1
|
Hu P, Xu Y, Su Y, Wang Y, Xiong Y, Ding Y. Nuclear-localized pyruvate kinases control phosphorylation of histone H3 on threonine 11. NATURE PLANTS 2024; 10:1682-1697. [PMID: 39367257 DOI: 10.1038/s41477-024-01821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
Phosphorylation of histone H3 at threonine 11 (H3T11ph) affects transcription and chromosome stability. However, the enzymes responsible for depositing H3T11ph and the functions of H3T11ph in plants remain unknown. Here we report that in Arabidopsis thaliana, PYRUVATE KINASE 6 (PK6), PK7 and PK8 enter the nucleus under conditions of sufficient glucose and light exposure, where they interact with SWI2/SNF2-RELATED 1 COMPLEX 4 (SWC4) and phosphorylate H3 at threonine 11. Mutations in these kinases or knockdown of SWC4 resulted in FLC-dependent early flowering, short hypocotyls and short pedicels. Genome-wide, H3T11ph is highly enriched at transcription start sites and transcription termination sites, and positively correlated with gene transcript levels. PK6 and SWC4 targeted FLC, MYB73, PRE1, TCP4 and TCP10, depositing H3T11ph at these loci and promoting their transcription, and PK6 occupancy at these loci requires SWC4. Together, our results reveal that nuclear-localized PK6, PK7 and PK8 modulate H3T11ph and plant growth.
Collapse
Affiliation(s)
- Pengcheng Hu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanmei Xu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanhua Su
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuxin Wang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Xiong
- Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
| |
Collapse
|
2
|
Zhang N, Wei CQ, Xu DJ, Deng ZP, Zhao YC, Ai LF, Sun Y, Wang ZY, Zhang SW. Photoregulatory protein kinases fine-tune plant photomorphogenesis by directing a bifunctional phospho-code on HY5 in Arabidopsis. Dev Cell 2024; 59:1737-1749.e7. [PMID: 38677285 DOI: 10.1016/j.devcel.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/28/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Photomorphogenesis is a light-dependent plant growth and development program. As the core regulator of photomorphogenesis, ELONGATED HYPOCOTYL 5 (HY5) is affected by dynamic changes in its transcriptional activity and protein stability; however, little is known about the mediators of these processes. Here, we identified PHOTOREGULATORY PROTEIN KINASE 1 (PPK1), which interacts with and phosphorylates HY5 in Arabidopsis, as one such mediator. The phosphorylation of HY5 by PPK1 is essential to establish high-affinity binding with B-BOX PROTEIN 24 (BBX24) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which inhibit the transcriptional activity and promote the degradation of HY5, respectively. As such, PPKs regulate not only the binding of HY5 to its target genes under light conditions but also HY5 degradation when plants are transferred from light to dark. Our data identify a PPK-mediated phospho-code on HY5 that integrates the molecular mechanisms underlying the regulation of HY5 to precisely control plant photomorphogenesis.
Collapse
Affiliation(s)
- Nan Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Chuang-Qi Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Da-Jin Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhi-Ping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ya-Chao Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Lian-Feng Ai
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Sheng-Wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
3
|
Lu Q, Shi W, Zhang F, Ding Y. ATX1 and HUB1/2 promote recruitment of the transcription elongation factor VIP2 to modulate the floral transition in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1760-1773. [PMID: 38446797 DOI: 10.1111/tpj.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 03/08/2024]
Abstract
Histone 2B ubiquitination (H2Bub) and trimethylation of H3 at lysine 4 (H3K4me3) are associated with transcription activation. However, the function of these modifications in transcription in plants remains largely unknown. Here, we report that coordination of H2Bub and H3K4me3 deposition with the binding of the RNA polymerase-associated factor VERNALIZATION INDEPENDENCE2 (VIP2) to FLOWERING LOCUS C (FLC) modulates flowering time in Arabidopsis. We found that RING domain protein HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 (we refer as HUB1/2), which are responsible for H2Bub, interact with ARABIDOPSIS TRITHORAX1 (ATX1), which is required for H3K4me3 deposition, to promote the transcription of FLC and repress the flowering time. The atx1-2 hub1-10 hub2-2 triple mutant in FRIGIDIA (FRI) background displayed early flowering like FRI hub1-10 hub2-2 and overexpression of ATX1 failed to rescue the early flowering phenotype of hub1-10 hub2-2. Mutations in HUB1 and HUB2 reduced the ATX1 enrichment at FLC, indicating that HUB1 and HUB2 are required for ATX1 recruitment and H3K4me3 deposition at FLC. We also found that the VIP2 directly binds to HUB1, HUB2, and ATX1 and that loss of VIP2 in FRI hub1-10 hub2-2 and FRI atx1-2 plants resulted in early flowering like that observed in FRI vip2-10. Loss of function of HUB2 and ATX1 impaired VIP2 enrichment at FLC, and reduced the transcription initiation and elongation of FLC. In addition, mutations in VIP2 reduced HUB1 and ATX1 enrichment and H2Bub and H3K4me3 levels at FLC. Together, our findings revealed that HUB1/2, ATX1, and VIP2 coordinately modulate H2Bub and H3K4me3 deposition, FLC transcription, and flowering time.
Collapse
Affiliation(s)
- Qianqian Lu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Wenwen Shi
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Fei Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| |
Collapse
|
4
|
Junaid MD, Chaudhry UK, Şanlı BA, Gökçe AF, Öztürk ZN. A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants. Funct Integr Genomics 2024; 24:74. [PMID: 38600306 DOI: 10.1007/s10142-024-01354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.
Collapse
Affiliation(s)
- Muhammad Daniyal Junaid
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey.
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
- Pakistan Environmental Protection Agency, Ministry of Climate Change & Environmental Coordination, Islamabad, Pakistan
| | - Beyazıt Abdurrahman Şanlı
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Ali Fuat Gökçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Zahide Neslihan Öztürk
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| |
Collapse
|
5
|
Shen SY, Ma M, Bai C, Wang WQ, Zhu RB, Gao Q, Song XJ. Optimizing rice grain size by attenuating phosphorylation-triggered functional impairment of a chromatin modifier ternary complex. Dev Cell 2024; 59:448-464.e8. [PMID: 38237589 DOI: 10.1016/j.devcel.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/09/2023] [Accepted: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Histone acetylation affects numerous cellular processes, such as gene transcription, in both plants and animals. However, the posttranslational modification-participated regulatory networks for crop-yield-related traits are largely unexplored. Here, we characterize a regulatory axis for controlling rice grain size and yield, centered on a potent histone acetyltransferase (chromatin modifier) known as HHC4. HHC4 interacts with and forms a ternary complex with adaptor protein ADA2 and transcription factor bZIP23, wherein bZIP23 recruits HHC4 to specific promoters, and ADA2 and HHC4 additively enhance bZIP23 transactivation on target genes. Meanwhile, HHC4 interacts with and is phosphorylated by GSK3-like kinase TGW3. The resultant phosphorylation triggers several functional impairments of the HHC4 ternary complex. In addition, we identify two major phosphorylation sites of HHC4 by TGW3-sites which play an important role in controlling rice grain size. Overall, our findings thus have critical implications for understanding epigenetic basis of grain size control and manipulating the knowledge for higher crop productivity.
Collapse
Affiliation(s)
- Shao-Yan Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qiong Gao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Liu S, He M, Lin X, Kong F. Epigenetic regulation of photoperiodic flowering in plants. THE PLANT GENOME 2023; 16:e20320. [PMID: 37013370 DOI: 10.1002/tpg2.20320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
In response to changeable season, plants precisely control the initiation of flowering in appropriate time of the year to ensure reproductive success. Day length (photoperiod) acts as the most important external cue to determine flowering time. Epigenetics regulates many major developmental stages in plant life, and emerging molecular genetics and genomics researches reveal their essential roles in floral transition. Here, we summarize the recent advances in epigenetic regulation of photoperiod-mediated flowering in Arabidopsis and rice, and discuss the potential of epigenetic regulation in crops improvement, and give the brief prospect for future study trends.
