1
|
Ahmad D, Ying Y, Bao J. Understanding starch biosynthesis in potatoes for metabolic engineering to improve starch quality: A detailed review. Carbohydr Polym 2024; 346:122592. [PMID: 39245484 DOI: 10.1016/j.carbpol.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.
Collapse
Affiliation(s)
- Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
2
|
Chen J, Chen Y, Watson-Lazowski A, Hawkins E, Barclay JE, Fahy B, Denley Bowers R, Corbin K, Warren FJ, Blennow A, Uauy C, Seung D. Wheat MYOSIN-RESEMBLING CHLOROPLAST PROTEIN controls B-type starch granule initiation timing during endosperm development. PLANT PHYSIOLOGY 2024; 196:1980-1996. [PMID: 39158075 PMCID: PMC11531834 DOI: 10.1093/plphys/kiae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Molecular factors that contribute to the diverse spatial and temporal patterns of starch granule initiation between species and organs are poorly understood. Wheat (Triticum sp.) endosperm contains both large A-type granules initiated during early grain development and small B-type granules that initiate about 10 to 15 days later. Here, we identify that the MYOSIN-RESEMBLING CHLOROPLAST PROTEIN (MRC) is required for the correct timing of B-type granule initiation in wheat endosperm during grain development. MRC is expressed in the endosperm exclusively in early grain development, before B-type granule initiation. We isolated three independent TILLING mutants of tetraploid wheat (Triticum turgidum cv. 'Kronos') with premature stop or missense mutations in the A-genome homeolog, which we showed to be the only active homeolog in tetraploid wheat due to a disruption of the B-genome homeolog. The mrc mutants had significantly smaller A-type granules and a higher relative volume of B-type granules in the endosperm than the wild type. Whereas B-type granules initiated 15 to 20 days post-anthesis (dpa) in the wild type, they appeared as early as 10 dpa in the mrc-1 mutant. These results suggest a temporal role for MRC in repressing B-type granule initiation, providing insight into how the distinct biochemical mechanisms that control A- and B-type granule initiation are regulated. This role of MRC in the wheat endosperm is distinct from the previously described role of Arabidopsis (Arabidopsis thaliana) MRC in promoting granule initiation in leaves, providing an example of functional diversification among granule initiation proteins.
Collapse
Affiliation(s)
- Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yi Chen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alexander Watson-Lazowski
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Harper Adams University, Newport TF10 8NB, UK
| | - Erica Hawkins
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Brendan Fahy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Kendall Corbin
- Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK
- Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546-0312, USA
| | | | - Andreas Blennow
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Copenhagen 1871, Denmark
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
3
|
Liu Q, Zhou Y, Flores Castellanos J, Fettke J. The maltose-related starch degradation pathway promotes the formation of large and spherical transitory starch granules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:712-728. [PMID: 39254098 DOI: 10.1111/tpj.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Previously, in Arabidopsis thaliana, we found atypical spherical starch granules in dpe2ss4 and dpe2phs1ss4. However, the mechanism of such abnormal morphogenesis is still obscure. By tracking starch granule length and thickness with leaf ageing, we reported that the starch granules in dpe2phs1ss4 gradually change to a spherical shape over time. In comparison, Col-0 and the parental line ss4 did not exhibit macroscopic morphological alteration. In this study, firstly, we specify that the additional lack of DPE2 resulted in the gradual alteration of starch granule morphology over time. Similar gradual morphological alterations were also found in dpe2, mex1, and sex4 but not in the other starch degradation-related mutants, such as sex1-8, pwd, and bam3. The gradual alteration of starch morphology can be eliminated by omitting the dark phase, suggesting that the particular impaired starch degradation in dpe2- and mex1-related mutants influences starch morphology. Secondly, we observed that spherical starch morphology generation was accompanied by prominent elevated short glucan chains of amylopectin and an increased amylose proportion. Thirdly, the interplay between soluble starch synthase 2 and branching enzymes was affected and resulted in the formation of spherical starch granules. The resulting spherical starch granules allow for elevated starch synthesis efficiency. Fourthly, the starch phosphate content at the granule surface correlated with the morphology alteration of the starch granules. Herewith, we propose a model that spherical starch granules, accumulated in mutants with a misbalance of the starch degradation pathway, are result of elevated starch synthesis to cope with overloaded carbohydrates.
Collapse
Affiliation(s)
- Qingting Liu
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476, Potsdam-Golm, Germany
| | - Yuan Zhou
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Junio Flores Castellanos
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476, Potsdam-Golm, Germany
| |
Collapse
|
4
|
Yan H, Ren Y, Zhang B, Jin J, Du F, Shan Z, Fu Y, Zhu Y, Wang X, Zhu C, Cai Y, Zhang J, Wang F, Zhang X, Wang R, Wang Y, Xu H, Jiang L, Liu X, Zhu S, Lin Q, Lei C, Cheng Z, Wang Y, Zhang W, Wan J. SUBSTANDARD STARCH GRAIN7 regulates starch grain size and endosperm development in rice. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39180364 DOI: 10.1111/pbi.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/26/2024]
Abstract
Starch is synthesized as insoluble, semicrystalline particles within plant chloroplast and amyloplast, which are referred to as starch grains (SGs). The size and morphology of SGs in the cereal endosperm are diverse and species-specific, representing a key determinant of the suitability of starch for industrial applications. However, the molecular mechanisms modulating SG size in cereal endosperm remain elusive. Here, we functionally characterized the rice (Oryza sativa) mutant substandard starch grain7 (ssg7), which exhibits enlarged SGs and defective endosperm development. SSG7 encodes a plant-specific DUF1001 domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) CRUMPLED LEAF (AtCRL). SSG7 localizes to the amyloplast membrane in developing endosperm. Several lines of evidence suggest that SSG7 functions together with SSG4 and SSG6, known as two regulators essential for SG development, to control SG size, by interacting with translocon-associated components, which unveils a molecular link between SG development and protein import. Genetically, SSG7 acts synergistically with SSG4 and appears to be functional redundancy with SSG6 in modulating SG size and endosperm development. Collectively, our findings uncover a multimeric functional protein complex involved in SG development in rice. SSG7 represents a promising target gene for the biotechnological modification of SG size, particularly for breeding programs aimed at improving starch quality.
Collapse
Affiliation(s)
- Haigang Yan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Binglei Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jie Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Feilong Du
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhuangzhuang Shan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yushuang Fu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yun Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyuan Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yue Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Fan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Rongqi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yongxiang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Hancong Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| |
Collapse
|
5
|
Nishimura Y. Plastid Nucleoids: Insights into Their Shape and Dynamics. PLANT & CELL PHYSIOLOGY 2024; 65:551-559. [PMID: 37542434 DOI: 10.1093/pcp/pcad090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/07/2023]
Abstract
Chloroplasts/plastids are unique organelles found in plant cells and some algae and are responsible for performing essential functions such as photosynthesis. The plastid genome, consisting of circular and linear DNA molecules, is packaged and organized into specialized structures called nucleoids. The composition and dynamics of these nucleoids have been the subject of intense research, as they are critical for proper plastid functions and development. In this mini-review, recent advances in understanding the organization and regulation of plastid nucleoids are overviewed, with a focus on the various proteins and factors that regulate the shape and dynamics of nucleoids, including DNA-binding proteins and membrane anchorage proteins. The dynamic nature of nucleoid organization, which is influenced by a variety of developmental cues and the cell cycle, is also examined.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
6
|
Yan H, Zhang W, Wang Y, Jin J, Xu H, Fu Y, Shan Z, Wang X, Teng X, Li X, Wang Y, Hu X, Zhang W, Zhu C, Zhang X, Zhang Y, Wang R, Zhang J, Cai Y, You X, Chen J, Ge X, Wang L, Xu J, Jiang L, Liu S, Lei C, Zhang X, Wang H, Ren Y, Wan J. Rice LIKE EARLY STARVATION1 cooperates with FLOURY ENDOSPERM6 to modulate starch biosynthesis and endosperm development. THE PLANT CELL 2024; 36:1892-1912. [PMID: 38262703 PMCID: PMC11062441 DOI: 10.1093/plcell/koae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.
Collapse
Affiliation(s)
- Haigang Yan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hancong Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushuang Fu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuangzhuang Shan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongxiang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenxiang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyuan Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongqi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoman You
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyuan Ge
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| |
Collapse
|
7
|
Atkinson N, Stringer R, Mitchell SR, Seung D, McCormick AJ. SAGA1 and SAGA2 promote starch formation around proto-pyrenoids in Arabidopsis chloroplasts. Proc Natl Acad Sci U S A 2024; 121:e2311013121. [PMID: 38241434 PMCID: PMC10823261 DOI: 10.1073/pnas.2311013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
The pyrenoid is a chloroplastic microcompartment in which most algae and some terrestrial plants condense the primary carboxylase, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) as part of a CO2-concentrating mechanism that improves the efficiency of CO2 capture. Engineering a pyrenoid-based CO2-concentrating mechanism (pCCM) into C3 crop plants is a promising strategy to enhance yield capacities and resilience to the changing climate. Many pyrenoids are characterized by a sheath of starch plates that is proposed to act as a barrier to limit CO2 diffusion. Recently, we have reconstituted a phase-separated "proto-pyrenoid" Rubisco matrix in the model C3 plant Arabidopsis thaliana using proteins from the alga with the most well-studied pyrenoid, Chlamydomonas reinhardtii [N. Atkinson, Y. Mao, K. X. Chan, A. J. McCormick, Nat. Commun. 11, 6303 (2020)]. Here, we describe the impact of introducing the Chlamydomonas proteins StArch Granules Abnormal 1 (SAGA1) and SAGA2, which are associated with the regulation of pyrenoid starch biogenesis and morphology. We show that SAGA1 localizes to the proto-pyrenoid in engineered Arabidopsis plants, which results in the formation of atypical spherical starch granules enclosed within the proto-pyrenoid condensate and adjacent plate-like granules that partially cover the condensate, but without modifying the total amount of chloroplastic starch accrued. Additional expression of SAGA2 further increases the proportion of starch synthesized as adjacent plate-like granules that fully encircle the proto-pyrenoid. Our findings pave the way to assembling a diffusion barrier as part of a functional pCCM in vascular plants, while also advancing our understanding of the roles of SAGA1 and SAGA2 in starch sheath formation and broadening the avenues for engineering starch morphology.
