1
|
Zhang Y, Chen X, Wei G, Tian W, Ling Y, Wang N, Zhang T, Sang X, Zhu X, He G, Li Y. The WOX9-WUS modules are indispensable for the maintenance of stem cell homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:910-927. [PMID: 39269929 DOI: 10.1111/tpj.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The dynamic balance between the self-renewal and differentiation of stem cells in plants is precisely regulated by a series of developmental regulated genes that exhibit spatiotemporal-specific expression patterns. Several studies have demonstrated that the WOX family transcription factors play critical roles in maintaining the identity of stem cells in Arabidopsis thaliana. In this study, we obtained amiR-WOX9 transgenic plants, which displayed terminating prematurely of shoot apical meristem (SAM) development, along with alterations in inflorescence meristem and flower development. The phenotype of amiR-WOX9 plants exhibited similarities to that of wus-101 mutant, characterized by a stop-and-go growth pattern. It was also found that the expression of WUS in amiR-WOX9 lines was decreased significantly, while in UBQ10::WOX9-GFP transgenic plants, the WUS expression was increased significantly despite no substantial alteration in meristem size compared to Col. Therefore, these data substantiated the indispensable role of WOX9 in maintaining the proper expression of WUS. Further investigations unveiled the direct binding of WOX9 to the WUS promoter via the TAAT motif, thereby activating its expression. It was also found that WUS recognized identical the same TAAT motif cis-elements in its own promoter, thereby repress self-expression. Next, we successfully identified a physical interaction between WOX9 and WUS, and verified that it was harmful to the expression of WUS. Finally, our experimental findings demonstrate that WOX9 was responsible for the direct activating of WUS, which however was interfered by the ways of WUS binding its own promoter and the interaction of WUS and WOX9, thereby ensuring the appropriate expression pattern of WUS and then the stem cell stability. This study contributes to an enhanced comprehension of the regulatory network of the WOX9-WUS module in maintaining the equilibrium of the SAM.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xinlong Chen
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Gang Wei
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Weijiang Tian
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yinghua Ling
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Nan Wang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xianchun Sang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiaoyan Zhu
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Guanghua He
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yunfeng Li
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
2
|
Zhang P, Liu F, Abdelrahman M, Song Q, Wu F, Li R, Wu M, Herrera-Estrella L, Tran LSP, Xu J. ARR1 and ARR12 modulate arsenite toxicity responses in Arabidopsis roots by transcriptionally controlling the actions of NIP1;1 and NIP6;1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39378328 DOI: 10.1111/tpj.17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Cytokinin is central to coordinating plant adaptation to environmental stresses. Here, we first demonstrated the involvement of cytokinin in Arabidopsis responses to arsenite [As(III)] stress. As(III) treatment reduced cytokinin contents, while cytokinin treatment repressed further primary root growth in Arabidopsis plants under As(III) stress. Subsequently, we revealed that the cytokinin signaling members ARR1 and ARR12, the type-B ARABIDOPSIS RESPONSE REGULATORs, participate in cytokinin signaling-mediated As(III) responses in plants as negative regulators. A comprehensive transcriptome analysis of the arr1 and arr12 single and arr1,12 double mutants was then performed to decipher the cytokinin signaling-mediated mechanisms underlying plant As(III) stress adaptation. Results revealed important roles for ARR1 and ARR12 in ion transport, nutrient responses, and secondary metabolite accumulation. Furthermore, using hierarchical clustering and regulatory network analyses, we identified two NODULIN 26-LIKE INTRINSIC PROTEIN (NIP)-encoding genes, NIP1;1 and NIP6;1, potentially involved in ARR1/12-mediated As(III) uptake and transport in Arabidopsis. By analyzing various combinations of arr and nip mutants, including high-order triple and quadruple mutants, we demonstrated that ARR1 and ARR12 redundantly function as negative regulators of As(III) tolerance by acting upstream of NIP1;1 and NIP6;1 to modulate their function in arsenic accumulation. ChIP-qPCR, EMSA, and transient dual-LUC reporter assays revealed that ARR1 and ARR12 transcriptionally activate the expression of NIP1;1 and NIP6;1 by directly binding to their promoters and upregulating their expression, leading to increased arsenic accumulation under As(III) stress. These findings collectively provide insights into cytokinin signaling-mediated plant adaptation to excessive As(III), contributing to the development of crops with low arsenic accumulation.
Collapse
Affiliation(s)
- Ping Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Fei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Qianqian Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Fei Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Ruishan Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Min Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79409, USA
- Unidad de Genomica Avanzada, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional, Irapuato, 36821, Mexico
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| |
Collapse
|
3
|
Hui W, Wu H, Zheng H, Wang K, Yang T, Fan J, Wu J, Wang J, Al Mutairi AA, Yang H, Yang C, Cui B, Loake GJ, Gong W. Genome-wide characterization of RR gene family members in Zanthoxylum armatum and the subsequent functional characterization of the C-type RR. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108943. [PMID: 39032447 DOI: 10.1016/j.plaphy.2024.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Response Regulators (RRs) are crucial regulators in plant development and stress responses, comprising A-type, B-type, C-type, and pseudo-RR subfamilies. However, previous studies have often focused on specific subfamilies, which restricts our understanding of the complete RR gene family. In this study, we conducted a comprehensive analysis of 63 RR members from Zanthoxylum armatum, using phylogenetic relationships, motif composition, cis-acting elements, gene duplication and collinearity analyses. Segmental repeats among ZaRR genes enhanced the various environmental adaptabilities of Z. armatum, and the B-type ZaRR exhibited significant collinearity with the RRs in P. trichocarpa and C. sinensis. Cis-element analysis indicated ZaRRs play a significant role in abiotic stress and phytohormone pathways, particularly in light, drought, cold, abscisic acid (ABA) and salicylic acid (SA) responses. Abundant Ethylene Response Factor (ERF) and reproduction-associated binding sites in ZaRR promoters suggested their roles in stress and reproductive processes. A-type ZaRRs were implicated in plant vegetative and reproductive growth, whereas B-type ZaRRs contributed to both growth and stress responses. C-type ZaRRs were associated with plant reproductive growth, whereas pseudo-RRs may function in plant stress responses, such as water logging, cold, and response to ethylene (ETH), SA, and jasmonic acid (JA). Ectopic expression of ZaRR24, a C-type RR, inhibits growth, induces early flowering, and shortens fruit length in Arabidopsis. ZaRR24 overexpression also affected the expression of A- and B-type RRs, as well as floral meristem and organ identity genes. These findings establish a solid and comprehensive foundation for RR gene research in Z. armatum, and provide a platform for investigating signal transduction in other woody plants.