Collapse
Affiliation(s)
- Shuangrong Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Milan He
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
7
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Qu L, Liu M, Zheng L, Wang X, Xue H. Data-independent acquisition-based global phosphoproteomics reveal the diverse roles of casein kinase 1 in plant development. Sci Bull (Beijing) 2023; 68:2077-2093. [PMID: 37599176 DOI: 10.1016/j.scib.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Casein kinase 1 (CK1) is serine/threonine protein kinase highly conserved among eukaryotes, and regulates multiple developmental and signaling events through phosphorylation of target proteins. Arabidopsis early flowering 1 (EL1)-like (AELs) are plant-specific CK1s with varied functions, but identification and validation of their substrates is a major bottleneck in elucidating their physiological roles. Here, we conducted a quantitative phosphoproteomic analysis in data-independent acquisition mode to systematically identify CK1 substrates. We extracted proteins from seedlings overexpressing individual AEL genes (AEL1/2/3/4-OE) or lacking AEL function (all ael single mutants and two triple mutants) to identify the high-confidence phosphopeptides with significantly altered abundance compared to wild-type Col-0. Among these, we selected 3985 phosphopeptides with higher abundance in AEL-OE lines or lower abundance in ael mutants compared with Col-0 as AEL-upregulated phosphopeptides, and defined 1032 phosphoproteins. Eight CK1s substrate motifs were enriched among AEL-upregulated phosphopeptides and verified, which allowed us to predict additional candidate substrates and functions of CK1s. We functionally characterized a newly identified substrate C3H17, a CCCH-type zinc finger transcription factor, through biochemical and genetic analyses, revealing a role for AEL-promoted C3H17 protein stability and transactivation activity in regulating embryogenesis. As CK1s are highly conserved across eukaryotes, we searched the rice, mouse, and human protein databases using newly identified CK1 substrate motifs, yielding many more candidate substrates than currently known, largely expanding our understanding of the common and distinct functions exerted by CK1s in Arabidopsis and humans, facilitating future mechanistic studies of CK1-mediated phosphorylation in different species.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Moyang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Liao X, Guo S, Liao B, Shen X, He W, Meng Y, Liang C, Pei J, Liu J, Zhang Y, Xu J, Chen S. Chromatin architecture of two different strains of Artemisia annua reveals the alterations in interaction and gene expression. PLANTA 2023; 258:74. [PMID: 37668722 DOI: 10.1007/s00425-023-04223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
MAIN CONCLUSION The hierarchical architecture of chromatins affects the gene expression level of glandular secreting trichomes and the artemisinin biosynthetic pathway-related genes, consequently bringing on huge differences in the content of artemisinin and its derivatives of A. annua. The plant of traditional Chinese medicine "Qinghao" is called Artemisia annua L. in Chinese Pharmacopoeia. High content and the total amount of artemisinin is the main goal of A. annua breeding, nevertheless, the change of chromatin organization during the artemisinin synthesis process has not been discovered yet. This study intended to find the roles of chromatin structure in the production of artemisinin through bioinformatics and experimental validation. Chromosome conformation capture analysis was used to scrutinize the interactions among chromosomes and categorize various scales of chromatin during artemisinin synthesis in A. annua. To confirm the effect of the changes in chromatin structure, Hi-C and RNA-sequencing were performed on two different strains to find the correlation between chromatin structure and gene expression levels on artemisinin synthesis progress and regulation. Our results revealed that the frequency of intra-chromosomal interactions was higher in the inter-chromosomal interactions between the root and leaves on a high artemisinin production strain (HAP) compared to a low artemisinin production strain (LAP). We found that compartmental transition was connected with interactions among different chromatins. Interestingly, glandular secreting trichomes (GSTs) and the artemisinin biosynthetic pathway (ABP) related genes were enriched in the areas which have the compartmental transition, reflecting the regulation of artemisinin synthesis. Topologically associated domain boundaries were associated with various distributions of genes and expression levels. Genes associated with ABP and GST in the adjacent loop were highly expressed, suggesting that epigenetic regulation plays an important role during artemisinin synthesis and glandular secreting trichomes production process. Chromatin structure could show an important status in the mechanisms of artemisinin synthesis process in A. annua.
Collapse
Affiliation(s)
- Xuejiao Liao
- Pharmacy College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shuai Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaofeng Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenrui He
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ying Meng
- Pharmacy College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Conglian Liang
- Pharmacy College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yongqing Zhang
- Pharmacy College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Wang N, Deng Y, Zhang L, Wan Y, Lei T, Yang Y, Wu C, Du H, Feng P, Yin W, He G. UDP-glucose epimerase 1, moonlighting as a transcriptional activator, is essential for tapetum degradation and male fertility in rice. MOLECULAR PLANT 2023; 16:829-848. [PMID: 36926693 DOI: 10.1016/j.molp.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/12/2023] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
Multiple enzymes perform moonlighting functions distinct from their main roles. UDP-glucose epimerases (UGEs), a subclass of isomerases, catalyze the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). We identified a rice male-sterile mutant, osuge1, with delayed tapetum degradation and abortive pollen. The mutant osuge1 protein lacked UDP-glucose epimerase activity, resulting in higher UDP-Gal content and lower UDP-Glc levels in the osuge1 mutant compared with the wild type. Interestingly, we discovered that OsUGE1 participates in the TIP2/bHLH142-TDR-EAT1/DTD transcriptional regulatory cascade involved in tapetum degradation, in which TIP2 and TDR regulate the expression of OsUGE1 while OsUGE1 regulates the expression of EAT1. In addition, we found that OsUGE1 regulates the expression of its own gene by directly binding to an E-box element in the OsUGE1 promoter. Collectively, our results indicate that OsUGE1 not only functions as a UDP-glucose epimerase but also moonlights as a transcriptional activator to promote tapetum degradation, revealing a novel regulatory mechanism of rice reproductive development.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| | - Yao Deng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lisha Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yingchun Wan
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ting Lei
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yimin Yang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Can Wu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Ping Feng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Wuzhong Yin
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Vainonen JP, Gossens R, Krasensky-Wrzaczek J, De Masi R, Danciu I, Puukko T, Battchikova N, Jonak C, Wirthmueller L, Wrzaczek M, Shapiguzov A, Kangasjärvi J. Poly(ADP-ribose)-binding protein RCD1 is a plant PARylation reader regulated by Photoregulatory Protein Kinases. Commun Biol 2023; 6:429. [PMID: 37076532 PMCID: PMC10115779 DOI: 10.1038/s42003-023-04794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a reversible post-translational protein modification that has profound regulatory functions in metabolism, development and immunity, and is conserved throughout the eukaryotic lineage. Contrary to metazoa, many components and mechanistic details of PARylation have remained unidentified in plants. Here we present the transcriptional co-regulator RADICAL-INDUCED CELL DEATH1 (RCD1) as a plant PAR-reader. RCD1 is a multidomain protein with intrinsically disordered regions (IDRs) separating its domains. We have reported earlier that RCD1 regulates plant development and stress-tolerance by interacting with numerous transcription factors (TFs) through its C-terminal RST domain. This study suggests that the N-terminal WWE and PARP-like domains, as well as the connecting IDR play an important regulatory role for RCD1 function. We show that RCD1 binds PAR in vitro via its WWE domain and that PAR-binding determines RCD1 localization to nuclear bodies (NBs) in vivo. Additionally, we found that RCD1 function and stability is controlled by Photoregulatory Protein Kinases (PPKs). PPKs localize with RCD1 in NBs and phosphorylate RCD1 at multiple sites affecting its stability. This work proposes a mechanism for negative transcriptional regulation in plants, in which RCD1 localizes to NBs, binds TFs with its RST domain and is degraded after phosphorylation by PPKs.
Collapse
Affiliation(s)
- Julia P Vainonen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014, Helsinki, Finland
| | - Richard Gossens
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014, Helsinki, Finland
| | - Julia Krasensky-Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014, Helsinki, Finland
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská1160/31, 370 05, České Budějovice, Czech Republic
| | - Raffaella De Masi
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Iulia Danciu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Tuomas Puukko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014, Helsinki, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Claudia Jonak
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Lennart Wirthmueller
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014, Helsinki, Finland
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská1160/31, 370 05, České Budějovice, Czech Republic
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Toivonlinnantie 518, FI-21500, Piikkiö, Finland
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
12
|
Ahn G, Park HJ, Jeong SY, Shin GI, Ji MG, Cha JY, Kim J, Kim MG, Yun DJ, Kim WY. HOS15 represses flowering by promoting GIGANTEA degradation in response to low temperature in Arabidopsis. PLANT COMMUNICATIONS 2023:100570. [PMID: 36864727 PMCID: PMC10363504 DOI: 10.1016/j.xplc.2023.100570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Song Yi Jeong
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyeong-Im Shin
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myung Geun Ji
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Jin Yun
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Woe-Yeon Kim
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
13
|
Zhang L, Liu Y, Wei G, Lei T, Wu J, Zheng L, Ma H, He G, Wang N. POLLEN WALL ABORTION 1 is essential for pollen wall development in rice. PLANT PHYSIOLOGY 2022; 190:2229-2245. [PMID: 36111856 PMCID: PMC9706457 DOI: 10.1093/plphys/kiac435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The integrity of pollen wall structures is essential for pollen development and maturity in rice (Oryza sativa L.). In this study, we isolated and characterized the rice male-sterile mutant pollen wall abortion 1 (pwa1), which exhibits a defective pollen wall (DPW) structure and has sterile pollen. Map-based cloning, genetic complementation, and gene knockout experiments revealed that PWA1 corresponds to the gene LOC_Os01g55094 encoding a coiled-coil domain-containing protein. PWA1 localized to the nucleus, and PWA1 was expressed in the tapetum and microspores. PWA1 interacted with the transcription factor TAPETUM DEGENERATION RETARDATION (TDR)-INTERACTING PROTEIN2 (TIP2, also named bHLH142) in vivo and in vitro. The tip2-1 mutant, which we obtained by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene editing, showed delayed tapetum degradation, sterile pollen, and DPWs. We determined that TIP2/bHLH142 regulates PWA1 expression by binding to its promoter. Analysis of the phenotype of the tip2-1 pwa1 double mutant indicated that TIP2/bHLH142 functions upstream of PWA1. Further studies suggested that PWA1 has transcriptional activation activity and participates in pollen intine development through the β-glucosidase Os12BGlu38. Therefore, we identified a sterility factor, PWA1, and uncovered a regulatory network underlying the formation of the pollen wall and mature pollen in rice.
