1
|
Huang S, Yamaji N, Ma JF. Metal Transport Systems in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:1-25. [PMID: 38382903 DOI: 10.1146/annurev-arplant-062923-021424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plants take up metals, including essential micronutrients [iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn)] and the toxic heavy metal cadmium (Cd), from soil and accumulate these metals in their edible parts, which are direct and indirect intake sources for humans. Multiple transporters belonging to different families are required to transport a metal from the soil to different organs and tissues, but only a few of them have been fully functionally characterized. The transport systems (the transporters required for uptake, translocation, distribution, redistribution, and their regulation) differ with metals and plant species, depending on the physiological roles, requirements of each metal, and anatomies of different organs and tissues. To maintain metal homeostasis in response to spatiotemporal fluctuations of metals in soil, plants have developed sophisticated and tightly regulated mechanisms through the regulation of transporters at the transcriptional and/or posttranscriptional levels. The manipulation of some transporters has succeeded in generating crops rich in essential metals but low in Cd accumulation. A better understanding of metal transport systems will contribute to better and safer crop production.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| |
Collapse
|
2
|
Krämer U. Metal Homeostasis in Land Plants: A Perpetual Balancing Act Beyond the Fulfilment of Metalloproteome Cofactor Demands. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:27-65. [PMID: 38277698 DOI: 10.1146/annurev-arplant-070623-105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One of life's decisive innovations was to harness the catalytic power of metals for cellular chemistry. With life's expansion, global atmospheric and biogeochemical cycles underwent dramatic changes. Although initially harmful, they permitted the evolution of multicellularity and the colonization of land. In land plants as primary producers, metal homeostasis faces heightened demands, in part because soil is a challenging environment for nutrient balancing. To avoid both nutrient metal limitation and metal toxicity, plants must maintain the homeostasis of metals within tighter limits than the homeostasis of other minerals. This review describes the present model of protein metalation and sketches its transfer from unicellular organisms to land plants as complex multicellular organisms. The inseparable connection between metal and redox homeostasis increasingly draws our attention to more general regulatory roles of metals. Mineral co-option, the use of nutrient or other metals for functions other than nutrition, is an emerging concept beyond that of nutritional immunity.
Collapse
Affiliation(s)
- Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany;
| |
Collapse
|
3
|
Ji C, Li H, Ding J, Yu L, Jiang C, Wang C, Wang S, Ding G, Shi L, Xu F, Cai H. Rice transcription factor OsWRKY37 positively regulates flowering time and grain fertility under copper deficiency. PLANT PHYSIOLOGY 2024; 195:2195-2212. [PMID: 38589996 DOI: 10.1093/plphys/kiae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/05/2024] [Indexed: 04/10/2024]
Abstract
Efficient uptake, translocation, and distribution of Cu to rice (Oryza sativa) spikelets is crucial for flowering and yield production. However, the regulatory factors involved in this process remain unidentified. In this study, we isolated a WRKY transcription factor gene induced by Cu deficiency, OsWRKY37, and characterized its regulatory role in Cu uptake and transport in rice. OsWRKY37 was highly expressed in rice roots, nodes, leaf vascular bundles, and anthers. Overexpression of OsWRKY37 promoted the uptake and root-to-shoot translocation of Cu in rice under -Cu condition but not under +Cu condition. While mutation of OsWRKY37 significantly decreased Cu concentrations in the stamen, the root-to-shoot translocation and distribution ratio in brown rice affected pollen development, delayed flowering time, decreased fertility, and reduced grain yield under -Cu condition. yeast one-hybrid, transient co-expression and EMSAs, together with in situ RT-PCR and RT-qPCR analysis, showed that OsWRKY37 could directly bind to the upstream promoter region of OsCOPT6 (copper transporter) and OsYSL16 (yellow stripe-like protein) and positively activate their expression levels. Analyses of oscopt6 mutants further validated its important role in Cu uptake in rice. Our study demonstrated that OsWRKY37 acts as a positive regulator involved in the uptake, root-to-shoot translocation, and distribution of Cu through activating the expression of OsCOPT6 and OsYSL16, which is important for pollen development, flowering, fertility, and grain yield in rice under Cu deficient conditions. Our results provide a genetic strategy for improving rice yield under Cu deficient condition.
Collapse
Affiliation(s)
- Chenchen Ji
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Haixing Li
- Department of Research and Development, Kenfeng Changjiang Seed Technology Co., Ltd., 430070 Wuhan, China
| | - Jingli Ding
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuncang Jiang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangda Ding
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Xu E, Liu Y, Gu D, Zhan X, Li J, Zhou K, Zhang P, Zou Y. Molecular Mechanisms of Plant Responses to Copper: From Deficiency to Excess. Int J Mol Sci 2024; 25:6993. [PMID: 39000099 PMCID: PMC11240974 DOI: 10.3390/ijms25136993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Copper (Cu) is an essential nutrient for plant growth and development. This metal serves as a constituent element or enzyme cofactor that participates in many biochemical pathways and plays a key role in photosynthesis, respiration, ethylene sensing, and antioxidant systems. The physiological significance of Cu uptake and compartmentalization in plants has been underestimated, despite the importance of Cu in cellular metabolic processes. As a micronutrient, Cu has low cellular requirements in plants. However, its bioavailability may be significantly reduced in alkaline or organic matter-rich soils. Cu deficiency is a severe and widespread nutritional disorder that affects plants. In contrast, excessive levels of available Cu in soil can inhibit plant photosynthesis and induce cellular oxidative stress. This can affect plant productivity and potentially pose serious health risks to humans via bioaccumulation in the food chain. Plants have evolved mechanisms to strictly regulate Cu uptake, transport, and cellular homeostasis during long-term environmental adaptation. This review provides a comprehensive overview of the diverse functions of Cu chelators, chaperones, and transporters involved in Cu homeostasis and their regulatory mechanisms in plant responses to varying Cu availability conditions. Finally, we identified that future research needs to enhance our understanding of the mechanisms regulating Cu deficiency or stress in plants. This will pave the way for improving the Cu utilization efficiency and/or Cu tolerance of crops grown in alkaline or Cu-contaminated soils.
Collapse
Affiliation(s)
- Ending Xu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yuanyuan Liu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing 210095, China
| | - Dongfang Gu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xinchun Zhan
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jiyu Li
- Institute of Horticultural Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Kunneng Zhou
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Peijiang Zhang
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yu Zou
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
5
|
Chia JC, Vatamaniuk OK. Shall we talk? New details in crosstalk between copper and iron homeostasis uncovered in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 242:832-835. [PMID: 38348503 DOI: 10.1111/nph.19583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
This article is a Commentary on Cai et al. (2024), 242: 1206–1217.
Collapse
Affiliation(s)
- Ju-Chen Chia
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Olena K Vatamaniuk
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Lilay GH, Thiébaut N, du Mee D, Assunção AGL, Schjoerring JK, Husted S, Persson DP. Linking the key physiological functions of essential micronutrients to their deficiency symptoms in plants. THE NEW PHYTOLOGIST 2024; 242:881-902. [PMID: 38433319 DOI: 10.1111/nph.19645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
In this review, we untangle the physiological key functions of the essential micronutrients and link them to the deficiency responses in plants. Knowledge of these responses at the mechanistic level, and the resulting deficiency symptoms, have improved over the last decade and it appears timely to review recent insights for each of them. A proper understanding of the links between function and symptom is indispensable for an accurate and timely identification of nutritional disorders, thereby informing the design and development of sustainable fertilization strategies. Similarly, improved knowledge of the molecular and physiological functions of micronutrients will be important for breeding programmes aiming to develop new crop genotypes with improved nutrient-use efficiency and resilience in the face of changing soil and climate conditions.
Collapse
Affiliation(s)
- Grmay Hailu Lilay
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Noémie Thiébaut
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
- Earth and Life Institute, Faculty of Bioscience Engineering, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Dorine du Mee
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Ana G L Assunção
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
7
|
Cai Y, Ping H, Zhao J, Li C, Li Y, Liang G. IRON MAN interacts with Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR 1 to maintain copper homeostasis. THE NEW PHYTOLOGIST 2024; 242:1206-1217. [PMID: 38031525 DOI: 10.1111/nph.19439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Copper (Cu) is essential for plant growth and development. IRON MAN (IMA) is a family of small peptides that can bind both iron (Fe) and Cu ions. It was reported that IMAs mediate Fe homeostasis in Arabidopsis thaliana. However, it remains unclear whether IMAs are involved in Cu homeostasis. The transcript abundance of IMA genes decreased in response to Cu deficiency. The combined disruption of all IMA genes caused enhanced tolerance to Cu deficiency and resulted in an increase in the transcript abundance of Cu uptake genes, whereas the overexpression of IMA1 or IMA3 led to the opposite results. Protein interaction assays indicated that IMAs interact with Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR1 (CITF1), which is a positive regulator of the Cu uptake genes. Further studies showed that IMAs not only interfere with the DNA binding of CITF1 but also repress the transcriptional activation activity of CITF1, hence resulting in downregulation of the Cu uptake genes. Genetic analyses indicated that IMAs modulate Cu homeostasis in a CITF1-dependent manner. Our findings indicate that IMAs inhibit the functions of CITF1 in regulating Cu deficiency responses, thereby providing a conceptual framework for comprehending the regulation of Cu homeostasis.
