assess for differences in gene expression between monocultures or coculture. Immune fluorescence assays were performed to determine the presence of caspase-3, LC3B, and P62. RESULTS RNA sequencing revealed significant upregulation of >90 genes in the 3 cocultures when compared with monocultures. STRING analysis showed interconnections between >50 of these genes. Remarkably, 75% of these genes play a role in cell death pathways such as apoptosis and autophagy. Immunofluorescence shows a clear upregulation of the autophagic machinery with no substantial activation of the apoptotic pathway. CONCLUSION In cocultures of human MSCs with primary chondrocytes, autophagy is involved in the disappearance of MSCs. We propose that this sacrificial cell death may contribute to the trophic effects of MSCs on cartilage formation.
Collapse
Affiliation(s)
- Carlo Alberto Paggi
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands,Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA
| | - Yao Fu
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands
| | | | - Mario Hevesi
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | | | - Allan B. Dietz
- Department of Laboratory Medicine and
Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA,Andre J. van Wijnen, Department of
Orthopedic Surgery, Mayo Clinic, 200 First Street SW, MedSci 3-69, Rochester, MN
5590, USA.
| | - Marcel Karperien
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands,Marcel Karperien, Department of
Developmental BioEngineering, University of Twente, 7522 NB, Enschede,
Netherlands.
| |
Collapse
|
42
|
Hashimi SM, Wu NN, Ran J, Liu JZ. Silencing Autophagy-Related Gene 2 ( ATG2) Results in Accelerated Senescence and Enhanced Immunity in Soybean. Int J Mol Sci 2021; 22:11749. [PMID: 34769178 PMCID: PMC8584260 DOI: 10.3390/ijms222111749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy plays a critical role in nutrient recycling and stress adaptations. However, the role of autophagy has not been extensively investigated in crop plants. In this study, soybean autophagy-related gene 2 (GmATG2) was silenced, using virus-induced silencing (VIGS) mediated by Bean pod mottle virus (BPMV). An accelerated senescence phenotype was exclusively observed for the GmATG2-silenced plants under dark conditions. In addition, significantly increased accumulation of both ROS and SA as well as a significantly induced expression of the pathogenesis-related gene 1 (PR1) were also observed on the leaves of the GmATG2-silenced plants, indicating an activated immune response. Consistent with this, GmATG2-silenced plants exhibited a significantly enhanced resistance to Pseudomonas syringae pv. glycinea (Psg) relative to empty vector control plants (BPMV-0). Notably, the activated immunity of the GmATG2-silenced plants was independent of the MAPK signaling pathway. The fact that the accumulation levels of ATG8 protein and poly-ubiquitinated proteins were significantly increased in the dark-treated GmATG2-silenced plants relative to the BPMV-0 plants indicated that the autophagic degradation is compromised in the GmATG2-silenced plants. Together, our results indicated that silencing GmATG2 compromises the autophagy pathway, and the autophagy pathway is conserved in different plant species.
Collapse
Affiliation(s)
- Said M. Hashimi
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (S.M.H.); (N.-N.W.); (J.R.)
| | - Ni-Ni Wu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (S.M.H.); (N.-N.W.); (J.R.)
| | - Jie Ran
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (S.M.H.); (N.-N.W.); (J.R.)
| | - Jian-Zhong Liu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (S.M.H.); (N.-N.W.); (J.R.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
43
|
Reciprocal antagonistic regulation of E3 ligases controls ACC synthase stability and responses to stress. Proc Natl Acad Sci U S A 2021; 118:2011900118. [PMID: 34404725 DOI: 10.1073/pnas.2011900118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14-3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases.