Collapse
Affiliation(s)
- Lisha Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yang Liu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Gang Wei
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ting Lei
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jingwen Wu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lintao Zheng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Honglei Ma
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Yu S, Zhang Z, Li J, Zhu Y, Yin Y, Zhang X, Dai Y, Zhang A, Li C, Zhu Y, Fan J, Ruan Y, Dong X. Genome-wide identification and characterization of lncRNAs in sunflower endosperm. BMC PLANT BIOLOGY 2022; 22:494. [PMID: 36271333 PMCID: PMC9587605 DOI: 10.1186/s12870-022-03882-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), as important regulators, play important roles in plant growth and development. The expression and epigenetic regulation of lncRNAs remain uncharacterized generally in plant seeds, especially in the transient endosperm of the dicotyledons. RESULTS In this study, we identified 11,840 candidate lncRNAs in 12 day-after-pollination sunflower endosperm by analyzing RNA-seq data. These lncRNAs were evenly distributed in all chromosomes and had specific features that were distinct from mRNAs including tissue-specificity expression, shorter and fewer exons. By GO analysis of protein coding genes showing strong correlation with the lncRNAs, we revealed that these lncRNAs potential function in many biological processes of seed development. Additionally, genome-wide DNA methylation analyses revealed that the level of DNA methylation at the transcription start sites was negatively correlated with gene expression levels in lncRNAs. Finally, 36 imprinted lncRNAs were identified including 32 maternally expressed lncRNAs and four paternally expressed lncRNAs. In CG and CHG context, DNA methylation levels of imprinted lncRNAs in the upstream and gene body regions were slightly lower in the endosperm than that in embryo tissues, which indicated that the maternal demethylation potentially induce the paternally bias expression of imprinted lncRNAs in sunflower endosperm. CONCLUSION Our findings not only identified and characterized lncRNAs on a genome-wide scale in the development of sunflower endosperm, but also provide novel insights into the parental effects and epigenetic regulation of lncRNAs in dicotyledonous seeds.
Collapse
Affiliation(s)
- Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Yanzhe Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China.
| |
Collapse
|
15
|
Chen L, Hu P, Lu Q, Zhang F, Su Y, Ding Y. Vernalization attenuates dehydration tolerance in winter-annual Arabidopsis. PLANT PHYSIOLOGY 2022; 190:732-744. [PMID: 35670724 PMCID: PMC9434170 DOI: 10.1093/plphys/kiac264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/04/2022] [Indexed: 05/27/2023]
Abstract
In winter-annual plants, exposure to cold temperatures induces cold tolerance and accelerates flowering in the following spring. However, little is known about plant adaptations to dehydration stress after winter. Here, we found that dehydration tolerance is reduced in winter-annual Arabidopsis (Arabidopsis thaliana) after vernalization. Winter-annual Arabidopsis plants with functional FRIGIDA (FRI) exhibited high dehydration tolerance, with small stomatal apertures and hypersensitivity to exogenous abscisic acid. Dehydration tolerance and FLOWERING LOCUS C (FLC) transcript levels gradually decreased with prolonged cold exposure in FRI plants. FLC directly bound to the promoter of OPEN STOMATA1 (OST1) and activated OST1 expression. Loss of FLC function resulted in decreased dehydration tolerance and reduced OST1 transcript levels. FLC and OST1 act in the same dehydration stress pathway, with OST1 acting downstream of FLC. Our study provides insights into the mechanisms by which FRI modulates dehydration tolerance through the FLC-OST1 module. Our results suggest that winter-annual Arabidopsis integrates dehydration tolerance and flowering time to adapt to environmental changes from winter to spring.
Collapse
Affiliation(s)
| | | | - Qianqian Lu
- Ministry of Education, Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS), Center for Excellence in Molecular Plant Sciences; Biomedical Sciences and Health Laboratory of Anhui Province; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230027, China
| | - Fei Zhang
- Ministry of Education, Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS), Center for Excellence in Molecular Plant Sciences; Biomedical Sciences and Health Laboratory of Anhui Province; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230027, China
| | | | | |
Collapse
|
16
|
Li H, Wei J, Liao Y, Cheng X, Yang S, Zhuang X, Zhang Z, Shen W, Gao C. MLKs kinases phosphorylate the ESCRT component FREE1 to suppress abscisic acid sensitivity of seedling establishment. PLANT, CELL & ENVIRONMENT 2022; 45:2004-2018. [PMID: 35445753 DOI: 10.1111/pce.14336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The FYVE domain protein required for endosomal sorting 1 (FREE1), which was previously identified as a plant-specific component of the endosomal sorting complex required for transport machinery, plays an essential role in endosomal trafficking. Moreover, FREE1 also functions as an important negative regulator in abscisic acid (ABA) signalling. Multiple phosphorylations and ubiquitination sites have been identified in FREE1, hence unveiling the factors involved in posttranslational regulation of FREE1 is critical for comprehensively understanding FREE1-related regulatory networks during plant growth. Here, we demonstrate that plant-specific casein kinase I members MUT9-like kinases 1-4 (MLKs 1-4)/Arabidopsis EL1-like 1-4 interact with and phosphorylate FREE1 at serine residue S582, thereby modulating the nuclear accumulation of FREE1. Consequently, mutation of S582 to non-phosphorylable residue results in reduced nuclear localization of FREE1 and enhanced ABA response. In addition, mlk123 and mlk134 triple mutants accumulate less FREE1 in the nucleus and display hypersensitive responses to ABA treatment, whereas overexpression of the nuclear-localized FREE1 can restore the ABA sensitivity of seedling establishment in mlks triple mutants. Collectively, our study demonstrates a previously unidentified function of MLKs in attenuating ABA signalling in the nucleus by regulating the phosphorylation and nuclear accumulation of FREE1.
Collapse
Affiliation(s)
- Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Juan Wei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanglan Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoling Cheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shuhong Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaohong Zhuang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Xu Z, Li E, Xue G, Zhang C, Yang Y, Ding Y. OsHUB2 inhibits function of OsTrx1 in heading date in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1670-1680. [PMID: 35395113 DOI: 10.1111/tpj.15763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Heading date is one of the most pivotal agronomic traits for rice (Oryza sativa) yield and adaptation. Little is known about the crosstalk between histone ubiquitination and histone methylation in rice heading date regulation. Here, we reported HISTONE MONOUBIQUITINATION 1 (OsHUB1) and OsHUB2 are involved in heading date regulation via the Hd1 and Ehd1 pathway. Loss of OsHUB1 and OsHUB2 function resulted in early heading under long-day and short-day photoperiods. The expression of Hd3a, RFT1, and Ehd1 was induced and the transcript levels of Hd1, Ghd7, OsCCA1, OsGI, OsFKF1, and OsTOC1 were reduced under long-day conditions, whereas RFT1 and Ehd1 expression was induced in oshub2 mutants under short-day conditions. OsHUB2 interacted with OsTrx1 and repressed the gene expression of OsTrx1. OsHUB2 directly bound to Ehd1 to ubiquitinate H2B at Ehd1, and H2B ubiquitination levels were reduced in oshub2-2 and oshub2-3 mutants. OsTrx1 were highly enriched at Ehd1, and H3K4me3 levels of Ehd1 were upregulated in oshub2-2. Mutations of OsTrx1 in the oshub2-2 background rescued the early-heading phenotype of oshub2-2. The increases in Ehd1 H3K4me3 levels and transcript levels in oshub2-2 mutants were attenuated in oshub2-2 ostrx1-2 double mutants. Together, our results (i) reveal that OsHUB2 represses the function of OsTrx1 and H3K4me3 levels at Ehd1 and (ii) suggest that OsHUB2-mediated H2B ubiquitination plays critical roles together with H3K4me3 in rice heading date regulation.
Collapse
Affiliation(s)
- Zuntao Xu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Enze Li
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Gan Xue
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Cheng Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Yachun Yang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| |
Collapse
|
18
|
Liu S, Zhang L, Gao L, Chen Z, Bie Y, Zhao Q, Zhang S, Hu X, Liu Q, Wang X, Wang Q. Differential photoregulation of the nuclear and cytoplasmic CRY1 in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:1332-1346. [PMID: 35094400 DOI: 10.1111/nph.18007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis cryptochrome 1 (CRY1) is a blue light receptor distributed in the nucleus and cytoplasm. The nuclear CRY1, but not cytoplasmic CRY1, mediates blue light inhibition of hypocotyl elongation. However, the photobiochemical mechanisms distinguishing the CRY1 protein in the two subcellular compartments remains unclear. Here we show that the nuclear CRY1, but not the cytoplasmic CRY1, is regulated by phosphorylation, polyubiquitination and 26S proteasome-dependent proteolysis in response to blue light. The blue light-dependent CRY1 degradation is observed only under high fluences of blue light. The nuclear specificity and high fluence dependency of CRY1 explain why this photochemical regulatory mechanism of CRY1 was not observed previously and it further supports the hypothesis that CRY1 is a high light receptor regulating photomorphogenesis. We further show that the nuclear CRY1, but not cytoplasmic CRY1, undergoes blue light-dependent phosphorylation by photoregulatory protein kinase 1 (PPK1) followed by polyubiquitination by the E3 ubiquitin ligase Cul4COP1/SPAs , resulting in the blue light-dependent proteolysis. Both phosphorylation and ubiquitination of nuclear CRY1 are inhibited by blue-light inhibitor of cryptochromes 1 (BIC1), demonstrating the involvement of photo-oligomerization of the nuclear CRY1. These finding reveals a photochemical mechanism that differentially regulates the physiological activity of the CRY1 photoreceptor in distinct subcellular compartments.