Collapse
Affiliation(s)
- Yuerong Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Huaqian Ping
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Junhui Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
8
|
Fang Y, Guo D, Wang Y, Wang N, Fang X, Zhang Y, Li X, Chen L, Yu D, Zhang B, Qin G. Rice transcriptional repressor OsTIE1 controls anther dehiscence and male sterility by regulating JA biosynthesis. THE PLANT CELL 2024; 36:1697-1717. [PMID: 38299434 PMCID: PMC11062430 DOI: 10.1093/plcell/koae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024]
Abstract
Proper anther dehiscence is essential for successful pollination and reproduction in angiosperms, and jasmonic acid (JA) is crucial for the process. However, the mechanisms underlying the tight regulation of JA biosynthesis during anther development remain largely unknown. Here, we demonstrate that the rice (Oryza sativa L.) ethylene-response factor-associated amphiphilic repression (EAR) motif-containing protein TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) INTERACTOR CONTAINING EAR MOTIF PROTEIN1 (OsTIE1) tightly regulates JA biosynthesis by repressing TCP transcription factor OsTCP1/PCF5 during anther development. The loss of OsTIE1 function in Ostie1 mutants causes male sterility. The Ostie1 mutants display inviable pollen, early stamen filament elongation, and precocious anther dehiscence. In addition, JA biosynthesis is activated earlier and JA abundance is precociously increased in Ostie1 anthers. OsTIE1 is expressed during anther development, and OsTIE1 is localized in nuclei and has transcriptional repression activity. OsTIE1 directly interacts with OsTCP1, and overexpression of OsTCP1 caused early anther dehiscence resembling that of Ostie1. JA biosynthesis genes including rice LIPOXYGENASE are regulated by the OsTIE1-OsTCP1 complex. Our findings reveal that the OsTIE1-OsTCP1 module plays a critical role in anther development by finely tuning JA biosynthesis and provide a foundation for the generation of male sterile plants for hybrid seed production.
Collapse
Affiliation(s)
- Yuxing Fang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongshu Guo
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Yi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Fang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Li
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- Southwest United Graduate School, Kunming 650092, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
9
|
Wu JW, Zhao ZY, Hu RC, Huang YF. Genome-wide identification, stress- and hormone-responsive expression characteristics, and regulatory pattern analysis of Scutellaria baicalensis SbSPLs. PLANT MOLECULAR BIOLOGY 2024; 114:20. [PMID: 38363403 PMCID: PMC10873456 DOI: 10.1007/s11103-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024]
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.
Collapse
Affiliation(s)
- Jia-Wen Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150000, China
| | - Zi-Yi Zhao
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Ren-Chuan Hu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Yun-Feng Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| |
Collapse
|
10
|
Olukayode T, Chen J, Zhao Y, Quan C, Kochian LV, Ham BK. Phloem-Mobile MYB44 Negatively Regulates Expression of PHOSPHATE TRANSPORTER 1 in Arabidopsis Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:3617. [PMID: 37896080 PMCID: PMC10610484 DOI: 10.3390/plants12203617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Phosphorus (P) is an essential plant macronutrient; however, its availability is often limited in soils. Plants have evolved complex mechanisms for efficient phosphate (Pi) absorption, which are responsive to changes in external and internal Pi concentration, and orchestrated through local and systemic responses. To explore these systemic Pi responses, here we identified AtMYB44 as a phloem-mobile mRNA, an Arabidopsis homolog of Cucumis sativus MYB44, that is responsive to the Pi-starvation stress. qRT-PCR assays revealed that AtMYB44 was up-regulated and expressed in both shoot and root in response to Pi-starvation stress. The atmyb44 mutant displayed higher shoot and root biomass compared to wild-type plants, under Pi-starvation conditions. Interestingly, the expression of PHOSPHATE TRANSPORTER1;2 (PHT1;2) and PHT1;4 was enhanced in atmyb44 in response to a Pi-starvation treatment. A split-root assay showed that AtMYB44 expression was systemically regulated under Pi-starvation conditions, and in atmyb44, systemic controls on PHT1;2 and PHT1;4 expression were moderately disrupted. Heterografting assays confirmed graft transmission of AtMYB44 transcripts, and PHT1;2 and PHT1;4 expression was decreased in heterografted atmyb44 rootstocks. Taken together, our findings support the hypothesis that mobile AtMYB44 mRNA serves as a long-distance Pi response signal, which negatively regulates Pi transport and utilization in Arabidopsis.
Collapse
Affiliation(s)
- Toluwase Olukayode
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Jieyu Chen
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
| | - Yang Zhao
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
| | - Chuanhezi Quan
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Leon V. Kochian
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Byung-Kook Ham
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
11
|
González-Guerrero M, Navarro-Gómez C, Rosa-Núñez E, Echávarri-Erasun C, Imperial J, Escudero V. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2023; 239:2113-2125. [PMID: 37340839 DOI: 10.1111/nph.19098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3 . In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Carlos Echávarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| |
Collapse
|
12
|
Chia JC, Yan J, Rahmati Ishka M, Faulkner MM, Simons E, Huang R, Smieska L, Woll A, Tappero R, Kiss A, Jiao C, Fei Z, Kochian LV, Walker E, Piñeros M, Vatamaniuk OK. Loss of OPT3 function decreases phloem copper levels and impairs crosstalk between copper and iron homeostasis and shoot-to-root signaling in Arabidopsis thaliana. THE PLANT CELL 2023; 35:2157-2185. [PMID: 36814393 PMCID: PMC10226573 DOI: 10.1093/plcell/koad053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/16/2022] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Copper (Cu) and iron (Fe) are essential micronutrients that are toxic when accumulating in excess in cells. Thus, their uptake by roots is tightly regulated. While plants sense and respond to local Cu availability, the systemic regulation of Cu uptake has not been documented in contrast to local and systemic control of Fe uptake. Fe abundance in the phloem has been suggested to act systemically, regulating the expression of Fe uptake genes in roots. Consistently, shoot-to-root Fe signaling is disrupted in Arabidopsis thaliana mutants lacking the phloem companion cell-localized Fe transporter, OLIGOPEPTIDE TRANSPORTER 3 (AtOPT3). We report that AtOPT3 also transports Cu in heterologous systems and contributes to its delivery from sources to sinks in planta. The opt3 mutant contained less Cu in the phloem, was sensitive to Cu deficiency and mounted a transcriptional Cu deficiency response in roots and young leaves. Feeding the opt3 mutant and Cu- or Fe-deficient wild-type seedlings with Cu or Fe via the phloem in leaves downregulated the expression of both Cu- and Fe-deficiency marker genes in roots. These data suggest the existence of shoot-to-root Cu signaling, highlight the complexity of Cu/Fe interactions, and the role of AtOPT3 in fine-tuning root transcriptional responses to the plant Cu and Fe needs.
Collapse
Affiliation(s)
- Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jiapei Yan
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Maryam Rahmati Ishka
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Marta Marie Faulkner
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Eli Simons
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Rong Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Louisa Smieska
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Arthur Woll
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Ryan Tappero
- National Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrew Kiss
- National Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, NY 14853, USA
| | - Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, NY 14853, USA
| | - Elsbeth Walker
- Department of Biology, University of Massachusetts, MA 01003, USA
| | - Miguel Piñeros
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, NY 14853, USA
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Romero P, Lafuente MT. Molecular Responses of Red Ripe Tomato Fruit to Copper Deficiency Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2062. [PMID: 37653979 PMCID: PMC10220619 DOI: 10.3390/plants12102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 09/02/2023]
Abstract
Fruit nutritional value, plant growth, and yield can be compromised by deficient copper (Cu) bioavailability, which often appears in arable lands. This condition causes low Cu content and modifications in the ripening-associated processes in tomato fruit. This research studies the transcriptomic changes that occur in red ripe tomato fruit grown under suboptimal Cu conditions to shed light on the molecular mechanisms underlying this stress. Comparative RNA-sequencing and functional analyses revealed that Cu deficiency during cultivation activates signals for metal ion transport, cellular redox homeostasis, pyridoxal phosphate binding, and amino acid metabolism while repressing the response to phosphate starvation in harvested fruit. Transcriptomic analyses highlighted a number of novel Cu stress-responsive genes of unknown function and indicated that Cu homeostasis regulation in tomato fruit may involve additional components than those described in model plants. It also studied the regulation of high-affinity Cu transporters and a number of well-known Cu stress-responsive genes during tomato fruit ripening depending on Cu availability, which allowed potential candidates to be targeted for biotechnological improvements in reproductive tissues. We provide the first study characterizing the molecular responses of fruit to Cu deficiency stress for any fruit crop.
Collapse
Affiliation(s)
- Paco Romero
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avenida Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain;
| | | |
Collapse
|
14
|
Feng X, Zhou B, Wu X, Wu H, Zhang S, Jiang Y, Wang Y, Zhang Y, Cao M, Guo B, Su S, Hou Z. Molecular characterization of SPL gene family during flower morphogenesis and regulation in blueberry. BMC PLANT BIOLOGY 2023; 23:40. [PMID: 36650432 PMCID: PMC9847132 DOI: 10.1186/s12870-023-04044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The SPL gene is a plant-specific transcription factor involved in the regulation of plant growth and development, which have been identified in woody plants. The process of floral bud differentiation affects the timing of flowering and fruit set and regulates plant growth, however, the mechanism of regulation of flower development by SPL genes is less studied. In this study, 56 VcSPL genes were identified in the tetraploid blueberry. The VcSPL gene family was classified into six subfamilies, and analysis of cis-elements showed that VcSPL genes were regulated by light, phytohormones (abscisic acid, MeJA), and low temperature. In the evolutionary analysis, segmental replication may play an important role in VcSPL gene amplification. Interestingly, we also studied diploid blueberry (Bilberry), in which 24 SPL genes were identified, and 36 homologous pairs were found, suggesting a high degree of convergence in the syntenic relationship between blueberry (Vaccinium corymbosum L) and bilberry (Vaccinium darrowii). Based on the expression profile, VcSPL genes were expressed at high levels in flowers, shoots, and roots, indicating a diversity of gene functions. Then we selected 20 differentially-expressed SPL genes to further investigate the role of VcSPL in floral induction and initiation. It showed that the genes VcSPL40, VcSPL35, VcSPL45, and VcSPL53 may play a crucial role in the blueberry floral transition phase (from vegetative growth to flower initiation). These results provided important information for understanding and exploring the role of VcSPLs in flower morphogenesis and plant growth.
Collapse
Affiliation(s)
- Xin Feng
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Bingjie Zhou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Xinliang Wu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Huiling Wu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Suilin Zhang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Ying Jiang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Yaping Wang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Yaqian Zhang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Man Cao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Baoshi Guo
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Shuchai Su
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:1035573. [PMID: 36589041 PMCID: PMC9795235 DOI: 10.3389/fpls.2022.1035573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.
