1
|
Sprent N, Cheung CYM, Shameer S, Ratcliffe RG, Sweetlove LJ, Töpfer N. Metabolic modeling reveals distinct roles of sugars and carboxylic acids in stomatal opening as well as unexpected carbon fluxes. THE PLANT CELL 2024; 37:koae252. [PMID: 39373603 DOI: 10.1093/plcell/koae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024]
Abstract
Guard cell metabolism is crucial for stomatal dynamics, but a full understanding of its role is hampered by experimental limitations and the flexible nature of the metabolic network. To tackle this challenge, we constructed a time-resolved stoichiometric model of guard cell metabolism that accounts for energy and osmolyte requirements and which is integrated with the mesophyll. The model resolved distinct roles for starch, sugars, and malate in guard cell metabolism and revealed several unexpected flux patterns in central metabolism. During blue light-mediated stomatal opening, starch breakdown was the most efficient way to generate osmolytes with downregulation of glycolysis allowing starch-derived glucose to accumulate as a cytosolic osmolyte. Maltose could also accumulate as a cytosolic osmoticum, although this made the metabolic system marginally less efficient. The metabolic energy for stomatal opening was predicted to be derived independently of starch, using nocturnally accumulated citrate which was metabolized in the tricarboxylic acid cycle to malate to provide mitochondrial reducing power for ATP synthesis. In white light-mediated stomatal opening, malate transferred reducing equivalents from guard cell photosynthesis to mitochondria for ATP production. Depending on the capacity for guard cell photosynthesis, glycolysis showed little flux during the day but was crucial for energy metabolism at night. In summary, our analyses have corroborated recent findings in Arabidopsis guard cell research, resolved conflicting observations by highlighting the flexibility of guard cell metabolism, and proposed new metabolic flux modes for further experimental testing.
Collapse
Affiliation(s)
- Noah Sprent
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - C Y Maurice Cheung
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Sanu Shameer
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - R George Ratcliffe
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Nadine Töpfer
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
2
|
Groot Crego C, Hess J, Yardeni G, de La Harpe M, Priemer C, Beclin F, Saadain S, Cauz-Santos LA, Temsch EM, Weiss-Schneeweiss H, Barfuss MHJ, Till W, Weckwerth W, Heyduk K, Lexer C, Paun O, Leroy T. CAM evolution is associated with gene family expansion in an explosive bromeliad radiation. THE PLANT CELL 2024; 36:4109-4131. [PMID: 38686825 PMCID: PMC11449062 DOI: 10.1093/plcell/koae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
The subgenus Tillandsia (Bromeliaceae) belongs to one of the fastest radiating clades in the plant kingdom and is characterized by the repeated evolution of Crassulacean acid metabolism (CAM). Despite its complex genetic basis, this water-conserving trait has evolved independently across many plant families and is regarded as a key innovation trait and driver of ecological diversification in Bromeliaceae. By producing high-quality genome assemblies of a Tillandsia species pair displaying divergent photosynthetic phenotypes, and combining genome-wide investigations of synteny, transposable element (TE) dynamics, sequence evolution, gene family evolution, and temporal differential expression, we were able to pinpoint the genomic drivers of CAM evolution in Tillandsia. Several large-scale rearrangements associated with karyotype changes between the 2 genomes and a highly dynamic TE landscape shaped the genomes of Tillandsia. However, our analyses show that rewiring of photosynthetic metabolism is mainly obtained through regulatory evolution rather than coding sequence evolution, as CAM-related genes are differentially expressed across a 24-h cycle between the 2 species but are not candidates of positive selection. Gene orthology analyses reveal that CAM-related gene families manifesting differential expression underwent accelerated gene family expansion in the constitutive CAM species, further supporting the view of gene family evolution as a driver of CAM evolution.
Collapse
Affiliation(s)
- Clara Groot Crego
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Cambrium GmbH, Max-Urich-Str. 3, 13055 Berlin, Germany
| | - Gil Yardeni
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Department of Biotechnology, Institute of Computational Biology, University of Life Sciences and Natural Resources (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Office for Nature and Environment, Department of Education, Culture and Environmental protection, Canton of Grisons, 7001 Chur, Switzerland
| | - Clara Priemer
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University of Vienna, 1030 Vienna, Austria
| | - Francesca Beclin
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Sarah Saadain
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | | | - Michael H J Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Walter Till
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Thibault Leroy
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| |
Collapse
|
3
|
Daems S, Shameer S, Ceusters N, Sweetlove L, Ceusters J. Metabolic modelling identifies mitochondrial Pi uptake and pyruvate efflux as key aspects of daytime metabolism and proton homeostasis in crassulacean acid metabolism leaves. THE NEW PHYTOLOGIST 2024; 244:159-175. [PMID: 39113419 DOI: 10.1111/nph.20032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Crassulacean acid metabolism (CAM) leaves are characterized by nocturnal acidification and diurnal deacidification processes related with the timed actions of phosphoenolpyruvate carboxylase and Rubisco, respectively. How CAM leaves manage cytosolic proton homeostasis, particularly when facing massive diurnal proton effluxes from the vacuole, remains unclear. A 12-phase flux balance analysis (FBA) model was constructed for a mature malic enzyme-type CAM mesophyll cell in order to predict diel kinetics of intracellular proton fluxes. The charge- and proton-balanced FBA model identified the mitochondrial phosphate carrier (PiC, Pi/H+ symport), which provides Pi to the matrix to sustain ATP biosynthesis, as a major consumer of cytosolic protons during daytime (> 50%). The delivery of Pi to the mitochondrion, co-transported with protons, is required for oxidative phosphorylation and allows sufficient ATP to be synthesized to meet the high energy demand during CAM Phase III. Additionally, the model predicts that mitochondrial pyruvate originating from decarboxylation of malate is exclusively exported to the cytosol, probably via a pyruvate channel mechanism, to fuel gluconeogenesis. In this biochemical cycle, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) acts as another important cytosolic proton consumer. Overall, our findings emphasize the importance of mitochondria in CAM and uncover a hitherto unappreciated role in metabolic proton homeostasis.
Collapse
Affiliation(s)
- Stijn Daems
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium
| | - Sanu Shameer
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Nathalie Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
| | - Lee Sweetlove
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Johan Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Diepenbeek, 3590, Belgium
| |
Collapse
|
4
|
Goelzer A, Rajjou L, Chardon F, Loudet O, Fromion V. Resource allocation modeling for autonomous prediction of plant cell phenotypes. Metab Eng 2024; 83:86-101. [PMID: 38561149 DOI: 10.1016/j.ymben.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments. We simulated the model for varying environmental conditions of temperature, irradiance, partial pressure of CO2 and O2, and compared RBA predictions to known resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N ratio, and finally to the empirical characteristics of CO2 fixation given by the well-established Farquhar model. In comparison to other standard constraint-based modeling methods like Flux Balance Analysis, the RBA model makes accurate quantitative predictions without the need for empirical constraints. Altogether, we show that RBA significantly improves the autonomous prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic links between the genotype and the phenotype of the plant cell.