Collapse
Affiliation(s)
- Siyuan Liu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li Zhang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Gao
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziyin Chen
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxue Bie
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiannan Zhao
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Zhang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohua Hu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Liu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qin Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
19
|
Ikram AU, Zhang F, Xu Z, Li E, Xue G, Wang S, Zhang C, Yang Y, Su Y, Ding Y. Chromatin remodeling factors OsYAF9 and OsSWC4 interact to promote internode elongation in rice. PLANT PHYSIOLOGY 2022; 188:2199-2214. [PMID: 35157083 PMCID: PMC8968431 DOI: 10.1093/plphys/kiac031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 05/09/2023]
Abstract
Deposition of H2A.Z and H4 acetylation by SWI2/SNF2-Related 1 Chromatin Remodeling (SWR1) and Nucleosome Acetyltransferase of H4 (NuA4) complexes in specific regulatory regions modulates transcription and development. However, little is known about these complexes in Oryza sativa (rice) development. Here, we reported that OsYAF9 and OsSWC4, two subunits of SWR1 and NuA4 complexes, are involved in rice vegetative and reproductive development. Loss of OsYAF9 resulted in reduced height, fewer tillers, fewer pollen grains, and defects in embryogenesis and seed filling. OsYAF9 directly interacted with OsSWC4 in vitro and in vivo. Loss of OsSWC4 function exhibited defects in pollen germination and failure to generate seeds, whereas knockdown of OsSWC4 resulted in reduced height and fewer tillers. The reduced height caused by OsYAF9 mutation and OsSWC4 knockdown was due to shorter internodes and defects in cell elongation, and this phenotype was rescued with gibberellin (GA) treatment, suggesting that both OsYAF9 and OsSWC4 are involved in the GA biosynthesis pathway. OsSWC4 was directly bound to the AT-rich region of GA biosynthesis genes, which in turn accomplished H2A.Z deposition and H4 acetylation at the GA biosynthesis genes with OsYAF9. Together, our study provides insights into the mechanisms involving OsSWC4 and OsYAF9 forming a protein complex to promote rice internode elongation with H2A.Z deposition and H4 acetylation.
Collapse
Affiliation(s)
| | | | - Zuntao Xu
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Enze Li
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Gan Xue
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Shiliang Wang
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Cheng Zhang
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yachun Yang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | | | | |
Collapse
|
20
|
Lysine crotonylation: A challenging new player in the epigenetic regulation of plants. J Proteomics 2022; 255:104488. [DOI: 10.1016/j.jprot.2022.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
|
21
|
Liu J, Chang C. Concerto on Chromatin: Interplays of Different Epigenetic Mechanisms in Plant Development and Environmental Adaptation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122766. [PMID: 34961235 PMCID: PMC8705648 DOI: 10.3390/plants10122766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 05/26/2023]
Abstract
Epigenetic mechanisms such as DNA methylation, histone post-translational modifications, chromatin remodeling, and noncoding RNAs, play important roles in regulating plant gene expression, which is involved in various biological processes including plant development and stress responses. Increasing evidence reveals that these different epigenetic mechanisms are highly interconnected, thereby contributing to the complexity of transcriptional reprogramming in plant development processes and responses to environmental stresses. Here, we provide an overview of recent advances in understanding the epigenetic regulation of plant gene expression and highlight the crosstalk among different epigenetic mechanisms in making plant developmental and stress-responsive decisions. Structural, physical, transcriptional and metabolic bases for these epigenetic interplays are discussed.
Collapse
|
22
|
Wang J, Wang J, Li J, Shang H, Chen X, Hu X. The RLK protein TaCRK10 activates wheat high-temperature seedling-plant resistance to stripe rust through interacting with TaH2A.1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1241-1255. [PMID: 34583419 DOI: 10.1111/tpj.15513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 09/22/2021] [Indexed: 05/27/2023]
Abstract
Plants sense various pathogens and activate immunity responses through receptor-like kinases (RLKs). Cysteine-rich receptor-like kinases (CRKs) are involved in massive transduction pathways upon perception of a pathogen. However, the roles of CRKs in response to stripe rust are unclear. In the present study, we identified a CRK gene (designated TaCRK10) from wheat variety Xiaoyan 6 (XY6) that harbors high-temperature seedling-plant (HTSP) resistance to stripe rust caused by fungal pathogen Puccinia striiformis f. sp. tritici (Pst). The expression level of TaCRK10 was induced by Pst inoculation and high temperature treatment. Knockdown of TaCRK10 by virus-induced gene silencing resulted in attenuated wheat HTSP resistance to Pst, whereas there is no effect on Pst development and host responses under normal temperatures. Notably, overexpression of TaCRK10 in susceptible variety Fielder provided resistance only under normal temperatures at 14 days with reactive oxygen species accumulation and defense-related gene expression of the salicylic acid pathway. Moreover, TaCRK10 physically interacted with and phosphorylated a histone variant TaH2A.1, which belongs to the H2A.W group. Silencing of TaH2A.1 suppressed wheat resistance to Pst, indicating that TaH2A.1 plays a positive role in wheat resistance to Pst. Thus, TaCRK10 serves as an important sensor of Pst infection and high temperatures, and it activates wheat resistance to Pst through regulating nuclear processes. This knowledge helps elucidate the molecular mechanism of wheat HTSP resistance to Pst and promotes efforts in developing wheat varieties with resistance to stripe rust.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, China
| | - Jingjing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, China
| | - Juan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, China
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, China
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, China
| |
Collapse
|
23
|
Huang T, Zhang H, Zhou Y, Su Y, Zheng H, Ding Y. Phosphorylation of Histone H2A at Serine 95 Is Essential for Flowering Time and Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:761008. [PMID: 34887889 PMCID: PMC8650089 DOI: 10.3389/fpls.2021.761008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Phosphorylation of H2A at serine 95 (H2AS95ph) mediated by MLK4 promotes flowering and H2A.Z deposition. However, little is known about MLK1, MLK2, and MLK3 during the flowering time. Here, we systemically analyze the functions of MLK family in flowering time and development. Mutation in MLK3, but not MLK1 and MLK2, displayed late-flowering phenotype. Loss of MLK3 function enhanced the late-flowering phenotype of mlk4 mutant, but not reinforced the late-flowering phenotype of mlk1 mlk2 double mutants. MLK3 displayed the kinase activity to histone H2AS95ph in vitro. The global H2AS95ph levels were reduced in mlk3 mlk4, but not in mlk3 and mlk4 single mutant and mlk1 mlk2 double mutant, and the H2AS95ph levels in mlk1 mlk3 mlk4 and mlk2 mlk3 mlk4 were similar to those in mlk3 mlk4 double mutant. MLK3 interacted with CCA1, which binds to the promoter of GI. Correspondingly, the transcription levels and H2AS95ph levels of GI were reduced in mlk3 and mlk4 single mutant, and greatly decreased in mlk3 mlk4 double mutant, but not further attenuated in mlk1 mlk3 mlk4 and mlk2 mlk3 mlk4 triple mutant. Together, our results suggested that H2AS95ph deposition mediated by MLK3 and MLK4 is essential for flowering time in Arabidopsis.
Collapse
|
24
|
Tang W, Wang X, Kou M, Yan H, Gao R, Li C, Song W, Zhang Y, Wang X, Liu Y, Li Z, Li Q. The sweetpotato GIGANTEA gene promoter is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:143-154. [PMID: 34628175 DOI: 10.1016/j.plaphy.2021.08.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
GIGANTEA (GI) is known to play significant roles in various molecular pathways. Nevertheless, the underlying mechanism of the transcriptional regulation of GI remains obscure in sweetpotato. In the present study, a 1518-bp promoter sequence was obtained from the Ipomoea batatas GIGANTEA (IbGI) gene, and several potential cis-elements responsive to light, phytohormones and abiotic stresses were identified by in silico analysis. In order to functionally validate the IbGI promoter, the 5' deletion analysis of the promoter was performed by cloning the full-length promoter (D0) and its four deletion fragments, D1 (1235 bp), D2 (896 bp), D3 (549 bp) and D4 (286 bp), upstream of the β-glucuronidase (GUS) reporter gene. Then, these were stably transformed in Arabidopsis plants. All transgenic seedlings exhibited stable GUS activity in the condition of control, but with decreased activity in the condition of most treatments. Interestingly, merely D1 seedlings that contained an abscisic acid responsive cis-element (ABRE-element) had an extremely powerful GUS activity under the treatment of ABA, which implies that fragment spanning nucleotides of -1235 to -896 bp might be a crucial component for the responses of ABA. Eight different types of potential transcriptional regulators of IbGI were isolated by Y1H, including TGA2.2, SPLT1 and GADPH, suggesting the complex interaction mode of protein-DNA on the IbGI promoter. Taken together, these present results help to better understand the transcriptional regulation mechanism of the IbGI gene, and provides an insight into the IbGI promoter, which can be considered as an alternation for breeding transgenic plants.