Collapse
Affiliation(s)
- Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
- Centre of Engineering Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Rhea Stringer
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Stephen R. Mitchell
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - David Seung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Alistair J. McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
- Centre of Engineering Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| |
Collapse
|
8
|
Sharma M, Abt MR, Eicke S, Ilse TE, Liu C, Lucas MS, Pfister B, Zeeman SC. MFP1 defines the subchloroplast location of starch granule initiation. Proc Natl Acad Sci U S A 2024; 121:e2309666121. [PMID: 38190535 PMCID: PMC10801857 DOI: 10.1073/pnas.2309666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Starch is one of the major carbohydrate storage compounds in plants. The biogenesis of starch granules starts with the formation of initials, which subsequently expand into granules. Several coiled-coil domain-containing proteins have been previously implicated with the initiation process, but the mechanisms by which they act remain largely elusive. Here, we demonstrate that one of these proteins, the thylakoid-associated MAR-BINDING FILAMENT-LIKE PROTEIN 1 (MFP1), specifically determines the subchloroplast location of initial formation. The expression of MFP1 variants "mis"-targeted to specific locations within chloroplasts in Arabidopsis results in distinctive shifts in not only how many but also where starch granules are formed. Importantly, "re" localizing MFP1 to the stromal face of the chloroplast's inner envelope is sufficient to generate starch granules in this aberrant position. These findings provide compelling evidence that a single protein MFP1 possesses the capacity to direct the initiation and biosynthesis machinery of starch granules.
Collapse
Affiliation(s)
- Mayank Sharma
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Melanie R. Abt
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Theresa E. Ilse
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Chun Liu
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Miriam S. Lucas
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Barbara Pfister
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Samuel C. Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
9
|
Calzadilla PI, Song J, Gallois P, Johnson GN. Proximity to Photosystem II is necessary for activation of Plastid Terminal Oxidase (PTOX) for photoprotection. Nat Commun 2024; 15:287. [PMID: 38177155 PMCID: PMC10767095 DOI: 10.1038/s41467-023-44454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
The Plastid Terminal Oxidase (PTOX) is a chloroplast localized plastoquinone oxygen oxidoreductase suggested to have the potential to act as a photoprotective safety valve for photosynthesis. However, PTOX overexpression in plants has been unsuccessful at inducing photoprotection, and the factors that control its activity remain elusive. Here, we show that significant PTOX activity is induced in response to high light in the model species Eutrema salsugineum and Arabidopsis thaliana. This activation correlates with structural reorganization of the thylakoid membrane. Over-expression of PTOX in mutants of Arabidopsis thaliana perturbed in thylakoid stacking also results in such activity, in contrast to wild type plants with normal granal structure. Further, PTOX activation protects against photoinhibition of Photosystem II and reduces reactive oxygen production under stress conditions. We conclude that structural re-arrangements of the thylakoid membranes, bringing Photosystem II and PTOX into proximity, are both required and sufficient for PTOX to act as a Photosystem II sink and play a role in photoprotection.
Collapse
Affiliation(s)
- Pablo Ignacio Calzadilla
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Junliang Song
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Giles Nicholas Johnson
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
10
|
Kamble NU, Makhamadjonov F, Fahy B, Martins C, Saalbach G, Seung D. Initiation of B-type starch granules in wheat endosperm requires the plastidial α-glucan phosphorylase PHS1. THE PLANT CELL 2023; 35:4091-4110. [PMID: 37595145 PMCID: PMC10615211 DOI: 10.1093/plcell/koad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
The plastidial α-glucan phosphorylase (PHS1) can elongate and degrade maltooligosaccharides (MOSs), but its exact physiological role in plants is poorly understood. Here, we discover a specialized role of PHS1 in establishing the unique bimodal characteristic of starch granules in wheat (Triticum spp.) endosperm. Wheat endosperm contains large A-type granules that initiate at early grain development and small B-type granules that initiate in later grain development. We demonstrate that PHS1 interacts with B-GRANULE CONTENT1 (BGC1), a carbohydrate-binding protein essential for normal B-type granule initiation. Mutants of tetraploid durum wheat (Triticum turgidum) deficient in all homoeologs of PHS1 had normal A-type granules but fewer and larger B-type granules. Grain size and starch content were not affected by the mutations. Further, by assessing granule numbers during grain development in the phs1 mutant and using a double mutant defective in both PHS1 and BGC1, we demonstrate that PHS1 is exclusively involved in B-type granule initiation. The total starch content and number of starch granules per chloroplast in leaves were not affected by loss of PHS1, suggesting that its role in granule initiation in wheat is limited to the endosperm. We therefore propose that the initiation of A- and B-type granules occurs via distinct biochemical mechanisms, where PHS1 plays an exclusive role in B-type granule initiation.
Collapse
Affiliation(s)
| | | | - Brendan Fahy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH,UK
| | - Carlo Martins
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH,UK
| | | | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH,UK
| |
Collapse
|
11
|
Chen J, Watson-Lazowski A, Kamble NU, Vickers M, Seung D. Gene expression profile of the developing endosperm in durum wheat provides insight into starch biosynthesis. BMC PLANT BIOLOGY 2023; 23:363. [PMID: 37460981 DOI: 10.1186/s12870-023-04369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Durum wheat (Triticum turgidum subsp. durum) is widely grown for pasta production, and more recently, is gaining additional interest due to its resilience to warm, dry climates and its use as an experimental model for wheat research. Like in bread wheat, the starch and protein accumulated in the endosperm during grain development are the primary contributors to the calorific value of durum grains. RESULTS To enable further research into endosperm development and storage reserve synthesis, we generated a high-quality transcriptomics dataset from developing endosperms of variety Kronos, to complement the extensive mutant resources available for this variety. Endosperms were dissected from grains harvested at eight timepoints during grain development (6 to 30 days post anthesis (dpa)), then RNA sequencing was used to profile the transcriptome at each stage. The largest changes in gene expression profile were observed between the earlier timepoints, prior to 15 dpa. We detected a total of 29,925 genes that were significantly differentially expressed between at least two timepoints, and clustering analysis revealed nine distinct expression patterns. We demonstrate the potential of our dataset to provide new insights into key processes that occur during endosperm development, using starch metabolism as an example. CONCLUSION We provide a valuable resource for studying endosperm development in this increasingly important crop species.
Collapse
Affiliation(s)
- Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alexander Watson-Lazowski
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | | | - Martin Vickers
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
12
|
Vandromme C, Spriet C, Putaux JL, Dauvillée D, Courseaux A, D'Hulst C, Wattebled F. Further insight into the involvement of PII1 in starch granule initiation in Arabidopsis leaf chloroplasts. THE NEW PHYTOLOGIST 2023; 239:132-145. [PMID: 37010093 DOI: 10.1111/nph.18923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2023] [Indexed: 06/02/2023]
Abstract
The control of starch granule initiation in plant leaves is a complex process that requires active enzymes like Starch Synthase 4 and 3 (SS4 or SS3) and several noncatalytic proteins such as Protein Involved in starch Initiation 1 (PII1). In Arabidopsis leaves, SS4 is the main enzyme that control starch granule initiation, but in its absence, SS3 partly fulfills this function. How these proteins collectively act to control the initiation of starch granules remains elusive. PII1 and SS4 physically interact, and PII1 is required for SS4 to be fully active. However, Arabidopsis mutants lacking SS4 or PII1 still accumulate starch granules. Combining pii1 KO mutation with either ss3 or ss4 KO mutations provide new insights of how the remaining starch granules are synthesized. The ss3 pii1 line still accumulates starch, while the phenotype of ss4 pii1 is stronger than that of ss4. Our results indicate first that SS4 initiates starch granule synthesis in the absence of PII1 albeit being limited to one large lenticular granule per plastid. Second, that if in the absence of SS4, SS3 is able to initiate starch granules with low efficiency, this ability is further reduced with the additional absence of PII1.