Collapse
|
44
|
Yuan X, Wang Q, Yan B, Zhang J, Xue C, Chen J, Lin Y, Zhang X, Shen W, Chen X. Single-Molecule Real-Time and Illumina-Based RNA Sequencing Data Identified Vernalization-Responsive Candidate Genes in Faba Bean ( Vicia faba L.). Front Genet 2021; 12:656137. [PMID: 34290734 PMCID: PMC8287337 DOI: 10.3389/fgene.2021.656137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/07/2021] [Indexed: 12/05/2022] Open
Abstract
Faba bean (Vicia faba L.) is one of the most widely grown cool season legume crops in the world. Winter faba bean normally has a vernalization requirement, which promotes an earlier flowering and pod setting than unvernalized plants. However, the molecular mechanisms of vernalization in faba bean are largely unknown. Discovering vernalization-related candidate genes is of great importance for faba bean breeding. In this study, the whole transcriptome of faba bean buds was profiled by using next-generation sequencing (NGS) and single-molecule, real-time (SMRT) full-length transcriptome sequencing technology. A total of 29,203 high-quality non-redundant transcripts, 21,098 complete coding sequences (CDS), 1,045 long non-coding RNAs (lncRNAs), and 12,939 simple sequence repeats (SSRs) were identified. Furthermore, 4,044 differentially expressed genes (DEGs) were identified through pairwise comparisons. By Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, these differentially expressed transcripts were found to be enriched in binding and transcription factor activity, electron carrier activity, rhythmic process, and receptor activity. Finally, 50 putative vernalization-related genes that played important roles in the vernalization of faba bean were identified; we also found that the levels of vernalization-responsive transcripts showed significantly higher expression levels in cold-treated buds. The expression of VfSOC1, one of the candidate genes, was sensitive to vernalization. Ectopic expression of VfSOC1 in Arabidopsis brought earlier flowering. In conclusion, the abundant vernalization-related transcripts identified in this study will provide a basis for future researches on the vernalization and faba bean breeding and established a reference full-length transcriptome for future studies on faba bean.
Collapse
Affiliation(s)
- Xingxing Yuan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bin Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiong Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
45
|
Lessons from Comparison of Hypoxia Signaling in Plants and Mammals. PLANTS 2021; 10:plants10050993. [PMID: 34067566 PMCID: PMC8157222 DOI: 10.3390/plants10050993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Hypoxia is an important stress for organisms, including plants and mammals. In plants, hypoxia can be the consequence of flooding and causes important crop losses worldwide. In mammals, hypoxia stress may be the result of pathological conditions. Understanding the regulation of responses to hypoxia offers insights into novel approaches for crop improvement, particularly for the development of flooding-tolerant crops and for producing better therapeutics for hypoxia-related diseases such as inflammation and cancer. Despite their evolutionary distance, plants and mammals deploy strikingly similar mechanisms to sense and respond to the different aspects of hypoxia-related stress, including low oxygen levels and the resulting energy crisis, nutrient depletion, and oxidative stress. Over the last two decades, the ubiquitin/proteasome system and the ubiquitin-like protein SUMO have been identified as key regulators that act in concert to regulate core aspects of responses to hypoxia in plants and mammals. Here, we review ubiquitin and SUMO-dependent mechanisms underlying the regulation of hypoxia response in plants and mammals. By comparing and contrasting these mechanisms in plants and mammals, this review seeks to pinpoint conceptually similar mechanisms but also highlight future avenues of research at the junction between different fields of research.
Collapse
|
46
|
Conditional destabilization of the TPLATE complex impairs endocytic internalization. Proc Natl Acad Sci U S A 2021; 118:2023456118. [PMID: 33876766 DOI: 10.1073/pnas.2023456118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In plants, endocytosis is essential for many developmental and physiological processes, including regulation of growth and development, hormone perception, nutrient uptake, and defense against pathogens. Our toolbox to modulate this process is, however, rather limited. Here, we report a conditional tool to impair endocytosis. We generated a partially functional TPLATE allele by substituting the most conserved domain of the TPLATE subunit of the endocytic TPLATE complex (TPC). This substitution destabilizes TPC and dampens the efficiency of endocytosis. Short-term heat treatment increases TPC destabilization and reversibly delocalizes TPLATE from the plasma membrane to aggregates in the cytoplasm. This blocks FM uptake and causes accumulation of various known endocytic cargoes at the plasma membrane. Short-term heat treatment therefore transforms the partially functional TPLATE allele into an effective conditional tool to impair endocytosis. Next to their role in endocytosis, several TPC subunits are also implicated in actin-regulated autophagosomal degradation. Inactivating TPC via the WDX mutation, however, does not impair autophagy, thus enabling specific and reversible modulation of endocytosis in planta.