Collapse
Affiliation(s)
- Wei Tang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Xiaoxiao Wang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Meng Kou
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Hui Yan
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Chen Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Yaju Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Qiang Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China.
| |
Collapse
|
25
|
Osadchuk K, Cheng CL, Irish EE. The integration of leaf-derived signals sets the timing of vegetative phase change in maize, a process coordinated by epigenetic remodeling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111035. [PMID: 34620439 DOI: 10.1016/j.plantsci.2021.111035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
After germination, the maize shoot proceeds through a series of developmental stages before flowering. The first transition occurs during the vegetative phase where the shoot matures from the juvenile to the adult phase, called vegetative phase change (VPC). In maize, both phases exhibit easily-scored morphological characteristics, facilitating the elucidation of molecular mechanisms directing the characteristic gene expression patterns and resulting physiological features of each phase. miR156 expression is high during the juvenile phase, suppressing expression of squamosa promoter binding proteins/SBP-like transcription factors and miR172. The decline in miR156 and subsequent increase in miR172 expression marks the transition into the adult phase, where miR172 represses transcripts that confer juvenile traits. Leaf-derived signals attenuate miR156 expression and thus the duration of the juvenile phase. As found in other species, VPC in maize utilizes signals that consist of hormones, stress, and sugar to direct epigenetic modifiers. In this review we identify the intersection of leaf-derived signaling with components that contribute to the epigenetic changes which may, in turn, manage the distinct global gene expression patterns of each phase. In maize, published research regarding chromatin remodeling during VPC is minimal. Therefore, we identified epigenetic regulators in the maize genome and, using published gene expression data and research from other plant species, identify VPC candidates.
Collapse
Affiliation(s)
- Krista Osadchuk
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Chi-Lien Cheng
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Erin E Irish
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
26
|
Qu L, Wei Z, Chen HH, Liu T, Liao K, Xue HW. Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division. PLANT PHYSIOLOGY 2021; 187:917-930. [PMID: 34608955 PMCID: PMC8491028 DOI: 10.1093/plphys/kiab284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 05/04/2023]
Abstract
Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation. Cytological analysis showed that AELs deficiency results in suppressed cell-cycle progression mainly due to the decreased DNA replication rate at S phase and increased period of G2 phase. AELs interact with and phosphorylate KRP6 at serines 75 and 109 to stimulate KRP6's interaction with E3 ligases, thus facilitating the KRP6 degradation through the proteasome. These results demonstrate the crucial roles of CK1s/AELs in regulating cell division through modulating cell-cycle rates and elucidate how CK1s/AELs regulate cell division by destabilizing the stability of cyclin-dependent kinase inhibitor KRP6 through phosphorylation, providing insights into the plant cell-cycle regulation through CK1s-mediated posttranslational modification.
Collapse
Affiliation(s)
- Li Qu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhuang Wei
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hu-Hui Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Liu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kan Liao
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Wei Xue
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Sheng Y, Hao Z, Peng Y, Liu S, Hu L, Shen Y, Shi J, Chen J. Morphological, phenological, and transcriptional analyses provide insight into the diverse flowering traits of a mutant of the relic woody plant Liriodendron chinense. HORTICULTURE RESEARCH 2021; 8:174. [PMID: 34333549 PMCID: PMC8325688 DOI: 10.1038/s41438-021-00610-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 06/01/2023]
Abstract
Flowering is crucial to plant reproduction and controlled by multiple factors. However, the mechanisms underlying the regulation of flowering in perennial plants are still largely unknown. Here, we first report a super long blooming 1 (slb1) mutant of the relict tree Liriodendron chinense possessing a prolonged blooming period of more than 5 months, in contrast to the 1 month blooming period in the wild type (WT). Phenotypic characterization showed that earlier maturation of lateral shoots was caused by accelerated axillary bud fate, leading to the phenotype of continuous flowering in slb1 mutants. The transcriptional activity of genes related to hormone signaling (auxin, cytokinin, and strigolactone), nutrient availability, and oxidative stress relief further indicated active outgrowth of lateral buds in slb1 mutants. Interestingly, we discovered a unique FT splicing variant with intron retention specific to slb1 mutants, representing a potential causal mutation in the slb1 mutants. Surprisingly, most slb1 inbred offspring flowered precociously with shorter juvenility (~4 months) than that (usually 8-10 years) required in WT plants, indicating heritable variation underlying continuous flowering in slb1 mutants. This study reports an example of a perennial tree mutant that flowers continuously, providing a rare resource for both breeding and genetic research.
Collapse
Affiliation(s)
- Yu Sheng
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ye Peng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Siqin Liu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lingfeng Hu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yongbao Shen
- Southern Tree Seed Inspection Center National Forestry Administration, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
28
|
Mao Z, Wei X, Li L, Xu P, Zhang J, Wang W, Guo T, Kou S, Wang W, Miao L, Cao X, Zhao J, Yang G, Zhang S, Lian H, Yang HQ. Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition. THE PLANT CELL 2021; 33:1961-1979. [PMID: 33768238 PMCID: PMC8290288 DOI: 10.1093/plcell/koab091] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/23/2021] [Indexed: 05/20/2023]
Abstract
Light is a key environmental cue that fundamentally regulates plant growth and development, which is mediated by the multiple photoreceptors including the blue light (BL) photoreceptor cryptochrome 1 (CRY1). The signaling mechanism of Arabidopsis thaliana CRY1 involves direct interactions with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)/SUPPRESSOR OF PHYA-105 1 and stabilization of COP1 substrate ELONGATED HYPOCOTYL 5 (HY5). H2A.Z is an evolutionarily conserved histone variant, which plays a critical role in transcriptional regulation through its deposition in chromatin catalyzed by SWR1 complex. Here we show that CRY1 physically interacts with SWC6 and ARP6, the SWR1 complex core subunits that are essential for mediating H2A.Z deposition, in a BL-dependent manner, and that BL-activated CRY1 enhances the interaction of SWC6 with ARP6. Moreover, HY5 physically interacts with SWC6 and ARP6 to direct the recruitment of SWR1 complex to HY5 target loci. Based on previous studies and our findings, we propose that CRY1 promotes H2A.Z deposition to regulate HY5 target gene expression and photomorphogenesis in BL through the enhancement of both SWR1 complex activity and HY5 recruitment of SWR1 complex to HY5 target loci, which is likely mediated by interactions of CRY1 with SWC6 and ARP6, and CRY1 stabilization of HY5, respectively.
Collapse
Affiliation(s)
- Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuxu Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Xu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingyi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shuang Kou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wanting Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Langxi Miao
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiachen Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Guangqiong Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shilong Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
29
|
|
30
|
Schmücker A, Lei B, Lorković ZJ, Capella M, Braun S, Bourguet P, Mathieu O, Mechtler K, Berger F. Crosstalk between H2A variant-specific modifications impacts vital cell functions. PLoS Genet 2021; 17:e1009601. [PMID: 34086674 PMCID: PMC8208582 DOI: 10.1371/journal.pgen.1009601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Selection of C-terminal motifs participated in evolution of distinct histone H2A variants. Hybrid types of variants combining motifs from distinct H2A classes are extremely rare. This suggests that the proximity between the motif cases interferes with their function. We studied this question in flowering plants that evolved sporadically a hybrid H2A variant combining the SQ motif of H2A.X that participates in the DNA damage response with the KSPK motif of H2A.W that stabilizes heterochromatin. Our inventory of PTMs of H2A.W variants showed that in vivo the cell cycle-dependent kinase CDKA phosphorylates the KSPK motif of H2A.W but only in absence of an SQ motif. Phosphomimicry of KSPK prevented DNA damage response by the SQ motif of the hybrid H2A.W/X variant. In a synthetic yeast expressing the hybrid H2A.W/X variant, phosphorylation of KSPK prevented binding of the BRCT-domain protein Mdb1 to phosphorylated SQ and impaired response to DNA damage. Our findings illustrate that PTMs mediate interference between the function of H2A variant specific C-terminal motifs. Such interference could explain the mutual exclusion of motifs that led to evolution of H2A variants.