Collapse
Affiliation(s)
- Anne Goelzer
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Vincent Fromion
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Gilman IS, Heyduk K, Maya-Lastra C, Hancock LP, Edwards EJ. Predicting photosynthetic pathway from anatomy using machine learning. THE NEW PHYTOLOGIST 2024; 242:1029-1042. [PMID: 38173400 DOI: 10.1111/nph.19488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Plants with Crassulacean acid metabolism (CAM) have long been associated with a specialized anatomy, including succulence and thick photosynthetic tissues. Firm, quantitative boundaries between non-CAM and CAM plants have yet to be established - if they indeed exist. Using novel computer vision software to measure anatomy, we combined new measurements with published data across flowering plants. We then used machine learning and phylogenetic comparative methods to investigate relationships between CAM and anatomy. We found significant differences in photosynthetic tissue anatomy between plants with differing CAM phenotypes. Machine learning-based classification was over 95% accurate in differentiating CAM from non-CAM anatomy, and had over 70% recall of distinct CAM phenotypes. Phylogenetic least squares regression and threshold analyses revealed that CAM evolution was significantly correlated with increased mesophyll cell size, thicker leaves, and decreased intercellular airspace. Our findings suggest that machine learning may be used to aid the discovery of new CAM species and that the evolutionary trajectory from non-CAM to strong, obligate CAM requires continual anatomical specialization.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, The University of Connecticut, Storrs, CT, 06269, USA
| | - Carlos Maya-Lastra
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Biology, Angelo State University, San Angelo, TX, 76909, USA
| | - Lillian P Hancock
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
6
|
Tolleter D, Smith EN, Dupont-Thibert C, Uwizeye C, Vile D, Gloaguen P, Falconet D, Finazzi G, Vandenbrouck Y, Curien G. The Arabidopsis leaf quantitative atlas: a cellular and subcellular mapping through unified data integration. QUANTITATIVE PLANT BIOLOGY 2024; 5:e2. [PMID: 38572078 PMCID: PMC10988163 DOI: 10.1017/qpb.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 04/05/2024]
Abstract
Quantitative analyses and models are required to connect a plant's cellular organisation with its metabolism. However, quantitative data are often scattered over multiple studies, and finding such data and converting them into useful information is time-consuming. Consequently, there is a need to centralise the available data and to highlight the remaining knowledge gaps. Here, we present a step-by-step approach to manually extract quantitative data from various information sources, and to unify the data format. First, data from Arabidopsis leaf were collated, checked for consistency and correctness and curated by cross-checking sources. Second, quantitative data were combined by applying calculation rules. They were then integrated into a unique comprehensive, referenced, modifiable and reusable data compendium representing an Arabidopsis reference leaf. This atlas contains the metrics of the 15 cell types found in leaves at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Dimitri Tolleter
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Edward N. Smith
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Clémence Dupont-Thibert
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Clarisse Uwizeye
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Denis Vile
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR 759, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Pauline Gloaguen
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | | | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| |
Collapse
|
7
|
Hunt H, Leape S, Sidhu JS, Ajmera I, Lynch JP, Ratcliffe RG, Sweetlove LJ. A role for fermentation in aerobic conditions as revealed by computational analysis of maize root metabolism during growth by cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1553-1570. [PMID: 37831626 DOI: 10.1111/tpj.16478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional-structural model captured the cell-anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end-products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.
Collapse
Affiliation(s)
- Hilary Hunt
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stefan Leape
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ishan Ajmera
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - R George Ratcliffe
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
8
|
Gilman IS, Smith JAC, Holtum JAM, Sage RF, Silvera K, Winter K, Edwards EJ. The CAM lineages of planet Earth. ANNALS OF BOTANY 2023; 132:627-654. [PMID: 37698538 PMCID: PMC10799995 DOI: 10.1093/aob/mcad135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/09/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND SCOPE The growth of experimental studies of crassulacean acid metabolism (CAM) in diverse plant clades, coupled with recent advances in molecular systematics, presents an opportunity to re-assess the phylogenetic distribution and diversity of species capable of CAM. It has been more than two decades since the last comprehensive lists of CAM taxa were published, and an updated survey of the occurrence and distribution of CAM taxa is needed to facilitate and guide future CAM research. We aimed to survey the phylogenetic distribution of these taxa, their diverse morphology, physiology and ecology, and the likely number of evolutionary origins of CAM based on currently known lineages. RESULTS AND CONCLUSIONS We found direct evidence (in the form of experimental or field observations of gas exchange, day-night fluctuations in organic acids, carbon isotope ratios and enzymatic activity) for CAM in 370 genera of vascular plants, representing 38 families. Further assumptions about the frequency of CAM species in CAM clades and the distribution of CAM in the Cactaceae and Crassulaceae bring the currently estimated number of CAM-capable species to nearly 7 % of all vascular plants. The phylogenetic distribution of these taxa suggests a minimum of 66 independent origins of CAM in vascular plants, possibly with dozens more. To achieve further insight into CAM origins, there is a need for more extensive and systematic surveys of previously unstudied lineages, particularly in living material to identify low-level CAM activity, and for denser sampling to increase phylogenetic resolution in CAM-evolving clades. This should allow further progress in understanding the functional significance of this pathway by integration with studies on the evolution and genomics of CAM in its many forms.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Katia Silvera
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Department of Botany & Plant Sciences, University of California, Riverside, CA, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Yamaga-Hatakeyama Y, Okutani M, Hatakeyama Y, Yabiku T, Yukawa T, Ueno O. Photosynthesis and leaf structure of F1 hybrids between Cymbidium ensifolium (C3) and C. bicolor subsp. pubescens (CAM). ANNALS OF BOTANY 2023; 132:895-907. [PMID: 36579478 PMCID: PMC10799985 DOI: 10.1093/aob/mcac157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS The introduction of crassulacean acid metabolism (CAM) into C3 crops has been considered as a means of improving water-use efficiency. In this study, we investigated photosynthetic and leaf structural traits in F1 hybrids between Cymbidium ensifolium (female C3 parent) and C. bicolor subsp. pubescens (male CAM parent) of the Orchidaceae. METHODS Seven F1 hybrids produced through artificial pollination and in vitro culture were grown in a greenhouse with the parent plants. Structural, biochemical and physiological traits involved in CAM in their leaves were investigated. KEY RESULTS Cymbidium ensifolium accumulated very low levels of malate without diel fluctuation, whereas C. bicolor subsp. pubescens showed nocturnal accumulation and diurnal consumption of malate. The F1s also accumulated malate at night, but much less than C. bicolor subsp. pubescens. This feature was consistent with low nocturnal fixation of atmospheric CO2 in the F1s. The δ13C values of the F1s were intermediate between those of the parents. Leaf thickness was thicker in C. bicolor subsp. pubescens than in C. ensifolium, and those of the F1s were more similar to that of C. ensifolium. This was due to the difference in mesophyll cell size. The chloroplast coverage of mesophyll cell perimeter adjacent to intercellular air spaces of C. bicolor subsp. pubescens was lower than that of C. ensifolium, and that of the F1s was intermediate between them. Interestingly, one F1 had structural and physiological traits more similar to those of C. bicolor subsp. pubescens than the other F1s. Nevertheless, all F1s contained intermediate levels of phosphoenolpyruvate carboxylase but as much pyruvate, Pi dikinase as C. bicolor subsp. pubescens. CONCLUSIONS CAM traits were intricately inherited in the F1 hybrids, the level of CAM expression varied widely among F1 plants, and the CAM traits examined were not necessarily co-ordinately transmitted to the F1s.
