1
|
Yang M, Xiang Y, Luo Z, Gao Y, Wang L, Hu Q, Dong Y, Qi M, Li D, Liu L, Kačániová M, Ban Z, Li L. Light-responsive transcription factors VvHYH and VvGATA24 mediate wax terpenoid biosynthesis in Vitis vinifera. PLANT PHYSIOLOGY 2024; 196:1546-1561. [PMID: 38976578 DOI: 10.1093/plphys/kiae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
The cuticular wax that covers the surfaces of plants is the first barrier against environmental stresses and increasingly accumulates with light exposure. However, the molecular basis of light-responsive wax biosynthesis remains elusive. In grape (Vitis vinifera), light exposure resulted in higher wax terpenoid content and lower decay and abscission rates than controls kept in darkness. Assay for transposase-accessible chromatin with high-throughput sequencing and RNA-seq data were integrated to draw the chromatin accessibility and cis-elements regulatory map to identify the potential action sites. Terpenoid synthase 12 (VvTPS12) and 3-hydroxy-3-methylglutaryl-CoA reductase 2 (VvHMGR2) were identified as grape wax biosynthesis targets, while VvHYH and VvGATA24 were identified as terpenoid biosynthesis activators, as more abundant wax crystals and higher wax terpenoid content were observed in transiently overexpressed grape berries and Nicotiana benthamiana leaves. The interaction between VvHYH and the open chromatin of VvTPS12 was confirmed qualitatively using a dual luciferase assay and quantitatively using surface plasma resonance, with an equilibrium dissociation constant of 2.81 nm identified via the latter approach. Molecular docking simulation implied the structural nature of this interaction, indicating that 24 amino acid residues of VvHYH, including Arg106A, could bind to the VvTPS12 G-box cis-element. VvGATA24 directly bound to the open chromatin of VvHMGR2, with an equilibrium dissociation constant of 8.59 nm. Twelve amino acid residues of VvGATA24, including Pro218B, interacted with the VvHMGR2 GATA-box cis-element. Our work characterizes the mechanism underlying light-mediated wax terpenoid biosynthesis and provides gene targets for future molecular breeding.
Collapse
Affiliation(s)
- Mingyi Yang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Yizhou Xiang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Centre, Zhejiang University, Ningbo 315100, China
| | - Yizhou Gao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310013, China
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Qiannan Hu
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Yingying Dong
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Ming Qi
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Lingling Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310013, China
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, Nitra 94976, Slovakia
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310013, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Centre, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
2
|
Chemelewski R, McKinley BA, Finlayson S, Mullet JE. Epicuticular wax accumulation and regulation of wax pathway gene expression during bioenergy Sorghum stem development. FRONTIERS IN PLANT SCIENCE 2023; 14:1227859. [PMID: 37936930 PMCID: PMC10626490 DOI: 10.3389/fpls.2023.1227859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023]
Abstract
Bioenergy sorghum is a drought-tolerant high-biomass C4 grass targeted for production on annual cropland marginal for food crops due primarily to abiotic constraints. To better understand the overall contribution of stem wax to bioenergy sorghum's resilience, the current study characterized sorghum stem cuticular wax loads, composition, morphometrics, wax pathway gene expression and regulation using vegetative phase Wray, R07020, and TX08001 genotypes. Wax loads on sorghum stems (~103-215 µg/cm2) were much higher than Arabidopsis stem and leaf wax loads. Wax on developing sorghum stem internodes was enriched in C28/30 primary alcohols (~65%) while stem wax on fully developed stems was enriched in C28/30 aldehydes (~80%). Scanning Electron Microscopy showed minimal wax on internodes prior to the onset of elongation and that wax tubules first appear associated with cork-silica cell complexes when internode cell elongation is complete. Sorghum homologs of genes involved in wax biosynthesis/transport were differentially expressed in the stem epidermis. Expression of many wax pathway genes (i.e., SbKCS6, SbCER3-1, SbWSD1, SbABCG12, SbABCG11) is low in immature apical internodes then increases at the onset of stem wax accumulation. SbCER4 is expressed relatively early in stem development consistent with accumulation of C28/30 primary alcohols on developing apical internodes. High expression of two SbCER3 homologs in fully elongated internodes is consistent with a role in production of C28/30 aldehydes. Gene regulatory network analysis aided the identification of sorghum homologs of transcription factors that regulate wax biosynthesis (i.e., SbSHN1, SbWRI1/3, SbMYB94/96/30/60, MYS1) and other transcription factors that could regulate and specify expression of the wax pathway in epidermal cells during cuticle development.