Collapse
Affiliation(s)
- Wenkai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Han Wu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Zheng
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiangtao Fan
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaojiao Wu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Ahmed A Al Mutairi
- Biology Department, College of Science, Jouf University, Sakaka, 41412, Saudi Arabia
| | - Hua Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunlin Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
5
|
Jia X, Xu S, Wang Y, Jin L, Gao T, Zhang Z, Yang C, Qing Y, Li C, Ma F. Age-dependent changes in leaf size in apple are governed by a cytokinin-integrated module. PLANT PHYSIOLOGY 2024; 195:2406-2427. [PMID: 38588053 DOI: 10.1093/plphys/kiae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
Plants undergo various age-dependent changes in leaf morphology during juvenile to adult vegetative stage. However, the precise molecular mechanisms governing these changes in apple (Malus domestica) remain unknown. Here, we showed that CYTOKININ OXIDASE/DEHYDROGENASE5 (MdCKX5), an age-dependent gene, encodes a functional CKX enzyme and serves as the common downstream target of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MdSPL14 and WRKY transcription factor MdWRKY24 to control the degradation of cytokinin (CK). As the target of mdm-microRNA156a, MdSPL14 interacts with MdWRKY24 to coordinately repress the transcription of MdCKX5 by forming the age-mediated mdm-miR156a-MdSPL14-MdWRKY24 module, which regulates age-dependent changes in CK during the juvenile-to-adult phase transition. We further demonstrated that MdARR6, a type-A ARABIDOPSIS RESPONSE REGULATOR (ARR), is a negative feedback regulator in the CK signaling pathway. Silencing of MdARR6 in apple resulted in large leaves with smaller epidermal cells and a greater number of epidermal cells. Biochemical analysis showed that the mdm-miR156a-MdSPL14-MdWRKY24 module acts as a transcriptional repressor to directly regulate MdARR6 expression, thus controlling the age-dependent changes in leaf size by reducing CK responses. These findings established a link between the age pathway and CK signaling and revealed the molecular mechanism underlying age-dependent changes during the juvenile-to-adult phase transition; our results also provide targets for the genetic improvement of the vegetative phase transition in apple.
Collapse
Affiliation(s)
- Xumei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuo Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lu Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yubin Qing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
6
|
Hu G, Li X, Yang J, Yuan Q, Yang S, Fu W, Zhang X, Li Y, Shen Z, Jiang J. Effects of Photoperiod and Light Quality on Germination and Growth of Camellia sinensis 'HuangKui'. PLANTS (BASEL, SWITZERLAND) 2024; 13:1782. [PMID: 38999624 PMCID: PMC11244327 DOI: 10.3390/plants13131782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Light, as a critical environmental factor, plays a pivotal role in photosynthesis, ultimately influencing the timing of bud flush in tea plants. However, the synergistic effects of different photoperiods and light qualities on the timing of bud flush in the albino tea cultivar 'HuangKui' (later germination variety) remain unknown. Thus, the objective of this study was to investigate the effects of different photoperiods (12L/12D, 14L/10D, 16L/8D, and 18L/6D, where L = the number of daylight hours and D = the number of hours of darkness) and ratios of red (R) to blue (B) light (R/B 1:1, R/B 1:2, R/B 1:3, and R/B 2:1) on the germination and growth of the albino tea variety 'HuangKui'. In our study, we examined how different photoperiods and red light and blue light affected tea germination and growth by investigating the timing of bud flush, photosynthesis, chlorophyll content, and growth indicators. First, our study showed that 'HuangKui' germinated 4 days, 2 days, and 1 day earlier under the 16L/8D photoperiod at the one bud and one leaf period compared with plants cultivated under the 12L/12D, 14L/10D, and 18L/6D photoperiods under light simulating the solar spectrum. Also, the growth of 'HuangKui' was maximumly promoted under the 16L/8D photoperiod treatment. Additionally, the earliest germination of 'HuangKui' was observed for the 16L/8D photoperiod under the R/B 2:1 (red/blue) treatment compared with the other treatments. Moreover, the greatest plant height, length of the new shoots, and new leaf areas were detected in the albino tea variety 'HuangKui' under R/B 2:1. Moreover, the contents of auxin (indole acetic acid, IAA) and trans-zeatin (tZ) under R/B 2:1 were significantly higher than those under the R/B 1:1 and control treatments with the 16L/8D photoperiod. Additionally, the auxin-related expression levels of CsIAA13, CsGH3.1, CsAUX1, and CsARF2 under the R/B 2:1 treatment were significantly higher than those in the control. The expression of CsARR-B, a positive regulator of cytokinin-related genes, was significantly higher under the R/B 2:1 treatment than under the control treatment, while the opposite result was found for the expression of the negative regulator CsARR-A. Therefore, the R/B 2:1 treatment with the 16L/8D photoperiod was an appropriate means of timing the bud flush for the albino tea variety 'HuangKui', which may be related to IAA or tZ signal transduction. In conclusion, our research offers a novel lighting strategy that promotes the germination and growth of albino tea cultivars.
Collapse
Affiliation(s)
- Gan Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xingchen Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Junlong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qingqing Yuan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shijun Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Wenjun Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zhougao Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiayue Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Qi X, Zhuang Z, Ji X, Bian J, Peng Y. The Mechanism of Exogenous Salicylic Acid and 6-Benzylaminopurine Regulating the Elongation of Maize Mesocotyl. Int J Mol Sci 2024; 25:6150. [PMID: 38892338 PMCID: PMC11172663 DOI: 10.3390/ijms25116150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The elongation of the mesocotyl plays an important role in the emergence of maize deep-sowing seeds. This study was designed to explore the function of exogenous salicylic acid (SA) and 6-benzylaminopurine (6-BA) in the growth of the maize mesocotyl and to examine its regulatory network. The results showed that the addition of 0.25 mmol/L exogenous SA promoted the elongation of maize mesocotyls under both 3 cm and 15 cm deep-sowing conditions. Conversely, the addition of 10 mg/L exogenous 6-BA inhibited the elongation of maize mesocotyls. Interestingly, the combined treatment of exogenous SA-6-BA also inhibited the elongation of maize mesocotyls. The longitudinal elongation of mesocotyl cells was the main reason affecting the elongation of maize mesocotyls. Transcriptome analysis showed that exogenous SA and 6-BA may interact in the hormone signaling regulatory network of mesocotyl elongation. The differential expression of genes related to auxin (IAA), jasmonic acid (JA), brassinosteroid (BR), cytokinin (CTK) and SA signaling pathways may be related to the regulation of exogenous SA and 6-BA on the growth of mesocotyls. In addition, five candidate genes that may regulate the length of mesocotyls were screened by Weighted Gene Co-Expression Network Analysis (WGCNA). These genes may be involved in the growth of maize mesocotyls through auxin-activated signaling pathways, transmembrane transport, methylation and redox processes. The results enhance our understanding of the plant hormone regulation of mesocotyl growth, which will help to further explore and identify the key genes affecting mesocotyl growth in plant hormone signaling regulatory networks.