Collapse
|
16
|
Wang X, Luan Y, Hou J, Jiang T, Zhao Y, Song W, Wang L, Kong X, Guan J, Song D, Wang B, Li M. The protection effect of rhodionin against methicillin-resistant Staphylococcus aureus-induced pneumonia through sortase A inhibition. World J Microbiol Biotechnol 2022; 39:18. [PMID: 36409383 DOI: 10.1007/s11274-022-03457-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic antibiotic-resistant pathogen that negatively impacts society from medical, veterinary, and societal standpoints. The search for alternative therapeutic strategies and innovative anti-infective agents is urgently needed. Among the pathogenic mechanisms of Staphylococcus aureus (S. aureus), sortase A is a virulence factor of great concern because it is highly linked with the ability of MRSA to invade the host. In this study, we identified that rhodionin, a natural compound of flavonoid glucosides, effectively inhibited the activity of SrtA without affecting the survival and growth of bacteria, and its half maximal inhibitory concentration (IC50) value was 22.85 μg/mL. In vitro, rhodionin prominently attenuated the virulence-related phenotype of SrtA by reducing the adhesion of S. aureus to fibrinogen, reducing the capacity of protein A (SpA) on the bacterial surface and biofilm formation. Subsequently, fluorescence quenching and molecular docking were performed to verify that rhodionin directly bonded to SrtA molecule with KA value of 6.22 × 105 L/mol. More importantly, rhodionin showed a significant protective effect on mice pneumonia model and improved the survival rate of mice. According to the above findings, rhodionin achieved efficacy in the treatment of MRSA-induced infections, which holds promising potential to be developed into a candidate used for MRSA-related infections.
Collapse
Affiliation(s)
- Xingye Wang
- Changchun University of Chinese Medicine, Changchun, China.,The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yanhe Luan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Juan Hou
- Changchun University of Chinese Medicine, Changchun, China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xiangri Kong
- Changchun University of Chinese Medicine, Changchun, China.,The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Danning Song
- Changchun University of Chinese Medicine, Changchun, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, China.
| | - Mingquan Li
- Changchun University of Chinese Medicine, Changchun, China. .,The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China. .,The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
17
|
Yang Y, Hao C, Du J, Xu L, Guo Z, Li D, Cai H, Guo H, Li L. The carboxy terminal transmembrane domain of SPL7 mediates interaction with RAN1 at the endoplasmic reticulum to regulate ethylene signalling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:878-892. [PMID: 35832006 DOI: 10.1111/nph.18376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis, copper (Cu) transport to the ethylene receptor ETR1 mediated using RAN1, a Cu transporter located at the endoplasmic reticulum (ER), and Cu homeostasis mediated using SPL7, the key Cu-responsive transcription factor, are two deeply conserved vital processes. However, whether and how the two processes interact to regulate plant development remain elusive. We found that its C-terminal transmembrane domain (TMD) anchors SPL7 to the ER, resulting in dual compartmentalisation of the transcription factor. Immunoprecipitation coupled mass spectrometry, yeast-two-hybrid assay, luciferase complementation imaging and subcellular co-localisation analyses indicate that SPL7 interacts with RAN1 at the ER via the TMD. Genetic analysis revealed that the ethylene-induced triple response was significantly compromised in the spl7 mutant, a phenotype rescuable by RAN1 overexpression but not by SPL7 without the TMD. The genetic interaction was corroborated by molecular analysis showing that SPL7 modulates RAN1 abundance in a TMD-dependent manner. Moreover, SPL7 is feedback regulated by ethylene signalling via EIN3, which binds the SPL7 promoter and represses its transcription. These results demonstrate that ER-anchored SPL7 constitutes a cellular mechanism to regulate RAN1 in ethylene signalling and lay the foundation for investigating how Cu homeostasis conditions ethylene sensitivity in the developmental context.
Collapse
Affiliation(s)
- Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jianmei Du
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lei Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Guo
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| |
Collapse
|
18
|
Shah K, Wang M, Li X, Shang W, Wang S, Han M, Ren X, Tian J, An N, Xing L. Transcriptome analysis reveals dual action of salicylic acid application in the induction of flowering in Malus domestica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111433. [PMID: 36029897 DOI: 10.1016/j.plantsci.2022.111433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the apple tree, insufficient flower bud production is an intractable challenge, and very little information is available in this field due to the fact that research done in this sector is very rare owing to its extended life cycles and low rate of genetic transformation. Here we display novel changes and events in spur buds of Malus × domestica trees after they were exposed to salicylic acid (SA) treatment during the flower induction period. We found a significant increase in morphological indexes, followed by a wider and well-defined shoot apical meristem in SA-treated spur buds. Additionally, we observed increased oxidative stress markers and enzymatic antioxidants in control-treated buds during the flower induction period, while non-enzymatic antioxidants were recorded higher in SA-treated buds. Maximum flowering was observed in SA-treated trees in the next year. Furthermore, ultra-high-performance liquid chromatography (u-HPLC) analysis displays that SA treatment enhances SA and indole acetic acid (IAA), while having an antagonistic effect on gibberellin (GA). At different time points, transcriptome analysis was conducted to analyze the transcriptional response of CK and SA treated buds. Pathway enrichment was detected in differentially expressed genes (DEGs). Agamous (AGL) and SQUAMOSA-promoter binding protein-like (SPL) family related flowering genes display a positive signal for the increased flowering in SA-treated trees, which confirms our findings. As far as we know, there is no report available on the response of spur buds to SA treatment during the flower induction period. This data provides a new theoretical reference for the management of apple tree flowering and also provides an essential basis for future analysis of the regulation and control of flowering in M. domestica.
Collapse
Affiliation(s)
- Kamran Shah
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Mengxue Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Xiaolong Li
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, PR China
| | - Wei Shang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Shujin Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Jianwen Tian
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, PR China.
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China.
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
19
|
Schulten A, Pietzenuk B, Quintana J, Scholle M, Feil R, Krause M, Romera-Branchat M, Wahl V, Severing E, Coupland G, Krämer U. Energy status-promoted growth and development of Arabidopsis require copper deficiency response transcriptional regulator SPL7. THE PLANT CELL 2022; 34:3873-3898. [PMID: 35866980 PMCID: PMC9516184 DOI: 10.1093/plcell/koac215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/19/2022] [Indexed: 06/01/2023]
Abstract
Copper (Cu) is a cofactor of around 300 Arabidopsis proteins, including photosynthetic and mitochondrial electron transfer chain enzymes critical for adenosine triphosphate (ATP) production and carbon fixation. Plant acclimation to Cu deficiency requires the transcription factor SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7). We report that in the wild type (WT) and in the spl7-1 mutant, respiratory electron flux via Cu-dependent cytochrome c oxidase is unaffected under both normal and low-Cu cultivation conditions. Supplementing Cu-deficient medium with exogenous sugar stimulated growth of the WT, but not of spl7 mutants. Instead, these mutants accumulated carbohydrates, including the signaling sugar trehalose 6-phosphate, as well as ATP and NADH, even under normal Cu supply and without sugar supplementation. Delayed spl7-1 development was in agreement with its attenuated sugar responsiveness. Functional TARGET OF RAPAMYCIN and SNF1-RELATED KINASE1 signaling in spl7-1 argued against fundamental defects in these energy-signaling hubs. Sequencing of chromatin immunoprecipitates combined with transcriptome profiling identified direct targets of SPL7-mediated positive regulation, including Fe SUPEROXIDE DISMUTASE1 (FSD1), COPPER-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR1 (CITF1), and the uncharacterized bHLH23 (CITF2), as well as an enriched upstream GTACTRC motif. In summary, transducing energy availability into growth and reproductive development requires the function of SPL7. Our results could help increase crop yields, especially on Cu-deficient soils.
Collapse
Affiliation(s)
| | - Björn Pietzenuk
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Marleen Scholle
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Marcus Krause
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Edouard Severing
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | |
Collapse
|
20
|
Hunter C, Ware MA, Gleason SM, Pilon-Smits E, Pilon M. Recovery after deficiency: systemic copper prioritization and partitioning in the leaves and stems of hybrid poplar. TREE PHYSIOLOGY 2022; 42:1776-1785. [PMID: 35394040 DOI: 10.1093/treephys/tpac038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is important for many aspects of plant function including photosynthesis. It has been suggested that photosynthesis, especially in young leaves, is prioritized for Cu delivery after deficiency in hybrid poplar. To determine relative Cu delivery prioritization, we enriched hydroponic plant growth media of Cu-deficient poplar with 98% 65Cu and tracked Cu delivery after deficiency to young leaves, mature leaves and stems. Young leaves acquired ~58% more 65Cu on Day 1 and ~65% more 65Cu by Day 3 compared with mature leaves. Additionally, stomatal conductance (gs) was measured on leaves for 6 weeks and during a 3-day 65Cu pulse resupply period. During deficiency, mature leaves maintained a higher gs than younger leaves but 3 days after Cu resupply the younger leaves that had recovered showed the highest gs. In conclusion, these results provide a quantitative understanding of how Cu is systemically transported and distributed to photosynthetic and stem tissues.
Collapse
Affiliation(s)
- Cameron Hunter
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
| | - Maxwell A Ware
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sean M Gleason
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
| | | | - Marinus Pilon
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
21
|
Shi Y, Zhang Q, Wang L, Du Q, Ackah M, Guo P, Zheng D, Wu M, Zhao W. Functional Characterization of MaZIP4, a Gene Regulating Copper Stress Tolerance in Mulberry (Morus atropurpurea R.). Life (Basel) 2022; 12:life12091311. [PMID: 36143348 PMCID: PMC9505184 DOI: 10.3390/life12091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
ZIP4 (zinc transporter 4) plays important roles in transporting Cu2+ ions in plants, which may contribute to the maintenance of plant metal homeostasis in growth, plant development and normal physiological metabolism. However, ZIP4 transporters have not been described in mulberry and the exact function of ZIP4 transporters in regulating the homeostasis of Cu in mulberry remains unclear. In this study, a new ZIP4 gene (MaZIP4) was isolated and cloned from Morus atropurpurea R. Phylogenetic analysis of amino sequences suggested that the amino-acid sequence of the MaZIP4 protein shows high homology with other ZIP4 proteins of Morus notabilis, Trema orientale, Ziziphus jujube and Cannabis sativa. In addition, a MaZIP4 silenced line was successfully constructed using virus-induced gene silencing (VIGS). The analysis of MaZIP4 expression by quantitative real-time PCR in mulberry showed that the level of MaZIP4 expression increased with increasing Cu concentration until the Cu concentration reached 800 ppm. Relative to the blank (WT) and the negative controls, malondialdehyde (MDA) levels increased significantly and rose with increasing Cu concentration in the MaZIP4 silenced line, whereas the soluble protein and proline content, superoxide dismutase (SOD) and peroxidase (POD) activities of these transgenic plants were lower. These results indicated that MaZIP4 may play an important role in the resistance of mulberry to Cu stress.