Collapse
Affiliation(s)
- Camille Vandromme
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Corentin Spriet
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | - Jean-Luc Putaux
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000, Grenoble, France
| | - David Dauvillée
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Adeline Courseaux
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Christophe D'Hulst
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Fabrice Wattebled
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| |
Collapse
|
13
|
Dong X, Chen L, Yang H, Tian L, Dong F, Chai Y, Qu LQ. Pho1 cooperates with DPE1 to control short maltooligosaccharide mobilization during starch synthesis initiation in rice endosperm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:47. [PMID: 36912930 DOI: 10.1007/s00122-023-04250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/18/2022] [Indexed: 06/18/2023]
Abstract
Plastidial α-glucan phosphorylase is a key factor that cooperates with plastidial disproportionating enzyme to control short maltooligosaccharide mobilization during the initiation process of starch molecule synthesis in developing rice endosperm. Storage starch synthesis is essential for grain filling. However, little is known about how cereal endosperm controls starch synthesis initiation. One of core events for starch synthesis initiation is short maltooligosaccharide (MOS) mobilization consisting of long MOS primer production and excess MOS breakdown. By mutant analyses and biochemical investigations, we present here functional identifications of plastidial α-glucan phosphorylase (Pho1) and disproportionating enzyme (DPE1) during starch synthesis initiation in rice (Oryza sativa) endosperm. Pho1 deficiency impaired MOS mobilization, triggering short MOS accumulation and starch synthesis reduction during early seed development. The mutant seeds differed significantly in MOS level and starch content at 15 days after flowering and exhibited diverse endosperm phenotypes during mid-late seed development: ranging from pseudonormal to shrunken (Shr), severely or excessively Shr. The level of DPE1 was almost normal in the PN seeds but significantly reduced in the Shr seeds. Overexpression of DPE1 in pho1 resulted in plump seeds only. DPE1 deficiency had no obvious effects on MOS mobilization. Knockout of DPE1 in pho1 completely blocked MOS mobilization, resulting in severely and excessively Shr seeds only. These findings show that Pho1 cooperates with DPE1 to control short MOS mobilization during starch synthesis initiation in rice endosperm.
Collapse
Affiliation(s)
- Xiangbai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liangke Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Orzechowski S, Compart J, Zdunek-Zastocka E, Fettke J. Starch parameters and short-term temperature fluctuations - Important but not yet in focus? JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153902. [PMID: 36565529 DOI: 10.1016/j.jplph.2022.153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Plants are regularly challenged by unfavorable environmental conditions. As climate change continues, adverse situations such as drought, heat, and cold are expected to increase and become more severe. Most starchy crops are affected by such stresses. In recent years, researchers have made many new discoveries about starch metabolism in general and also on granule structure, including effects on starch following longer-term temperature stresses. However, in this study, we focus on short-term temperature stress on storage starch granule properties. Here our knowledge is less and it is likely that also short-term temperature stresses can affect various starch parameters. Therefore, we see a need for this type of analysis and discuss the matter in more detail and we conclude that a deeper knowledge particularly of starch granule parameters could allow targeted breeding of cultivars that exhibit different starch characteristics as a result of short-term stress. For these reasons, we are convinced that more comprehensive research on the effects of short-term temperature stress on starch granule characteristics is important, necessary, and timely.
Collapse
Affiliation(s)
- Sławomir Orzechowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Edyta Zdunek-Zastocka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany.
| |
Collapse
|
15
|
Thieme M, Hochmuth A, Ilse TE, Cuesta-Seijo JA, Stoma S, Meier R, Nørrelykke SF, Pedas PR, Braumann I, Zeeman SC. Detecting variation in starch granule size and morphology by high-throughput microscopy and flow cytometry. Carbohydr Polym 2023; 299:120169. [PMID: 36876784 DOI: 10.1016/j.carbpol.2022.120169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/29/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
Abstract
Starch forms semi-crystalline, water-insoluble granules, the size and morphology of which vary according to biological origin. These traits, together with polymer composition and structure, determine the physicochemical properties of starch. However, screening methods to identify differences in starch granule size and shape are lacking. Here, we present two approaches for high-throughput starch granule extraction and size determination using flow cytometry and automated, high-throughput light microscopy. We evaluated the practicality of both methods using starch from different species and tissues and demonstrated their effectiveness by screening for induced variation in starch extracted from over 10,000 barley lines, yielding four with heritable changes in the ratio of large A-granules to small B-granules. Analysis of Arabidopsis lines altered in starch biosynthesis further demonstrates the applicability of these approaches. Identifying variation in starch granule size and shape will enable identification of trait-controlling genes for developing crops with desired properties, and could help optimise starch processing.
Collapse
Affiliation(s)
- Mercedes Thieme
- Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland; Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Anton Hochmuth
- Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland; Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | | | - Jose A Cuesta-Seijo
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | | | - Roger Meier
- ScopeM, ETH Zurich, 8093 Zurich, Switzerland.
| | | | - Pai Rosager Pedas
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
16
|
Yilmazer I, Abt MR, Liang Y, Seung D, Zeeman SC, Sharma M. Determining Protein-Protein Interaction with GFP-Trap Beads. Methods Mol Biol 2023; 2564:317-323. [PMID: 36107351 DOI: 10.1007/978-1-0716-2667-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein-protein interactions play a vital role in the cellular physiology of living organisms. Among several available approaches, co-immunoprecipitation (co-IP) has emerged as a reliable method to investigate such interactions. The underlying principle is to retrieve a bait protein from a protein extract using bait-specific antibodies and thereby indirectly capture the interacting partner proteins. However, bait-specific antibodies are not always available, and the genetic fusion of a peptide tag offers an alternative. An extensive range of peptide tags and the tag-specific antibodies are available nowadays. Fluorescent proteins are widely used protein tags for co-IP experiments. In this chapter, we describe a method to co-immunoprecipitate the fluorescently tagged candidate protein with its interacting partners from the crude plant cell extracts using green fluorescent protein (GFP)-trap magnetic beads.
Collapse
Affiliation(s)
- Irem Yilmazer
- Institute of Molecular Plant Biology , ETH Zürich, Zürich, Switzerland
| | - Melanie R Abt
- Institute of Molecular Plant Biology , ETH Zürich, Zürich, Switzerland
| | - Yuanyuan Liang
- Institute of Molecular Plant Biology , ETH Zürich, Zürich, Switzerland
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology , ETH Zürich, Zürich, Switzerland
| | - Mayank Sharma
- Institute of Molecular Plant Biology , ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
17
|
Li X, Apriyanto A, Castellanos JF, Compart J, Muntaha SN, Fettke J. Dpe2/phs1 revealed unique starch metabolism with three distinct phases characterized by different starch granule numbers per chloroplast, allowing insights into the control mechanism of granule number regulation by gene co-regulation and metabolic profiling. FRONTIERS IN PLANT SCIENCE 2022; 13:1039534. [PMID: 36407636 PMCID: PMC9667719 DOI: 10.3389/fpls.2022.1039534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
An Arabidopsis mutant lacking both the cytosolic Disproportionating enzyme 2 (DPE2) and the plastidial glucan Phosphorylase 1 (PHS1) revealed a unique starch metabolism. Dpe2/phs1 has been reported to have only one starch granule number per chloroplast when grown under diurnal rhythm. For this study, we analyzed dpe2/phs1 in details following the mutant development, and found that it showed three distinct periods of granule numbers per chloroplast, while there was no obvious change observed in Col-0. In young plants, the starch granule number was similar to that in Col-0 at first, and then decreased significantly, down to one or no granule per chloroplast, followed by an increase in the granule number. Thus, in dpe2/phs1, control over the starch granule number is impaired, but it is not defective in starch granule initiation. The data also indicate that the granule number is not fixed, and is regulated throughout plant growth. Furthermore, the chloroplasts revealed alterations during these three periods, with a partially strong aberrant morphology in the middle phase. Interestingly, the unique metabolism was perpetuated when starch degradation was further impaired through an additional lack of Isoamylase 3 (ISA3) or Starch excess 4 (SEX4). Transcriptomic studies and metabolic profiling revealed the co-regulation of starch metabolism-related genes and a clear metabolic separation between the periods. Most senescence-induced genes were found to be up-regulated more than twice in the starch-less mature leaves. Thus, dpe2/phs1 is a unique plant material source, with which we may study starch granule number regulation to obtain a more detailed understanding.
Collapse
|
18
|
Ying Y, Xu F, Zhang Z, Tappiban P, Bao J. Dynamic Change in Starch Biosynthetic Enzymes Complexes during Grain-Filling Stages in BEIIb Active and Deficient Rice. Int J Mol Sci 2022; 23:ijms231810714. [PMID: 36142619 PMCID: PMC9501056 DOI: 10.3390/ijms231810714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Starch is the predominant reserve in rice (Oryza sativa L.) endosperm, which is synthesized by the coordinated efforts of a series of starch biosynthetic-related enzymes in the form of a multiple enzyme complex. Whether the enzyme complex changes during seed development is not fully understood. Here, we investigated the dynamic change in multi-protein complexes in an indica rice variety IR36 (wild type, WT) and its BEIIb-deficient mutant (be2b) at different developmental stages. Gel permeation chromatography (GPC) and Western blotting analysis of soluble protein fractions revealed most of the enzymes except for SSIVb were eluted in smaller molecular weight fractions at the early developing stage and were transferred to higher molecular weight fractions at the later stage in both WT and be2b. Accordingly, protein interactions were enhanced during seed development as demonstrated by co-immunoprecipitation analysis, suggesting that the enzymes were recruited to form larger protein complexes during starch biosynthesis. The converse elution pattern from GPC of SSIVb may be attributed to its vital role in the initiation step of starch synthesis. The number of protein complexes was markedly decreased in be2b at all development stages. Although SSIVb could partially compensate for the role of BEIIb in protein complex formation, it was hard to form a larger protein complex containing over five proteins in be2b. In addition, other proteins such as PPDKA and PPDKB were possibly present in the multi-enzyme complexes by proteomic analyses of high molecular weight fractions separated from GPC. Two putative protein kinases were found to be potentially associated with starch biosynthetic enzymes. Collectively, our findings unraveled a dynamic change in the protein complex during seed development, and potential roles of BEIIb in starch biosynthesis via various protein complex formations, which enables a deeper understanding of the complex mechanism of starch biosynthesis in rice.