Collapse
Affiliation(s)
- Robert Chemelewski
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| | - Brian A. McKinley
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| | - Scott Finlayson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - John E. Mullet
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Zhang YL, Tian Y, Man YY, Zhang CL, Wang Y, You CX, Li YY. Apple SUMO E3 ligase MdSIZ1 regulates cuticular wax biosynthesis by SUMOylating transcription factor MdMYB30. PLANT PHYSIOLOGY 2023; 191:1771-1788. [PMID: 36617241 PMCID: PMC10022618 DOI: 10.1093/plphys/kiad007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
A key function of SUMOylation is the coordinated modification of numerous proteins to optimize plant growth and resistance to environmental stress. Plant cuticular wax is deposited on the surface of primary plant organs to form a barrier that provides protection against changes in terrestrial environments. Many recent studies have examined cuticular wax biosynthetic pathways and regulation. However, whether SUMOylation is involved in the regulation of cuticle wax deposition at the posttranslational level remains unclear. Here, we demonstrate that a small ubiquitin-like modifier (SUMO) E3 ligase, SAP AND MIZ1 DOMAIN CONTAINING LIGASE1 (MdSIZ1), regulates wax accumulation and cuticle permeability in apple (Malus domestica Borkh), SUMO E2 CONJUGATING ENZYME 1(MdSCE1) physically interacts with MdMYB30, a transcription factor involved in the regulation of cuticle wax accumulation. MdSIZ1 mediates the SUMOylation and accumulation of MdMYB30 by inhibiting its degradation through the 26S proteasome pathway. Furthermore, MdMYB30 directly binds to the β-KETOACYL-COA SYNTHASE 1 (MdKCS1) promoter to activate its expression and promote wax biosynthesis. These findings indicate that the MdSIZ1-MdMYB30-MdKCS1 module positively regulates cuticular wax biosynthesis in apples. Overall, the findings of our study provide insights into the regulation pathways involved in cuticular wax biosynthesis.
Collapse
Affiliation(s)
- Ya-Li Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yi Tian
- National Agricultural Engineering Center for North Mountain Region of the Ministry of Science and Technology, Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yao-Yang Man
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yi Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| |
Collapse
|
4
|
Hu L, Kvitko B, Yang L. Shoot maturation strengthens FLS2-mediated resistance to Pseudomonas syringae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528542. [PMID: 36824838 PMCID: PMC9949054 DOI: 10.1101/2023.02.14.528542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A temporal-spatial regulation of immunity components is essential for properly activating plant defense response. Flagellin-sensing 2 (FLS2) is a surface-localized receptor that recognizes bacterial flagellin. The immune function of FLS2 is compromised in early stages of shoot development. However, the underlying mechanism for the age-dependent FLS2 signaling is not clear. Here, we show that the reduced basal immunity of juvenile leaves against Pseudomonas syringae pv. tomato DC3000 is independent of FLS2. The flg22-induced marker gene expression and ROS activation were comparable in juvenile and adult stage, but callose deposition was more evident in the adult stage than that of juvenile stage. We further demonstrated that microRNA156, a master regulator of plant aging, suppressed callose deposition in juvenile leaves in response to flg22 but not the expression of FLS2 and FRK1 (Flg22-induced receptor-like kinase 1) . Altogether, we revealed an intrinsic mechanism that regulates the amplitude of FLS2-mediated resistance during aging.