Collapse
|
22
|
Plant movement and LAC of it: How copper facilitates explosive seed dispersal. Proc Natl Acad Sci U S A 2022; 119:e2208331119. [PMID: 35767672 PMCID: PMC9282429 DOI: 10.1073/pnas.2208331119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
23
|
Yao S, Kang J, Guo G, Yang Z, Huang Y, Lan Y, Zhou T, Wang L, Wei C, Xu Z, Li Y. The key micronutrient copper orchestrates broad-spectrum virus resistance in rice. SCIENCE ADVANCES 2022; 8:eabm0660. [PMID: 35776788 PMCID: PMC10883364 DOI: 10.1126/sciadv.abm0660] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Copper is a critical regulator of plant growth and development. However, the mechanisms by which copper responds to virus invasion are unclear. We previously showed that SPL9-mediated transcriptional activation of miR528 adds a previously unidentified regulatory layer to the established ARGONAUTE (AGO18)-miR528-L-ascorbate oxidase (AO) antiviral defense. Here, we report that rice promotes copper accumulation in shoots by inducing copper transporter genes, including HMA5 and COPT, to counteract viral infection. Copper suppresses the transcriptional activation of miR528 by inhibiting the protein level of SPL9, thus alleviating miR528-mediated cleavage of AO transcripts to strengthen the antiviral response. Loss-of-function mutations in HMA5, COPT1, and COPT5 caused a significant reduction in copper accumulation and plant viral resistance because of the increased SPL9-mediated miR528 transcription. Gain in viral susceptibility was mitigated when SPL9 was mutated in the hma5 mutant background. Our study elucidates the molecular mechanisms and regulatory networks of copper homeostasis and the SPL9-miR528-AO antiviral pathway.
Collapse
Affiliation(s)
- Shengze Yao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinrui Kang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ge Guo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Huang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Lan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Liying Wang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chunhong Wei
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhihong Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
CITF1 Functions Downstream of SPL7 to Specifically Regulate Cu Uptake in Arabidopsis. Int J Mol Sci 2022; 23:ijms23137239. [PMID: 35806241 PMCID: PMC9266912 DOI: 10.3390/ijms23137239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Copper (Cu) is one of the most indispensable micronutrients, and proper Cu homeostasis is required for plants to maintain essential cellular functions. Plants activate the Cu uptake system during Cu limitation. Although SPL7 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 7) and CITF1 (Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR 1) are two transcription factors in Cu homeostasis, it remains unclear how SPL7 and CITF1 control the Cu uptake system. Here, we reveal that overexpression of CITF1 causes the enhanced tolerance to Cu deficiency and the elevated expression of Cu uptake genes COPT2, FRO4 and FRO5. Electrophoretic mobility shift assays (EMSA) and transient expression assays indicate that SPL7 directly binds to and activates the promoter of CITF1. The overexpression of CITF1 partially rescues the sensitivity of spl7-1 to Cu deficiency. Transcriptome data suggest that SPL7 and CITF1 coregulate the Cu-homeostasis-signaling network, and CITF1 has its own independent functions. Moreover, both SPL7 and CITF1 can directly bind to and activate the promoters of three Cu uptake genes COPT2, FRO4 and FRO5. This work shows the functions of CITF1 in the Cu-homeostasis-signaling network, providing insights into the complicated molecular mechanism underlying Cu homeostasis.
Collapse
|
25
|
Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases. Proc Natl Acad Sci U S A 2022; 119:e2202287119. [PMID: 35666865 PMCID: PMC9214497 DOI: 10.1073/pnas.2202287119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The sudden explosion of seed pods in popping cress (Cardamine hirsuta) takes less than 3 ms to accelerate seeds away from the plant. This explosive mechanism relies on polar deposition of the cell-wall polymer lignin. To investigate the genetic basis for polar lignin deposition, we conducted a mutant screen and identified SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 7 (SPL7)—a transcriptional regulator of copper homeostasis. We discovered three multicopper laccases, LAC4, 11, and 17, that precisely colocalize with, and are required for, the polar deposition of lignin in explosive seed pods. Activity of these three laccases depends on SPL7 to acclimate to copper deficiency. Our findings demonstrate how mineral nutrition is integrated with polar lignin deposition to facilitate dispersal. Exploding seed pods evolved in the Arabidopsis relative Cardamine hirsuta via morphomechanical innovations that allow the storage and rapid release of elastic energy. Asymmetric lignin deposition within endocarpb cell walls is one such innovation that is required for explosive seed dispersal and evolved in association with the trait. However, the genetic control of this novel lignin pattern is unknown. Here, we identify three lignin-polymerizing laccases, LAC4, 11, and 17, that precisely colocalize with, and are redundantly required for, asymmetric lignification of endocarpb cells. By screening for C. hirsuta mutants with less lignified fruit valves, we found that loss of function of the transcription factor gene SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 7 (SPL7) caused a reduction in endocarpb cell-wall lignification and a consequent reduction in seed dispersal range. SPL7 is a conserved regulator of copper homeostasis and is both necessary and sufficient for copper to accumulate in the fruit. Laccases are copper-requiring enzymes. We discovered that laccase activity in endocarpb cell walls depends on the SPL7 pathway to acclimate to copper deficiency and provide sufficient copper for lignin polymerization. Hence, SPL7 links mineral nutrition to efficient dispersal of the next generation.
Collapse
|
26
|
Zhu H, Wang J, Jiang D, Hong Y, Xu J, Zheng S, Yang J, Chen W. The miR157-SPL-CNR module acts upstream of bHLH101 to negatively regulate iron deficiency responses in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1059-1075. [PMID: 35297168 DOI: 10.1111/jipb.13251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 05/23/2023]
Abstract
Iron (Fe) homeostasis is critical for plant growth, development, and stress responses. Fe levels are tightly controlled by intricate regulatory networks in which transcription factors (TFs) play a central role. A series of basic helix-loop-helix (bHLH) TFs have been shown to contribute to Fe homeostasis, but the regulatory layers beyond bHLH TFs remain largely unclear. Here, we demonstrate that the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) TF SlSPL-CNR negatively regulates Fe-deficiency responses in tomato (Solanum lycopersicum) roots. Fe deficiency rapidly repressed the expression of SlSPL-CNR, and Fe deficiency responses were intensified in two clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-generated SlSPL-CNR knock-out lines compared to the wild-type. Comparative transcriptome analysis identified 47 Fe deficiency-responsive genes the expression of which is negatively regulated by SlSPL-CNR, one of which, SlbHLH101, helps regulate Fe uptake genes. SlSPL-CNR localizes the nucleus and interacts with the GTAC and BOX 4 (ATTAAT) motifs in the SlbHLH101 promoter to repress its expression. Inhibition of SlSPL-CNR expression in response to Fe deficiency was well correlated with the expression of the microRNA SlymiR157. SlymiR157-overexpressing tomato lines displayed enhanced Fe deficiency responses, as did SlSPL-CNR loss-of-function mutants. We propose that the SlymiR157-SlSPL-CNR module represents a novel pathway that acts upstream of SlbHLH101 to regulate Fe homeostasis in tomato roots.
Collapse
Affiliation(s)
- Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dan Jiang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiwei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
27
|
Mou Y, Sun Q, Yuan C, Zhao X, Wang J, Yan C, Li C, Shan S. Identification of the LOX Gene Family in Peanut and Functional Characterization of AhLOX29 in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:832785. [PMID: 35356112 PMCID: PMC8959715 DOI: 10.3389/fpls.2022.832785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Lipoxygenases (LOXs) are a gene family of nonheme iron-containing dioxygenases that play important roles in plant development and defense responses. To date, a comprehensive analysis of LOX genes and their biological functions in response to abiotic stresses in peanut has not been performed. In this study, a total of 72 putative LOX genes were identified in cultivated (Arachis hypogaea) and wild-type peanut (Arachis duranensis and Arachis ipaensis) and classified into three subfamilies: 9-LOX, type I 13-LOX and type II 13-LOX. The gene structures and protein motifs of these peanut LOX genes were highly conserved among most LOXs. We found that the chromosomal distribution of peanut LOXs was not random and that gene duplication played a crucial role in the expansion of the LOX gene family. Cis-acting elements related to development, hormones, and biotic and abiotic stresses were identified in the promoters of peanut LOX genes. The expression patterns of peanut LOX genes were tissue-specific and stress-inducible. Quantitative real-time PCR results further confirmed that peanut LOX gene expression could be induced by drought, salt, methyl jasmonate and abscisic acid treatments, and these genes exhibited diverse expression patterns. Furthermore, overexpression of AhLOX29 in Arabidopsis enhanced the resistance to drought stress. Compared with wide-type, AhLOX29-overexpressing plants showed significantly decreased malondialdehyde contents, as well as increased chlorophyll degradation, proline accumulation and superoxide dismutase activity, suggesting that the transgenic plants exhibit strengthened capacity to scavenge reactive oxygen species and prevent membrane damage. This systematic study provides valuable information about the functional characteristics of AhLOXs in the regulation of abiotic stress responses of peanut.