Collapse
Affiliation(s)
- Yining Ying
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Feifei Xu
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhongwei Zhang
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Piengtawan Tappiban
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Correspondence: ; Tel.: +86-571-86971932
| |
Collapse
|
19
|
Muntaha SN, Li X, Compart J, Apriyanto A, Fettke J. Carbon pathways during transitory starch degradation in Arabidopsis differentially affect the starch granule number and morphology in the dpe2/phs1 mutant background. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:35-41. [PMID: 35378390 DOI: 10.1016/j.plaphy.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The Arabidopsis knockout mutant lacking both the cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) had a dwarf-growth phenotype, a reduced and uneven distribution of starch within the plant rosettes, and a lower starch granule number per chloroplast under standard growth conditions. In contrast, a triple mutant impaired in starch degradation by its additional lack of the glucan, water dikinase (GWD) showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to the wild type. We concluded that ongoing starch degradation is mainly responsible for the observed phenotype of dpe2/phs1. Next, we generated two further triple mutants lacking either the phosphoglucan, water dikinase (PWD), or the disproportionating enzyme 1 (DPE1) in the background of the double mutant. Analysis of the starch metabolism revealed that even minor ongoing starch degradation observed in dpe2/phs1/pwd maintained the double mutant phenotype. In contrast, an additional blockage in the glucose pathway of starch breakdown, as in dpe2/phs1/dpe1, resulted in a nearly starch-free phenotype and massive chloroplast degradation. The characterized mutants were discussed in the context of starch granule formation.
Collapse
Affiliation(s)
- Sidratul Nur Muntaha
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Xiaoping Li
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Ardha Apriyanto
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany.
| |
Collapse
|
20
|
Sharma V, Fandade V, Kumar P, Parveen A, Madhawan A, Bathla M, Mishra A, Sharma H, Rishi V, Satbhai SB, Roy J. Protein targeting to starch 1, a functional protein of starch biosynthesis in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2022; 109:101-113. [PMID: 35332427 DOI: 10.1007/s11103-022-01260-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
TaPTST1, a wheat homolog of AtPTST1 containing CBM can interact with GBSSI and regulate starch metabolism in wheat endosperm. In cereal endosperm, native starch comprising amylose and amylopectin is synthesized by the coordinated activities of several pathway enzymes. Amylose in starch influences its physio-chemical properties resulting in several human health benefits. The Granule-Bound Starch Synthase I (GBSSI) is the most abundant starch-associated protein. GBSSI lacks dedicated Carbohydrate-binding module (CBM). Previously, Protein Targeting To Starch 1 (PTST1) was identified as a crucial protein for the localization of GBSSI to the starch granules in Arabidopsis. The function of its homologous protein in the wheat endosperm is not known. In this study, TaPTST1, an AtPTST1 homolog, containing a CBM and a coiled-coil domain was identified in wheat. Protein-coding nucleotide sequence of TaPTST1 from Indian wheat variety 'C 306' was cloned and characterized. Homology modelling and molecular docking suggested the potential interaction of TaPTST1 with glucans and GBSSI. The TaPTST1 expression was higher in wheat grain than the other tissues, suggesting a grain-specific function. In vitro binding assays demonstrated different binding affinities of TaPTST1 for native starch, amylose, and amylopectin. Furthermore, the immunoaffinity pull-down assay revealed that TaPTST1 directly interacts with GBSSI, and the interaction is mediated by a coiled-coil domain. The direct protein-protein interaction was further confirmed by bimolecular fluorescence complementation assay (BiFC) in planta. Based on our findings we postulate a functional role for TaPTST1 in starch metabolism by targeting GBSSI to starch granules in wheat endosperm.
Collapse
Affiliation(s)
- Vinita Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER) Mohali, Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Vikas Fandade
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Prashant Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Afsana Parveen
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Akansha Madhawan
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Manik Bathla
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Ankita Mishra
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER) Mohali, Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India.
| |
Collapse
|
21
|
Apriyanto A, Compart J, Fettke J. A review of starch, a unique biopolymer - Structure, metabolism and in planta modifications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111223. [PMID: 35351303 DOI: 10.1016/j.plantsci.2022.111223] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Starch is a complex carbohydrate polymer produced by plants and especially by crops in huge amounts. It consists of amylose and amylopectin, which have α-1,4- and α-1,6-linked glucose units. Despite this simple chemistry, the entire starch metabolism is complex, containing various (iso)enzymes/proteins. However, whose interplay is still not yet fully understood. Starch is essential for humans and animals as a source of nutrition and energy. Nowadays, starch is also commonly used in non-food industrial sectors for a variety of purposes. However, native starches do not always satisfy the needs of a wide range of (industrial) applications. This review summarizes the structural properties of starch, analytical methods for starch characterization, and in planta starch modifications.
Collapse
Affiliation(s)
- Ardha Apriyanto
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476 Potsdam-Golm, Germany
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476 Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
22
|
Fujita N, Miura S, Crofts N. Effects of Various Allelic Combinations of Starch Biosynthetic Genes on the Properties of Endosperm Starch in Rice. RICE (NEW YORK, N.Y.) 2022; 15:24. [PMID: 35438319 PMCID: PMC9018920 DOI: 10.1186/s12284-022-00570-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 05/09/2023]
Abstract
Rice endosperm accumulates large amounts of photosynthetic products as insoluble starch within amyloplasts by properly arranging structured, highly branched, large amylopectin molecules, thus avoiding osmotic imbalance. The amount and characteristics of starch directly influence the yield and quality of rice grains, which in turn influence their application and market value. Therefore, understanding how various allelic combinations of starch biosynthetic genes, with different expression levels, affect starch properties is important for the identification of targets for breeding new rice cultivars. Research over the past few decades has revealed the spatiotemporal expression patterns and allelic variants of starch biosynthetic genes, and enhanced our understanding of the specific roles and compensatory functions of individual isozymes of starch biosynthetic enzymes through biochemical analyses of purified enzymes and characterization of japonica rice mutants lacking these enzymes. Furthermore, it has been shown that starch biosynthetic enzymes can mutually and synergistically increase their activities by forming protein complexes. This review focuses on the more recent discoveries made in the last several years. Generation of single and double mutants and/or high-level expression of specific starch synthases (SSs) allowed us to better understand how the starch granule morphology is determined; how the complete absence of SSIIa affects starch structure; why the rice endosperm stores insoluble starch rather than soluble phytoglycogen; how to elevate amylose and resistant starch (RS) content to improve health benefits; and how SS isozymes mutually complement their activities. The introduction of active-type SSIIa and/or high-expression type GBSSI into ss3a ss4b, isa1, be2b, and ss3a be2b japonica rice mutants, with unique starch properties, and analyses of their starch properties are summarized in this review. High-level accumulation of RS is often accompanied by a reduction in grain yield as a trade-off. Backcrossing rice mutants with a high-yielding elite rice cultivar enabled the improvement of agricultural traits, while maintaining high RS levels. Designing starch structures for additional values, breeding and cultivating to increase yield will enable the development of a new type of rice starch that can be used in a wide variety of applications, and that can contribute to food and agricultural industries in the near future.
Collapse
Affiliation(s)
- Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| |
Collapse
|
23
|
Figueroa CM, Asencion Diez MD, Ballicora MA, Iglesias AA. Structure, function, and evolution of plant ADP-glucose pyrophosphorylase. PLANT MOLECULAR BIOLOGY 2022; 108:307-323. [PMID: 35006475 DOI: 10.1007/s11103-021-01235-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/15/2021] [Indexed: 05/25/2023]
Abstract
This review outlines research performed in the last two decades on the structural, kinetic, regulatory and evolutionary aspects of ADP-glucose pyrophosphorylase, the regulatory enzyme for starch biosynthesis. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the pathway of glycogen and starch synthesis in bacteria and plants, respectively. Plant ADP-Glc PPase is a heterotetramer allosterically regulated by metabolites and post-translational modifications. In this review, we focus on the three-dimensional structure of the plant enzyme, the amino acids that bind the regulatory molecules, and the regions involved in transmitting the allosteric signal to the catalytic site. We provide a model for the evolution of the small and large subunits, which produce heterotetramers with distinct catalytic and regulatory properties. Additionally, we review the various post-translational modifications observed in ADP-Glc PPases from different species and tissues. Finally, we discuss the subcellular localization of the enzyme found in grain endosperm from grasses, such as maize and rice. Overall, this work brings together research performed in the last two decades to better understand the multiple mechanisms involved in the regulation of ADP-Glc PPase. The rational modification of this enzyme could improve the yield and resilience of economically important crops, which is particularly important in the current scenario of climate change and food shortage.