Collapse
|
5
|
He J, Li C, Hu N, Zhu Y, He Z, Sun Y, Wang Z, Wang Y. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. PLANT PHYSIOLOGY 2022; 190:1640-1657. [PMID: 36000923 PMCID: PMC9614490 DOI: 10.1093/plphys/kiac394] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Cuticular waxes cover the aerial surfaces of land plants and protect them from various environmental stresses. Alkanes are major wax components and contribute to plant drought tolerance, but the biosynthesis and regulation of alkanes remain largely unknown in wheat (Triticum aestivum L.). Here, we identified and functionally characterized a key alkane biosynthesis gene ECERIFERUM1-6A (TaCER1-6A) from wheat. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated knockout mutation in TaCER1-6A greatly reduced the contents of C27, C29, C31, and C33 alkanes in wheat leaves, while TaCER1-6A overexpression significantly increased the contents of these alkanes in wheat leaves, suggesting that TaCER1-6A is specifically involved in the biosynthesis of C27, C29, C31, and C33 alkanes on wheat leaf surfaces. TaCER1-6A knockout lines exhibited increased cuticle permeability and reduced drought tolerance, whereas TaCER1-6A overexpression lines displayed reduced cuticle permeability and enhanced drought tolerance. TaCER1-6A was highly expressed in flag leaf blades and seedling leaf blades and could respond to abiotic stresses and abscisic acid. TaCER1-6A was located in the endoplasmic reticulum, which is the subcellular compartment responsible for wax biosynthesis. A total of three haplotypes (HapI/II/III) of TaCER1-6A were identified in 43 wheat accessions, and HapI was the dominant haplotype (95%) in these wheat varieties. Additionally, we identified two R2R3-MYB transcription factors TaMYB96-2D and TaMYB96-5D that bound directly to the conserved motif CAACCA in promoters of the cuticular wax biosynthesis genes TaCER1-6A, TaCER1-1A, and fatty acyl-CoA reductase4. Collectively, these results suggest that TaCER1-6A is required for C27, C29, C31, and C33 alkanes biosynthesis and improves drought tolerance in wheat.
Collapse
Affiliation(s)
- Jiajia He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chongzhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyao Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaofeng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Sun
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Yang H, Zhu Z, Zhang M, Li X, Xu R, Zhu F, Xu J, Deng X, Cheng Y. CitWRKY28 and CitNAC029 promote the synthesis of cuticular wax by activating CitKCS gene expression in citrus fruit. PLANT CELL REPORTS 2022; 41:905-920. [PMID: 34982198 DOI: 10.1007/s00299-021-02826-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 05/05/2023]
Abstract
CitWRKY28 and CitNAC029 are involved in cuticular wax synthesis as indicated by the comparative analysis of fruit aliphatic wax content between Citrus reticulata and Citrus trifoliata and gene co-expression analysis. Cuticular wax covers the fruit surface, playing important roles in reduction of fruit water loss and resistance to pathogen invasion. However, there is limited research on the synthesis and transcriptional regulation of cuticular wax in citrus fruit. In this study, we characterized the variations of aliphatic wax in HJ (Citrus reticulata) and ZK (Citrus trifoliata) from young fruit to mature fruit, as well as performed transcriptome sequencing on 27 samples at different fruit developmental stages. The results revealed that the ZK fruit always had a higher aliphatic wax content than the HJ fruit during development. qRT-PCR analysis demonstrated that two KCS genes, CitKCS1 and CitKCS12, had the most significant difference in expression between HJ and ZK. Furthermore, a heterologous expression assay in Arabidopsis indicated that CitKCS1 and CitKCS12 are involved in cuticular wax synthesis. Subsequently, gene co-expression network analysis screened CitWRKY28 and CitNAC029. Dual luciferase and EMSA assays indicated that CitWRKY28 might bind to the promoter of CitKCS1 and CitKCS12 and CitNAC029 might bind to that of CitKCS1 to activate their expression. Moreover, CitWRKY28 and CitNAC029 could promote the accumulation of cuticular wax in Arabidopsis leaves. Our findings provide new insights into the synthesis and regulation of cuticular wax and valuable information for further mining of wax-related genes in citrus fruit.
Collapse
Affiliation(s)
- Hongbin Yang
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhifeng Zhu
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingfei Zhang
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Li
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rangwei Xu
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Zhu
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Xu
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China.
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China.