Collapse
|
47
|
Cheng L, Zeng Y, Hu S, Zhang N, Cheung KCP, Li B, Leung KS, Jiang L. Systematic prediction of autophagy-related proteins using Arabidopsis thaliana interactome data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:708-720. [PMID: 33128829 DOI: 10.1111/tpj.15065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a self-degradative process that is crucial for maintaining cellular homeostasis by removing damaged cytoplasmic components and recycling nutrients. Such an evolutionary conserved proteolysis process is regulated by the autophagy-related (Atg) proteins. The incomplete understanding of plant autophagy proteome and the importance of a proteome-wide understanding of the autophagy pathway prompted us to predict Atg proteins and regulators in Arabidopsis. Here, we developed a systems-level algorithm to identify autophagy-related modules (ARMs) based on protein subcellular localization, protein-protein interactions, and known Atg proteins. This generates a detailed landscape of the autophagic modules in Arabidopsis. We found that the newly identified genes in each ARM tend to be upregulated and coexpressed during the senescence stage of Arabidopsis. We also demonstrated that the Golgi apparatus ARM, ARM13, functions in the autophagy process by module clustering and functional analysis. To verify the in silico analysis, the Atg candidates in ARM13 that are functionally similar to the core Atg proteins were selected for experimental validation. Interestingly, two of the previously uncharacterized proteins identified from the ARM analysis, AGD1 and Sec14, exhibited bona fide association with the autophagy protein complex in plant cells, which provides evidence for a cross-talk between intracellular pathways and autophagy. Thus, the computational framework has facilitated the identification and characterization of plant-specific autophagy-related proteins and novel autophagy proteins/regulators in higher eukaryotes.
Collapse
Affiliation(s)
- Lixin Cheng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuai Hu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ning Zhang
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Kenneth C P Cheung
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
48
|
Sun X, Pan B, Xu W, Chen Q, Wang Y, Ban Q, Xing C, Zhang S. Genome-wide identification and expression analysis of the pear autophagy-related gene PbrATG8 and functional verification of PbrATG8c in Pyrus bretschneideri Rehd. PLANTA 2021; 253:32. [PMID: 33439355 DOI: 10.1007/s00425-020-03558-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Genome-wide identification, tissue-specific and stress expression analyses and functional characterization of PbrATG8s genes were conducted and the role of PbrATG8c in Botryosphaeria dothidea resistance was further investigated. Autophagy plays an important role in plant growth, development and stress tolerance. ATG8 has been reported to be an autophagy marker in many species. However, there is little information regarding ATG8 family members in pear (Pyrus bretschneideri Rehd). We performed a genome-wide analysis and identified nine PbrATG8 gene family members in pear. Phylogenetic analysis showed that PbrATG8 genes clustered into four major groups (Groups I-IV). Eight PbrATG8 genes were successfully mapped to 6 of the 17 chromosomes of the pear genome. The synteny results showed that two pairs are collinear. Gene expression data showed that all genes were differentially expressed in a range of pear tissues. Transcript analysis of PbrATG8 genes under dehydration, salt and pathogen infection stresses revealed that PbrATG8c responded to all test stresses. The PbrATG8c protein was localized in the nucleus and membrane. The silencing of PbrATG8c decreased the resistance to Botryosphaeria dothidea in pear. This study provides insights and rich resources for subsequent investigations of autophagy in pear.