Collapse
Affiliation(s)
| | - Masamitsu Okutani
- School of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takayuki Yabiku
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Leverett A, Borland AM, Inge EJ, Hartzell S. Low internal air space in plants with crassulacean acid metabolism may be an anatomical spandrel. ANNALS OF BOTANY 2023; 132:811-817. [PMID: 37622678 PMCID: PMC10799988 DOI: 10.1093/aob/mcad109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Crassulacean acid metabolism (CAM) is a photosynthetic adaptation found in at least 38 plant families. Typically, the anatomy of CAM plants is characterized by large photosynthetic cells and a low percentage of leaf volume consisting of internal air space (% IAS). It has been suggested that reduced mesophyll conductance (gm) arising from low % IAS benefits CAM plants by preventing the movement of CO2 out of cells and ultimately minimizing leakage of CO2 from leaves into the atmosphere during day-time decarboxylation. Here, we propose that low % IAS does not provide any adaptive benefit to CAM plants, because stomatal closure during phase III of CAM will result in internal concentrations of CO2 becoming saturated, meaning low gm will not have any meaningful impact on the flux of gases within leaves. We suggest that low % IAS is more likely an indirect consequence of maximizing the cellular volume within a leaf, to provide space for the overnight storage of malic acid during the CAM cycle.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Life Sciences, University of Essex, Wivenhoe Campus, Essex, CO4 3SQ, UK
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Emma J Inge
- School of Life Sciences, University of Essex, Wivenhoe Campus, Essex, CO4 3SQ, UK
| | - Samantha Hartzell
- Department of Civil and Environmental Engineering, Portland State University, 1930 SW 124 Ave., Portland, OR, USA
| |
Collapse
|
11
|
Luján M, Leverett A, Winter K. Forty years of research into crassulacean acid metabolism in the genus Clusia: anatomy, ecophysiology and evolution. ANNALS OF BOTANY 2023; 132:739-752. [PMID: 36891814 PMCID: PMC10799992 DOI: 10.1093/aob/mcad039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Clusia is the only genus containing dicotyledonous trees with a capacity to perform crassulacean acid metabolism (CAM). Since the discovery of CAM in Clusia 40 years ago, several studies have highlighted the extraordinary plasticity and diversity of life forms, morphology and photosynthetic physiology of this genus. In this review, we revisit aspects of CAM photosynthesis in Clusia and hypothesize about the timing, the environmental conditions and potential anatomical characteristics that led to the evolution of CAM in the group. We discuss the role of physiological plasticity in influencing species distribution and ecological amplitude in the group. We also explore patterns of allometry of leaf anatomical traits and their correlations with CAM activity. Finally, we identify opportunities for further research on CAM in Clusia, such as the role of elevated nocturnal accumulation of citric acid, and gene expression in C3-CAM intermediate phenotypes.
Collapse
Affiliation(s)
- Manuel Luján
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Alistair Leverett
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
12
|
Leverett A, Borland AM. Elevated nocturnal respiratory rates in the mitochondria of CAM plants: current knowledge and unanswered questions. ANNALS OF BOTANY 2023; 132:855-867. [PMID: 37638861 PMCID: PMC10799998 DOI: 10.1093/aob/mcad119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Crassulacean acid metabolism (CAM) is a metabolic adaptation that has evolved convergently in 38 plant families to aid survival in water-limited niches. Whilst primarily considered a photosynthetic adaptation, CAM also has substantial consequences for nocturnal respiratory metabolism. Here, we outline the history, current state and future of nocturnal respiration research in CAM plants, with a particular focus on the energetics of nocturnal respiratory oxygen consumption. Throughout the 20th century, research interest in nocturnal respiration occurred alongside initial discoveries of CAM, although the energetic and mechanistic implications of nocturnal oxygen consumption and links to the operation of the CAM cycle were not fully understood. Recent flux balance analysis (FBA) models have provided new insights into the role that mitochondria play in the CAM cycle. Several FBA models have predicted that CAM requires elevated nocturnal respiratory rates, compared to C3 species, to power vacuolar malic acid accumulation. We provide physiological data, from the genus Clusia, to corroborate these modelling predictions, thereby reinforcing the importance of elevated nocturnal respiratory rates for CAM. Finally, we outline five unanswered questions pertaining to nocturnal respiration which must be addressed if we are to fully understand and utilize CAM plants in a hotter, drier world.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge CB2 3EA, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
13
|
Chomthong M, Griffiths H. Prospects and perspectives: inferring physiological and regulatory targets for CAM from molecular and modelling approaches. ANNALS OF BOTANY 2023; 132:583-596. [PMID: 37742290 PMCID: PMC10799989 DOI: 10.1093/aob/mcad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND SCOPE This review summarizes recent advances in our understanding of Crassulacean Acid Metabolism (CAM) by integrating evolutionary, ecological, physiological, metabolic and molecular perspectives. A number of key control loops which moderate the expression of CAM phases, and their metabolic and molecular control, are explored. These include nocturnal stomatal opening, activation of phosphoenolpyruvate carboxylase by a specific protein kinase, interactions with circadian clock control, as well as daytime decarboxylation and activation of Rubisco. The vacuolar storage and release of malic acid and the interplay between the supply and demand for carbohydrate reserves are also key metabolic control points. FUTURE OPPORTUNITIES We identify open questions and opportunities, with experimentation informed by top-down molecular modelling approaches allied with bottom-up mechanistic modelling systems. For example, mining transcriptomic datasets using high-speed systems approaches will help to identify targets for future genetic manipulation experiments to define the regulation of CAM (whether circadian or metabolic control). We emphasize that inferences arising from computational approaches or advanced nuclear sequencing techniques can identify potential genes and transcription factors as regulatory targets. However, these outputs then require systematic evaluation, using genetic manipulation in key model organisms over a developmental progression, combining gene silencing and metabolic flux analysis and modelling to define functionality across the CAM day-night cycle. From an evolutionary perspective, the origins and function of CAM succulents and responses to water deficits are set against the mesophyll and hydraulic limitations imposed by cell and tissue succulence in contrasting morphological lineages. We highlight the interplay between traits across shoots (3D vein density, mesophyll conductance and cell shrinkage) and roots (xylem embolism and segmentation). Thus, molecular, biophysical and biochemical processes help to curtail water losses and exploit rapid rehydration during restorative rain events. In the face of a changing climate, we hope such approaches will stimulate opportunities for future research.