Collapse
Affiliation(s)
- Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Matías D Asencion Diez
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA.
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina.
| |
Collapse
|
24
|
Hedin N, Velazquez MB, Barchiesi J, Gomez-Casati DF, Busi MV. CBM20CP, a novel functional protein of starch metabolism in green algae. PLANT MOLECULAR BIOLOGY 2022; 108:363-378. [PMID: 34546521 DOI: 10.1007/s11103-021-01190-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/20/2021] [Indexed: 05/29/2023]
Abstract
Ostreococcus tauri is a picoalga that contains a small and compact genome, which resembles that of higher plants in the multiplicity of enzymes involved in starch synthesis (ADP-glucose pyrophosphorylase, ADPGlc PPase; granule bound starch synthase, GBSS; starch synthases, SSI, SSII, SSIII; and starch branching enzyme, SBE, between others), except starch synthase IV (SSIV). Although its genome is fully sequenced, there are still many genes and proteins to which no function was assigned. Here, we identify the OT_ostta06g01880 gene that encodes CBM20CP, a plastidial protein which contains a central carbohydrate binding domain of the CBM20 family, and a coiled coil domain at the C-terminus that lacks catalytic activity. We demonstrate that CBM20CP has the ability to bind starch, amylose and amylopectin with different affinities. Furthermore, this protein interacts with OsttaSSIII-B, increasing its binding to starch granules, its catalytic efficiency and promoting granule growth. The results allow us to postulate a functional role for CBM20CP in starch metabolism in green algae. KEY MESSAGE: CBM20CP, a plastidial protein that has a modular structure but lacks catalytic activity, regulates the synthesis of starch in Ostreococcus tauri.
Collapse
Affiliation(s)
- Nicolas Hedin
- CEFOBI - CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Maria B Velazquez
- CEFOBI - CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Julieta Barchiesi
- CEFOBI - CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Diego F Gomez-Casati
- CEFOBI - CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Maria V Busi
- CEFOBI - CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| |
Collapse
|
25
|
Zhang L, Li N, Zhang J, Zhao L, Qiu J, Wei C. The CBM48 domain-containing protein FLO6 regulates starch synthesis by interacting with SSIVb and GBSS in rice. PLANT MOLECULAR BIOLOGY 2022; 108:343-361. [PMID: 34387795 DOI: 10.1007/s11103-021-01178-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 05/27/2023]
Abstract
FLO6 is involved in starch synthesis by interacting with SSIVb and GBSS in rice. Starch synthesized and stored in plastids including chloroplasts and amyloplasts plays a vital role in plant growth and provides the major energy for human diet. However, the molecular mechanisms by which regulate starch synthesis remain largely unknown. In this study, we identified and characterized a rice floury endosperm mutant M39, which exhibited defective starch granule formation in pericarp and endosperm, accompanied by the decreased starch content and amylose content. The abnormal starch accumulation in M39 pollen grains caused a significant decrease in plant fertility. Chloroplasts in M39 leaves contained no or only one large starch granule. Positional cloning combined with complementary experiment demonstrated that the mutant phenotypes were restored by the FLOURY ENDOSPERM6 (FLO6). FLO6 was generally expressed in various tissues, including leaf, anther and developing endosperm. FLO6 is a chloroplast and amyloplast-localized protein that is able to bind to starch by its carbohydrate-binding module 48 (CBM48) domain. Interestingly, we found that FLO6 interacted with starch synthase IVb (SSIVb) and granule-bound starch synthase (GBSSI and GBSSII). Together, our results suggested that FLO6 plays a critical role in starch synthesis through cooperating with several starch synthesis enzymes throughout plant growth and development.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Ning Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jing Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Linglong Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jiajing Qiu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
26
|
Bürgy L, Eicke S, Kopp C, Jenny C, Lu KJ, Escrig S, Meibom A, Zeeman SC. Coalescence and directed anisotropic growth of starch granule initials in subdomains of Arabidopsis thaliana chloroplasts. Nat Commun 2021; 12:6944. [PMID: 34836943 PMCID: PMC8626487 DOI: 10.1038/s41467-021-27151-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Living cells orchestrate enzyme activities to produce myriads of biopolymers but cell-biological understanding of such processes is scarce. Starch, a plant biopolymer forming discrete, semi-crystalline granules within plastids, plays a central role in glucose storage, which is fundamental to life. Combining complementary imaging techniques and Arabidopsis genetics we reveal that, in chloroplasts, multiple starch granules initiate in stromal pockets between thylakoid membranes. These initials coalesce, then grow anisotropically to form lenticular granules. The major starch polymer, amylopectin, is synthesized at the granule surface, while the minor amylose component is deposited internally. The non-enzymatic domain of STARCH SYNTHASE 4, which controls the protein's localization, is required for anisotropic growth. These results present us with a conceptual framework for understanding the biosynthesis of this key nutrient.
Collapse
Affiliation(s)
- Léo Bürgy
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Christophe Kopp
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Camilla Jenny
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Kuan Jen Lu
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Stephane Escrig
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Centre for Advanced Surface Analysis, University of Lausanne, Lausanne, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
27
|
Abstract
Nature has developed starch granules varying in size from less than 1 μm to more than 100 μm. The granule size is an important factor affecting the functional properties and the applicability of starch for food and non-food applications. Within the same botanical species, the range of starch granule size can be up to sevenfold. This review critically evaluated the biological and environmental factors affecting the size of starch granules, the methods for the separation of starch granules and the measurement of size distribution. Further, the structure at different length scales and properties of starch-based on the granule size is elucidated by specifying the typical applications of granules with varying sizes. An amylopectin cluster model showing the arrangement of amylopectin from inside toward the granule surface is proposed with the hypothesis that the steric hindrance for the growth of lamellar structure may limit the size of starch granules.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Venea Dara Daygon
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Vicky Solah
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
28
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. PLANT COMMUNICATIONS 2021; 2:100237. [PMID: 34746765 PMCID: PMC8554040 DOI: 10.1016/j.xplc.2021.100237] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/13/2023]
Abstract
Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
29
|
Mérida A, Fettke J. Starch granule initiation in Arabidopsis thaliana chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:688-697. [PMID: 34051021 DOI: 10.1111/tpj.15359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.
Collapse
Affiliation(s)
- Angel Mérida
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla (US), Avda Américo Vespucio, 49, Sevilla, 41092, Spain
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, 14476, Germany
| |
Collapse
|
30
|
Hawkins E, Chen J, Watson-Lazowski A, Ahn-Jarvis J, Barclay JE, Fahy B, Hartley M, Warren FJ, Seung D. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. THE NEW PHYTOLOGIST 2021; 230:2371-2386. [PMID: 33714222 DOI: 10.1111/nph.17342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/05/2021] [Indexed: 05/26/2023]
Abstract
Starch granule initiation is poorly understood at the molecular level. The glucosyltransferase, STARCH SYNTHASE 4 (SS4), plays a central role in granule initiation in Arabidopsis leaves, but its function in cereal endosperms is unknown. We investigated the role of SS4 in wheat, which has a distinct spatiotemporal pattern of granule initiation during grain development. We generated TILLING mutants in tetraploid wheat (Triticum turgidum) that are defective in both SS4 homoeologs. The morphology of endosperm starch was examined in developing and mature grains. SS4 deficiency led to severe alterations in endosperm starch granule morphology. During early grain development, while the wild-type initiated single 'A-type' granules per amyloplast, most amyloplasts in the mutant formed compound granules due to multiple initiations. This phenotype was similar to mutants deficient in B-GRANULE CONTENT 1 (BGC1). SS4 deficiency also reduced starch content in leaves and pollen grains. We propose that SS4 and BGC1 are required for the proper control of granule initiation during early grain development that leads to a single A-type granule per amyloplast. The absence of either protein results in a variable number of initiations per amyloplast and compound granule formation.