Collapse
Affiliation(s)
- Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bisheng Pan
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyu Xu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiming Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yun Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiuyan Ban
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Caihua Xing
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
49
|
Ren Z, Liu W, Wang X, Chen M, Zhao J, Zhang F, Feng H, Liu J, Yang D, Ma X, Li W. SEVEN IN ABSENTIA Ubiquitin Ligases Positively Regulate Defense Against Verticillium dahliae in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:760520. [PMID: 34777442 PMCID: PMC8586545 DOI: 10.3389/fpls.2021.760520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 05/16/2023]
Abstract
Ubiquitination is a post-translational regulatory mechanism that controls a variety of biological processes in plants. The E3 ligases confer specificity by recognizing target proteins for ubiquitination. Here, we identified SEVEN IN ABSENTIA (SINA) ubiquitin ligases, which belong to the RING-type E3 ligase family, in upland cotton (Gossypium hirsutum). Twenty-four GhSINAs were characterized, and the expression levels of GhSINA7, GhSINA8, and GhSINA9 were upregulated at 24 h after inoculation with Verticillium dahliae. In vitro ubiquitination assays indicated that the three GhSINAs possessed E3 ubiquitin ligase activities. Transient expression in Nicotiana benthamiana leaves showed that they localized to the nucleus. And yeast two-hybrid (Y2H) screening revealed that they could interact with each other. The ectopic overexpression of GhSINA7, GhSINA8, and GhSINA9 independently in Arabidopsis thaliana resulted in increased tolerance to V. dahliae, while individual knockdowns of GhSINA7, GhSINA8, and GhSINA9 compromised cotton resistance to the pathogen. Thus, GhSINA7, GhSINA8, and GhSINA9 act as positive regulators of defense responses against V. dahliae in cotton plants.
Collapse
Affiliation(s)
- Zhongying Ren
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daigang Yang,
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Xiongfeng Ma,
| | - Wei Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Wei Li,
| |
Collapse
|
50
|
Luan QL, Zhu YX, Ma S, Sun Y, Liu XY, Liu M, Balint-Kurti PJ, Wang GF. Maize metacaspases modulate the defense response mediated by the NLR protein Rp1-D21 likely by affecting its subcellular localization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:151-166. [PMID: 33107667 DOI: 10.1111/tpj.15047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 05/22/2023]
Abstract
Plants usually employ resistance (R) genes to defend against the infection of pathogens, and most R genes encode intracellular nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between R proteins and their cognate pathogens often triggers a rapid localized cell death at the pathogen infection sites, termed the hypersensitive response (HR). Metacaspases (MCs) belong to a cysteine protease family, structurally related to metazoan caspases. MCs play crucial roles in plant immunity. However, the underlying molecular mechanism and the link between MCs and NLR-mediated HR are not clear. In this study, we systematically investigated the MC gene family in maize and identified 11 ZmMCs belonging to two types. Further functional analysis showed that the type I ZmMC1 and ZmMC2, but not the type II ZmMC9, suppress the HR-inducing activity of the autoactive NLR protein Rp1-D21 and of its N-terminal coiled-coil (CCD21 ) signaling domain when transiently expressed in Nicotiana benthamiana. ZmMC1 and ZmMC2 physically associate with CCD21 in vivo. We further showed that ZmMC1 and ZmMC2, but not ZmMC9, are predominantly localized in a punctate distribution in both N. benthamiana and maize (Zea mays) protoplasts. Furthermore, the co-expression of ZmMC1 and ZmMC2 with Rp1-D21 and CCD21 causes their re-distribution from being uniformly distributed in the nucleocytoplasm to a punctate distribution co-localizing with ZmMC1 and ZmMC2. We reveal a novel role of plant MCs in modulating the NLR-mediated defense response and derive a model to explain it.
Collapse
Affiliation(s)
- Qing-Ling Luan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yu-Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Shijun Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Xiao-Ying Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Mengjie Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Peter J Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, 27695, USA
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| |
Collapse
|