Collapse
|
28
|
Scutellarin potentiates vancomycin against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus through dual inhibition of sortase A and caseinolytic peptidase P. Biochem Pharmacol 2022; 199:114982. [PMID: 35247333 DOI: 10.1016/j.bcp.2022.114982] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023]
Abstract
The strategy of targeting virulence factor has received great attention as it barely develops bacterial resistance. Sortase A (SrtA) and caseinolytic peptidase P (ClpP), as important virulence factors, are considered to be ideal pharmacological targets for methicillin-resistant Staphylococcus aureus (MRSA) infection. Through screening hundreds of compounds, we found scutellarin, a natural flavonoid, markedly inhibited SrtA and ClpP activities of MRSA strain USA300 with an IC50 of 53.64 μg/mL and 107.00 μg/mL, respectively. Subsequently, we observed that scutellarin could inhibit the SrtA-related virulence of MRSA. To demonstrate whether scutellarin directly binding to SrtA, fluorescence quenching assay and molecular docking were performed and the results indicated that scutellarin directly bonded to SrtA molecule with a KA value of 7.58 × 104 L/mol. In addition to direct SrtA inhibition, scutellarin could also inhibit hemolytic activity of S. aureus by inhibiting the expression of Hla in a SrtA-independent manner. Further assays confirmed that scutellarin inhibited hemolysis by inhibiting ClpP. The combination of scutellarin and vancomycin showed enhancing inhibition of USA300 in vitro and in vivo, evidenced by decreased MIC from 3 μg/mL to 0.5 μg/mL and increased survival and improvement of lung pathology in pneumonia mice. Taken together, these results suggest that scutellarin exhibited di-inhibitory effects on SrtA and ClpP of USA300. The di-inhibition of virulence factors by scutellarin combined with vancomycin to prevent MRSA invasion of A549 cells and pneumonia in mice, indicating that scutellarin is expected to be a potential adjuvant against MRSA in the future.
Collapse
|
29
|
Spielmann J, Detry N, Thiébaut N, Jadoul A, Schloesser M, Motte P, Périlleux C, Hanikenne M. ZRT-IRT-Like PROTEIN 6 expression perturbs local ion homeostasis in flowers and leads to anther indehiscence and male sterility. PLANT, CELL & ENVIRONMENT 2022; 45:206-219. [PMID: 34628686 DOI: 10.1111/pce.14200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Metallic micronutrients are essential throughout the plant life cycle. Maintaining metal homeostasis in plant tissues requires a highly complex and finely tuned network controlling metal uptake, transport, distribution and storage. Zinc and cadmium hyperaccumulation, such as observed in the model plant Arabidopsis halleri, represents an extreme evolution of this network. Here, non-ectopic overexpression of the A. halleri ZIP6 (AhZIP6) gene, encoding a zinc and cadmium influx transporter, in Arabidopsis thaliana enabled examining the importance of zinc for flower development and reproduction. We show that AhZIP6 expression in flowers leads to male sterility resulting from anther indehiscence in a dose-dependent manner. The sterility phenotype is associated to delayed tapetum degradation and endothecium collapse, as well as increased magnesium and potassium accumulation and higher expression of the MHX gene in stamens. It is rescued by the co-expression of the zinc efflux transporter AhHMA4, linking the sterility phenotype to zinc homeostasis. Altogether, our results confirm that AhZIP6 is able to transport zinc in planta and highlight the importance of fine-tuning zinc homeostasis in reproductive organs. The study illustrates how the characterization of metal hyperaccumulation mechanisms can reveal key nodes and processes in the metal homeostasis network.
Collapse
Affiliation(s)
- Julien Spielmann
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Nathalie Detry
- InBioS-PhytoSystems, Laboratory of Plant Physiology, University of Liège, Liège, Belgium
| | - Noémie Thiébaut
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Alice Jadoul
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Claire Périlleux
- InBioS-PhytoSystems, Laboratory of Plant Physiology, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
30
|
Romero P, Gabrielli A, Sampedro R, Perea-García A, Puig S, Lafuente MT. Identification and molecular characterization of the high-affinity copper transporters family in Solanum lycopersicum. Int J Biol Macromol 2021; 192:600-610. [PMID: 34655579 DOI: 10.1016/j.ijbiomac.2021.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022]
Abstract
Copper (Cu) plays a key role as cofactor in the plant proteins participating in essential cellular processes, such as electron transport and free radical scavenging. Despite high-affinity Cu transporters (COPTs) being key participants in Cu homeostasis maintenance, very little is known about COPTs in tomato (Solanum lycopersicum) even though it is the most consumed fruit worldwide and this crop is susceptible to suboptimal Cu conditions. In this study, a six-member family of COPT (SlCOPT1-6) was identified and characterized. SlCOPTs have a conserved architecture consisting of three transmembrane domains and β-strains. However, the presence of essential methionine residues, a methionine-enriched amino-terminal region, an Mx3Mx12Gx3G Cu-binding motif and a cysteine rich carboxy-terminal region, all required for their functionality, is more variable among members. Accordingly, functional complementation assays in yeast indicate that SlCOPT1 and SlCOPT2 are able to transport Cu inside the cell, while SlCOPT3 and SlCOPT5 are only partially functional. In addition, protein interaction network analyses reveal the connection between SlCOPTs and Cu PIB-type ATPases, other metal transporters, and proteins related to the peroxisome. Gene expression analyses uncover organ-dependency, fruit vasculature tissue specialization and ripening-dependent gene expression profiles, as well as different response to Cu deficiency or toxicity in an organ-dependent manner.
Collapse
Affiliation(s)
- Paco Romero
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Alessandro Gabrielli
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Raúl Sampedro
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Ana Perea-García
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Sergi Puig
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - María Teresa Lafuente
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
31
|
Yu X, Jiang L, Jin S, Zeng X, Liu X. preMLI: a pre-trained method to uncover microRNA-lncRNA potential interactions. Brief Bioinform 2021; 23:6446267. [PMID: 34850810 DOI: 10.1093/bib/bbab470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
The interaction between microribonucleic acid and long non-coding ribonucleic acid plays a very important role in biological processes, and the prediction of the one is of great significance to the study of its mechanism of action. Due to the limitations of traditional biological experiment methods, more and more computational methods are applied to this field. However, the existing methods often have problems, such as inadequate acquisition of potential features of the sequence due to simple coding and the need to manually extract features as input. We propose a deep learning model, preMLI, based on rna2vec pre-training and deep feature mining mechanism. We use rna2vec to train the ribonucleic acid (RNA) dataset and to obtain the RNA word vector representation and then mine the RNA sequence features separately and finally concatenate the two feature vectors as the input of the prediction task. The preMLI performs better than existing methods on benchmark datasets and has cross-species prediction capabilities. Experiments show that both pre-training and deep feature mining mechanisms have a positive impact on the prediction performance of the model. To be more specific, pre-training can provide more accurate word vector representations. The deep feature mining mechanism also improves the prediction performance of the model. Meanwhile, The preMLI only needs RNA sequence as the input of the model and has better cross-species prediction performance than the most advanced prediction models, which have reference value for related research.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Computer Science and Technology, Xiamen University, Xiamen 361005, China
| | - Likun Jiang
- Department of Computer Science and Technology, Xiamen University, Xiamen 361005, China
| | - Shuting Jin
- Department of Computer Science and Technology, Xiamen University, Xiamen 361005, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiangrong Liu
- Department of Computer Science and Technology, Xiamen University, Xiamen 361005, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
32
|
Jiang Y, Chen X, Chai S, Sheng H, Sha L, Fan X, Zeng J, Kang H, Zhang H, Xiao X, Zhou Y, Vatamaniuk OK, Wang Y. TpIRT1 from Polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111058. [PMID: 34620452 DOI: 10.1016/j.plantsci.2021.111058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Uptake and internal transport of micronutrients are essential for plant growth, development, and yield. In this regard, Iron Regulated Transporters (IRTs) from the Zinc Regulated Transporter (ZRT)/IRT-related protein (ZIP) family play an important role in transition metal uptake. Most studies have been focused on IRT1-like proteins in diploid species. Information on IRT1-like proteins in polyploids is limited. Here, we studied the function of TpIRT1A and TpIRT1B homoeologs in a tetraploid crop, Polish wheat (Triticum polonicum L.). Our results highlighted the importance of TpIRT1 in mediating the uptake and translocation of Fe, Mn, Co, and Cd with direct implications for wheat yield potential. Both TpIRT1A and TpIRT1B were located at the plasma membrane and internal vesicle-like organelle in protoplasts of Arabidopsis thaliana L. and increased Cd and Co sensitivity in yeast. The over-expression of TpIRT1B in A. thaliana increased Fe, Mn, Co, and Cd concentration in its tissues and improved plant growth under Fe, Mn, and Co deficiencies, while increased the sensitivity to Cd compared to wild type. Functional analysis of IRT1 homoeologs from tetraploid and diploid ancestral wheat species in yeast disclosed four distinct amino acid residues in TdiIRT1B (T. dicoccum L. (Schrank)) and TtuIRT1B (T. turgidum L.). Together, our results increase the knowledge of IRT1 function in a globally important crop, wheat.
Collapse
Affiliation(s)
- Yulin Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA
| | - Xing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Songyue Chai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Huajin Sheng
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA; Global Institute for Food Security, University of Saskatchewan, Saskatoon, S7N0W9, SK, Canada
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA.
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
33
|
Biochemical Characterization of 13-Lipoxygenases of Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms221910237. [PMID: 34638573 PMCID: PMC8508710 DOI: 10.3390/ijms221910237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 02/01/2023] Open
Abstract
13-lipoxygenases (13-LOX) catalyze the dioxygenation of various polyunsaturated fatty acids (PUFAs), of which α-linolenic acid (LeA) is converted to 13-S-hydroperoxyoctadeca-9, 11, 15-trienoic acid (13-HPOT), the precursor for the prostaglandin-like plant hormones cis-(+)-12-oxophytodienoic acid (12-OPDA) and methyl jasmonate (MJ). This study aimed for characterizing the four annotated A. thaliana 13-LOX enzymes (LOX2, LOX3, LOX4, and LOX6) focusing on synthesis of 12-OPDA and 4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl] cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid (OCPD). In addition, we performed interaction studies of 13-LOXs with ions and molecules to advance our understanding of 13-LOX. Cell imaging indicated plastid targeting of fluorescent proteins fused to 13-LOXs-N-terminal extensions, supporting the prediction of 13-LOX localization to plastids. The apparent maximal velocity (Vmax app) values for LOX-catalyzed LeA oxidation were highest for LOX4 (128 nmol·s−1·mg protein−1), with a Km value of 5.8 µM. A. thaliana 13-LOXs, in cascade with 12-OPDA pathway enzymes, synthesized 12-OPDA and OCPD from LeA and docosahexaenoic acid, previously shown only for LOX6. The activities of the four isoforms were differently affected by physiologically relevant chemicals, such as Mg2+, Ca2+, Cu2+ and Cd2+, and by 12-OPDA and MJ. As demonstrated for LOX4, 12-OPDA inhibited enzymatic LeA hydroperoxidation, with half-maximal enzyme inhibition at 48 µM. Biochemical interactions, such as the sensitivity of LOX toward thiol-reactive agents belonging to cyclopentenone prostaglandins, are suggested to occur in human LOX homologs. Furthermore, we conclude that 13-LOXs are isoforms with rather specific functional and regulatory enzymatic features.