Collapse
Affiliation(s)
- Erica Hawkins
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | | | - Brendan Fahy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew Hartley
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
31
|
Tappiban P, Ying Y, Xu F, Bao J. Proteomics and Post-Translational Modifications of Starch Biosynthesis-Related Proteins in Developing Seeds of Rice. Int J Mol Sci 2021; 22:5901. [PMID: 34072759 PMCID: PMC8199009 DOI: 10.3390/ijms22115901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Rice (Oryza sativa L.) is a foremost staple food for approximately half the world's population. The components of rice starch, amylose, and amylopectin are synthesized by a series of enzymes, which are responsible for rice starch properties and functionality, and then affect rice cooking and eating quality. Recently, proteomics technology has been applied to the establishment of the differentially expressed starch biosynthesis-related proteins and the identification of posttranslational modifications (PTMs) target starch biosynthesis proteins as well. It is necessary to summarize the recent studies in proteomics and PTMs in rice endosperm to deepen our understanding of starch biosynthesis protein expression and regulation, which will provide useful information to rice breeding programs and industrial starch applications. The review provides a comprehensive summary of proteins and PTMs involved in starch biosynthesis based on proteomic studies of rice developing seeds. Starch biosynthesis proteins in rice seeds were differentially expressed in the developing seeds at different developmental stages. All the proteins involving in starch biosynthesis were identified using proteomics methods. Most starch biosynthesis-related proteins are basically increased at 6-20 days after flowering (DAF) and decreased upon the high-temperature conditions. A total of 10, 14, 2, 17, and 7 starch biosynthesis related proteins were identified to be targeted by phosphorylation, lysine acetylation, succinylation, lysine 2-hydroxyisobutyrylation, and malonylation, respectively. The phosphoglucomutase is commonly targeted by five PTMs types. Research on the function of phosphorylation in multiple enzyme complex formation in endosperm starch biosynthesis is underway, while the functions of other PTMs in starch biosynthesis are necessary to be conducted in the near future.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Yining Ying
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Feifei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Jinsong Bao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| |
Collapse
|
32
|
Chen J, Hawkins E, Seung D. Towards targeted starch modification in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102013. [PMID: 33677239 DOI: 10.1016/j.pbi.2021.102013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Genetic approaches to modify starch in crops have been limited by our knowledge of starch biosynthesis. Recent advances in Arabidopsis have revealed key genetic components determining the size, shape and number of granules in a plastid. This has opened the doors to new discoveries on granule initiation in crop species. In parallel, advances in genomic resources and gene editing technologies allow targeted manipulation of starch biosynthesis genes in isogenic crop backgrounds. Such technologies have been successfully deployed to alter starch composition, and can now be used to modify other starch traits. This will allow the complex relationships between starch structure and physicochemical properties to be elucidated, which will facilitate the rational manipulation of starches in crops.
Collapse
Affiliation(s)
- Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Erica Hawkins
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
33
|
Docking of acetyl-CoA carboxylase to the plastid envelope membrane attenuates fatty acid production in plants. Nat Commun 2020; 11:6191. [PMID: 33273474 PMCID: PMC7712654 DOI: 10.1038/s41467-020-20014-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/09/2020] [Indexed: 11/12/2022] Open
Abstract
In plants, light-dependent activation of de novo fatty acid synthesis (FAS) is partially mediated by acetyl-CoA carboxylase (ACCase), the first committed step for this pathway. However, it is not fully understood how plants control light-dependent FAS regulation to meet the cellular demand for acyl chains. We report here the identification of a gene family encoding for three small plastidial proteins of the envelope membrane that interact with the α-carboxyltransferase (α-CT) subunit of ACCase and participate in an original mechanism restraining FAS in the light. Light enhances the interaction between carboxyltransferase interactors (CTIs) and α-CT, which in turn attenuates carbon flux into FAS. Knockouts for CTI exhibit higher rates of FAS and marked increase in absolute triacylglycerol levels in leaves, more than 4-fold higher than in wild-type plants. Furthermore, WRINKLED1, a master transcriptional regulator of FAS, positively regulates CTI1 expression by direct binding to its promoter. This study reveals that in addition to light-dependent activation, “envelope docking” of ACCase permits fine-tuning of fatty acid supply during the plant life cycle. In plants, light-dependent activation fatty acid synthesis (FAS) is mediated in part by acetyl-CoA carboxylase (ACCase). Here the authors identify a family of genes encoding carboxyltransferase interactors that attenuate FAS in the light by docking acetyl-CoA carboxylase to the plastid envelope.
Collapse
|
34
|
Seung D. Amylose in starch: towards an understanding of biosynthesis, structure and function. THE NEW PHYTOLOGIST 2020; 228:1490-1504. [PMID: 32767769 DOI: 10.1111/nph.16858] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
35
|
Tetlow IJ, Bertoft E. A Review of Starch Biosynthesis in Relation to the Building Block-Backbone Model. Int J Mol Sci 2020; 21:E7011. [PMID: 32977627 PMCID: PMC7582286 DOI: 10.3390/ijms21197011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/31/2023] Open
Abstract
Starch is a water-insoluble polymer of glucose synthesized as discrete granules inside the stroma of plastids in plant cells. Starch reserves provide a source of carbohydrate for immediate growth and development, and act as long term carbon stores in endosperms and seed tissues for growth of the next generation, making starch of huge agricultural importance. The starch granule has a highly complex hierarchical structure arising from the combined actions of a large array of enzymes as well as physicochemical self-assembly mechanisms. Understanding the precise nature of granule architecture, and how both biological and abiotic factors determine this structure is of both fundamental and practical importance. This review outlines current knowledge of granule architecture and the starch biosynthesis pathway in relation to the building block-backbone model of starch structure. We highlight the gaps in our knowledge in relation to our understanding of the structure and synthesis of starch, and argue that the building block-backbone model takes accurate account of both structural and biochemical data.
Collapse
Affiliation(s)
- Ian J. Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
36
|
Bischof S. Which Factors Control Starch Granule Initiation? THE PLANT CELL 2020; 32:2449-2450. [PMID: 32605916 PMCID: PMC7401012 DOI: 10.1105/tpc.20.00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Sylvain Bischof
- Assistant Features EditorDepartment of Plant and Microbial BiologyUniversity of Zürich, Switzerland
| |
Collapse
|
37
|
Abt MR, Pfister B, Sharma M, Eicke S, Bürgy L, Neale I, Seung D, Zeeman SC. STARCH SYNTHASE5, a Noncanonical Starch Synthase-Like Protein, Promotes Starch Granule Initiation in Arabidopsis. THE PLANT CELL 2020; 32:2543-2565. [PMID: 32471861 PMCID: PMC7401018 DOI: 10.1105/tpc.19.00946] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 05/04/2023]
Abstract
What determines the number of starch granules in plastids is an enigmatic aspect of starch metabolism. Several structurally and functionally diverse proteins have been implicated in the granule initiation process in Arabidopsis (Arabidopsis thaliana), with each protein exerting a varying degree of influence. Here, we show that a conserved starch synthase-like protein, STARCH SYNTHASE5 (SS5), regulates the number of starch granules that form in Arabidopsis chloroplasts. Among the starch synthases, SS5 is most closely related to SS4, a major determinant of granule initiation and morphology. However, unlike SS4 and the other starch synthases, SS5 is a noncanonical isoform that lacks catalytic glycosyltransferase activity. Nevertheless, loss of SS5 reduces starch granule numbers that form per chloroplast in Arabidopsis, and ss5 mutant starch granules are larger than wild-type granules. Like SS4, SS5 has a conserved putative surface binding site for glucans and also interacts with MYOSIN-RESEMBLING CHLOROPLAST PROTEIN, a proposed structural protein influential in starch granule initiation. Phenotypic analysis of a suite of double mutants lacking both SS5 and other proteins implicated in starch granule initiation allows us to propose how SS5 may act in this process.
Collapse
Affiliation(s)
- Melanie R Abt
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Barbara Pfister
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Mayank Sharma
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Léo Bürgy
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Isabel Neale
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - David Seung
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
38
|
Abt MR, Zeeman SC. Evolutionary innovations in starch metabolism. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:109-117. [PMID: 32428846 DOI: 10.1016/j.pbi.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
The traditional view of starch metabolism has focused on the multiplicity of enzymes and enzyme isoforms contributing to the production of the constituent polymers, amylopectin and amylose. However, knowledge of these enzymes has not provided a full insight into many aspects of starch biosynthesis. This enzyme-centered view has recently been augmented by the discovery and characterization of novel proteins with proposed regulatory, scaffolding, and interactive roles. This begins to reveal an unprecedented level of complexity beyond mere glucan biosynthesis, enabling us to envisage how starch granules are initiated and grow into specific forms, allowing it to serve biological roles beyond just carbohydrate storage. This review focuses on very recent findings in this vibrant field, highlighting the evolutionary novelty.
Collapse
Affiliation(s)
- Melanie R Abt
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
39
|
Smith AM, Zeeman SC. Starch: A Flexible, Adaptable Carbon Store Coupled to Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:217-245. [PMID: 32075407 DOI: 10.1146/annurev-arplant-050718-100241] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research in the past decade has uncovered new and surprising information about the pathways of starch synthesis and degradation. This includes the discovery of previously unsuspected protein families required both for processes and for the long-sought mechanism of initiation of starch granules. There is also growing recognition of the central role of leaf starch turnover in making carbon available for growth across the day-night cycle. Sophisticated systems-level control mechanisms involving the circadian clock set rates of nighttime starch mobilization that maintain a steady supply of carbon until dawn and modulate partitioning of photosynthate into starch in the light, optimizing the fraction of assimilated carbon that can be used for growth. These discoveries also uncover complexities: Results from experiments with Arabidopsis leaves in conventional controlled environments are not necessarily applicable to other organs or species or to growth in natural, fluctuating environments.