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Li S, Cheng Z, Li Z, Dong S, Yu X, Zhao P, Liao W, Yu X, Peng M. MeSPL9 attenuates drought resistance by regulating JA signaling and protectant metabolite contents in cassava. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:817-832. [PMID: 34837123 DOI: 10.1007/s00122-021-04000-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Analysis of drought-related genes in cassava shows the involvement of MeSPL9 in drought stress tolerance and overexpression of a dominant-negative form of this gene demonstrates its negative roles in drought stress resistance. Drought stress severely impairs crop yield and is considered a primary threat to food security worldwide. Although the SQUAMOSA promoter binding protein-like 9 (SPL9) gene participates extensively in numerous developmental processes and in plant response to abiotic stimuli, its role and regulatory pathway in cassava (Manihot esculenta) response to the drought condition remain elusive. In the current study, we show that cassava SPL9 (MeSPL9) plays negative roles in drought stress resistance. MeSPL9 expression was strongly repressed by drought treatment. Overexpression of a dominant-negative form of miR156-resistant MeSPL9, rMeSPL9-SRDX, in which a 12-amino acid repressor sequence was fused to rMeSPL9 at the C terminus, conferred drought tolerance without penalizing overall growth. rMeSPL9-SRDX-overexpressing lines not only exhibited increased osmoprotectant metabolites including proline and anthocyanin, but also accumulated more endogenous jasmonic acid (JA) and soluble sugars. Transcriptomic and real-time PCR analysis suggested that differentially expressed genes were involved in sugar or JA biosynthesis, signaling, and metabolism in transgenic cassava under drought conditions. Exogenous application of JA further confirmed that JA conferred improved drought resistance and promoted stomatal closure in cassava leaves. Taken together, our findings suggest that MeSPL9 affects drought resistance by modulating protectant metabolite levels and JA signaling, which have substantial implications for engineering drought tolerant crops.
Collapse
Affiliation(s)
- Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Zhibo Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Shiman Dong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Wenbin Liao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| |
Collapse
|
8
|
Wu H, Liu L, Chen Y, Liu T, Jiang Q, Wei Z, Li C, Wang Z. Tomato SlCER1-1 catalyzes the synthesis of wax alkanes which increases the drought tolerance and fruit storability. HORTICULTURE RESEARCH 2022; 9:uhac004. [PMID: 35147189 PMCID: PMC9071378 DOI: 10.1093/hr/uhac004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/12/2021] [Indexed: 05/19/2023]
Abstract
Very-long-chain (VLC) alkanes are the main wax compounds of tomato fruit and leaf. ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) are the two key genes involved in VLC alkane biosynthesis in Arabidopsis thaliana. However, the CER1 and CER3 homologous genes in tomato have not been investigated and their exact biological function remains unknown. We analyzed the wax profiles in tomato leaves and fruits at different growth stages, and characterized the CER1 and CER3 homologous genes. VLC alkanes were the predominant wax compounds both in the leaf and fruit at all developmental stages. We identified five CER1 homologs and two CER3 homologs in tomato, which were designated as SlCER1-1 to SlCER1-5 and SlCER3-1 and SlCER3-2 respectively. The genes exhibited tissue- and organ-dependent expression patterns and were induced by abiotic stresses. SlCER1-1 was localized to the endoplasmic reticulum (ER), which is also the main site of wax biosynthesis. Silencing the SlCER1-1 gene in tomato significantly reduced the amounts of n-Alkanes and branched alkanes, whereas its overexpression in Arabidopsis had the opposite effect. Under drought stress, both n-Alkanes and branched alkanes increased significantly in wild-type but not the SlCER1-1 RNAi tomato plants. Furthermore, SlCER1-1 silencing also increased the cuticular permeabilities of the leaves and fruits. In conclusion, SlCER1-1 is involved in wax alkane biosynthesis in tomato and plays an important role in the drought tolerance and fruit storability.