Collapse
|
34
|
Perea-García A, Andrés-Bordería A, Huijser P, Peñarrubia L. The Copper-microRNA Pathway Is Integrated with Developmental and Environmental Stress Responses in Arabidopsis thaliana. Int J Mol Sci 2021; 22:9547. [PMID: 34502449 PMCID: PMC8430956 DOI: 10.3390/ijms22179547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
As an essential nutrient, copper (Cu) scarcity causes a decrease in agricultural production. Cu deficiency responses include the induction of several microRNAs, known as Cu-miRNAs, which are responsible for degrading mRNAs from abundant and dispensable cuproproteins to economize copper when scarce. Cu-miRNAs, such as miR398 and miR408 are conserved, as well as the signal transduction pathway to induce them under Cu deficiency. The Arabidopsis thaliana SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family member SPL7 binds to the cis-regulatory motifs present in the promoter regions of genes expressed under Cu deficiency, including Cu-miRNAs. The expression of several other SPL transcription factor family members is regulated by miR156. This regulatory miR156-SPL module plays a crucial role in developmental phase transitions while integrating internal and external cues. Here, we show that Cu deficiency also affects miR156 expression and that SPL3 overexpressing plants, resistant to miR156 regulation, show a severe decrease in SPL7-mediated Cu deficiency responses. These include the expression of Cu-miRNAs and their targets and is probably due to competition between SPL7 and miR156-regulated SPL3 in binding to cis-regulatory elements in Cu-miRNA promoters. Thus, the conserved SPL7-mediated Cu-miRNA pathway could generally be affected by the miR156-SPL module, thereby underscoring the integration of the Cu-miRNA pathway with developmental and environmental stress responses in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ana Perea-García
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain; (A.P.-G.); (A.A.-B.)
| | - Amparo Andrés-Bordería
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain; (A.P.-G.); (A.A.-B.)
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany;
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain; (A.P.-G.); (A.A.-B.)
| |
Collapse
|
35
|
Chen R, Cao Y, Wang W, Li Y, Wang D, Wang S, Cao X. Transcription factor SmSPL7 promotes anthocyanin accumulation and negatively regulates phenolic acid biosynthesis in Salvia miltiorrhiza. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110993. [PMID: 34315580 DOI: 10.1016/j.plantsci.2021.110993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 05/24/2023]
Abstract
Plant-specific SQUAMOSA promoter-binding protein-like (SPL) transcription factors play critical regulatory roles during plant growth and development. However, the functions of SPLs in Salvia miltiorrhiza (SmSPLs; a model medicinal plant) have not been reported. Here, the expression patterns and functions of SmSPL7 were characterized in S. miltiorrhiza. SmSPL7 was expressed in all parts of S. miltiorrhiza, with the highest expression level in the leaves, and could be inhibited by multiple hormones, including methyl jasmonate, auxin, abscisic acid, and gibberellin. SmSPL7 is localized within the nucleus and exhibits robust transcriptional activation activity. Transgenic lines overexpressing SmSPL7 demonstrated pronounced growth inhibition, accompanied by increased anthocyanin accumulation via the genetic activation of the anthocyanin biosynthesis pathway. However, SmSPL7 overexpression significantly decreased salvianolic acid B (SalB) production by inhibiting the transcripts of genes implicated in its biosynthesis pathway. Further analysis indicated that SmSPL7 directly binds to SmTAT1 and Sm4CL9 promoters and blocks their expression to inhibit the biosynthesis of SalB. Taken together, these results indicate that SmSPL7 is a negative regulator of SalB biosynthesis but positively regulates anthocyanin accumulation in S. miltiorrhiza. These findings provide new insights into the functionality of the SPL family while establishing an important foundation for further uncovering the crucial roles of SmSPL7 in the growth of S. miltiorrhiza.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Yao Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Wentao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Yonghui Li
- College of Life Science, Luoyang Normal University, Luoyang 471934, China
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Shiqiang Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
36
|
Ali S, Tyagi A, Bae H. Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. Int J Mol Sci 2021; 22:7182. [PMID: 34281232 PMCID: PMC8267685 DOI: 10.3390/ijms22137182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other "omics" tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| | - Anshika Tyagi
- National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
37
|
Sheng H, Jiang Y, Rahmati M, Chia JC, Dokuchayeva T, Kavulych Y, Zavodna TO, Mendoza PN, Huang R, Smieshka LM, Miller J, Woll AR, Terek OI, Romanyuk ND, Piñeros M, Zhou Y, Vatamaniuk OK. YSL3-mediated copper distribution is required for fertility, seed size and protein accumulation in Brachypodium. PLANT PHYSIOLOGY 2021; 186:655-676. [PMID: 33576792 PMCID: PMC8154065 DOI: 10.1093/plphys/kiab054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/18/2021] [Indexed: 05/05/2023]
Abstract
Addressing the looming global food security crisis requires the development of high-yielding crops. In agricultural soils, deficiency in the micronutrient copper significantly decreases grain yield in wheat (Triticum aestivum), a globally important crop. In cereals, grain yield is determined by inflorescence architecture, flower fertility, grain size, and weight. Whether copper is involved in these processes, and how it is delivered to the reproductive organs is not well understood. We show that copper deficiency alters not only the grain set but also flower development in both wheat and its recognized model, Brachypodium distachyon. We then show that the Brachypodium yellow stripe-like 3 (YSL3) transporter localizes to the phloem, transports copper in frog (Xenopus laevis) oocytes, and facilitates copper delivery to reproductive organs and grains. Failure to deliver copper, but not iron, zinc, or manganese to these structures in the ysl3 CRISPR-Cas9 mutant results in delayed flowering, altered inflorescence architecture, reduced floret fertility, grain size, weight, and protein accumulation. These defects are rescued by copper supplementation and are complemented by YSL3 cDNA. This knowledge will help to devise sustainable approaches for improving grain yield in regions where soil quality is a major obstacle for crop production. Copper distribution by a phloem-localized transporter is essential for the transition to flowering, inflorescence architecture, floret fertility, size, weight, and protein accumulation in seeds.
Collapse
Affiliation(s)
- Huajin Sheng
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yulin Jiang
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Maryam Rahmati
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tatyana Dokuchayeva
- Cornell Nutrient Analysis Laboratory, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yana Kavulych
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Tetiana-Olena Zavodna
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Patrick N Mendoza
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Rong Huang
- Cornell University, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14853, USA
| | - Louisa M Smieshka
- Cornell University, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14853, USA
| | - Julia Miller
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Arthur R Woll
- Cornell University, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14853, USA
| | - Olga I Terek
- Department of Biology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Nataliya D Romanyuk
- Department of Biology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Miguel Piñeros
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Author for communication:
| |
Collapse
|
38
|
Yue E, Tao H, Xu J. Genome-wide analysis of microRNA156 and its targets, the genes encoding SQUAMOSA promoter-binding protein-like (SPL) transcription factors, in the grass family Poaceae. J Zhejiang Univ Sci B 2021; 22:366-382. [PMID: 33973419 DOI: 10.1631/jzus.b2000519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play an important role in post-transcriptional gene regulation in plants and animals by targeting messenger RNAs (mRNAs) for cleavage or repressing translation of specific mRNAs. The first miRNA identified in plants, miRNA156 (miR156), targets the SQUAMOSA promoter-binding protein-like (SPL) transcription factors, which play critical roles in plant phase transition, flower and plant architecture, and fruit development. We identified multiple copies of MIR156 and SPL in the rice, Brachypodium, sorghum, maize, and foxtail millet genomes. Sequence and chromosomal synteny analysis showed that both MIR156s and SPLs are conserved across species in the grass family. Analysis of expression data of the SPLs in eleven juvenile and adult rice tissues revealed that four non-miR156-targeted genes were highly expressed and three miR156-targeted genes were only slightly expressed in all tissues/developmental stages. The remaining SPLs were highly expressed in the juvenile stage, but their expression was lower in the adult stage. It has been proposed that under strong selective pressure, non-miR156-targeted mRNA may be able to re-structure to form a miRNA-responsive element. In our analysis, some non-miR156-targeted SPLs (SPL5/8/10) had gene structure and gene expression patterns similar to those of miR156-targeted genes, suggesting that they could diversify into miR156-targeted genes. DNA methylation profiles of SPLs and MIR156s in different rice tissues showed diverse methylation patterns, and hypomethylation of non-CG sites was observed in rice endosperm. Our findings suggested that MIR156s and SPLs had different origination and evolutionary mechanisms: the SPLs appear to have resulted from vertical evolution, whereas MIR156s appear to have resulted from strong evolutionary selection on mature sequences.