Collapse
Affiliation(s)
| | - Samuel C Zeeman
- Institute of Plant Molecular Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
40
|
Zhong Y, Sagnelli D, Topbjerg HB, Hasler-Sheetal H, Andrzejczak OA, Hooshmand K, Gislum R, Jiang D, Møller IM, Blennow A, Hebelstrup KH. Expression of starch-binding factor CBM20 in barley plastids controls the number of starch granules and the level of CO2 fixation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:234-246. [PMID: 31494665 PMCID: PMC6913705 DOI: 10.1093/jxb/erz401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/22/2019] [Indexed: 05/20/2023]
Abstract
The biosynthesis of starch granules in plant plastids is coordinated by the orchestrated action of transferases, hydrolases, and dikinases. These enzymes either contain starch-binding domain(s) themselves, or are dependent on direct interactions with co-factors containing starch-binding domains. As a means to competitively interfere with existing starch-protein interactions, we expressed the protein module Carbohydrate-Binding Motif 20 (CBM20), which has a very high affinity for starch, ectopically in barley plastids. This interference resulted in an increase in the number of starch granules in chloroplasts and in formation of compound starch granules in grain amyloplasts, which is unusual for barley. More importantly, we observed a photosystem-independent inhibition of CO2 fixation, with a subsequent reduced growth rate and lower accumulation of carbohydrates with effects throughout the metabolome, including lower accumulation of transient leaf starch. Our results demonstrate the importance of endogenous starch-protein interactions for controlling starch granule morphology and number, and plant growth, as substantiated by a metabolic link between starch-protein interactions and control of CO2 fixation in chloroplasts.
Collapse
Affiliation(s)
- Yingxin Zhong
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Domenico Sagnelli
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Henrik Bak Topbjerg
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Harald Hasler-Sheetal
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Olga Agata Andrzejczak
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Kourosh Hooshmand
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - René Gislum
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Kim Henrik Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
41
|
Chia T, Chirico M, King R, Ramirez-Gonzalez R, Saccomanno B, Seung D, Simmonds J, Trick M, Uauy C, Verhoeven T, Trafford K. A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:105-115. [PMID: 31633795 DOI: 10.1093/jxb/erz405] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 05/19/2023]
Abstract
In Triticeae endosperm (e.g. wheat and barley), starch granules have a bimodal size distribution (with A- and B-type granules) whereas in other grasses the endosperm contains starch granules with a unimodal size distribution. Here, we identify the gene, BGC1 (B-GRANULE CONTENT 1), responsible for B-type starch granule content in Aegilops and wheat. Orthologues of this gene are known to influence starch synthesis in diploids such as rice, Arabidopsis, and barley. However, using polyploid Triticeae species, we uncovered a more complex biological role for BGC1 in starch granule initiation: BGC1 represses the initiation of A-granules in early grain development but promotes the initiation of B-granules in mid grain development. We provide evidence that the influence of BGC1 on starch synthesis is dose dependent and show that three very different starch phenotypes are conditioned by the gene dose of BGC1 in polyploid wheat: normal bimodal starch granule morphology; A-granules with few or no B-granules; or polymorphous starch with few normal A- or B-granules. We conclude from this work that BGC1 participates in controlling B-type starch granule initiation in Triticeae endosperm and that its precise effect on granule size and number varies with gene dose and stage of development.
Collapse
Affiliation(s)
| | | | - Rob King
- Rothamsted Research, West Common, Harpenden, UK
| | | | | | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | |
Collapse
|
42
|
Lloyd JR. The A to B of starch granule formation in wheat endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1-3. [PMID: 31841166 PMCID: PMC6913706 DOI: 10.1093/jxb/erz414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This article comments on: Chia T, Chirico M, King R et al. 2019. A carbohydrate-binding protein, B-granule content 1 influences starch granule-size distribution in a dose dependent manner in polyploid wheat. Journal of Experimental Botany 70, 105–115.
Collapse
Affiliation(s)
- James R Lloyd
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
- Correspondence:
| |
Collapse
|
43
|
Tuncel A, Corbin KR, Ahn‐Jarvis J, Harris S, Hawkins E, Smedley MA, Harwood W, Warren FJ, Patron NJ, Smith AM. Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2259-2271. [PMID: 31033104 PMCID: PMC6835119 DOI: 10.1111/pbi.13137] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 05/20/2023]
Abstract
We investigated whether Cas9-mediated mutagenesis of starch-branching enzymes (SBEs) in tetraploid potatoes could generate tuber starches with a range of distinct properties. Constructs containing the Cas9 gene and sgRNAs targeting SBE1, SBE2 or both genes were introduced by Agrobacterium-mediated transformation or by PEG-mediated delivery into protoplasts. Outcomes included lines with mutations in all or only some of the homoeoalleles of SBE genes and lines in which homoeoalleles carried several different mutations. DNA delivery into protoplasts resulted in mutants with no detectable Cas9 gene, suggesting the absence of foreign DNA. Selected mutants with starch granule abnormalities had reductions in tuber SBE1 and/or SBE2 protein that were broadly in line with expectations from genotype analysis. Strong reduction in both SBE isoforms created an extreme starch phenotype, as reported previously for low-SBE potato tubers. HPLC-SEC and 1 H NMR revealed a decrease in short amylopectin chains, an increase in long chains and a large reduction in branching frequency relative to wild-type starch. Mutants with strong reductions in SBE2 protein alone had near-normal amylopectin chain-length distributions and only small reductions in branching frequency. However, starch granule initiation was enormously increased: cells contained many granules of <4 μm and granules with multiple hila. Thus, large reductions in both SBEs reduce amylopectin branching during granule growth, whereas reduction in SBE2 alone primarily affects numbers of starch granule initiations. Our results demonstrate that Cas9-mediated mutagenesis of SBE genes has the potential to generate new, potentially valuable starch properties without integration of foreign DNA into the genome.
Collapse
Affiliation(s)
| | | | | | - Suzanne Harris
- Quadram Institute BioscienceNorwich Research ParkNorwichUK
| | | | | | | | | | | | | |
Collapse
|
44
|
Itakura AK, Chan KX, Atkinson N, Pallesen L, Wang L, Reeves G, Patena W, Caspari O, Roth R, Goodenough U, McCormick AJ, Griffiths H, Jonikas MC. A Rubisco-binding protein is required for normal pyrenoid number and starch sheath morphology in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2019; 116:18445-18454. [PMID: 31455733 PMCID: PMC6744930 DOI: 10.1073/pnas.1904587116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A phase-separated, liquid-like organelle called the pyrenoid mediates CO2 fixation in the chloroplasts of nearly all eukaryotic algae. While most algae have 1 pyrenoid per chloroplast, here we describe a mutant in the model alga Chlamydomonas that has on average 10 pyrenoids per chloroplast. Characterization of the mutant leads us to propose a model where multiple pyrenoids are favored by an increase in the surface area of the starch sheath that surrounds and binds to the liquid-like pyrenoid matrix. We find that the mutant's phenotypes are due to disruption of a gene, which we call StArch Granules Abnormal 1 (SAGA1) because starch sheath granules, or plates, in mutants lacking SAGA1 are more elongated and thinner than those of wild type. SAGA1 contains a starch binding motif, suggesting that it may directly regulate starch sheath morphology. SAGA1 localizes to multiple puncta and streaks in the pyrenoid and physically interacts with the small and large subunits of the carbon-fixing enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), a major component of the liquid-like pyrenoid matrix. Our findings suggest a biophysical mechanism by which starch sheath morphology affects pyrenoid number and CO2-concentrating mechanism function, advancing our understanding of the structure and function of this biogeochemically important organelle. More broadly, we propose that the number of phase-separated organelles can be regulated by imposing constraints on their surface area.
Collapse
Affiliation(s)
- Alan K Itakura
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305
| | - Kher Xing Chan
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Leif Pallesen
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Gregory Reeves
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Weronika Patena
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Oliver Caspari
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Robyn Roth
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Ursula Goodenough
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
45
|
Vandromme C, Kasprowicz A, Courseaux A, Trinel D, Facon M, Putaux JL, D’Hulst C, Wattebled F, Spriet C. NegFluo, a Fast and Efficient Method to Determine Starch Granule Size and Morphology In Situ in Plant Chloroplasts. FRONTIERS IN PLANT SCIENCE 2019; 10:1075. [PMID: 31552073 PMCID: PMC6746253 DOI: 10.3389/fpls.2019.01075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Starch granules that accumulate in the plastids of plants vary in size, shape, phosphate, or protein content according to their botanical origin. Depending on their size, the applications in food and nonfood industries differ. Being able to master starch granule size for a specific plant, without alteration of other characteristics (phosphate content, protein content, etc.), is challenging. The development of a simple and effective screening method to determine the size and shape of starch granules in a plant population is therefore of prime interest. In this study, we propose a new method, NegFluo, that combines negative confocal autofluorescence imaging in leaf and machine learning (ML)-based image analysis. It provides a fast, automated, and easy-to-use pipeline for both in situ starch granule imaging and its morphological analysis. NegFluo was applied to Arabidopsis leaves of wild-type and ss4 mutant plants. We validated its accuracy by comparing morphological quantifications using NegFluo and state-of-the-art methods relying either on starch granule purification or on preparation-intensive electron microscopy combined with manual image analysis. NegFluo thus opens the way to fast in situ analysis of starch granules.