Collapse
Affiliation(s)
- Xue Qi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Zelong Zhuang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangzhuo Ji
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianwen Bian
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Zhang C, Tang Y, Tang S, Chen L, Li T, Yuan H, Xu Y, Zhou Y, Zhang S, Wang J, Wen H, Jiang W, Pang Y, Deng X, Cao X, Zhou J, Song X, Liu Q. An inducible CRISPR activation tool for accelerating plant regeneration. PLANT COMMUNICATIONS 2024; 5:100823. [PMID: 38243597 PMCID: PMC11121170 DOI: 10.1016/j.xplc.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
The inducible CRISPR activation (CRISPR-a) system offers unparalleled precision and versatility for regulating endogenous genes, making it highly sought after in plant research. In this study, we developed a chemically inducible CRISPR-a tool for plants called ER-Tag by combining the LexA-VP16-ER inducible system with the SunTag CRISPR-a system. We systematically compared different induction strategies and achieved high efficiency in target gene activation. We demonstrated that guide RNAs can be multiplexed and pooled for large-scale screening of effective morphogenic genes and gene pairs involved in plant regeneration. Further experiments showed that induced activation of these morphogenic genes can accelerate regeneration and improve regeneration efficiency in both eudicot and monocot plants, including alfalfa, woodland strawberry, and sheepgrass. Our study expands the CRISPR toolset in plants and provides a powerful new strategy for studying gene function when constitutive expression is not feasible or ideal.
Collapse
Affiliation(s)
- Cuimei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yajun Tang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
| | - Shanjie Tang
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Chen
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tong Li
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haidi Yuan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
| | - Yujun Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yangyan Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Shuaibin Zhang
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianli Wang
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang 150086, China
| | - Hongyu Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xian Deng
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Guo H, Guo H, Zhang L, Tian X, Wu J, Fan Y, Li T, Gou Z, Sun Y, Gao F, Wang J, Shan G, Zeng F. Organelle Ca 2+/CAM1-SELTP confers somatic cell embryogenic competence acquisition and transformation in plant regeneration. THE NEW PHYTOLOGIST 2024; 242:1172-1188. [PMID: 38501463 DOI: 10.1111/nph.19679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Somatic cell totipotency in plant regeneration represents the forefront of the compelling scientific puzzles and one of the most challenging problems in biology. How somatic embryogenic competence is achieved in regeneration remains elusive. Here, we discover uncharacterized organelle-based embryogenic differentiation processes of intracellular acquisition and intercellular transformation, and demonstrate the underlying regulatory system of somatic embryogenesis-associated lipid transfer protein (SELTP) and its interactor calmodulin1 (CAM1) in cotton as the pioneer crop for biotechnology application. The synergistic CAM1 and SELTP exhibit consistent dynamical amyloplast-plasmodesmata (PD) localization patterns but show opposite functional effects. CAM1 inhibits the effect of SELTP to regulate embryogenic differentiation for plant regeneration. It is noteworthy that callus grafting assay reflects intercellular trafficking of CAM1 through PD for embryogenic transformation. This work originally provides insight into the mechanisms responsible for embryogenic competence acquisition and transformation mediated by the Ca2+/CAM1-SELTP regulatory pathway, suggesting a principle for plant regeneration and cell/genetic engineering.
Collapse
Affiliation(s)
- Huihui Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xindi Tian
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianfei Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhongyuan Gou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuxiao Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Fan Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianjun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Guangyao Shan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
10
|
Li L, Zhang X, Ding F, Hou J, Wang J, Luo R, Mao W, Li X, Zhu H, Yang L, Li Y, Hu J. Genome-wide identification of the melon (Cucumis melo L.) response regulator gene family and functional analysis of CmRR6 and CmPRR3 in response to cold stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154160. [PMID: 38147808 DOI: 10.1016/j.jplph.2023.154160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.
Collapse
Affiliation(s)
- Lili Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuyue Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Ding
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Jiyu Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Renren Luo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenwen Mao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Ying Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
11
|
Liu Y, Peng X, Ma A, Liu W, Liu B, Yun DJ, Xu ZY. Type-B response regulator OsRR22 forms a transcriptional activation complex with OsSLR1 to modulate OsHKT2;1 expression in rice. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2922-2934. [PMID: 37924467 DOI: 10.1007/s11427-023-2464-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Soil salinity severely limits crop yields and quality. Plants have evolved several strategies to mitigate the adverse effects of salinity, including redistribution and compartmentalization of toxic ions using ion-specific transporters. However, the mechanisms underlying the regulation of these ion transporters have not been fully elucidated. Loss-of-function mutants of OsHKT2;1, which is involved in sodium uptake, exhibit strong salt stress-resistant phenotypes. In this study, OsHKT2;1 was identified as a transcriptional target of the type-B response regulator OsRR22. Loss-of-function osrr22 mutants showed resilience to salt stress, and OsRR22-overexpression plants were sensitive to salt stress. OsRR22 was found to activate the expression of OsHKT2;1 by directly binding to the promoter region of OsHKT2;1 via a consensus cis-element of type-B response regulators. Moreover, rice DELLA protein OsSLR1 directly interacted with OsRR22 and functioned as a transcriptional co-activator. This study has uncovered a novel transcriptional regulatory mechanism by which a type-B response regulator controls sodium transport under salinity stress.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Wenxin Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
12
|
Peng L, Li X, Gao Y, Xie W, Zhang L, Song J, Li S, Zhao Z. Genome-Wide Identification of the RR Gene Family and Its Expression Analysis in Response to TDZ Induction in Rhododendron delavayi. PLANTS (BASEL, SWITZERLAND) 2023; 12:3250. [PMID: 37765414 PMCID: PMC10535058 DOI: 10.3390/plants12183250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
The cytokinin response regulator (RR) gene is essential for cytokinin signal transduction, which plays a crucial role in plant growth and development. Here, we applied bioinformatics to Rhododendron delavayi's genome to identify its RR gene family and systematically analyzed their gene characteristics, phylogenetic evolution, chromosomal localization, collinearity analysis, promoter cis-elements, and expression patterns. Overall, 33 RdRR genes were distinguished and classified into three types. All these genes harbored motif 5 (YEVTTVNSGLEALELLRENKB), the most conserved one, along with the plant-conserved domain (REC domain), and could be mapped to 10 chromosomes with four gene pairs of segmental replication events but no tandem replication events; 13 RdRR genes showed collinearity with Arabidopsis thaliana genes. Promoter analysis revealed multiple hormone-related cis-elements in the RR genes. After a TDZ (thidiazuron) treatment, 13 genes had higher expression levels than the control, whose magnitude of change depended on the developmental stage of leaves' adventitious buds. The expression levels of RdRR14, RdRR17, RdRR20, and RdRR24 agreed with the average number of adventitious buds post-TDZ treatment. We speculate that these four genes could figure prominently in bud regeneration from R. delavayi leaves in vitro. This study provides detailed knowledge of RdRRs for research on cytokinin signaling and RdRR functioning in R. delavayi.