Collapse
Affiliation(s)
- Erkui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Hua Tao
- Henan Agricultural Radio and Television School, Zhengzhou 450008, China
| | - Jianhong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. BIOLOGY 2021; 10:biology10050409. [PMID: 34063099 PMCID: PMC8148187 DOI: 10.3390/biology10050409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Unmasking the overall endophytic bacteria communities from wheat grains may help to identify and describe the microbial colonization of bread and emmer varieties, their link to the bioactive compounds produced, and their possible role in mineral nutrition. The possibility of using microorganisms to improve the microelemental composition of grain is an important food security concern, as approximately one-third of the human population experiences latent starvation caused by Fe (anemia), Zn, or Cu deficiency. Four wheat varieties from T. aestivum L. and T. turgidum subsp. dicoccum were grown in field conditions with low bioavailability of microelements in the soil. Varietal differences in the yield, yield characteristics, and the grain micronutrient concentrations were compared with the endophytic bacteria isolated from the grains. Twelve different bacterial isolates were obtained that represented the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus. All studied strains were able to synthesize indole-related compounds (IRCs) with phytohormonal activity. IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics. Abstract Wheat grains are usually low in essential micronutrients. In resolving the problem of grain micronutritional quality, microbe-based technologies, including bacterial endophytes, seem to be promising. Thus, we aimed to (1) isolate and identify grain endophytic bacteria from selected spring wheat varieties (bread Oksamyt myronivs’kyi, Struna myronivs’ka, Dubravka, and emmer Holikovs’ka), which were all grown in field conditions with low bioavailability of microelements, and (2) evaluate the relationship between endophytes’ abilities to synthesize auxins and the concentration of Fe, Zn, and Cu in grains. The calculated biological accumulation factor (BAF) allowed for comparing the varietal ability to uptake and transport micronutrients to the grains. For the first time, bacterial endophytes were isolated from grains of emmer wheat T. turgidum subsp. dicoccum. Generally, the 12 different isolates identified in the four varieties belonged to the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus (NCBI accession numbers: MT302194—MT302204, MT312840). All the studied strains were able to synthesize the indole-related compounds (IRCs; max: 16.57 µg∙mL−1) detected using the Salkowski reagent. The IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics.
Collapse
|
40
|
Cai Y, Li Y, Liang G. FIT and bHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:1679-1691. [PMID: 33464620 DOI: 10.1111/pce.14000] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 05/22/2023]
Abstract
Although the crosstalk between iron (Fe) and copper (Cu) homeostasis signalling networks exists in plants, the underlined molecular mechanism remains unclear. FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) and four bHLH Ib members (bHLH38, bHLH39, bHLH100 and bHLH101) are the key regulators of Fe homeostasis. Here, we reveal that FIT and bHLH Ib control the up-regulation of Cu-uptake genes (COPT2, FRO4 and FRO5) by Fe deficiency, and Cu is required for improving plant growth under Fe-deficiency conditions. The induction of Cu-uptake gene expression and the elevation of Cu concentration are inhibited in the fit-2 or bhlh4x (the quadruple mutant of four bHLH Ib genes) under Fe-deficiency conditions. The dual overexpression of both bHLH38 (or bHLH39) and FIT activates the expression of COPT2, FRO4 and FRO5 and increases Cu accumulation. Furthermore, bHLH Ib proteins directly bind to the promoters of COPT2, FRO4 and FRO5. Either Cu supplement or overexpression of COPT2 or FRO4 improves the growth of fit-2 under Fe-deficiency conditions. Moreover, the induction of COPT2, FRO4 and FRO5 by Fe deficiency is independent of SPL7, a central regulator of Cu-deficiency responses. This work through the link between bHLH Ib/FIT and COPT2/FRO4/FRO5 under Fe-deficiency conditions establishes a new relationship between Cu and Fe homeostasis.
Collapse
Affiliation(s)
- Yuerong Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
41
|
Chen C, Galon Y, Rahmati Ishka M, Malihi S, Shimanovsky V, Twito S, Rath A, Vatamaniuk OK, Miller G. ASCORBATE PEROXIDASE6 delays the onset of age-dependent leaf senescence. PLANT PHYSIOLOGY 2021; 185:441-456. [PMID: 33580795 PMCID: PMC8133542 DOI: 10.1093/plphys/kiaa031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/04/2020] [Indexed: 05/11/2023]
Abstract
Age-dependent changes in reactive oxygen species (ROS) levels are critical in leaf senescence. While H2O2-reducing enzymes such as catalases and cytosolic ASCORBATE PEROXIDASE1 (APX1) tightly control the oxidative load during senescence, their regulation and function are not specific to senescence. Previously, we identified the role of ASCORBATE PEROXIDASE6 (APX6) during seed maturation in Arabidopsis (Arabidopsis thaliana). Here, we show that APX6 is a bona fide senescence-associated gene. APX6 expression is specifically induced in aging leaves and in response to senescence-promoting stimuli such as abscisic acid (ABA), extended darkness, and osmotic stress. apx6 mutants showed early developmental senescence and increased sensitivity to dark stress. Reduced APX activity, increased H2O2 level, and altered redox state of the ascorbate pool in mature pre-senescing green leaves of the apx6 mutants correlated with the early onset of senescence. Using transient expression assays in Nicotiana benthamiana leaves, we unraveled the age-dependent post-transcriptional regulation of APX6. We then identified the coding sequence of APX6 as a potential target of miR398, which is a key regulator of copper redistribution. Furthermore, we showed that mutants of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), the master regulator of copper homeostasis and miR398 expression, have a higher APX6 level compared with the wild type, which further increased under copper deficiency. Our study suggests that APX6 is a modulator of ROS/redox homeostasis and signaling in aging leaves that plays an important role in developmental- and stress-induced senescence programs.
Collapse
Affiliation(s)
- Changming Chen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yael Galon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maryam Rahmati Ishka
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Shimrit Malihi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Vladislava Shimanovsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shir Twito
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Abhishek Rath
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
42
|
More than XRF Mapping: STEAM (Statistically Tailored Elemental Angle Mapper) a Pioneering Analysis Protocol for Pigment Studies. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among the possible variants of X-Ray Fluorescence (XRF), applications exploiting scanning Macro-XRF (MA-XRF) are lately widespread as they allow the visualization of the element distribution maintaining a non-destructive approach. The surface is scanned with a focused or collimated X-ray beam of millimeters or less: analyzing the emitted fluorescence radiation, also elements present below the surface contribute to the elemental distribution image obtained, due to the penetrative nature of X-rays. The importance of this method in the investigation of historical paintings is so obvious—as the elemental distribution obtained can reveal hidden sub-surface layers, including changes made by the artist, or restorations, without any damage to the object—that recently specific international conferences have been held. The present paper summarizes the advantages and limitations of using MA-XRF considering it as an imaging technique, in synergy with other hyperspectral methods, or combining it with spot investigations. The most recent applications in the cultural Heritage field are taken into account, demonstrating how obtained 2D-XRF maps can be of great help in the diagnostic applied on Cultural Heritage materials. Moreover, a pioneering analysis protocol based on the Spectral Angle Mapper (SAM) algorithm is presented, unifying the MA-XRF standard approach with punctual XRF, exploiting information from the mapped area as a database to extend the comprehension to data outside the scanned region, and working independently from the acquisition set-up. Experimental application on some reference pigment layers and a painting by Giotto are presented as validation of the proposed method.
Collapse
|
43
|
Rahmati Ishka M, Vatamaniuk OK. Copper deficiency alters shoot architecture and reduces fertility of both gynoecium and androecium in Arabidopsis thaliana. PLANT DIRECT 2020; 4:e00288. [PMID: 33283140 PMCID: PMC7700745 DOI: 10.1002/pld3.288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 05/05/2023]
Abstract
Copper deficiency reduces plant growth, male fertility, and seed set. The contribution of copper to female fertility and the underlying molecular aspects of copper deficiency-caused phenotypes are not well known. We show that among copper deficiency-caused defects in Arabidopsis thaliana were also the increased shoot branching, delayed flowering and senescence, and entirely abolished gynoecium fertility. The increased shoot branching of copper-deficient plants was rescued by the exogenous application of auxin or copper. The delayed flowering was associated with the decreased expression of the floral activator, FT. Copper deficiency also decreased the expression of senescence-associated genes, WRKY53 and SAG13, but increased the expression of SAG12. The reduced fertility of copper-deficient plants stemmed from multiple factors including the abnormal stigma papillae development, the abolished gynoecium fertility, and the failure of anthers to dehisce. The latter defect was associated with reduced lignification, the upregulation of copper microRNAs and the downregulation of their targets, laccases, implicated in lignin synthesis. Copper-deficient plants accumulated ROS in pollen and had reduced cytochrome c oxidase activity in both leaves and floral buds. This study opens new avenues for the investigation into the relationship between copper homeostasis, hormone-mediated shoot architecture, gynoecium fertility, and copper deficiency-derived nutritional signals leading to the delay in flowering and senescence.
Collapse
Affiliation(s)
- Maryam Rahmati Ishka
- Soil and Crop Sciences SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Olena K. Vatamaniuk
- Soil and Crop Sciences SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| |
Collapse
|
44
|
Senovilla M, Abreu I, Escudero V, Cano C, Bago A, Imperial J, González-Guerrero M. MtCOPT2 is a Cu + transporter specifically expressed in Medicago truncatula mycorrhizal roots. MYCORRHIZA 2020; 30:781-788. [PMID: 32914374 DOI: 10.1007/s00572-020-00987-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi are critical participants in plant nutrition in natural ecosystems and in sustainable agriculture. A large proportion of the phosphorus, nitrogen, sulfur, and transition metal elements that the host plant requires are obtained from the soil by the fungal mycelium and released at the arbuscules in exchange for photosynthates. While many of the plant transporters responsible for obtaining macronutrients at the periarbuscular space have been characterized, the identities of those mediating transition metal uptake remain unknown. In this work, MtCOPT2 has been identified as the only member of the copper transporter family COPT in the model legume Medicago truncatula to be specifically expressed in mycorrhizal roots. Fusing a C-terminal GFP tag to MtCOPT2 expressed under its own promoter showed a distribution pattern that corresponds with arbuscule distribution in the roots. When expressed in tobacco leaves, MtCOPT2-GFP co-localizes with a plasma membrane marker. MtCOPT2 is intimately related to the rhizobial nodule-specific MtCOPT1, which is suggestive of a shared evolutionary lineage that links transition metal nutrition in the two main root endosymbioses in legumes.
Collapse
Affiliation(s)
- Marta Senovilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón (Madrid), Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón (Madrid), Spain.
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón (Madrid), Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Custodia Cano
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - Alberto Bago
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón (Madrid), Spain.