Collapse
Affiliation(s)
- Methawi Chomthong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
14
|
Leverett A, Ferguson K, Winter K, Borland AM. Leaf vein density correlates with crassulacean acid metabolism, but not hydraulic capacitance, in the genus Clusia. ANNALS OF BOTANY 2023; 132:801-810. [PMID: 36821473 PMCID: PMC10799986 DOI: 10.1093/aob/mcad035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Many succulent species are characterized by the presence of Crassulacean acid metabolism (CAM) and/or elevated bulk hydraulic capacitance (CFT). Both CAM and elevated CFT substantially reduce the rate at which water moves through transpiring leaves. However, little is known about how these physiological adaptations are coordinated with leaf vascular architecture. METHODS The genus Clusia contains species spanning the entire C3-CAM continuum, and also is known to have >5-fold interspecific variation in CFT. We used this highly diverse genus to explore how interspecific variation in leaf vein density is coordinated with CAM and CFT. KEY RESULTS We found that constitutive CAM phenotypes were associated with lower vein length per leaf area (VLA) and vein termini density (VTD), compared to C3 or facultative CAM species. However, when vein densities were standardized by leaf thickness, this value was higher in CAM than C3 species, which is probably an adaptation to overcome apoplastic hydraulic resistance in deep chlorenchyma tissue. In contrast, CFT did not correlate with any xylem anatomical trait measured, suggesting CAM has a greater impact on leaf transpiration rates than CFT. CONCLUSIONS Our findings strongly suggest that CAM photosynthesis is coordinated with leaf vein densities. The link between CAM and vascular anatomy will be important to consider when attempting to bioengineer CAM into C3 crops.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
- School of Life Sciences, University of Essex, Colchester Campus, Colchester, CO4 3SQ, UK
| | - Kate Ferguson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
15
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
16
|
d’Entremont TW, Kivlin SN. Specificity in plant-mycorrhizal fungal relationships: prevalence, parameterization, and prospects. FRONTIERS IN PLANT SCIENCE 2023; 14:1260286. [PMID: 37929168 PMCID: PMC10623146 DOI: 10.3389/fpls.2023.1260286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Species interactions exhibit varying degrees of specialization, ranging from generalist to specialist interactions. For many interactions (e.g., plant-microbiome) we lack standardized metrics of specialization, hindering our ability to apply comparative frameworks of specificity across niche axes and organismal groups. Here, we discuss the concept of plant host specificity of arbuscular mycorrhizal (AM) fungi and ectomycorrhizal (EM) fungi, including the predominant theories for their interactions: Passenger, Driver, and Habitat Hypotheses. We focus on five major areas of interest in advancing the field of plant-mycorrhizal fungal host specificity: phylogenetic specificity, host physiology specificity, functional specificity, habitat specificity, and mycorrhizal fungal-mediated plant rarity. Considering the need to elucidate foundational concepts of specificity in this globally important symbiosis, we propose standardized metrics and comparative studies to enhance our understanding. We also emphasize the importance of analyzing global mycorrhizal data holistically to draw meaningful conclusions and suggest a shift toward single-species analyses to unravel the complexities underlying these associations.
Collapse
Affiliation(s)
- Tyler W. d’Entremont
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
| | | |
Collapse
|
17
|
Li C, Huang W, Han X, Zhao G, Zhang W, He W, Nie B, Chen X, Zhang T, Bai W, Zhang X, He J, Zhao C, Fernie AR, Tschaplinski TJ, Yang X, Yan S, Wang L. Diel dynamics of multi-omics in elkhorn fern provide new insights into weak CAM photosynthesis. PLANT COMMUNICATIONS 2023; 4:100594. [PMID: 36960529 PMCID: PMC10504562 DOI: 10.1016/j.xplc.2023.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 05/29/2023]
Abstract
Crassulacean acid metabolism (CAM) has high water-use efficiency (WUE) and is widely recognized to have evolved from C3 photosynthesis. Different plant lineages have convergently evolved CAM, but the molecular mechanism that underlies C3-to-CAM evolution remains to be clarified. Platycerium bifurcatum (elkhorn fern) provides an opportunity to study the molecular changes underlying the transition from C3 to CAM photosynthesis because both modes of photosynthesis occur in this species, with sporotrophophyll leaves (SLs) and cover leaves (CLs) performing C3 and weak CAM photosynthesis, respectively. Here, we report that the physiological and biochemical attributes of CAM in weak CAM-performing CLs differed from those in strong CAM species. We investigated the diel dynamics of the metabolome, proteome, and transcriptome in these dimorphic leaves within the same genetic background and under identical environmental conditions. We found that multi-omic diel dynamics in P. bifurcatum exhibit both tissue and diel effects. Our analysis revealed temporal rewiring of biochemistry relevant to the energy-producing pathway (TCA cycle), CAM pathway, and stomatal movement in CLs compared with SLs. We also confirmed that PHOSPHOENOLPYRUVATE CARBOXYLASE KINASE (PPCK) exhibits convergence in gene expression among highly divergent CAM lineages. Gene regulatory network analysis identified candidate transcription factors regulating the CAM pathway and stomatal movement. Taken together, our results provide new insights into weak CAM photosynthesis and new avenues for CAM bioengineering.
Collapse
Affiliation(s)
- Cheng Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guohua Zhao
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Wenyang Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weijun He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xufeng Chen
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Taijie Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Wenhui Bai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaopeng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jingjing He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Cheng Zhao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China.
| |
Collapse
|
18
|
Wang Y, Smith JAC, Zhu XG, Long SP. Rethinking the potential productivity of crassulacean acid metabolism by integrating metabolic dynamics with shoot architecture, using the example of Agave tequilana. THE NEW PHYTOLOGIST 2023; 239:2180-2196. [PMID: 37537720 DOI: 10.1111/nph.19128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Terrestrial CAM plants typically occur in hot semiarid regions, yet can show high crop productivity under favorable conditions. To achieve a more mechanistic understanding of CAM plant productivity, a biochemical model of diel metabolism was developed and integrated with 3-D shoot morphology to predict the energetics of light interception and photosynthetic carbon assimilation. Using Agave tequilana as an example, this biochemical model faithfully simulated the four diel phases of CO2 and metabolite dynamics during the CAM rhythm. After capturing the 3-D form over an 8-yr production cycle, a ray-tracing method allowed the prediction of the light microclimate across all photosynthetic surfaces. Integration with the biochemical model thereby enabled the simulation of plant and stand carbon uptake over daily and annual courses. The theoretical maximum energy conversion efficiency of Agave spp. is calculated at 0.045-0.049, up to 7% higher than for C3 photosynthesis. Actual light interception, and biochemical and anatomical limitations, reduced this to 0.0069, or 15.6 Mg ha-1 yr-1 dry mass annualized over an 8-yr cropping cycle, consistent with observation. This is comparable to the productivity of many C3 crops, demonstrating the potential of CAM plants in climates where little else may be grown while indicating strategies that could raise their productivity.