Collapse
Affiliation(s)
- Lvchun Peng
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, China;
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650205, China
| | - Xuejiao Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Gao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Weijia Xie
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650205, China
| | - Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650205, China
| | - Jie Song
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650205, China
| | - Shifeng Li
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650205, China
| | - Zhengxiong Zhao
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, China;
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
13
|
Šmeringai J, Schrumpfová PP, Pernisová M. Cytokinins - regulators of de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1239133. [PMID: 37662179 PMCID: PMC10471832 DOI: 10.3389/fpls.2023.1239133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Plants, unlike animals, possess a unique developmental plasticity, that allows them to adapt to changing environmental conditions. A fundamental aspect of this plasticity is their ability to undergo postembryonic de novo organogenesis. This requires the presence of regulators that trigger and mediate specific spatiotemporal changes in developmental programs. The phytohormone cytokinin has been known as a principal regulator of plant development for more than six decades. In de novo shoot organogenesis and in vitro shoot regeneration, cytokinins are the prime candidates for the signal that determines shoot identity. Both processes of de novo shoot apical meristem development are accompanied by changes in gene expression, cell fate reprogramming, and the switching-on of the shoot-specific homeodomain regulator, WUSCHEL. Current understanding about the role of cytokinins in the shoot regeneration will be discussed.
Collapse
Affiliation(s)
- Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
14
|
Comparisons between Plant and Animal Stem Cells Regarding Regeneration Potential and Application. Int J Mol Sci 2023; 24:ijms24054392. [PMID: 36901821 PMCID: PMC10002278 DOI: 10.3390/ijms24054392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Regeneration refers to the process by which organisms repair and replace lost tissues and organs. Regeneration is widespread in plants and animals; however, the regeneration capabilities of different species vary greatly. Stem cells form the basis for animal and plant regeneration. The essential developmental processes of animals and plants involve totipotent stem cells (fertilized eggs), which develop into pluripotent stem cells and unipotent stem cells. Stem cells and their metabolites are widely used in agriculture, animal husbandry, environmental protection, and regenerative medicine. In this review, we discuss the similarities and differences in animal and plant tissue regeneration, as well as the signaling pathways and key genes involved in the regulation of regeneration, to provide ideas for practical applications in agriculture and human organ regeneration and to expand the application of regeneration technology in the future.
Collapse
|
15
|
Zhu M, Tao L, Zhang J, Liu R, Tian H, Hu C, Zhu Y, Li M, Wei Z, Yi J, Li J, Gou X. The type-B response regulators ARR10, ARR12, and ARR18 specify the central cell in Arabidopsis. THE PLANT CELL 2022; 34:4714-4737. [PMID: 36130292 PMCID: PMC9709988 DOI: 10.1093/plcell/koac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, the female gametophyte consists of two synergid cells, an egg cell, a diploid central cell, and three antipodal cells. CYTOKININ INDEPENDENT 1 (CKI1), a histidine kinase constitutively activating the cytokinin signaling pathway, specifies the central cell and restricts the egg cell. However, the mechanism regulating CKI1-dependent central cell specification is largely unknown. Here, we showed that the type-B ARABIDOPSIS RESPONSE REGULATORS10, 12, and 18 (ARR10/12/18) localize at the chalazal pole of the female gametophyte. Phenotypic analysis showed that the arr10 12 18 triple mutant is female sterile. We examined the expression patterns of embryo sac marker genes and found that the embryo sac of arr10 12 18 plants had lost central cell identity, a phenotype similar to that of the Arabidopsis cki1 mutant. Genetic analyses demonstrated that ARR10/12/18, CKI1, and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN2, 3, and 5 (AHP2/3/5) function in a common pathway to regulate female gametophyte development. In addition, constitutively activated ARR10/12/18 in the cki1 embryo sac partially restored the fertility of cki1. Results of transcriptomic analysis supported the conclusion that ARR10/12/18 and CKI1 function together to regulate the identity of the central cell. Our results demonstrated that ARR10/12/18 function downstream of CKI1-AHP2/3/5 as core factors to determine cell fate of the female gametophyte.
Collapse
Affiliation(s)
- Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinghua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruini Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongai Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Temmerman A, Marquez-Garcia B, Depuydt S, Bruznican S, De Cuyper C, De Keyser A, Boyer FD, Vereecke D, Struk S, Goormachtig S. MAX2-dependent competence for callus formation and shoot regeneration from Arabidopsis thaliana root explants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6272-6291. [PMID: 35738874 DOI: 10.1093/jxb/erac281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/23/2022] [Indexed: 05/21/2023]
Abstract
Although the division of the pericycle cells initiates both lateral root development and root-derived callus formation, these developmental processes are affected differently in the strigolactone and karrikin/KARRIKIN INSENSITIVE 2 (KAI2) ligand signalling mutant more axillary growth 2 (max2). Whereas max2 produces more lateral roots than the wild type, it is defective in the regeneration of shoots from root explants. We suggest that the decreased shoot regeneration of max2 originates from delayed formation of callus primordium, yielding less callus material to regenerate shoots. Indeed, when incubated on callus-inducing medium, the pericycle cell division was reduced in max2 and the early gene expression varied when compared with the wild type, as determined by a transcriptomics analysis. Furthermore, the expression of the LATERAL ORGAN BOUNDARIES DOMAIN genes and of callus-induction genes was modified in correlation with the max2 phenotype, suggesting a role for MAX2 in the regulation of the interplay between cytokinin, auxin, and light signalling in callus initiation. Additionally, we found that the in vitro shoot regeneration phenotype of max2 might be caused by a defect in KAI2, rather than in DWARF14, signalling. Nevertheless, the shoot regeneration assays revealed that the strigolactone biosynthesis mutants max3 and max4 also play a minor role.