Collapse
Affiliation(s)
- Anna Schmücker
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Bingkun Lei
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Zdravko J. Lorković
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Matías Capella
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Sigurd Braun
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Pierre Bourguet
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- CNRS, Université Clermont Auvergne, Inserm, Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Olivier Mathieu
- CNRS, Université Clermont Auvergne, Inserm, Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Karl Mechtler
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
31
|
Wu Y, Wang Q, Qu J, Liu W, Gao X, Li X, Ouyang X, Lin C, Shuai J. Different response modes and cooperation modulations of blue-light receptors in photomorphogenesis. PLANT, CELL & ENVIRONMENT 2021; 44:1802-1815. [PMID: 33665849 DOI: 10.1111/pce.14038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Cryptochromes photoreceptors, CRY1 and CRY2 in Arabidopsis, mediate blue light responses in plants and metazoa. The signalling interactions underlying photomorphogenesis of cryptochromes action have been extensively studied in experiment, expecting a systematical analysis of the dynamic mechanisms of photosensory signalling network from a global view. In this study, we developed a signalling network model to quantitatively investigate the different response modes and cooperation modulations on photomorphogenesis for CRY1 and CRY2 under blue light. The model shows that the different modes of time-dependent and fluence-rate-dependent phosphorylations for CRY1 and CRY2 are originated from their different phosphorylation rates and degradation rates. Our study indicates that, due to the strong association between blue-light inhibitor of cryptochromes (BIC) and CRY2, BIC negatively modulates CRY2 phosphorylation, which was confirmed by our experiment. The experiment also validated the model prediction that the time-dependent BIC-CRY1 and the fluence-rate-dependent BIC-CRY2 are both bell-shaped under blue light. Importantly, the model proposes that the COP1-SPA abundance can strongly inhibit the phosphorylation response of CRY2, resulting in the positive regulation of CRY2 phosphorylation by CRY1 through COP1-SPA. The model also predicts that the CRY1-HY5 axis, rather than CRY2-HY5 pathway, plays a dominant role in blue-light-dependent photomorphogenesis.
Collapse
Affiliation(s)
- Yuning Wu
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, China
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Qu
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, China
| | - Wen Liu
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, China
| | - Xuejuan Gao
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, China
| | - Xiang Li
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Xinhao Ouyang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, California, USA
| | - Jianwei Shuai
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
32
|
Wei X, Wang W, Xu P, Wang W, Guo T, Kou S, Liu M, Niu Y, Yang HQ, Mao Z. Phytochrome B interacts with SWC6 and ARP6 to regulate H2A.Z deposition and photomorphogensis in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1133-1146. [PMID: 33982818 DOI: 10.1111/jipb.13111] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Light serves as a crucial environmental cue which modulates plant growth and development, and which is controlled by multiple photoreceptors including the primary red light photoreceptor, phytochrome B (phyB). The signaling mechanism of phyB involves direct interactions with a group of basic helix-loop-helix (bHLH) transcription factors, PHYTOCHROME-INTERACTING FACTORS (PIFs), and the negative regulators of photomorphogenesis, COP1 and SPAs. H2A.Z is an evolutionarily conserved H2A variant which plays essential roles in transcriptional regulation. The replacement of H2A with H2A.Z is catalyzed by the SWR1 complex. Here, we show that the Pfr form of phyB physically interacts with the SWR1 complex subunits SWC6 and ARP6. phyB and ARP6 co-regulate numerous genes in the same direction, some of which are associated with auxin biosynthesis and response including YUC9, which encodes a rate-limiting enzyme in the tryptophan-dependent auxin biosynthesis pathway. Moreover, phyB and HY5/HYH act to inhibit hypocotyl elongation partially through repression of auxin biosynthesis. Based on our findings and previous studies, we propose that phyB promotes H2A.Z deposition at YUC9 to inhibit its expression through direct phyB-SWC6/ARP6 interactions, leading to repression of auxin biosynthesis, and thus inhibition of hypocotyl elongation in red light.
Collapse
Affiliation(s)
- Xuxu Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wanting Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Peng Xu
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shuang Kou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yake Niu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
33
|
Arefian M, Bhagya N, Prasad TSK. Phosphorylation-mediated signalling in flowering: prospects and retrospects of phosphoproteomics in crops. Biol Rev Camb Philos Soc 2021; 96:2164-2191. [PMID: 34047006 DOI: 10.1111/brv.12748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Protein phosphorylation is a major post-translational modification, regulating protein function, stability, and subcellular localization. To date, annotated phosphorylation data are available mainly for model organisms and humans, despite the economic importance of crop species and their large kinomes. Our understanding of the phospho-regulation of flowering in relation to the biology and interaction between the pollen and pistil is still significantly lagging, limiting our knowledge on kinase signalling and its potential applications to crop production. To address this gap, we bring together relevant literature that were previously disconnected to present an overview of the roles of phosphoproteomic signalling pathways in modulating molecular and cellular regulation within specific tissues at different morphological stages of flowering. This review is intended to stimulate research, with the potential to increase crop productivity by providing a platform for novel molecular tools.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - N Bhagya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
34
|
Quantitative Proteomics and Phosphoproteomics Support a Role for Mut9-Like Kinases in Multiple Metabolic and Signaling Pathways in Arabidopsis. Mol Cell Proteomics 2021; 20:100063. [PMID: 33677124 PMCID: PMC8066427 DOI: 10.1016/j.mcpro.2021.100063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 11/27/2022] Open
Abstract
Protein phosphorylation is one of the most prevalent posttranslational modifications found in eukaryotic systems. It serves as a key molecular mechanism that regulates protein function in response to environmental stimuli. The Mut9-like kinases (MLKs) are a plant-specific family of Ser/Thr kinases linked to light, circadian, and abiotic stress signaling. Here we use quantitative phosphoproteomics in conjunction with global proteomic analysis to explore the role of the MLKs in daily protein dynamics. Proteins involved in light, circadian, and hormone signaling, as well as several chromatin-modifying enzymes and DNA damage response factors, were found to have altered phosphorylation profiles in the absence of MLK family kinases. In addition to altered phosphorylation levels, mlk mutant seedlings have an increase in glucosinolate metabolism enzymes. Subsequently, we show that a functional consequence of the changes to the proteome and phosphoproteome in mlk mutant plants is elevated glucosinolate accumulation and increased sensitivity to DNA damaging agents. Combined with previous reports, this work supports the involvement of MLKs in a diverse set of stress responses and developmental processes, suggesting that the MLKs serve as key regulators linking environmental inputs to developmental outputs. MUT9-LIKE KINASE mutant quantitative proteome and phosphoproteome measured. Changes to proteome and phosphoproteome are specific to genotype and environment. Loss of MLKs alters glucosinolate enzyme abundance and metabolism. Loss of MLKs increases plant sensitivity to UV radiation and DNA damage agents.
Collapse
|
35
|
Wang Z, Kang J, Armando Casas-Mollano J, Dou Y, Jia S, Yang Q, Zhang C, Cerutti H. MLK4-mediated phosphorylation of histone H3T3 promotes flowering by transcriptional silencing of FLC/MAF in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1400-1412. [PMID: 33280202 DOI: 10.1111/tpj.15122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Casein kinase I (CK1), a ubiquitous Ser/Thr protein kinase in eukaryotes, plays a critical role in higher plant flowering. Arabidopsis CK1 family member MUT9-LIKE KINASEs, such as MLK1 and MLK3, have been shown to phosphorylate histone H3 at threonine 3 (H3T3), an evolutionarily conserved residue, and the modification is associated with the transcriptional repression of euchromatic and heterochromatic loci. This study demonstrates that mlk4-3, a T-DNA insertion mutant of MLK4, flowered late, and that overexpression of MLK4 caused early flowering. The nuclear protein MLK4 phosphorylated histone H3T3 both in vitro and in vivo, and this catalytic activity required the conserved lysine residue K175. mutation of MLK4 at K175 failed to restore the level of phosphorylated H3T3 (H3T3ph) or to complement the phenotypic defects of mlk4-3. The FLC/MAF-clade genes, including FLC, MAF4 and MAF5, were significantly upregulated in mlk4-3. The double mutant mlk4-3 flc-3 flowered earlier than mlk4-3, suggesting that functional FLC is crucial for flowering repression in mlk4-3. Chromatin immunoprecipitation assays showed that MLK4 bound to FLC/MAF chromatin and that H3T3ph occupancy at the promoter of FLC/MAF was negatively associated with its transcriptional level. In accordance, H3T3ph accumulated at FLC/MAF in 35S::MLK4/mlk4-3 but diminished in 35S::MLK4(K175R)/mlk4-3 plants. Moreover, the amount of RNA Pol II deposited at FLC/MAF was clearly enriched in mlk4-3 relative to the wild type. Therefore, MLK4-dependent phosphorylation of H3T3 contributes to accelerating flowering by repressing the transcription of negative flowering regulator FLC/MAF. This study sheds light on the delicate control of flowering by the plant-specific CK1, MLK4, via post-translational modification of histone H3.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Animal Science, the Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Science, the Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Juan Armando Casas-Mollano
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Yongchao Dou
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, the Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chi Zhang
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| |
Collapse
|
36
|
Xin X, Su T, Li P, Wang W, Zhao X, Yu Y, Zhang D, Yu S, Zhang F. A histone H4 gene prevents drought-induced bolting in Chinese cabbage by attenuating the expression of flowering genes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:623-635. [PMID: 33005948 DOI: 10.1093/jxb/eraa452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Flowering is an important trait in Chinese cabbage, because premature flowering reduces yield and quality of the harvested products. Water deficit, caused by drought or other environmental conditions, induces early flowering. Drought resistance involves global reprogramming of transcription, hormone signaling, and chromatin modification. We show that a histone H4 protein, BrHIS4.A04, physically interacts with a homeodomain protein BrVIN3.1, which was selected during the domestication of late-bolting Chinese cabbage. Over-expression of BrHIS4.A04 resulted in premature flowering under normal growth conditions, but prevented further premature bolting in response to drought. We show that the expression of key abscisic acid (ABA) signaling genes, and also photoperiodic flowering genes was attenuated in BrHIS4.A04-overexpressing (BrHIS4.A04OE) plants under drought conditions. Furthermore, the relative change in H4-acetylation at these gene loci was reduced in BrHIS4.A04OE plants. We suggest that BrHIS4.A04 prevents premature bolting by attenuating the expression of photoperiodic flowering genes under drought conditions, through the ABA signaling pathway. Since BrHIS4.A04OE plants displayed no phenotype related to vegetative or reproductive development under laboratory-induced drought conditions, our findings contribute to the potential fine-tuning of flowering time in crops through genetic engineering without any growth penalty, although more data are necessary under field drought conditions.