Collapse
Affiliation(s)
- Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
| | - J Andrew C Smith
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Xin-Guang Zhu
- Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular, Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
19
|
Tan B, Chen S. Defining Mechanisms of C 3 to CAM Photosynthesis Transition toward Enhancing Crop Stress Resilience. Int J Mol Sci 2023; 24:13072. [PMID: 37685878 PMCID: PMC10487458 DOI: 10.3390/ijms241713072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Global climate change and population growth are persistently posing threats to natural resources (e.g., freshwater) and agricultural production. Crassulacean acid metabolism (CAM) evolved from C3 photosynthesis as an adaptive form of photosynthesis in hot and arid regions. It features the nocturnal opening of stomata for CO2 assimilation, diurnal closure of stomata for water conservation, and high water-use efficiency. To cope with global climate challenges, the CAM mechanism has attracted renewed attention. Facultative CAM is a specialized form of CAM that normally employs C3 or C4 photosynthesis but can shift to CAM under stress conditions. It not only serves as a model for studying the molecular mechanisms underlying the CAM evolution, but also provides a plausible solution for creating stress-resilient crops with facultative CAM traits. This review mainly discusses the recent research effort in defining the C3 to CAM transition of facultative CAM plants, and highlights challenges and future directions in this important research area with great application potential.
Collapse
Affiliation(s)
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
20
|
Daloso DDM, Morais EG, Oliveira E Silva KF, Williams TCR. Cell-type-specific metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1093-1114. [PMID: 36987968 DOI: 10.1111/tpj.16214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/31/2023]
Abstract
Every plant organ contains tens of different cell types, each with a specialized function. These functions are intrinsically associated with specific metabolic flux distributions that permit the synthesis of the ATP, reducing equivalents and biosynthetic precursors demanded by the cell. Investigating such cell-type-specific metabolism is complicated by the mosaic of different cells within each tissue combined with the relative scarcity of certain types. However, techniques for the isolation of specific cells, their analysis in situ by microscopy, or modeling of their function in silico have permitted insight into cell-type-specific metabolism. In this review we present some of the methods used in the analysis of cell-type-specific metabolism before describing what we know about metabolism in several cell types that have been studied in depth; (i) leaf source and sink cells; (ii) glandular trichomes that are capable of rapid synthesis of specialized metabolites; (iii) guard cells that must accumulate large quantities of the osmolytes needed for stomatal opening; (iv) cells of seeds involved in storage of reserves; and (v) the mesophyll and bundle sheath cells of C4 plants that participate in a CO2 concentrating cycle. Metabolism is discussed in terms of its principal features, connection to cell function and what factors affect the flux distribution. Demand for precursors and energy, availability of substrates and suppression of deleterious processes are identified as key factors in shaping cell-type-specific metabolism.
Collapse
Affiliation(s)
- Danilo de Menezes Daloso
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Eva Gomes Morais
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Karen Fernanda Oliveira E Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília-DF, 70910-900, Brazil
| | | |
Collapse
|
21
|
Leverett A, Hartzell S, Winter K, Garcia M, Aranda J, Virgo A, Smith A, Focht P, Rasmussen-Arda A, Willats WGT, Cowan-Turner D, Borland AM. Dissecting succulence: Crassulacean acid metabolism and hydraulic capacitance are independent adaptations in Clusia leaves. PLANT, CELL & ENVIRONMENT 2023; 46:1472-1488. [PMID: 36624682 DOI: 10.1111/pce.14539] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Succulence is found across the world as an adaptation to water-limited niches. The fleshy organs of succulent plants develop via enlarged photosynthetic chlorenchyma and/or achlorophyllous water storage hydrenchyma cells. The precise mechanism by which anatomical traits contribute to drought tolerance is unclear, as the effect of succulence is multifaceted. Large cells are believed to provide space for nocturnal storage of malic acid fixed by crassulacean acid metabolism (CAM), whilst also buffering water potentials by elevating hydraulic capacitance (CFT ). The effect of CAM and elevated CFT on growth and water conservation have not been compared, despite the assumption that these adaptations often occur together. We assessed the relationship between succulent anatomical adaptations, CAM, and CFT , across the genus Clusia. We also simulated the effects of CAM and CFT on growth and water conservation during drought using the Photo3 model. Within Clusia leaves, CAM and CFT are independent traits: CAM requires large palisade chlorenchyma cells, whereas hydrenchyma tissue governs interspecific differences in CFT . In addition, our model suggests that CAM supersedes CFT as a means to maximise CO2 assimilation and minimise transpiration during drought. Our study challenges the assumption that CAM and CFT are mutually dependent traits within succulent leaves.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Samantha Hartzell
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Milton Garcia
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Abigail Smith
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Paulina Focht
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Adam Rasmussen-Arda
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel Cowan-Turner
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
22
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
23
|
Heyduk K. Evolution of Crassulacean acid metabolism in response to the environment: past, present, and future. PLANT PHYSIOLOGY 2022; 190:19-30. [PMID: 35748752 PMCID: PMC9434201 DOI: 10.1093/plphys/kiac303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Crassulacean acid metabolism (CAM) is a mode of photosynthesis that evolved in response to decreasing CO2 levels in the atmosphere some 20 million years ago. An elevated ratio of O2 relative to CO2 caused many plants to face increasing stress from photorespiration, a process exacerbated for plants living under high temperatures or in water-limited environments. Today, our climate is again rapidly changing and plants' ability to cope with and adapt to these novel environments is critical for their success. This review focuses on CAM plant responses to abiotic stressors likely to dominate in our changing climate: increasing CO2 levels, increasing temperatures, and greater variability in drought. Empirical studies that have assessed CAM responses are reviewed, though notably these are concentrated in relatively few CAM lineages. Other aspects of CAM biology, including the effects of abiotic stress on the light reactions and the role of leaf succulence, are also considered in the context of climate change. Finally, more recent studies using genomic techniques are discussed to link physiological changes in CAM plants with the underlying molecular mechanism. Together, the body of work reviewed suggests that CAM plants will continue to thrive in certain environments under elevated CO2. However, how CO2 interacts with other environmental factors, how those interactions affect CAM plants, and whether all CAM plants will be equally affected remain outstanding questions regarding the evolution of CAM on a changing planet.
Collapse
|
24
|
Moreno-Villena JJ, Zhou H, Gilman IS, Tausta SL, Cheung CYM, Edwards EJ. Spatial resolution of an integrated C 4+CAM photosynthetic metabolism. SCIENCE ADVANCES 2022; 8:eabn2349. [PMID: 35930634 PMCID: PMC9355352 DOI: 10.1126/sciadv.abn2349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/22/2022] [Indexed: 05/27/2023]
Abstract
C4 and CAM photosynthesis have repeatedly evolved in plants over the past 30 million years. Because both repurpose the same set of enzymes but differ in their spatial and temporal deployment, they have long been considered as distinct and incompatible adaptations. Portulaca contains multiple C4 species that perform CAM when droughted. Spatially explicit analyses of gene expression reveal that C4 and CAM systems are completely integrated in Portulaca oleracea, with CAM and C4 carbon fixation occurring in the same cells and CAM-generated metabolites likely incorporated directly into the C4 cycle. Flux balance analysis corroborates the gene expression findings and predicts an integrated C4+CAM system under drought. This first spatially explicit description of a C4+CAM photosynthetic metabolism presents a potential new blueprint for crop improvement.
