1
|
Toda E, Kiba T, Kato N, Okamoto T. Isolation of gametes and zygotes from Setaria viridis. JOURNAL OF PLANT RESEARCH 2022; 135:627-633. [PMID: 35534650 DOI: 10.1007/s10265-022-01393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Setaria viridis, the wild ancestor of foxtail millet (Setaria italica), is an effective model plant for larger C4 crops because S. viridis has several desirable traits, such as short generation time, prolific seed production and a small genome size. These advantages are well suited for investigating molecular mechanisms in angiosperms, especially C4 crop species. Here, we report a procedure for isolating gametes and zygotes from S. viridis flowers. To isolate egg cells, ovaries were harvested from unpollinated mature flowers and cut transversely, which allowed direct access to the embryo sac. Thereafter, an egg cell was released from the cut end of the basal portion of the dissected ovary. To isolate sperm cells, pollen grains released from anthers were immersed in a mannitol solution, resulting in pollen-grain bursting, which released sperm cells. Additionally, S. viridis zygotes were successfully isolated from freshly pollinated flowers. Isolated zygotes cultured in a liquid medium developed into globular-like embryos and cell masses. Thus, isolated S. viridis gametes, zygotes and embryos are attainable for detailed observations and investigations of fertilization and developmental events in angiosperms.
Collapse
Affiliation(s)
- Erika Toda
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0392, Japan.
- Department of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Takatoshi Kiba
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Norio Kato
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0392, Japan
| | - Takashi Okamoto
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
2
|
Toda E, Koiso N, Takebayashi A, Ichikawa M, Kiba T, Osakabe K, Osakabe Y, Sakakibara H, Kato N, Okamoto T. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. NATURE PLANTS 2019; 5:363-368. [PMID: 30911123 DOI: 10.1038/s41477-019-0386-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/13/2019] [Indexed: 05/18/2023]
Abstract
Technology involving the targeted mutagenesis of plants using programmable nucleases has been developing rapidly and has enormous potential in next-generation plant breeding. Notably, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) (CRISPR-Cas9) system has paved the way for the development of rapid and cost-effective procedures to create new mutant populations in plants1,2. Although genome-edited plants from multiple species have been produced successfully using a method in which a Cas9-guide RNA (gRNA) expression cassette and selectable marker are integrated into the genomic DNA by Agrobacterium tumefaciens-mediated transformation or particle bombardment3, CRISPR-Cas9 integration increases the chance of off-target modifications4, and foreign DNA sequences cause legislative concerns about genetically modified organisms5. Therefore, DNA-free genome editing has been developed, involving the delivery of preassembled Cas9-gRNA ribonucleoproteins (RNPs) into protoplasts derived from somatic tissues by polyethylene glycol-calcium (PEG-Ca2+)-mediated transfection in tobacco, Arabidopsis, lettuce, rice6, Petunia7, grapevine, apple8 and potato9, or into embryo cells by biolistic bombardment in maize10 and wheat11. However, the isolation and culture of protoplasts is not feasible in most plant species and the frequency of obtaining genome-edited plants through biolistic bombardment is relatively low. Here, we report a genome-editing system via direct delivery of Cas9-gRNA RNPs into plant zygotes. Cas9-gRNA RNPs were transfected into rice zygotes produced by in vitro fertilization of isolated gametes12 and the zygotes were cultured into mature plants in the absence of selection agents, resulting in the regeneration of rice plants with targeted mutations in around 14-64% of plants. This efficient plant-genome-editing system has enormous potential for the improvement of rice as well as other important crop species.
Collapse
Affiliation(s)
- Erika Toda
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan.
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan.
| | - Narumi Koiso
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Arika Takebayashi
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | | | - Takatoshi Kiba
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yuriko Osakabe
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Hitoshi Sakakibara
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Norio Kato
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Plant Innovation Center, Japan Tobacco Inc., Iwata, Japan
| | - Takashi Okamoto
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan.