Collapse
Affiliation(s)
- Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
37
|
Fang S, Hou X, Liang X. Response Mechanisms of Plants Under Saline-Alkali Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:667458. [PMID: 34149764 PMCID: PMC8213028 DOI: 10.3389/fpls.2021.667458] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/10/2021] [Indexed: 05/20/2023]
Abstract
As two coexisting abiotic stresses, salt stress and alkali stress have severely restricted the development of global agriculture. Clarifying the plant resistance mechanism and determining how to improve plant tolerance to salt stress and alkali stress have been popular research topics. At present, most related studies have focused mainly on salt stress, and salt-alkali mixed stress studies are relatively scarce. However, in nature, high concentrations of salt and high pH often occur simultaneously, and their synergistic effects can be more harmful to plant growth and development than the effects of either stress alone. Therefore, it is of great practical importance for the sustainable development of agriculture to study plant resistance mechanisms under saline-alkali mixed stress, screen new saline-alkali stress tolerance genes, and explore new plant salt-alkali tolerance strategies. Herein, we summarized how plants actively respond to saline-alkali stress through morphological adaptation, physiological adaptation and molecular regulation.
Collapse
Affiliation(s)
- Shumei Fang
- Department of Biotechnology, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Shumei Fang,
| | - Xue Hou
- Department of Biotechnology, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xilong Liang
- Department of Environmental Science, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, Daqing, China
- Xilong Liang,
| |
Collapse
|
38
|
Li P, Liu J. Protein Phosphorylation in Plant Cell Signaling. Methods Mol Biol 2021; 2358:45-71. [PMID: 34270045 DOI: 10.1007/978-1-0716-1625-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their sessile nature, plants have evolved sophisticated sensory mechanisms to respond quickly and precisely to the changing environment. The extracellular stimuli are perceived and integrated by diverse receptors, such as receptor-like protein kinases (RLKs) and receptor-like proteins (RLPs), and then transmitted to the nucleus by complex cellular signaling networks, which play vital roles in biological processes including plant growth, development, reproduction, and stress responses. The posttranslational modifications (PTMs) are important regulators for the diversification of protein functions in plant cell signaling. Protein phosphorylation is an important and well-characterized form of the PTMs, which influences the functions of many receptors and key components in cellular signaling. Protein phosphorylation in plants predominantly occurs on serine (Ser) and threonine (Thr) residues, which is dynamically and reversibly catalyzed by protein kinases and protein phosphatases, respectively. In this review, we focus on the function of protein phosphorylation in plant cell signaling, especially plant hormone signaling, and highlight the roles of protein phosphorylation in plant abiotic stress responses.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
39
|
Gu BW, Tan LM, Zhang CJ, Hou XM, Cai XW, Chen S, He XJ. FHA2 is a plant-specific ISWI subunit responsible for stamen development and plant fertility. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1703-1716. [PMID: 32396248 DOI: 10.1111/jipb.12945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi-subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead-associated domain 2 (FHA2) as a plant-specific subunit of an ISWI chromatin-remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early-flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA-seq analysis indicated that the fha2 mutant affects a subset of RLT1/2-regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.
Collapse
Affiliation(s)
- Bo-Wen Gu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Cui-Jun Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xiao-Mei Hou
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 10084, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 10084, China
| |
Collapse
|
40
|
Wang L, Qiao H. Chromatin regulation in plant hormone and plant stress responses. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:164-170. [PMID: 33142261 PMCID: PMC8237520 DOI: 10.1016/j.pbi.2020.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 05/05/2023]
Abstract
The gene expression is tightly regulated temporally and spatially to ensure the plant and animal proper development, function, growth, and survival under different environmental conditions. Chromatin regulation plays a central role in the gene expression by providing transcription factors and the transcription machinery with dynamic access to an otherwise tightly packaged genome. In this review, we will summarize recent progress in understanding the roles of chromatin regulation in the gene expression, and their contribution to the plant hormone and stress responses. We highlight the most recent publications within this topic and underline the roles of chromatin regulation in gene expression.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
41
|
Bacova R, Kolackova M, Klejdus B, Adam V, Huska D. Epigenetic mechanisms leading to genetic flexibility during abiotic stress responses in microalgae: A review. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Cai J, Chen T, Wang Y, Qin G, Tian S. SlREM1 Triggers Cell Death by Activating an Oxidative Burst and Other Regulators. PLANT PHYSIOLOGY 2020; 183:717-732. [PMID: 32317359 PMCID: PMC7271787 DOI: 10.1104/pp.20.00120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD), a highly regulated feature of the plant immune response, involves multiple molecular players. Remorins (REMs) are plant-specific proteins with varied biological functions, but their function in PCD and plant defense remains largely unknown. Here, we report a role for remorin in disease resistance, immune response, and PCD regulation. Overexpression of tomato (Solanum lycopersicum) REMORIN1 (SlREM1) increased susceptibility of tomato to the necrotrophic fungus Botrytis cinerea and heterologous expression of this gene triggered cell death in Nicotiana benthamiana leaves. Further investigation indicated that amino acids 173 to 187 and phosphorylation of SlREM1 played key roles in SlREM1-triggered cell death. Intriguingly, multiple tomato REMs induced cell death in N benthamiana leaves. Yeast two-hybrid, split luciferase complementation, and coimmunoprecipitation assays all demonstrated that remorin proteins could form homo- and heterocomplexes. Using isobaric tags for relative and absolute quantitative proteomics, we identified that some proteins related to cell death regulation, as well as N benthamiana RESPIRATORY BURST OXIDASE HOMOLOG B (which is essential for reactive oxygen species production), were notably upregulated in SlREM1-expressing leaves. Heterologous expression of SlREM1 increased reactive oxygen species accumulation and triggered other cell death regulators. Our findings indicate that SlREM1 is a positive regulator of plant cell death and provide clues for understanding the PCD molecular regulatory network in plants.
Collapse
Affiliation(s)
- Jianghua Cai
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| |
Collapse
|
43
|
Abstract
Cryptochromes are blue-light receptors that mediate photoresponses in plants. The genomes of most land plants encode two clades of cryptochromes, CRY1 and CRY2, which mediate distinct and overlapping photoresponses within the same species and between different plant species. Photoresponsive protein-protein interaction is the primary mode of signal transduction of cryptochromes. Cryptochromes exist as physiologically inactive monomers in the dark; the absorption of photons leads to conformational change and cryptochrome homooligomerization, which alters the affinity of cryptochromes interacting with cryptochrome-interacting proteins to form various cryptochrome complexes. These cryptochrome complexes, collectively referred to as the cryptochrome complexome, regulate transcription or stability of photoresponsive proteins to modulate plant growth and development. The activity of cryptochromes is regulated by photooligomerization; dark monomerization; cryptochrome regulatory proteins; and cryptochrome phosphorylation, ubiquitination, and degradation. Most of the more than 30 presently known cryptochrome-interacting proteins are either regulated by other photoreceptors or physically interactingwith the protein complexes of other photoreceptors. Some cryptochrome-interacting proteins are also hormonal signaling or regulatory proteins. These two mechanisms enable cryptochromes to integrate blue-light signals with other internal and external signals to optimize plant growth and development.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
44
|
Kang J, Cui H, Jia S, Liu W, Yu R, Wu Z, Wang Z. Arabidopsis thaliana MLK3, a Plant-specific Casein Kinase 1, Negatively Regulates Flowering and Phosphorylates Histone H3 in Vitro. Genes (Basel) 2020; 11:genes11030345. [PMID: 32214028 PMCID: PMC7141126 DOI: 10.3390/genes11030345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Arabidopsis thalianaMUT9-LIKE KINASES (MLKs), a family of the plant-specific casein kinase 1 (CK1), have been implicated collectively in multiple biological processes including flowering. Three of the four MLKs (MLK1/2/4) have been characterized, however, little is known about MLK3, the most divergent member of MLKs. Here, we demonstrated that disruption of MLK3 transcript in mlk3 caused early flowering with retarded leaf growth under long-day conditions. In vitro kinase assay showed the nuclear protein MLK3 phosphorylated histone 3 at threonine 3 (H3T3) and mutation of a conserved residue (K146R) abolished the catalytic activity. Ectopic expression of MLK3 but not MLK3(K146R) rescued the morphological defects of mlk3, indicating that an intact MLK3 is critical for maintaining proper flowering time. Transcriptomic analysis revealed that the floral repressor FLOWERING LOCUS C (FLC) was down-regulated significantly in mlk3, suggesting that MLK3 negatively regulates flowering. Hence, MLK3 plays a role in repressing the transition from vegetative to reproductive phase in A. thaliana. This study sheds light on the delicate control of flowering time by A. thaliana CK1 specific to the plant kingdom.