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
45
|
Kang Q, Meng J, Cui J, Luan Y, Chen M. PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA-lncRNA interaction prediction. Bioinformatics 2020; 36:2986-2992. [PMID: 32087005 DOI: 10.1093/bioinformatics/btaa074] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 12/28/2022] Open
Abstract
MOTIVATION The studies have indicated that not only microRNAs (miRNAs) or long non-coding RNAs (lncRNAs) play important roles in biological activities, but also their interactions affect the biological process. A growing number of studies focus on the miRNA-lncRNA interactions, while few of them are proposed for plant. The prediction of interactions is significant for understanding the mechanism of interaction between miRNA and lncRNA in plant. RESULTS This article proposes a new method for fulfilling plant miRNA-lncRNA interaction prediction (PmliPred). The deep learning model and shallow machine learning model are trained using raw sequence and manually extracted features, respectively. Then they are hybridized based on fuzzy decision for prediction. PmliPred shows better performance and generalization ability compared with the existing methods. Several new miRNA-lncRNA interactions in Solanum lycopersicum are successfully identified using quantitative real time-polymerase chain reaction from the candidates predicted by PmliPred, which further verifies its effectiveness. AVAILABILITY AND IMPLEMENTATION The source code of PmliPred is freely available at http://bis.zju.edu.cn/PmliPred/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qiang Kang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
46
|
Whitt L, Ricachenevsky FK, Ziegler GZ, Clemens S, Walker E, Maathuis FJM, Kear P, Baxter I. A curated list of genes that affect the plant ionome. PLANT DIRECT 2020; 4:e00272. [PMID: 33103043 PMCID: PMC7576880 DOI: 10.1002/pld3.272] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 05/07/2023]
Abstract
Understanding the mechanisms underlying plants' adaptation to their environment will require knowledge of the genes and alleles underlying elemental composition. Modern genetics is capable of quickly, and cheaply indicating which regions of DNA are associated with particular phenotypes in question, but most genes remain poorly annotated, hindering the identification of candidate genes. To help identify candidate genes underlying elemental accumulations, we have created the known ionome gene (KIG) list: a curated collection of genes experimentally shown to change uptake, accumulation, and distribution of elements. We have also created an automated computational pipeline to generate lists of KIG orthologs in other plant species using the PhytoMine database. The current version of KIG consists of 176 known genes covering 5 species, 23 elements, and their 1588 orthologs in 10 species. Analysis of the known genes demonstrated that most were identified in the model plant Arabidopsis thaliana, and that transporter coding genes and genes altering the accumulation of iron and zinc are overrepresented in the current list.
Collapse
Affiliation(s)
- Lauren Whitt
- Donald Danforth Plant Science CenterSaint LouisMOUSA
| | - Felipe Klein Ricachenevsky
- Departamento de Botânica Programa de Pós‐Graduação em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | | | | | | | | | | | - Ivan Baxter
- Donald Danforth Plant Science CenterSaint LouisMOUSA
| |
Collapse
|
47
|
Garcia-Molina A, Marino G, Lehmann M, Leister D. Systems biology of responses to simultaneous copper and iron deficiency in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2119-2138. [PMID: 32578228 DOI: 10.1111/tpj.14887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/09/2020] [Indexed: 05/29/2023]
Abstract
Plant responses to coincident nutrient deficiencies cannot be predicted from the responses to individual deficiencies. Although copper (Cu) and iron (Fe) are essential micronutrients for plant growth that are often and concurrently limited in soils, the combinatorial response to Cu-Fe deficiency remains elusive. In the present study, we characterised the responses of Arabidopsis thaliana plants deprived of Cu, Fe or both (-Cu-Fe) at the level of plant development, mineral composition, and reconfiguration of transcriptomes, proteomes and metabolomes. Compared to single deficiencies, simultaneous -Cu-Fe leads to a distinct pattern in leaf physiology and microelement concentration characterised by lowered protein content and enhanced manganese and zinc levels. Conditional networking analysis of molecular changes indicates that biological processes also display different co-expression patterns among single and double deficiencies. Indeed, the interaction between Cu and Fe deficiencies causes distinct expression profiles for 15% of all biomolecules, leading to specific enhancement of general stress responses and protein homeostasis mechanisms, at the same time as severely arresting photosynthesis. Accordingly, central carbon metabolites, in particular photosynthates, decrease especially under -Cu-Fe conditions, whereas the pool of free amino acids increases. Further meta-analysis of transcriptomes and proteomes corroborated that protein biosynthesis and folding capacity were readjusted during the combinatorial response and unveiled important rearrangements in the metabolism of organic acids. Consequently, our results demonstrate that the response to -Cu-Fe imposes a distinct reconfiguration of large sets of molecules, not triggered by single deficiencies, resulting into a switch from autotrophy to heterotrophy and involving organic acids such as fumaric acid as central mediators of the response.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Giada Marino
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Dario Leister
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| |
Collapse
|
48
|
Fan Y, Liu J, Zou J, Zhang X, Jiang L, Liu K, Lü P, Gao J, Zhang C. The RhHB1/ RhLOX4 module affects the dehydration tolerance of rose flowers ( Rosa hybrida) by fine-tuning jasmonic acid levels. HORTICULTURE RESEARCH 2020; 7:74. [PMID: 32377364 PMCID: PMC7195446 DOI: 10.1038/s41438-020-0299-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 05/14/2023]
Abstract
Phytohormones are key factors in plant responsiveness to abiotic and biotic stresses, and maintaining hormone homeostasis is critically important during stress responses. Cut rose (Rosa hybrida) flowers experience dehydration stress during postharvest handling, and jasmonic acid (JA) levels change as a result of this stress. However, how JA is involved in dehydration tolerance remains unclear. We investigated the functions of the JA- and dehydration-induced RhHB1 gene, which encodes a homeodomain-leucine zipper I γ-clade transcription factor, in rose flowers. Silencing RhHB1 decreased petal dehydration tolerance and resulted in a persistent increase in JA-Ile content and reduced dehydration tolerance. An elevated JA-Ile level had a detrimental effect on rose petal dehydration tolerance. RhHB1 was shown to lower the transient induction of JA-Ile accumulation in response to dehydration. In addition to transcriptomic data, we obtained evidence that RhHB1 suppresses the expression of the lipoxygenase 4 (RhLOX4) gene by directly binding to its promoter both in vivo and in vitro. We propose that increased JA-Ile levels weaken the capacity for osmotic adjustment in petal cells, resulting in reduced dehydration tolerance. In conclusion, a JA feedback loop mediated by an RhHB1/RhLOX4 regulatory module provides dehydration tolerance by fine-tuning bioactive JA levels in dehydrated flowers.
Collapse
Affiliation(s)
- Youwei Fan
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Jitao Liu
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, Guangdong 510642 China
| | - Jing Zou
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Xiangyu Zhang
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Liwei Jiang
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Kun Liu
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Peitao Lü
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Junping Gao
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Changqing Zhang
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
49
|
Wang Z, Zhu T, Ma W, Fan E, Lu N, Ouyang F, Wang N, Yang G, Kong L, Qu G, Zhang S, Wang J. Potential function of CbuSPL and gene encoding its interacting protein during flowering in Catalpa bungei. BMC PLANT BIOLOGY 2020; 20:105. [PMID: 32143577 PMCID: PMC7060540 DOI: 10.1186/s12870-020-2303-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/24/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND "Bairihua", a variety of the Catalpa bungei, has a large amount of flowers and a long flowering period which make it an excellent material for flowering researches in trees. SPL is one of the hub genes that regulate both flowering transition and development. RESULTS SPL homologues CbuSPL9 was cloned using degenerate primers with RACE. Expression studies during flowering transition in "Bairihua" and ectopic expression in Arabidopsis showed that CbuSPL9 was functional similarly with its Arabidopsis homologues. In the next step, we used Y2H to identify the proteins that could interact with CbuSPL9. HMGA, an architectural transcriptional factor, was identified and cloned for further research. BiFC and BLI showed that CbuSPL9 could form a heterodimer with CbuHMGA in the nucleus. The expression analysis showed that CbuHMGA had a similar expression trend to that of CbuSPL9 during flowering in "Bairihua". Intriguingly, ectopic expression of CbuHMGA in Arabidopsis would lead to aberrant flowers, but did not effect flowering time. CONCLUSIONS Our results implied a novel pathway that CbuSPL9 regulated flowering development, but not flowering transition, with the participation of CbuHMGA. Further investments need to be done to verify the details of this pathway.
Collapse
Affiliation(s)
- Zhi Wang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Tianqing Zhu
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Wenjun Ma
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Erqin Fan
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
- Present address: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 People’s Republic of China
| | - Nan Lu
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Fangqun Ouyang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Nan Wang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Guijuan Yang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Lisheng Kong
- Present address: Department of Biology Centre for Forest Biology, University of Victoria, Victoria 11, BC Canada
| | - Guanzheng Qu
- Present address: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 People’s Republic of China
| | - Shougong Zhang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Junhui Wang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| |
Collapse
|
50
|
Rutley N, Miller G. Large-Scale Analysis of Pollen Viability and Oxidative Level Using H 2DCFDA-Staining Coupled with Flow Cytometry. Methods Mol Biol 2020; 2160:167-179. [PMID: 32529435 DOI: 10.1007/978-1-0716-0672-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Determining pollen viability and other physiological parameters is of critical importance for evaluating the reproductive capacity of plants, both for fundamental and applied sciences. Flow cytometry is a powerful high-performance high-throughput tool for analyzing large populations of cells that has been in restricted use in plant cell research and in pollen-related studies, it has been minimized mostly for determination of DNA content. Recently, we developed a flow cytometry-based approach for robust and rapid evaluation of pollen viability that utilizes the reactive oxygen species (ROS) fluorescent reporter dye H2DCFDA (Luria et al., Plant J 98(5):942-952, 2019). This new approach revealed that pollen from Arabidopsis thaliana and Solanum lycopersicum naturally distribute into two subpopulations with different ROS levels. This method can be employed for a myriad of pollen-related studies, primarily in response to stimuli such as biotic or abiotic stress. In this chapter, we describe the protocol for H2DCFDA staining coupled with flow cytometry analysis providing specific guidelines. These guidelines are broadly applicable to many other types of cellular reporters to further develop this novel approach in the field of pollen biology.
Collapse
Affiliation(s)
- Nicholas Rutley
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|