Collapse
Affiliation(s)
- Hongqi Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Le Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yaofeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Zhengyang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
9
|
Zhao M, Liu R, Chen Y, Cui J, Ge W, Zhang K. Molecular identification and functional verification of SPL9 and SPL15 of Lilium. Mol Genet Genomics 2022; 297:63-74. [PMID: 34779936 DOI: 10.1007/s00438-021-01832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/30/2021] [Indexed: 11/28/2022]
Abstract
The transformation of plants from juveniles to adults is a key process in plant growth and development, and the main regulatory factors are miR156 and SQUAMOSA promoter binding protein-like (SPL) transcription factors. Lilium is an ornamental bulb, but it has a long maturation time. In this experiment, Lilium bulbs were subjected to a temperature treatment of 15 °C for 4 weeks to initiate vegetative phase change. Transmission electron microscopy indicated the cell wall of bud core tissue undergoing vegetative phase change became thinner, the starch grains were reduced, and the growth of the juvenile stage was accelerated. The key transcription factors LbrSPL9 and LbrSPL15 were cloned, and the phylogenetic analysis showed they possessed high homology with other plant SPLs. Subcellular localization and transcription activation experiments confirmed LbrSPL9 and LbrSPL15 were mainly located in the nucleus and exhibited transcriptional activity. The results of in situ hybridization showed the expression levels of LbrSPL9 and LbrSPL15 were increased after temperature change treatment. The functional verification experiment of the transgenic plants confirmed that the overexpression of LbrSPL9 and LbrSPL15 could shorten maturation time. These findings help elucidate the regulatory mechanisms of phase transition in Lilium and provide a reference for breeding research in other bulbous flowers.
Collapse
Affiliation(s)
- Mengna Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Rongxiu Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Yao Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jinteng Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China
| | - Wei Ge
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China.
| | - Kezhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China.
| |
Collapse
|
10
|
Liu S, Tong M, Zhao L, Li X, Kunst L. The ARRE RING-Type E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis thaliana by Controlling ECERIFERUM1 and ECERIFERUM3 Protein Levels. FRONTIERS IN PLANT SCIENCE 2021; 12:752309. [PMID: 34764971 PMCID: PMC8576476 DOI: 10.3389/fpls.2021.752309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 06/01/2023]
Abstract
The outer epidermal cell walls of plant shoots are covered with a cuticle, a continuous lipid structure that provides protection from desiccation, UV light, pathogens, and insects. The cuticle is mostly composed of cutin and cuticular wax. Cuticular wax synthesis is synchronized with surface area expansion during plant development and is associated with plant responses to biotic and abiotic stresses. Cuticular wax deposition is tightly regulated by well-established transcriptional and post-transcriptional regulatory mechanisms, as well as post-translationally via the ubiquitin-26S proteasome system (UPS). The UPS is highly conserved in eukaryotes and involves the covalent attachment of polyubiquitin chains to the target protein by an E3 ligase, followed by the degradation of the modified protein by the 26S proteasome. A large number of E3 ligases are encoded in the Arabidopsis genome, but only a few have been implicated in the regulation of cuticular wax deposition. In this study, we have conducted an E3 ligase reverse genetic screen and identified a novel RING-type E3 ubiquitin ligase, AtARRE, which negatively regulates wax biosynthesis in Arabidopsis. Arabidopsis plants overexpressing AtARRE exhibit glossy stems and siliques, reduced fertility and fusion between aerial organs. Wax load and wax compositional analyses of AtARRE overexpressors showed that the alkane-forming branch of the wax biosynthetic pathway is affected. Co-expression of AtARRE and candidate target proteins involved in alkane formation in both Nicotiana benthamiana and stable Arabidopsis transgenic lines demonstrated that AtARRE controls the levels of wax biosynthetic enzymes ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3). CER1 has also been confirmed to be a ubiquitination substrate of the AtARRE E3 ligase by an in vivo ubiquitination assay using a reconstituted Escherichia coli system. The AtARRE gene is expressed throughout the plant, with the highest expression detected in fully expanded rosette leaves and oldest stem internodes. AtARRE gene expression can also be induced by exposure to pathogens. These findings reveal that wax biosynthesis in mature plant tissues and in response to pathogen infection is controlled post-translationally.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Meixuezi Tong