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan.
| |
Collapse
|
3
|
Flores-Tornero M, Proost S, Mutwil M, Scutt CP, Dresselhaus T, Sprunck S. Transcriptomics of manually isolated Amborella trichopoda egg apparatus cells. PLANT REPRODUCTION 2019; 32:15-27. [PMID: 30707279 DOI: 10.1007/s00497-019-00361-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 05/27/2023]
Abstract
A protocol for the isolation of egg apparatus cells from the basal angiosperm Amborella trichopoda to generate RNA-seq data for evolutionary studies of fertilization-associated genes. Sexual reproduction is particularly complex in flowering plants (angiosperms). Studies in eudicot and monocot model species have significantly contributed to our knowledge on cell fate specification of gametophytic cells and on the numerous cellular communication events necessary to deliver the two sperm cells into the embryo sac and to accomplish double fertilization. However, for a deeper understanding of the evolution of these processes, morphological, genomic and gene expression studies in extant basal angiosperms are inevitable. The basal angiosperm Amborella trichopoda is of special importance for evolutionary studies, as it is likely sister to all other living angiosperms. Here, we report about a method to isolate Amborella egg apparatus cells and on genome-wide gene expression profiles in these cells. Our transcriptomics data revealed Amborella-specific genes and genes conserved in eudicots and monocots. Gene products include secreted proteins, such as small cysteine-rich proteins previously reported to act as extracellular signaling molecules with important roles during double fertilization. The detection of transcripts encoding EGG CELL 1 (EC1) and related prolamin-like family proteins in Amborella egg cells demonstrates the potential of the generated data set to study conserved molecular mechanisms and the evolution of fertilization-related genes and their encoded proteins.
Collapse
Affiliation(s)
- María Flores-Tornero
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Sebastian Proost
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- Laboratory of Molecular Bacteriology (Rega Institute), KU Leuven, Louvain, Belgium
| | - Marek Mutwil
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Charles P Scutt
- Laboratoire Reproduction et Développement des Plantes, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Université de Lyon, Lyon, France
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
4
|
Englhart M, Šoljić L, Sprunck S. Manual Isolation of Living Cells from the Arabidopsis thaliana Female Gametophyte by Micromanipulation. Methods Mol Biol 2017; 1669:221-234. [PMID: 28936662 DOI: 10.1007/978-1-4939-7286-9_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The few-celled female gametophyte, or embryo sac, of flowering plants is not easily accessible as it is buried within the sporophytic tissues of the ovule. Nevertheless, it has become an attractive model system to study the molecular mechanisms underlying patterning and cell type specification, as well as fertilization of the two female gametes, the egg and the central cell. While female gametes, zygotes, and early embryos can be manually isolated from the embryo sacs in maize, wheat, tobacco, and rice by micromanipulation, this approach had been considered impossible for the much smaller embryo sac of the model plant Arabidopsis thaliana. Here, we describe a method to isolate living cells from the Arabidopsis female gametophyte by micromanipulation. The manual isolation of egg cells, central cells, and synergid cells is a technique that enables a number of important studies such as cell-type-specific transcriptional profiling or the analysis of DNA methylation profiles. It also offers the possibility to use isolated female gametes for in vitro fertilization studies.
Collapse
Affiliation(s)
- Maria Englhart
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Lucija Šoljić
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
5
|
Embryogenesis and Plant Regeneration from Isolated Wheat Zygotes. Methods Mol Biol 2015; 1359:503-14. [PMID: 26619884 DOI: 10.1007/978-1-4939-3061-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Wheat zygotes can be mechanically isolated and cultivated to continue their development in vitro. Since each zygote needs to be individually isolated, only relatively few of these cells are available per experiment. To facilitate embryonic growth despite of this limitation, the zygotes are kept within a culture insert placed in a larger dish which itself contains embryogenic pollen cocultivated for continuous medium conditioning. This setup ensures that the two cultures, while being physically separated from one another, can exchange essential intercellular signal molecules passing through the bottom of the insert which is made of a permeable membrane. Thanks to the natural fate of zygotes, which is to form an embryo followed by the generation of a plant, embryogenesis and plant regeneration are achieved at much higher efficiency as compared to other single-cell systems. While the method is largely independent of the genotype, it allows for the nondestructive observation, manipulation, and individual analysis of zygotes and very young embryos.