Collapse
Affiliation(s)
- Arne Temmerman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Belen Marquez-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Stephen Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, Korea
| | - Silvia Bruznican
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Carolien De Cuyper
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Danny Vereecke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg, Ghent, Belgium
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| |
Collapse
|
17
|
Geng X, Zhang C, Wei L, Lin K, Xu ZF. Genome-Wide Identification and Expression Analysis of Cytokinin Response Regulator (RR) Genes in the Woody Plant Jatropha curcas and Functional Analysis of JcRR12 in Arabidopsis. Int J Mol Sci 2022; 23:ijms231911388. [PMID: 36232689 PMCID: PMC9570446 DOI: 10.3390/ijms231911388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The cytokinin (CK) response regulator (RR) gene family plays a pivotal role in regulating the developmental and environmental responses of plants. Axillary bud outgrowth in the perennial woody plant Jatropha curcas is regulated by the crosstalk between CK and gibberellins (GA). In this study, we first analyzed the effects of gibberellin A3 (GA3), lovastatin (a CK synthesis inhibitor), decapitation, and their interaction, on the outgrowth of axillary buds. The results indicate that lovastatin completely inhibited GA-promoted axillary bud outgrowth and partially weakened the decapitation-promoted axillary bud outgrowth. To further characterize and understand the role of CK signaling in promoting the development of female flowers and branches, we performed bioinformatics and expression analyses to characterize the CK RR gene (JcRR) family in J. curcas. A total of 14 members of the JcRR family were identified; these genes were distributed on 10 chromosomes. Phylogenetic analysis indicated that the corresponding RR proteins are evolutionarily conserved across different plant species, and the Myb-like DNA-binding domain divides the 14 members of the JcRR family into type-A and type-B proteins. Further analysis of cis-acting elements in the promoter regions of JcRRs suggests that JcRRs are expressed in response to phytohormones, light, and abiotic stress factors; thus, JcRRs may be involved in some plant development processes. Genomic sequence comparison revealed that segmental duplication may have played crucial roles in the expansion of the JcRR gene family, and five pairs of duplicated genes were all subjected to purifying selection. By analyzing RNA sequencing (RNA-seq) and quantitative reverse transcription-polymerase chain reaction (qRT–PCR) data, we characterized that the temporospatial expression patterns of JcRRs during the development of various tissues and the response of these genes to phytohormones and abiotic stress. The JcRRs were mainly expressed in the roots, while they also exhibited differential expression patterns in other tissues. The expression levels of all six type-A and one type-B JcRRs increased in response to 6-benzylaminopurine (6-BA), while the four type-B JcRRs levels decreased. The expression levels of two type-B JcRRs increased in response to exogenous GA3 treatment, while those of three type-A and three type-B JcRRs decreased. We found that type-A JcRRs may play a positive role in the continuous growth of axillary buds, while the role of type-B JcRRs might be the opposite. In response to abiotic stress, the expression levels of two type-A and three type-B JcRRs strongly increased. The overexpression of JcRR12 in Arabidopsis thaliana slightly increased the numbers of rosette branches after decapitation, but not under normal conditions. In conclusion, our results provide detailed knowledge of JcRRs for further analysis of CK signaling and JcRR functions in J. curcas.
Collapse
Affiliation(s)
- Xianchen Geng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China
| | - Chun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China
| | - Lida Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kai Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
18
|
Lardon R, Trinh HK, Xu X, Vu LD, Van De Cotte B, Pernisová M, Vanneste S, De Smet I, Geelen D. Histidine kinase inhibitors impair shoot regeneration in Arabidopsis thaliana via cytokinin signaling and SAM patterning determinants. FRONTIERS IN PLANT SCIENCE 2022; 13:894208. [PMID: 36684719 PMCID: PMC9847488 DOI: 10.3389/fpls.2022.894208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/27/2022] [Indexed: 06/17/2023]
Abstract
Reversible protein phosphorylation is a post-translational modification involved in virtually all plant processes, as it mediates protein activity and signal transduction. Here, we probe dynamic protein phosphorylation during de novo shoot organogenesis in Arabidopsis thaliana. We find that application of three kinase inhibitors in various time intervals has different effects on root explants. Short exposures to the putative histidine (His) kinase inhibitor TCSA during the initial days on shoot induction medium (SIM) are detrimental for regeneration in seven natural accessions. Investigation of cytokinin signaling mutants, as well as reporter lines for hormone responses and shoot markers, suggests that TCSA impedes cytokinin signal transduction via AHK3, AHK4, AHP3, and AHP5. A mass spectrometry-based phosphoproteome analysis further reveals profound deregulation of Ser/Thr/Tyr phosphoproteins regulating protein modification, transcription, vesicle trafficking, organ morphogenesis, and cation transport. Among TCSA-responsive factors are prior candidates with a role in shoot apical meristem patterning, such as AGO1, BAM1, PLL5, FIP37, TOP1ALPHA, and RBR1, as well as proteins involved in polar auxin transport (e.g., PIN1) and brassinosteroid signaling (e.g., BIN2). Putative novel regeneration determinants regulated by TCSA include RD2, AT1G52780, PVA11, and AVT1C, while NAIP2, OPS, ARR1, QKY, and aquaporins exhibit differential phospholevels on control SIM. LC-MS/MS data are available via ProteomeXchange with identifier PXD030754.
Collapse
Affiliation(s)
- Robin Lardon
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hoang Khai Trinh
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Biotechnology Research and Development Institute, Can Tho University, Can Tho, Vietnam
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Markéta Pernisová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Steffen Vanneste
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, South Korea
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Genome-Wide Analysis of the Type-B Authentic Response Regulator Gene Family in Brassica napus. Genes (Basel) 2022; 13:genes13081449. [PMID: 36011360 PMCID: PMC9408017 DOI: 10.3390/genes13081449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The type-B authentic response regulators (type-B ARRs) are positive regulators of cytokinin signaling and involved in plant growth and stress responses. In this study, we used bioinformatics, RNA-seq, and qPCR to study the phylogenetic and expression pattern of 35 type-B ARRs in Brassica napus. The BnARRs experienced gene expansion and loss during genome polyploidization and were classified into seven groups. Whole-genome duplication (WGD) and segmental duplication were the main forces driving type-B ARR expansion in B. napus. Several BnARRs with specific expression patterns during rapeseed development were identified, including BnARR12/14/18/23/33. Moreover, we found the type-B BnARRs were involved in rapeseed development and stress responses, through participating in cytokinin and ABA signaling pathways. This study revealed the origin, evolutionary history, and expression pattern of type-B ARRs in B. napus and will be helpful to the functional characterization of BnARRs.