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Lifang Zhao
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ljerka Kunst
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Saini P, Bhatia S, Mahajan M, Kaushik A, Sahu SK, Kumar A, Satbhai SB, Patel MK, Saxena S, Chaurasia OP, Lingwan M, Masakapalli SK, Yadav RK. ELONGATED HYPOCOTYL5 Negatively Regulates DECREASE WAX BIOSYNTHESIS to Increase Survival during UV-B Stress. PLANT PHYSIOLOGY 2020; 184:2091-2106. [PMID: 33087416 PMCID: PMC7723109 DOI: 10.1104/pp.20.01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 05/29/2023]
Abstract
Understanding how the distinct cell types of the shoot apical meristem (SAM) withstand ultraviolet radiation (UVR) stress can improve cultivation of plants in high-UVR environments. Here, we show that UV-B irradiation selectively kills epidermal and niche cells in the shoot apex. Plants harboring a mutation in DECREASE WAX BIOSYNTHESIS (DEWAX) are tolerant to UV-B. Our data show that DEWAX negatively regulates genes involved in anthocyanin biosynthesis. ELONGATED HYPOCOTYL5 (HY5) binds to the DEWAX promoter elements and represses its expression to promote the anthocyanin biosynthesis. The HY5-DEWAX regulatory network regulates anthocyanin content in Arabidopsis (Arabidopsis thaliana) and influences the survivability of plants under UV-B irradiation stress. Our cell sorting-based study of the epidermal cell layer transcriptome confirms that core UV-B stress signaling pathway genes are conserved and upregulated in response to UV-B irradiation of the SAM. Furthermore, we show that UV-B induces genes involved in shoot development and organ patterning. We propose that the HY5-DEWAX regulatory relationship is conserved; however, changes in the expression levels of these genes can determine anthocyanin content in planta and, hence, fitness under UV-B irradiation stress.
Collapse
Affiliation(s)
- Prince Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Shivani Bhatia
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Monika Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Anshul Kaushik
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sangram Keshari Sahu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Asis Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Manoj Kumar Patel
- Defence Institute of High Altitude Research Leh, Ladakh 901205, India
| | - Shweta Saxena
- Defence Institute of High Altitude Research Leh, Ladakh 901205, India
| | | | - Maneesh Lingwan
- BioX centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175075, India
| | - Shyam Kumar Masakapalli
- BioX centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175075, India
| | - Ram Kishor Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| |
Collapse
|
12
|
Network Analysis Prioritizes DEWAX and ICE1 as the Candidate Genes for Major eQTL Hotspots in Seed Germination of Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2020; 10:4215-4226. [PMID: 32963085 PMCID: PMC7642920 DOI: 10.1534/g3.120.401477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Seed germination is characterized by a constant change of gene expression across different time points. These changes are related to specific processes, which eventually determine the onset of seed germination. To get a better understanding on the regulation of gene expression during seed germination, we performed a quantitative trait locus mapping of gene expression (eQTL) at four important seed germination stages (primary dormant, after-ripened, six-hour after imbibition, and radicle protrusion stage) using Arabidopsis thaliana Bay x Sha recombinant inbred lines (RILs). The mapping displayed the distinctness of the eQTL landscape for each stage. We found several eQTL hotspots across stages associated with the regulation of expression of a large number of genes. Interestingly, an eQTL hotspot on chromosome five collocates with hotspots for phenotypic and metabolic QTL in the same population. Finally, we constructed a gene co-expression network to prioritize the regulatory genes for two major eQTL hotspots. The network analysis prioritizes transcription factors DEWAX and ICE1 as the most likely regulatory genes for the hotspot. Together, we have revealed that the genetic regulation of gene expression is dynamic along the course of seed germination.