Collapse
Affiliation(s)
- Junmei Kang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing 10019, China; (J.K.); (W.L.)
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (H.C.); (S.J.)
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (H.C.); (S.J.)
| | - Wenwen Liu
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing 10019, China; (J.K.); (W.L.)
| | - Renjie Yu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China;
| | - Zhihai Wu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Zhen Wang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing 10019, China; (J.K.); (W.L.)
- Correspondence: ; Tel.: +10-86-6281-6357
| |
Collapse
|
45
|
Kang J, Wang Z. Mut9p-LIKE KINASE Family Members: New Roles of the Plant-Specific Casein Kinase I in Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21051562. [PMID: 32106561 PMCID: PMC7084540 DOI: 10.3390/ijms21051562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
: Casein kinase I (CK1), a ubiquitous serine/threonine (Ser/Thr) protein kinase in eukaryotes, plays pivotal roles in a wide spectrum of cellular functions including metabolism, cell cycle progression, developmental control and stress responses. Plant CK1 evolves a lineage expansion, resulting in a unique branch of members exclusive to the kingdom. Among them, Arabidopsis Mut9p-LIKE KINASEs (MLKs) target diverse substrates including histones and the key regulatory proteins involving in physiological processes of light signaling, circadian rhythms, phytohormone and plant defense. Deregulation of the kinase activity by mutating the enzyme or the phosphorylation sites of substrates causes developmental disorders and susceptibility to adverse environmental conditions. MLKs have evolved as a general kinase that modifies transcription factors or primary regulatory proteins in a dynamic way. Here, we summarize the current knowledge of the roles of MLKs and MLK orthologs in several commercially important crops.
Collapse
Affiliation(s)
| | - Zhen Wang
- Correspondence: ; Tel.: +10-86-62816357
| |
Collapse
|
46
|
Espinosa-Cores L, Bouza-Morcillo L, Barrero-Gil J, Jiménez-Suárez V, Lázaro A, Piqueras R, Jarillo JA, Piñeiro M. Insights Into the Function of the NuA4 Complex in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:125. [PMID: 32153620 PMCID: PMC7047200 DOI: 10.3389/fpls.2020.00125] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/28/2020] [Indexed: 05/14/2023]
Abstract
Chromatin remodeling plays a key role in the establishment and maintenance of gene expression patterns essential for plant development and responses to environmental factors. Post-translational modification of histones, including acetylation, is one of the most relevant chromatin remodeling mechanisms that operate in eukaryotic cells. Histone acetylation is an evolutionarily conserved chromatin signature commonly associated with transcriptional activation. Histone acetylation levels are tightly regulated through the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In plants, different families of HATs are present, including the MYST family, which comprises homologs of the catalytic subunit of the Nucleosome Acetyltransferase of H4 (NuA4) complex in yeast. This complex mediates acetylation of histones H4, H2A, and H2A.Z, and is involved in transcriptional regulation, heterochromatin silencing, cell cycle progression, and DNA repair in yeast. In Arabidopsis and, other plant species, homologs for most of the yeast NuA4 subunits are present and although the existence of this complex has not been demonstrated yet, compelling evidence supports the notion that this type of HAT complex functions from mosses to angiosperms. Recent proteomic studies show that several Arabidopsis homologs of NuA4 components, including the assembly platform proteins and the catalytic subunit, are associated in vivo with additional members of this complex suggesting that a NuA4-like HAT complex is present in plants. Furthermore, the functional characterization of some Arabidopsis NuA4 subunits has uncovered the involvement of these proteins in the regulation of different plant biological processes. Interestingly, for most of the mutant plants deficient in subunits of this complex characterized so far, conspicuous defects in flowering time are observed, suggesting a role for NuA4 in the control of this plant developmental program. Moreover, the participation of Arabidopsis NuA4 homologs in other developmental processes, such as gametophyte development, as well as in cell proliferation and stress and hormone responses, has also been reported. In this review, we summarize the current state of knowledge on plant putative NuA4 subunits and discuss the latest progress concerning the function of this chromatin modifying complex.
Collapse
|
47
|
Aslam M, Fakher B, Jakada BH, Cao S, Qin Y. SWR1 Chromatin Remodeling Complex: A Key Transcriptional Regulator in Plants. Cells 2019; 8:cells8121621. [PMID: 31842357 PMCID: PMC6952815 DOI: 10.3390/cells8121621] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
The nucleosome is the structural and fundamental unit of eukaryotic chromatin. The chromatin remodeling complexes change nucleosome composition, packaging and positioning to regulate DNA accessibility for cellular machinery. SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) belongs to the INO80 chromatin remodeling family and mainly catalyzes the exchange of H2A-H2B with the H2A.Z-H2B dimer. The replacement of H2A.Z into nucleosomes affects nucleosome stability and chromatin structure. Incorporation of H2A.Z into the chromatin and its physiochemical properties play a key role in transcriptional regulation during developmental and environmental responses. In Arabidopsis, various studies have uncovered several pivotal roles of SWR1-C. Recently, notable progress has been achieved in understanding the role of SWR1-C in plant developmental and physiological processes such as DNA damage repair, stress tolerance, and flowering time. The present article introduces the SWR1-C and comprehensively reviews recent discoveries made in understanding the function of the SWR1 complex in plants.
Collapse
Affiliation(s)
- Mohammad Aslam
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (M.A.); (Y.Q.); Tel.: +86-177-2075-0046 (Y.Q.)
| | - Beenish Fakher
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (M.A.); (Y.Q.); Tel.: +86-177-2075-0046 (Y.Q.)
| |
Collapse
|
48
|
Zhao T, Zhan Z, Jiang D. Histone modifications and their regulatory roles in plant development and environmental memory. J Genet Genomics 2019; 46:467-476. [PMID: 31813758 DOI: 10.1016/j.jgg.2019.09.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 11/24/2022]
Abstract
Plants grow in dynamic environments where they receive diverse environmental signals. Swift and precise control of gene expression is essential for plants to align their development and metabolism with fluctuating surroundings. Modifications on histones serve as "histone code" to specify chromatin and gene activities. Different modifications execute distinct functions on the chromatin, promoting either active transcription or gene silencing. Histone writers, erasers, and readers mediate the regulation of histone modifications by catalyzing, removing, and recognizing modifications, respectively. Growing evidence indicates the important function of histone modifications in plant development and environmental responses. Histone modifications also serve as environmental memory for plants to adapt to environmental changes. Here we review recent progress on the regulation of histone modifications in plants, the impact of histone modifications on environment-controlled developmental transitions including germination and flowering, and the role of histone modifications in environmental memory.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenping Zhan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
49
|
Roles of the INO80 and SWR1 Chromatin Remodeling Complexes in Plants. Int J Mol Sci 2019; 20:ijms20184591. [PMID: 31533258 PMCID: PMC6770637 DOI: 10.3390/ijms20184591] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic genes are packed into a dynamic but stable nucleoprotein structure called chromatin. Chromatin-remodeling and modifying complexes generate a dynamic chromatin environment that ensures appropriate DNA processing and metabolism in various processes such as gene expression, as well as DNA replication, repair, and recombination. The INO80 and SWR1 chromatin remodeling complexes (INO80-c and SWR1-c) are ATP-dependent complexes that modulate the incorporation of the histone variant H2A.Z into nucleosomes, which is a critical step in eukaryotic gene regulation. Although SWR1-c has been identified in plants, plant INO80-c has not been successfully isolated and characterized. In this review, we will focus on the functions of the SWR1-c and putative INO80-c (SWR1/INO80-c) multi-subunits and multifunctional complexes in Arabidopsis thaliana. We will describe the subunit compositions of the SWR1/INO80-c and the recent findings from the standpoint of each subunit and discuss their involvement in regulating development and environmental responses in Arabidopsis.
Collapse
|
50
|
Jin H, Zhu Z. Dark, Light, and Temperature: Key Players in Plant Morphogenesis. PLANT PHYSIOLOGY 2019; 180:1793-1802. [PMID: 31113832 PMCID: PMC6670080 DOI: 10.1104/pp.19.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
Recent advances in plant thermomorphogenesis under different light conditions reveal the roles of plant photoreceptors in the control of thermomorphogenesis
Collapse
Affiliation(s)
- Huanhuan Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|