Collapse
|
20
|
Bae SH, Noh YS, Seo PJ. REGENOMICS: A web-based application for plant REGENeration-associated transcriptOMICS analyses. Comput Struct Biotechnol J 2022; 20:3234-3247. [PMID: 35832616 PMCID: PMC9249971 DOI: 10.1016/j.csbj.2022.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
In plants, differentiated somatic cells exhibit an exceptional ability to regenerate new tissues, organs, or whole plants. Recent studies have unveiled core genetic components and pathways underlying cellular reprogramming and de novo tissue regeneration in plants. Although high-throughput analyses have led to key discoveries in plant regeneration, a comprehensive organization of large-scale data is needed to further enhance our understanding of plant regeneration. Here, we collected all currently available transcriptome datasets related to wounding responses, callus formation, de novo organogenesis, somatic embryogenesis, and protoplast regeneration to construct REGENOMICS, a web-based application for plant REGENeration-associated transcriptOMICS analyses. REGENOMICS supports single- and multi-query analyses of plant regeneration-related gene-expression dynamics, co-expression networks, gene-regulatory networks, and single-cell expression profiles. Furthermore, it enables user-friendly transcriptome-level analysis of REGENOMICS-deposited and user-submitted RNA-seq datasets. Overall, we demonstrate that REGENOMICS can serve as a key hub of plant regeneration transcriptome analysis and greatly enhance our understanding on gene-expression networks, new molecular interactions, and the crosstalk between genetic pathways underlying each mode of plant regeneration. The REGENOMICS web-based application is available at http://plantregeneration.snu.ac.kr.
Collapse
Affiliation(s)
- Soon Hyung Bae
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
- Corresponding author at: Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
21
|
Wang G, Zhang Y, Li C, Wang X, Fletcher JC. Signaling peptides direct the art of rebirth. TRENDS IN PLANT SCIENCE 2022; 27:516-519. [PMID: 35397996 DOI: 10.1016/j.tplants.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Signaling peptide-mediated cell-cell communication is crucial for plant growth, development, and adaptive responses to environmental stimuli. Given the prominent roles signaling peptides play in stem cell homeostasis, we propose investigating their impact on plant regeneration, which requires cellular reprogramming of differentiated cells to stem cells and establishment of nascent meristems.
Collapse
Affiliation(s)
- Guodong Wang
- National Engineering Laboratory for Endangered Medicinal Resources Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chen Li
- Laboratory of Medicinal Plant, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xuening Wang
- National Engineering Laboratory for Endangered Medicinal Resources Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jennifer C Fletcher
- Plant Gene Expression Center, USDA-ARS/UC Berkeley, Albany, CA, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
22
|
Bull T, Michelmore R. Molecular Determinants of in vitro Plant Regeneration: Prospects for Enhanced Manipulation of Lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:888425. [PMID: 35615120 PMCID: PMC9125155 DOI: 10.3389/fpls.2022.888425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 05/12/2023]
Abstract
In vitro plant regeneration involves dedifferentiation and molecular reprogramming of cells in order to regenerate whole organs. Plant regeneration can occur via two pathways, de novo organogenesis and somatic embryogenesis. Both pathways involve intricate molecular mechanisms and crosstalk between auxin and cytokinin signaling. Molecular determinants of both pathways have been studied in detail in model species, but little is known about the molecular mechanisms controlling de novo shoot organogenesis in lettuce. This review provides a synopsis of our current knowledge on molecular determinants of de novo organogenesis and somatic embryogenesis with an emphasis on the former as well as provides insights into applying this information for enhanced in vitro regeneration in non-model species such as lettuce (Lactuca sativa L.).
Collapse
Affiliation(s)
- Tawni Bull
- The Genome Center, University of California, Davis, Davis, CA, United States
- Graduate Group in Horticulture and Agronomy, University of California, Davis, Davis, CA, United States
| | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
23
|
Dai X, Wang J, Wang L, Liu Z, Li Q, Cai Y, Li S, Xiang F. HY5 inhibits in vitro shoot stem cell niches initiation via directly repressing pluripotency and cytokinin pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:781-801. [PMID: 35132706 DOI: 10.1111/tpj.15703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The efficiency of plant regeneration from explants is influenced by phytohormones and environmental conditions. Light has a particularly marked effect on in vitro shoot regeneration, and some light signaling factors are involved in shoot regeneration, while the underlying molecular mechanism remains elusive. Here, ELONGATED HYPOCOTYL5 (HY5), as the key transcription factor of light signaling, was found to inhibit shoot regeneration under a range of light conditions. The heightened shoot regeneration capacity of the hy5-215 mutant was less marked in the dark than in the light, showing that HY5-mediated inhibition of shoot regeneration is partly light dependent. The co-localization of WUSCHEL (WUS) and CLAVATA3 (CLV3) expressions was found to coincide with the initiation of stem cell niches in root explants during shoot regeneration. HY5 could directly repress CLV3 and WUS expression by binding to their respective promoters. In parallel, HY5 indirectly repressed CLV3 and WUS by binding to the ARABIDOPSIS RESPONSE REGULATOR12 (ARR12) promoter. The resulting dual regulation exerted by HY5 on WUS and CLV3 impeded the initiation of shoot stem cell niches. A HY5-mediated inhibitory pathway was identified that links cytokinin signaling and the pluripotency pathway during shoot regeneration.
Collapse
Affiliation(s)
- Xuehuan Dai
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jing Wang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
| | - Lili Wang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
| | - Zhenhua Liu
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - Qiang Li
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
| | - Yunfei Cai
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
- School of Life Sciences, Qilu Normal University, Jinan, Shandong Province, 250000, China
| | - Shuo Li
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
| | - Fengning Xiang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
| |
Collapse
|
24
|
Gong Z, Hu H, Xu L, Zhao Y, Zheng C. Screening of Differentially Expressed Genes and Localization Analysis of Female Gametophyte at the Free Nuclear Mitosis Stage in Pinus tabuliformis Carr. Int J Mol Sci 2022; 23:ijms23031915. [PMID: 35163836 PMCID: PMC8837038 DOI: 10.3390/ijms23031915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Female sterility is a common phenomenon in the plant world, and systematic research has not been carried out in gymnosperms. In this study, the ovules of No. 28 sterile line and No. 15 fertile line Pinus tabuliformis were used as materials, and a total of 18 cDNA libraries were sequenced by the HiSeqTM 4000 platform to analyze the differentially expressed genes (DEGs) and simple sequence repeats (SSRs) between the two lines. In addition, this study further analyzed the DEGs involved in the signal transduction of plant hormones, revealing that the signal pathways related to auxin, cytokinin, and gibberellin were blocked in the sterile ovule. Additionally, real-time fluorescent quantitative PCR verified that the expression trend of DEGs related to plant hormones was consistent with the results of high-throughput sequencing. Frozen sections and fluorescence in situ hybridization (FISH) were used to study the temporal and spatial expression patterns of PtRab in the ovules of P. tabuliformis. It was found that PtRab was significantly expressed in female gametophytes and rarely expressed in the surrounding diploid tissues. This study further explained the molecular regulation mechanism of female sterility in P. tabuliformis, preliminarily mining the key factors of ovule abortion in gymnosperms at the transcriptional level.