Collapse
|
13
|
Characterization of the Role of SPL9 in Drought Stress Tolerance in Medicago sativa. Int J Mol Sci 2020; 21:ijms21176003. [PMID: 32825501 PMCID: PMC7504591 DOI: 10.3390/ijms21176003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
Extreme environmental conditions, such as drought, are expected to increase in frequency and severity due to climate change, leading to substantial deficiencies in crop yield and quality. Medicago sativa (alfalfa) is an important crop that is relied upon as a staple source of forage in ruminant feed. Despite its economic importance, alfalfa production is constrained by abiotic stress, including drought. In this report, we investigate the role of Squamosa Promoter Binding Protein-Like 9 (SPL9), a target of miR156, in drought tolerance. Transgenic alfalfa plants with RNAi-silenced MsSPL9 (SPL9-RNAi) were compared to wild-type (WT) alfalfa for phenotypic changes and drought tolerance indicators. In SPL9-RNAi plants, both stem thickness and plant height were reduced in two- and six-month-old alfalfa, respectively; however, yield was unaffected. SPL9-RNAi plants showed less leaf senescence and had augmented relative water content under drought conditions, indicating that SPL9-RNAi plants had greater drought tolerance potential than WT plants. Interestingly, SPL9-RNAi plants accumulated more stress-alleviating anthocyanin compared to WT under both drought and well-watered control conditions, suggesting that MsSPL9 may contribute to drought tolerance in alfalfa, at least in part, by regulating anthocyanin biosynthesis. The results suggest that targeting MsSPL9 is a suitable means for improving alfalfa resilience towards drought conditions.
Collapse
|
14
|
Yang X, Feng T, Li S, Zhao H, Zhao S, Ma C, Jenks MA, Lü S. CER16 Inhibits Post-Transcriptional Gene Silencing of CER3 to Regulate Alkane Biosynthesis. PLANT PHYSIOLOGY 2020; 182:1211-1221. [PMID: 31941670 PMCID: PMC7054879 DOI: 10.1104/pp.19.01002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 05/05/2023]
Abstract
The aerial surfaces of land plants have a protective layer of cuticular wax. Alkanes are common components of these waxes, and their abundance is affected by a range of stresses. The CER16 protein has been implicated in alkane biosynthesis in the cuticular wax of Arabidopsis (Arabidopsis thaliana). Here, we identified two new mutant alleles of CER16 in Arabidopsis resulting in production of less wax with dramatically fewer alkanes than the wild type. Map-based cloning with genetic analysis revealed that the cer16 phenotype was caused by complete loss of AT5G44150, encoding a protein with no known domains or motifs. Comparative transcriptomic analysis revealed that transcripts of CER3, previously shown to play a principal role in alkane production, were markedly reduced in the cer16 mutants. To define the relationship between CER3 and CER16, we transformed the full CER3 gene into a cer16 mutant. Transgenic CER3 expression was silenced, and levels of small interfering RNAs targeting CER3 were significantly increased. Mutating two major components of the RNA-silencing machinery in a cer16 genetic background restored CER3 transcript levels to wild-type levels, with the stems restored to wild-type glaucousness. We suggest that CER16 deficiency induces post-transcriptional gene silencing of both endogenous and exogenous expression of CER3.
Collapse
Affiliation(s)
- Xianpeng Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shipeng Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China
| | - Shuangshuang Zhao
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China
| |
Collapse
|
15
|
Zhang YL, You CX, Li YY, Hao YJ. Advances in Biosynthesis, Regulation, and Function of Apple Cuticular Wax. FRONTIERS IN PLANT SCIENCE 2020; 11:1165. [PMID: 32849720 PMCID: PMC7419609 DOI: 10.3389/fpls.2020.01165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/17/2020] [Indexed: 05/05/2023]
Abstract
A layer of cuticular wax is deposited on the surface of terrestrial plants, which reduces the damage caused by environmental stress and maintains growth in a relatively stable internal environment. Apple cuticular wax is an important part of the fruit epidermis that plays an essential role in apple development, storage, and adaptation to environmental stress. The formation of cuticular wax has been described at the transcriptional, post-transcriptional, and translational levels in Arabidopsis, whereas less research has been performed on apple cuticular wax. Here, we provide a brief overview of how apple cuticular wax is formed, as well as its structure, composition, and function. An association among the environment, genes, and apple cuticular wax deposition was revealed. Cuticular wax prevents fruit rust from occurring on apple. Taken together, a detailed understanding of apple cuticular wax is discussed. The results will act as a reference for extending the storage period and increasing the commodity value of apple.
Collapse
Affiliation(s)
| | | | | | - Yu-Jin Hao
- *Correspondence: Yuan-Yuan Li, ; Yu-Jin Hao,
| |
Collapse
|