Collapse
Affiliation(s)
- Jose J. Moreno-Villena
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Haoran Zhou
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ian S. Gilman
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - S. Lori Tausta
- Department of Molecular Biophysics and Biochemistry, Yale University, 600 West Campus, West Haven, CT 06516, USA
| | | | - Erika J. Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Beilsmith K, Henry CS, Seaver SMD. Genome-scale modeling of the primary-specialized metabolism interface. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102244. [PMID: 35714443 DOI: 10.1016/j.pbi.2022.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Environmental challenges and development require plants to reallocate resources between primary and specialized metabolites to survive. Genome-scale metabolic models, which map carbon flux through metabolic pathways, are a valuable tool in the study of tradeoffs that arise at this interface. Due to annotation gaps, models that characterize all the enzymatic steps in individual specialized pathways and their linkages to each other and to central carbon metabolism are difficult to construct. Recent studies have successfully curated subsystems of specialized metabolism and characterized the interfaces where flux is diverted to the precursors of glucosinolates, terpenes, and anthocyanins. Although advances in metabolite profiling can help to constrain models at this interface, quantitative analysis remains challenging because of the different timescales on which specialized metabolites from constitutive and reactive pathways accumulate.
Collapse
Affiliation(s)
- Kathleen Beilsmith
- Data Science and Learning Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Christopher S Henry
- Data Science and Learning Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Samuel M D Seaver
- Data Science and Learning Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| |
Collapse
|
26
|
Burgos A, Miranda E, Vilaprinyo E, Meza-Canales ID, Alves R. CAM Models: Lessons and Implications for CAM Evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:893095. [PMID: 35812979 PMCID: PMC9260309 DOI: 10.3389/fpls.2022.893095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The evolution of Crassulacean acid metabolism (CAM) by plants has been one of the most successful strategies in response to aridity. On the onset of climate change, expanding the use of water efficient crops and engineering higher water use efficiency into C3 and C4 crops constitute a plausible solution for the problems of agriculture in hotter and drier environments. A firm understanding of CAM is thus crucial for the development of agricultural responses to climate change. Computational models on CAM can contribute significantly to this understanding. Two types of models have been used so far. Early CAM models based on ordinary differential equations (ODE) reproduced the typical diel CAM features with a minimal set of components and investigated endogenous day/night rhythmicity. This line of research brought to light the preponderant role of vacuolar malate accumulation in diel rhythms. A second wave of CAM models used flux balance analysis (FBA) to better understand the role of CO2 uptake in flux distribution. They showed that flux distributions resembling CAM metabolism emerge upon constraining CO2 uptake by the system. We discuss the evolutionary implications of this and also how CAM components from unrelated pathways could have integrated along evolution.
Collapse
Affiliation(s)
- Asdrubal Burgos
- Laboratorio de Biotecnología, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Enoc Miranda
- Laboratorio de Biotecnología, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ester Vilaprinyo
- Institute of Biomedical Research of Lleida, IRBLleida, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Iván David Meza-Canales
- Departamento de Ecología Aplicada, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
- Unidad de Biología Molecular, Genómica y Proteómica, ITRANS-CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | - Rui Alves
- Institute of Biomedical Research of Lleida, IRBLleida, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
27
|
Song C, Zhang Y, Chen R, Zhu F, Wei P, Pan H, Chen C, Dai J. Label-Free Quantitative Proteomics Unravel the Impacts of Salt Stress on Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:874579. [PMID: 35646023 PMCID: PMC9134114 DOI: 10.3389/fpls.2022.874579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/27/2022] [Indexed: 05/12/2023]
Abstract
Salt stress is a constraint on crop growth and productivity. When exposed to high salt stress, metabolic abnormalities that disrupt reactive oxygen species (ROS) homeostasis result in massive oxygen radical deposition. Dendrobium huoshanense is a perennial orchid herb that thrives in semi-shade conditions. Although lots of studies have been undertaken on abiotic stresses (high temperature, chilling, drought, etc.) of model plants, few studies were reported on the mechanism of salt stress in D. huoshanense. Using a label-free protein quantification method, a total of 2,002 differential expressed proteins were identified in D. huoshanense. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that proteins involved in vitamin B6 metabolism, photosynthesis, spliceosome, arginine biosynthesis, oxidative phosphorylation, and MAPK signaling were considerably enriched. Remarkably, six malate dehydrogenases (MDHs) were identified from deferentially expressed proteins. (NAD+)-dependent MDH may directly participate in the biosynthesis of malate in the nocturnal crassulacean acid metabolism (CAM) pathway. Additionally, peroxidases such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as antioxidant enzymes involved in glutathione biosynthesis and some vitamins biosynthesis were also identified. Taken together, these results provide a solid foundation for the investigation of the mechanism of salt stress in Dendrobium spp.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Yunpeng Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Peipei Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Jun Dai
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| |
Collapse
|
28
|
Shameer S, Wang Y, Bota P, Ratcliffe RG, Long SP, Sweetlove LJ. A hybrid kinetic and constraint-based model of leaf metabolism allows predictions of metabolic fluxes in different environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:295-313. [PMID: 34699645 DOI: 10.1111/tpj.15551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
While flux balance analysis (FBA) provides a framework for predicting steady-state leaf metabolic network fluxes, it does not readily capture the response to environmental variables without being coupled to other modelling formulations. To address this, we coupled an FBA model of 903 reactions of soybean (Glycine max) leaf metabolism with e-photosynthesis, a dynamic model that captures the kinetics of 126 reactions of photosynthesis and associated chloroplast carbon metabolism. Successful coupling was achieved in an iterative formulation in which fluxes from e-photosynthesis were used to constrain the FBA model and then, in turn, fluxes computed from the FBA model used to update parameters in e-photosynthesis. This process was repeated until common fluxes in the two models converged. Coupling did not hamper the ability of the kinetic module to accurately predict the carbon assimilation rate, photosystem II electron flux, and starch accumulation of field-grown soybean at two CO2 concentrations. The coupled model also allowed accurate predictions of additional parameters such as nocturnal respiration, as well as analysis of the effect of light intensity and elevated CO2 on leaf metabolism. Predictions included an unexpected decrease in the rate of export of sucrose from the leaf at high light, due to altered starch-sucrose partitioning, and altered daytime flux modes in the tricarboxylic acid cycle at elevated CO2 . Mitochondrial fluxes were notably different between growing and mature leaves, with greater anaplerotic, tricarboxylic acid cycle and mitochondrial ATP synthase fluxes predicted in the former, primarily to provide carbon skeletons and energy for protein synthesis.