Collapse
Affiliation(s)
- Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
- College of Horticulture, Jilin Agriculture University, Changchun 130118, China
| | - Hailin Hu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
| | - Li Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
| | - Yuanyuan Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
- Correspondence: (Y.Z.); (C.Z.); Tel.: +86-10-6233-7717 (Y.Z.)
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
- Correspondence: (Y.Z.); (C.Z.); Tel.: +86-10-6233-7717 (Y.Z.)
| |
Collapse
|
25
|
Wu LY, Shang GD, Wang FX, Gao J, Wan MC, Xu ZG, Wang JW. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev Cell 2022; 57:526-542.e7. [DOI: 10.1016/j.devcel.2021.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/31/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023]
|
26
|
Lee K, Park OS, Go JY, Yu J, Han JH, Kim J, Bae S, Jung YJ, Seo PJ. Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Rep 2021; 37:109980. [PMID: 34758306 DOI: 10.1016/j.celrep.2021.109980] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Plants exhibit high regenerative capacity, which is controlled by various genetic factors. Here, we report that ARABIDOPSIS TRITHORAX-RELATED 2 (ATXR2) controls de novo shoot organogenesis by regulating auxin-cytokinin interaction. The auxin-inducible ATXR2 Trithorax Group (TrxG) protein temporally interacts with the cytokinin-responsive type-B ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) at early stages of shoot regeneration. The ATXR2-ARR1 complex binds to and deposits the H3K36me3 mark in the promoters of a subset of type-A ARR genes, ARR5 and ARR7, thus activating their expression. Consequently, the ATXR2/ARR1-type-A ARR module transiently represses cytokinin signaling and thereby de novo shoot regeneration. The atxr2-1 mutant calli exhibit enhanced shoot regeneration with low expression of ARR5 and ARR7, which ultimately upregulates WUSCHEL (WUS) expression. Thus, ATXR2 regulates cytokinin signaling and prevents premature WUS activation to ensure proper cell fate transition, and the auxin-cytokinin interaction underlies the initial specification of shoot meristem in callus.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Ok-Sun Park
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Ji Yun Go
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Jihyeon Yu
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| | - Jun Hee Han
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
27
|
Zhai N, Xu L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. NATURE PLANTS 2021; 7:1453-1460. [PMID: 34782770 DOI: 10.1038/s41477-021-01015-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/05/2021] [Indexed: 05/12/2023]
Abstract
In plant tissue culture, callus forms from detached explants in response to a high-auxin-to-low-cytokinin ratio on callus-inducing medium. Callus is a group of pluripotent cells because it can regenerate either roots or shoots in response to a low level of auxin on root-inducing medium or a high-cytokinin-to-low-auxin ratio on shoot-inducing medium, respectively1. However, our knowledge of the mechanism of pluripotency acquisition during callus formation is limited. On the basis of analyses at the single-cell level, we show that the tissue structure of Arabidopsis thaliana callus on callus-inducing medium is similar to that of the root primordium or root apical meristem, and the middle cell layer with quiescent centre-like transcriptional identity exhibits the ability to regenerate organs. In the middle cell layer, WUSCHEL-RELATED HOMEOBOX5 (WOX5) directly interacts with PLETHORA1 and 2 to promote TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 expression for endogenous auxin production. WOX5 also interacts with the B-type ARABIDOPSIS RESPONSE REGULATOR12 (ARR12) and represses A-type ARRs to break the negative feedback loop in cytokinin signalling. Overall, the promotion of auxin production and the enhancement of cytokinin sensitivity are both required for pluripotency acquisition in the middle cell layer of callus for organ regeneration.
Collapse
Affiliation(s)
- Ning Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
28
|
Abstract
Plants exhibit remarkable lineage plasticity, allowing them to regenerate organs that differ from their respective origins. Such developmental plasticity is dependent on the activity of pluripotent founder cells or stem cells residing in meristems. At the shoot apical meristem (SAM), the constant flow of cells requires continuing cell specification governed by a complex genetic network, with the WUSCHEL transcription factor and phytohormone cytokinin at its core. In this review, I discuss some intriguing recent discoveries that expose new principles and mechanisms of patterning and cell specification acting both at the SAM and, prior to meristem organogenesis during shoot regeneration. I also highlight unanswered questions and future challenges in the study of SAM and meristem regeneration. Finally, I put forward a model describing stochastic events mediated by epigenetic factors to explain how the gene regulatory network might be initiated at the onset of shoot regeneration. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| |
Collapse
|
29
|
Integrating the Roles for Cytokinin and Auxin in De Novo Shoot Organogenesis: From Hormone Uptake to Signaling Outputs. Int J Mol Sci 2021; 22:ijms22168554. [PMID: 34445260 PMCID: PMC8395325 DOI: 10.3390/ijms22168554] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022] Open
Abstract
De novo shoot organogenesis (DNSO) is a procedure commonly used for the in vitro regeneration of shoots from a variety of plant tissues. Shoot regeneration occurs on nutrient media supplemented with the plant hormones cytokinin (CK) and auxin, which play essential roles in this process, and genes involved in their signaling cascades act as master regulators of the different phases of shoot regeneration. In the last 20 years, the genetic regulation of DNSO has been characterized in detail. However, as of today, the CK and auxin signaling events associated with shoot regeneration are often interpreted as a consequence of these hormones simply being present in the regeneration media, whereas the roles for their prior uptake and transport into the cultivated plant tissues are generally overlooked. Additionally, sucrose, commonly added to the regeneration media as a carbon source, plays a signaling role and has been recently shown to interact with CK and auxin and to affect the efficiency of shoot regeneration. In this review, we provide an integrative interpretation of the roles for CK and auxin in the process of DNSO, adding emphasis on their uptake from the regeneration media and their interaction with sucrose present in the media to their complex signaling outputs that mediate shoot regeneration.
Collapse
|
30
|
Song Y, Chen P, Xuan A, Bu C, Liu P, Ingvarsson PK, El-Kassaby YA, Zhang D. Integration of genome wide association studies and co-expression networks reveal roles of PtoWRKY 42-PtoUGT76C1-1 in trans-zeatin metabolism and cytokinin sensitivity in poplar. THE NEW PHYTOLOGIST 2021; 231:1462-1477. [PMID: 33999454 DOI: 10.1111/nph.17469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Cytokinins are important for in vitro shoot regeneration in plants. Cytokinin N-glucosides are produced via an irreversible glycosylation pathway, which regulates the endogenous cytokinin content. Although cytokinin N-glucoside pathways have been uncovered in higher plants, no regulator has been identified to date. We performed a metabolome genome-wide association study (mGWAS), weighted gene co-expression network analysis (WGCNA), and expression quantitative trait nucleotide (eQTN) mappings to build a core triple genetic network (mGWAS-gene expression-phenotype) for the trans-zeatin N-glucoside (ZNG) metabolite using data from 435 unrelated Populus tomentosa individuals. Variation of the ZNG level in poplar is attributed to the differential transcription of PtoWRKY42, a member of WRKY multigene family group IIb. Functional analysis revealed that PtoWRKY42 negatively regulated ZNG accumulation by binding directly to the W-box of the UDP-glycosyltransferase 76C 1-1 (PtoUGT761-1) promoter. Also, PtoWRKY42 was strongly induced by leaf senescence, 6-BA, wounding, and salt stress, resulting in a reduced ZNG level. We identified PtoWRKY42, a negative regulator of cytokinin N-glucosides, which contributes to the natural variation in ZNG level and mediates ZNG accumulation by directly modulating the key glycosyltransferase gene PtoUGT76C1-1.