Collapse
Affiliation(s)
- Camille Vandromme
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Angelina Kasprowicz
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Adeline Courseaux
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Dave Trinel
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maud Facon
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | - Christophe D’Hulst
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Fabrice Wattebled
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Corentin Spriet
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
46
|
López-González C, Juárez-Colunga S, Morales-Elías NC, Tiessen A. Exploring regulatory networks in plants: transcription factors of starch metabolism. PeerJ 2019; 7:e6841. [PMID: 31328026 PMCID: PMC6625501 DOI: 10.7717/peerj.6841] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
Biological networks are complex (non-linear), redundant (cyclic) and compartmentalized at the subcellular level. Rational manipulation of plant metabolism may have failed due to inherent difficulties of a comprehensive understanding of regulatory loops. We first need to identify key factors controlling the regulatory loops of primary metabolism. The paradigms of plant networks are revised in order to highlight the differences between metabolic and transcriptional networks. Comparison between animal and plant transcription factors (TFs) reveal some important differences. Plant transcriptional networks function at a lower hierarchy compared to animal regulatory networks. Plant genomes contain more TFs than animal genomes, but plant proteins are smaller and have less domains as animal proteins which are often multifunctional. We briefly summarize mutant analysis and co-expression results pinpointing some TFs regulating starch enzymes in plants. Detailed information is provided about biochemical reactions, TFs and cis regulatory motifs involved in sucrose-starch metabolism, in both source and sink tissues. Examples about coordinated responses to hormones and environmental cues in different tissues and species are listed. Further advancements require combined data from single-cell transcriptomic and metabolomic approaches. Cell fractionation and subcellular inspection may provide valuable insights. We propose that shuffling of promoter elements might be a promising strategy to improve in the near future starch content, crop yield or food quality.
Collapse
Affiliation(s)
| | | | | | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, México.,Laboratorio Nacional PlanTECC, Irapuato, México
| |
Collapse
|
47
|
Cakir B, Tian L, Crofts N, Chou HL, Koper K, Ng CY, Tuncel A, Gargouri M, Hwang SK, Fujita N, Okita TW. Re-programming of gene expression in the CS8 rice line over-expressing ADPglucose pyrophosphorylase induces a suppressor of starch biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1073-1088. [PMID: 30523657 DOI: 10.1111/tpj.14180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 05/02/2023]
Abstract
The CS8 transgenic rice (Oryza sativa L.) lines expressing an up-regulated glgC gene produced higher levels of ADPglucose (ADPglc), the substrate for starch synthases. However, the increase in grain weight was much less than the increase in ADPglc levels suggesting one or more downstream rate-limiting steps. Endosperm starch levels were not further enhanced in double transgenic plants expressing both glgC and the maize brittle-1 gene, the latter responsible for transport of ADPglc into the amyloplast. These studies demonstrate that critical processes within the amyloplast stroma restrict maximum carbon flow into starch. RNA-seq analysis showed extensive re-programming of gene expression in the CS8 with 2073 genes up-regulated and 140 down-regulated. One conspicuous gene, up-regulated ~15-fold, coded for a biochemically uncharacterized starch binding domain-containing protein (SBDCP1) possessing a plastid transit peptide. Confocal microscopy and transmission electron microscopy analysis confirmed that SBDCP1 was located in the amyloplasts. Reciprocal immunoprecipitation and pull-down assays indicated an interaction between SBDCP1 and starch synthase IIIa (SSIIIa), which was down-regulated at the protein level in the CS8 line. Furthermore, binding by SBDCP1 inhibited SSIIIa starch polymerization activity in a non-competitive manner. Surprisingly, artificial microRNA gene suppression of SBDCP1 restored protein expression levels of SSIIIa in the CS8 line resulting in starch with lower amylose content and increased amylopectin chains with a higher degree of polymerization. Collectively, our results support the involvement of additional non-enzymatic factors such as SBDCP in starch biosynthesis.
Collapse
Affiliation(s)
- Bilal Cakir
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Naoko Crofts
- Faculty of Bioresource Science, Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, 010-0195, Japan
| | - Hong-Li Chou
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Kaan Koper
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Chun-Yeung Ng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Aytug Tuncel
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Seon-Kap Hwang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Naoko Fujita
- Faculty of Bioresource Science, Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, 010-0195, Japan
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
48
|
Findinier J, Laurent S, Duchêne T, Roussel X, Lancelon-Pin C, Cuiné S, Putaux JL, Li-Beisson Y, D'Hulst C, Wattebled F, Dauvillée D. Deletion of BSG1 in Chlamydomonas reinhardtii leads to abnormal starch granule size and morphology. Sci Rep 2019; 9:1990. [PMID: 30760823 PMCID: PMC6374437 DOI: 10.1038/s41598-019-39506-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/03/2019] [Indexed: 11/09/2022] Open
Abstract
Chlamydomonas reinhardtii represents an ideal model microbial system to decipher starch metabolism. In this green algae, in cells growing in photosynthetic conditions, starch mainly accumulates as a sheath surrounding the pyrenoid while in cells subjected to a nutrient starvation, numerous starch granules are filling up the plastid stroma. The mechanisms underlying and regulating this switch from photosynthetic to storage starch metabolisms are not known. In this work, we have isolated a Chlamydomonas mutant strain containing a deletion in chromosome 2 which displays abnormal starch granule distribution. Under nitrogen starvation, this strain contains an additional starch granules population. These granules are twice as big as the wild-type granules and display characteristics of photosynthetic starch. Genetic and functional complementation analyses allowed us to identify the gene responsible for this original phenotype which was called BSG1 for "Bimodal Starch Granule". Possible roles of BSG1 in starch metabolism modifications during the transition from photosynthetic to starved growth conditions are discussed.
Collapse
Affiliation(s)
- Justin Findinier
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Sylvain Laurent
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Thierry Duchêne
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Xavier Roussel
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | | | - Stéphan Cuiné
- CEA, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108, Saint-Paul-lez-Durance, France
| | - Jean-Luc Putaux
- University Grenoble Alpes, CNRS, CERMAV, F-38000, Grenoble, France
| | - Yonghua Li-Beisson
- CEA, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108, Saint-Paul-lez-Durance, France
| | - Christophe D'Hulst
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Fabrice Wattebled
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - David Dauvillée
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
49
|
Seung D, Smith AM. Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:771-784. [PMID: 30452691 DOI: 10.1093/jxb/ery412] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/06/2018] [Indexed: 05/13/2023]
Abstract
Starch, the major storage carbohydrate in plants, is synthesized in plastids as semi-crystalline, insoluble granules. Many organs and cell types accumulate starch at some point during their development and maturation. The biosynthesis of the starch polymers, amylopectin and amylose, is relatively well understood and mostly conserved between organs and species. However, we are only beginning to understand the mechanism by which starch granules are initiated, and the factors that control the number of granules per plastid and the size/shape of granules. Here, we review recent progress in understanding starch granule initiation and morphogenesis. In Arabidopsis, granule initiation requires several newly discovered proteins with specific locations within the chloroplast, and also on the availability of maltooligosaccharides which act as primers for initiation. We also describe progress in understanding granule biogenesis in the endosperm of cereal grains-within which there is large interspecies variation in granule initiation patterns and morphology. Investigating whether this diversity results from differences between species in the functions of known proteins, and/or from the presence of novel, unidentified proteins, is a promising area of future research. Expanding our knowledge in these areas will lead to new strategies for improving the quality of cereal crops by modifying starch granule size and shape in vivo.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
50
|
Chen Q, Chen QJ, Sun GQ, Zheng K, Yao ZP, Han YH, Wang LP, Duan YJ, Yu DQ, Qu YY. Genome-Wide Identification of Cyclophilin Gene Family in Cotton and Expression Analysis of the Fibre Development in Gossypium barbadense. Int J Mol Sci 2019; 20:E349. [PMID: 30654456 PMCID: PMC6359516 DOI: 10.3390/ijms20020349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 11/17/2022] Open
Abstract
Cyclophilins (CYPs) are a member of the immunophilin superfamily (in addition to FKBPs and parvulins) and play a significant role in peptidyl-prolyl cis-trans isomerase (PPIase) activity. Previous studies have shown that CYPs have important functions in plants, but no genome-wide analysis of the cotton CYP gene family has been reported, and the specific biological function of this gene is still elusive. Based on the release of the cotton genome sequence, we identified 75, 78, 40 and 38 CYP gene sequences from G. barbadense, G. hirsutum, G. arboreum, and G. raimondii, respectively; 221 CYP genes were unequally located on chromosomes. Phylogenetic analysis showed that 231 CYP genes clustered into three major groups and eight subgroups. Collinearity analysis showed that segmental duplications played a significant role in the expansion of CYP members in cotton. There were light-responsiveness, abiotic-stress and hormone-response elements upstream of most of the CYPs. In addition, the motif composition analysis revealed that 49 cyclophilin proteins had extra domains, including TPR (tetratricopeptide repeat), coiled coil, U-box, RRM (RNA recognition motif), WD40 (RNA recognition motif) and zinc finger domains, along with the cyclophilin-like domain (CLD). The expression patterns based on qRT-PCR showed that six CYP expression levels showed greater differences between Xinhai21 (long fibres, G. barbadense) and Ashmon (short fibres, G. barbadense) at 10 and 20 days postanthesis (DPA). These results signified that CYP genes are involved in the elongation stage of cotton fibre development. This study provides a valuable resource for further investigations of CYP gene functions and molecular mechanisms in cotton.
Collapse
Affiliation(s)
- Qin Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Quan-Jia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Guo-Qing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Zheng-Pei Yao
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Yu-Hui Han
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Li-Ping Wang
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Ya-Jie Duan
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Dao-Qian Yu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yan-Ying Qu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|