Collapse
Affiliation(s)
- Sanu Shameer
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Yu Wang
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pedro Bota
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stephen P Long
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
29
|
Winter K, Smith JAC. CAM photosynthesis: the acid test. THE NEW PHYTOLOGIST 2022; 233:599-609. [PMID: 34637529 PMCID: PMC9298356 DOI: 10.1111/nph.17790] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 05/04/2023]
Abstract
There is currently considerable interest in the prospects for bioengineering crassulacean acid metabolism (CAM) photosynthesis - or key elements associated with it, such as increased water-use efficiency - into C3 plants. Resolving how CAM photosynthesis evolved from the ancestral C3 pathway could provide valuable insights into the targets for such bioengineering efforts. It has been proposed that the ability to accumulate organic acids at night may be common among C3 plants, and that the transition to CAM might simply require enhancement of pre-existing fluxes, without the need for changes in circadian or diurnal regulation. We show, in a survey encompassing 40 families of vascular plants, that nocturnal acidification is a feature entirely restricted to CAM species. Although many C3 species can synthesize malate during the light period, we argue that the switch to night-time malic acid accumulation requires a fundamental metabolic reprogramming that couples glycolytic breakdown of storage carbohydrate to the process of net dark CO2 fixation. This central element of the CAM pathway, even when expressed at a low level, represents a biochemical capability not seen in C3 plants, and so is better regarded as a discrete evolutionary innovation than as part of a metabolic continuum between C3 and CAM.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research InstitutePO Box 0843‐03092BalboaAncónRepublic of Panama
| | - J. Andrew C. Smith
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
30
|
Kruger NJ, Ratcliffe RG. Whither metabolic flux analysis in plants? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7653-7657. [PMID: 34431503 PMCID: PMC8664579 DOI: 10.1093/jxb/erab389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Nicholas J Kruger
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Correspondence: or
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Correspondence: or
| |
Collapse
|
31
|
Medeiros DB, Aarabi F, Martinez Rivas FJ, Fernie AR. The knowns and unknowns of intracellular partitioning of carbon and nitrogen, with focus on the organic acid-mediated interplay between mitochondrion and chloroplast. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153521. [PMID: 34537467 DOI: 10.1016/j.jplph.2021.153521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The presence of specialized cellular compartments in higher plants express an extraordinary degree of intracellular organization, which provides efficient mechanisms to avoid misbalancing of the metabolism. This offers the flexibility by which plants can quickly acclimate to fluctuating environmental conditions. For that, a fine temporal and spatial regulation of metabolic pathways is required and involves several players e.g. organic acids. In this review we discuss different facets of the organic acid metabolism within plant cells with special focus to those related to the interactions between organic acids compartmentalization and the partitioning of carbon and nitrogen. The connections between organic acids and CO2 assimilation, tricarboxylic acid (TCA) cycle, amino acids metabolism, and redox status are highlighted. Moreover, the key enzymes and transporters as well as their function on the coordination of interorganellar metabolic exchanges are discussed.
Collapse
Affiliation(s)
- David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
32
|
Sahu A, Blätke MA, Szymański JJ, Töpfer N. Advances in flux balance analysis by integrating machine learning and mechanism-based models. Comput Struct Biotechnol J 2021; 19:4626-4640. [PMID: 34471504 PMCID: PMC8382995 DOI: 10.1016/j.csbj.2021.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The availability of multi-omics data sets and genome-scale metabolic models for various organisms provide a platform for modeling and analyzing genotype-to-phenotype relationships. Flux balance analysis is the main tool for predicting flux distributions in genome-scale metabolic models and various data-integrative approaches enable modeling context-specific network behavior. Due to its linear nature, this optimization framework is readily scalable to multi-tissue or -organ and even multi-organism models. However, both data and model size can hamper a straightforward biological interpretation of the estimated fluxes. Moreover, flux balance analysis simulates metabolism at steady-state and thus, in its most basic form, does not consider kinetics or regulatory events. The integration of flux balance analysis with complementary data analysis and modeling techniques offers the potential to overcome these challenges. In particular machine learning approaches have emerged as the tool of choice for data reduction and selection of most important variables in big data sets. Kinetic models and formal languages can be used to simulate dynamic behavior. This review article provides an overview of integrative studies that combine flux balance analysis with machine learning approaches, kinetic models, such as physiology-based pharmacokinetic models, and formal graphical modeling languages, such as Petri nets. We discuss the mathematical aspects and biological applications of these integrated approaches and outline challenges and future perspectives.
Collapse
Affiliation(s)
- Ankur Sahu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Mary-Ann Blätke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Jędrzej Jakub Szymański
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Nadine Töpfer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| |
Collapse
|
33
|
Abstract
Crassulacean acid metabolism (CAM) has evolved from a C3 ground state to increase water use efficiency of photosynthesis. During CAM evolution, selective pressures altered the abundance and expression patterns of C3 genes and their regulators to enable the trait. The circadian pattern of CO2 fixation and the stomatal opening pattern observed in CAM can be explained largely with a regulatory architecture already present in C3 plants. The metabolic CAM cycle relies on enzymes and transporters that exist in C3 plants and requires tight regulatory control to avoid futile cycles between carboxylation and decarboxylation. Ecological observations and modeling point to mesophyll conductance as a major factor during CAM evolution. The present state of knowledge enables suggestions for genes for a minimal CAM cycle for proof-of-concept engineering, assuming altered regulation of starch synthesis and degradation are not critical elements of CAM photosynthesis and sufficient malic acid export from the vacuole is possible.
Collapse
Affiliation(s)
- Katharina Schiller
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; ,
| | - Andrea Bräutigam
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; ,
| |
Collapse
|
34
|
Jansson C, Faiola C, Wingler A, Zhu XG, Kravchenko A, de Graaff MA, Ogden AJ, Handakumbura PP, Werner C, Beckles DM. Crops for Carbon Farming. FRONTIERS IN PLANT SCIENCE 2021; 12:636709. [PMID: 34149744 PMCID: PMC8211891 DOI: 10.3389/fpls.2021.636709] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/26/2021] [Indexed: 05/03/2023]
Abstract
Agricultural cropping systems and pasture comprise one third of the world's arable land and have the potential to draw down a considerable amount of atmospheric CO2 for storage as soil organic carbon (SOC) and improving the soil carbon budget. An improved soil carbon budget serves the dual purpose of promoting soil health, which supports crop productivity, and constituting a pool from which carbon can be converted to recalcitrant forms for long-term storage as a mitigation measure for global warming. In this perspective, we propose the design of crop ideotypes with the dual functionality of being highly productive for the purposes of food, feed, and fuel, while at the same time being able to facilitate higher contribution to soil carbon and improve the below ground ecology. We advocate a holistic approach of the integrated plant-microbe-soil system and suggest that significant improvements in soil carbon storage can be achieved by a three-pronged approach: (1) design plants with an increased root strength to further allocation of carbon belowground; (2) balance the increase in belowground carbon allocation with increased source strength for enhanced photosynthesis and biomass accumulation; and (3) design soil microbial consortia for increased rhizosphere sink strength and plant growth-promoting (PGP) properties.