Collapse
Affiliation(s)
- Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Panfei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Anran Xuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Peng Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Box 7080, Uppsala, SE-750 07, Sweden
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
31
|
He G, Yang P, Cao Y, Tang Y, Wang L, Song M, Wang J, Xu L, Ming J. Cytokinin Type-B Response Regulators Promote Bulbil Initiation in Lilium lancifolium. Int J Mol Sci 2021; 22:ijms22073320. [PMID: 33805045 PMCID: PMC8037933 DOI: 10.3390/ijms22073320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
The bulbil is an important vegetative reproductive organ in triploid Lilium lancifolium whose development is promoted by cytokinins. Type-B response regulators (RRs) are critical regulators that mediate primary cytokinin responses and promote cytokinin-induced gene expression. However, the function of cytokinin type-B Arabidopsis RRs (ARRs) in regulating bulbil formation is unclear. In this study, we identified five type-B LlRRs, LlRR1, LlRR2, LlRR10, LlRR11 and LlRR12, in L. lancifolium for the first time. The five LlRRs encode proteins of 715, 675, 573, 582 and 647 amino acids. All of the regulators belong to the B-I subfamily, whose members typically contain a conserved CheY-homologous receiver (REC) domain and an Myb DNA-binding (MYB) domain at the N-terminus. As transcription factors, all five type-B LlRRs localize at the nucleus and are widely expressed in plant tissues, especially during axillary meristem (AM) formation. Functional analysis showed that type-B LlRRs are involved in bulbil formation in a functionally redundant manner and can activate LlRR9 expression. In summary, our study elucidates the process by which cytokinins regulate bulbil initiation in L. lancifolium through type-B LlRRs and lays a foundation for research on the molecular mechanism of bulbil formation in the lily.
Collapse
Affiliation(s)
- Guoren He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Panpan Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
- Correspondence: (P.Y.); (J.M.)
| | - Yuwei Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Yuchao Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Ling Wang
- School of Foresty and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Meng Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Jing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Leifeng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Jun Ming
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
- Correspondence: (P.Y.); (J.M.)
| |
Collapse
|
32
|
Tvorogova VE, Krasnoperova EY, Potsenkovskaia EA, Kudriashov AA, Dodueva IE, Lutova LA. What Does the WOX Say? Review of Regulators, Targets, Partners. Mol Biol 2021. [DOI: 10.1134/s002689332102031x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Hnatuszko-Konka K, Gerszberg A, Weremczuk-Jeżyna I, Grzegorczyk-Karolak I. Cytokinin Signaling and De Novo Shoot Organogenesis. Genes (Basel) 2021; 12:265. [PMID: 33673064 PMCID: PMC7917986 DOI: 10.3390/genes12020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
The ability to restore or replace injured tissues can be undoubtedly named among the most spectacular achievements of plant organisms. One of such regeneration pathways is organogenesis, the formation of individual organs from nonmeristematic tissue sections. The process can be triggered in vitro by incubation on medium supplemented with phytohormones. Cytokinins are a class of phytohormones demonstrating pleiotropic effects and a powerful network of molecular interactions. The present study reviews existing knowledge on the possible sequence of molecular and genetic events behind de novo shoot organogenesis initiated by cytokinins. Overall, the review aims to collect reactions encompassed by cytokinin primary responses, starting from phytohormone perception by the dedicated receptors, to transcriptional reprogramming of cell fate by the last module of multistep-phosphorelays. It also includes a brief reminder of other control mechanisms, such as epigenetic reprogramming.
Collapse
Affiliation(s)
- Katarzyna Hnatuszko-Konka
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Aneta Gerszberg
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Izabela Weremczuk-Jeżyna
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (I.W.-J.); (I.G.-K.)
| | - Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (I.W.-J.); (I.G.-K.)
| |
Collapse
|
34
|
Research Progress on the Roles of Cytokinin in Plant Response to Stress. Int J Mol Sci 2020; 21:ijms21186574. [PMID: 32911801 PMCID: PMC7555750 DOI: 10.3390/ijms21186574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
Cytokinins promote plant growth and development under normal plant growth conditions and also play an important role in plant resistance to stress. Understanding the working mechanisms of cytokinins under adverse conditions will help to make full use of cytokinins in agriculture to increase production and efficiency of land use. In this article, we review the progress that has been made in cytokinin research in plant response to stress and propose its future application prospects.
Collapse
|
35
|
Ibáñez S, Carneros E, Testillano PS, Pérez-Pérez JM. Advances in Plant Regeneration: Shake, Rattle and Roll. PLANTS (BASEL, SWITZERLAND) 2020; 9:E897. [PMID: 32708602 PMCID: PMC7412315 DOI: 10.3390/plants9070897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/23/2023]
Abstract
Some plant cells are able to rebuild new organs after tissue damage or in response to definite stress treatments and/or exogenous hormone applications. Whole plants can develop through de novo organogenesis or somatic embryogenesis. Recent findings have enlarged our understanding of the molecular and cellular mechanisms required for tissue reprogramming during plant regeneration. Genetic analyses also suggest the key role of epigenetic regulation during de novo plant organogenesis. A deeper understanding of plant regeneration might help us to enhance tissue culture optimization, with multiple applications in plant micropropagation and green biotechnology. In this review, we will provide additional insights into the physiological and molecular framework of plant regeneration, including both direct and indirect de novo organ formation and somatic embryogenesis, and we will discuss the key role of intrinsic and extrinsic constraints for cell reprogramming during plant regeneration.
Collapse
Grants
- BIO2015-64255-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- RTI2018-096505-B-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- AGL2017-82447-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- IDIFEDER 2018/016 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
- PROMETEO/2019/117 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
- ACIF/2018/220 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
Collapse
Affiliation(s)
- Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | - Elena Carneros
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.C.); (P.S.T.)
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.C.); (P.S.T.)
| | | |
Collapse
|