Collapse
Affiliation(s)
- Christer Jansson
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Celia Faiola
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alexandra Kravchenko
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Marie-Anne de Graaff
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Aaron J. Ogden
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | | | - Diane M. Beckles
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
35
|
Steed G, Ramirez DC, Hannah MA, Webb AAR. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science 2021; 372:372/6541/eabc9141. [PMID: 33926926 DOI: 10.1126/science.abc9141] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human health is dependent on a plentiful and nutritious supply of food, primarily derived from crop plants. Rhythmic supply of light as a result of the day and night cycle led to the evolution of circadian clocks that modulate most plant physiology, photosynthesis, metabolism, and development. To regulate crop traits and adaptation, breeders have indirectly selected for variation at circadian genes. The pervasive impact of the circadian system on crops suggests that future food production might be improved by modifying circadian rhythms, engineering the timing of transgene expression, and applying agricultural treatments at the most effective time of day. We describe the applied research required to take advantage of circadian biology in agriculture to increase production and reduce inputs.
Collapse
Affiliation(s)
- Gareth Steed
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Dora Cano Ramirez
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Matthew A Hannah
- BASF, BBCC-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
36
|
Characterization of effects of genetic variants via genome-scale metabolic modelling. Cell Mol Life Sci 2021; 78:5123-5138. [PMID: 33950314 PMCID: PMC8254712 DOI: 10.1007/s00018-021-03844-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Genome-scale metabolic networks for model plants and crops in combination with approaches from the constraint-based modelling framework have been used to predict metabolic traits and design metabolic engineering strategies for their manipulation. With the advances in technologies to generate large-scale genotyping data from natural diversity panels and other populations, genome-wide association and genomic selection have emerged as statistical approaches to determine genetic variants associated with and predictive of traits. Here, we review recent advances in constraint-based approaches that integrate genetic variants in genome-scale metabolic models to characterize their effects on reaction fluxes. Since some of these approaches have been applied in organisms other than plants, we provide a critical assessment of their applicability particularly in crops. In addition, we further dissect the inferred effects of genetic variants with respect to reaction rate constants, abundances of enzymes, and concentrations of metabolites, as main determinants of reaction fluxes and relate them with their combined effects on complex traits, like growth. Through this systematic review, we also provide a roadmap for future research to increase the predictive power of statistical approaches by coupling them with mechanistic models of metabolism.
Collapse
|
37
|
Environment-coupled models of leaf metabolism. Biochem Soc Trans 2021; 49:119-129. [PMID: 33492365 PMCID: PMC7925006 DOI: 10.1042/bst20200059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
The plant leaf is the main site of photosynthesis. This process converts light energy and inorganic nutrients into chemical energy and organic building blocks for the biosynthesis and maintenance of cellular components and to support the growth of the rest of the plant. The leaf is also the site of gas–water exchange and due to its large surface, it is particularly vulnerable to pathogen attacks. Therefore, the leaf's performance and metabolic modes are inherently determined by its interaction with the environment. Mathematical models of plant metabolism have been successfully applied to study various aspects of photosynthesis, carbon and nitrogen assimilation and metabolism, aided suggesting metabolic intervention strategies for optimized leaf performance, and gave us insights into evolutionary drivers of plant metabolism in various environments. With the increasing pressure to improve agricultural performance in current and future climates, these models have become important tools to improve our understanding of plant–environment interactions and to propel plant breeders efforts. This overview article reviews applications of large-scale metabolic models of leaf metabolism to study plant–environment interactions by means of flux-balance analysis. The presented studies are organized in two ways — by the way the environment interactions are modelled — via external constraints or data-integration and by the studied environmental interactions — abiotic or biotic.
Collapse
|
38
|
Tay IYY, Odang KB, Cheung CYM. Metabolic Modeling of the C 3-CAM Continuum Revealed the Establishment of a Starch/Sugar-Malate Cycle in CAM Evolution. FRONTIERS IN PLANT SCIENCE 2021; 11:573197. [PMID: 33584741 PMCID: PMC7874232 DOI: 10.3389/fpls.2020.573197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/17/2020] [Indexed: 05/11/2023]
Abstract
The evolution of Crassulacean acid metabolism (CAM) is thought to be along a C3-CAM continuum including multiple variations of CAM such as CAM cycling and CAM idling. Here, we applied large-scale constraint-based modeling to investigate the metabolism and energetics of plants operating in C3, CAM, CAM cycling, and CAM idling. Our modeling results suggested that CAM cycling and CAM idling could be potential evolutionary intermediates in CAM evolution by establishing a starch/sugar-malate cycle. Our model analysis showed that by varying CO2 exchange during the light period, as a proxy of stomatal conductance, there exists a C3-CAM continuum with gradual metabolic changes, supporting the notion that evolution of CAM from C3 could occur solely through incremental changes in metabolic fluxes. Along the C3-CAM continuum, our model predicted changes in metabolic fluxes not only through the starch/sugar-malate cycle that is involved in CAM photosynthetic CO2 fixation but also other metabolic processes including the mitochondrial electron transport chain and the tricarboxylate acid cycle at night. These predictions could guide engineering efforts in introducing CAM into C3 crops for improved water use efficiency.
Collapse
|
39
|
de Souza LP, Borghi M, Fernie A. Plant Single-Cell Metabolomics-Challenges and Perspectives. Int J Mol Sci 2020; 21:E8987. [PMID: 33256100 PMCID: PMC7730874 DOI: 10.3390/ijms21238987] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Omics approaches for investigating biological systems were introduced in the mid-1990s and quickly consolidated to become a fundamental pillar of modern biology. The idea of measuring the whole complement of genes, transcripts, proteins, and metabolites has since become widespread and routinely adopted in the pursuit of an infinity of scientific questions. Incremental improvements over technical aspects such as sampling, sensitivity, cost, and throughput pushed even further the boundaries of what these techniques can achieve. In this context, single-cell genomics and transcriptomics quickly became a well-established tool to answer fundamental questions challenging to assess at a whole tissue level. Following a similar trend as the original development of these techniques, proteomics alternatives for single-cell exploration have become more accessible and reliable, whilst metabolomics lag behind the rest. This review summarizes state-of-the-art technologies for spatially resolved metabolomics analysis, as well as the challenges hindering the achievement of sensu stricto metabolome coverage at the single-cell level. Furthermore, we discuss several essential contributions to understanding plant single-cell metabolism, finishing with our opinion on near-future developments and relevant scientific questions that will hopefully be tackled by incorporating these new exciting technologies.
Collapse
Affiliation(s)
- Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg 1, Golm, 14476 Potsdam, Germany
| | - Monica Borghi
- Department of Biology, Utah State University, 1435 Old Main Hill, Logan, UT 84322, USA;
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg 1, Golm, 14476 Potsdam, Germany
| |
Collapse
|