Collapse
|
6
|
Schmid MW, Schmidt A, Grossniklaus U. The female gametophyte: an emerging model for cell type-specific systems biology in plant development. FRONTIERS IN PLANT SCIENCE 2015; 6:907. [PMID: 26579157 PMCID: PMC4630298 DOI: 10.3389/fpls.2015.00907] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/10/2015] [Indexed: 05/03/2023]
Abstract
Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods ("omics") now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis). Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.
Collapse
Affiliation(s)
| | | | - Ueli Grossniklaus
- Department of Plant & Microbial Biology and Zurich-Basel Plant Science Center, University of ZurichZurich, Switzerland
| |
Collapse
|
7
|
Lippmann R, Friedel S, Mock HP, Kumlehn J. The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis. FRONTIERS IN PLANT SCIENCE 2015; 6:498. [PMID: 26217352 PMCID: PMC4493395 DOI: 10.3389/fpls.2015.00498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 05/05/2023]
Abstract
Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well-established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five-fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every 4 days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore, the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species.
Collapse
Affiliation(s)
| | | | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| |
Collapse
|
8
|
Abiko M, Maeda H, Tamura K, Hara-Nishimura I, Okamoto T. Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up- or down-regulated genes in zygotes after fertilization. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1927-40. [PMID: 23570690 PMCID: PMC3638821 DOI: 10.1093/jxb/ert054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In angiosperms, fertilization and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries; therefore, these processes are poorly elucidated. In this study, microarray-based transcriptome analyses were conducted on rice sperm cells, egg cells, and zygotes isolated from flowers to identify candidate genes involved in gametic and/or early zygotic development. Cell type-specific transcriptomes were obtained, and up- or down-regulated genes in zygotes after fertilization were identified, in addition to genes enriched in male and female gametes. A total of 325 putatively up-regulated and 94 putatively down-regulated genes in zygotes were obtained. Interestingly, several genes encoding homeobox proteins or transcription factors were identified as highly up-regulated genes after fertilization, and the gene ontology for up-regulated genes was highly enriched in functions related to chromatin/DNA organization and assembly. Because a gene encoding methyltransferase 1 was identified as a highly up-regulated gene in zygotes after fertilization, the effect of an inhibitor of this enzyme on zygote development was monitored. The inhibitor appeared partially to affect polarity or division asymmetry in rice zygotes, but it did not block normal embryo generation.
Collapse
Affiliation(s)
- Mafumi Abiko
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| | - Hiroki Maeda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| |
Collapse
|
9
|
Techniques of cell type-specific transcriptome analysis and applications in researches of sexual plant reproduction. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1090-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Okamoto T. In vitro fertilization with rice gametes: production of zygotes and zygote and embryo culture. Methods Mol Biol 2011; 710:17-27. [PMID: 21207258 DOI: 10.1007/978-1-61737-988-8_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In vitro fertilization (IVF) systems using isolated male and female gametes have been utilized to dissect fertilization-induced events in angiosperms, such as egg activation, zygote development, and early embryogenesis, since the female gametophytes of plants are deeply embedded within ovaries. A rice IVF system was established to take advantage of the abundant resources stemming from rice research for investigations into the mechanisms of fertilization and early embryogenesis. Fusion of gametes can be performed using electrofusion and the fusion product, a zygote, forms a cell wall and an additional nucleolus. The zygote divides into an asymmetric two-celled embryo and develops into an early globular embryo, as in planta. The embryo further develops into irregularly shaped cell masses and fertile plants can be regenerated from the cell masses. This rice IVF system is a powerful tool for studying the molecular mechanisms involved in the early embryogenesis of angiosperms and for making new cultivars.
Collapse
Affiliation(s)
- Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
11
|
Hu TX, Yu M, Zhao J. Comparative transcriptional profiling analysis of the two daughter cells from tobacco zygote reveals the transcriptome differences in the apical and basal cells. BMC PLANT BIOLOGY 2010; 10:167. [PMID: 20699003 PMCID: PMC3095300 DOI: 10.1186/1471-2229-10-167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/11/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND In angiosperm, after the first asymmetric zygotic cell division, the apical and basal daughter cells follow distinct development pathways. Global transcriptome analysis of these two cells is essential in understanding their developmental differences. However, because of the difficulty to isolate the in vivo apical and basal cells of two-celled proembryo from ovule and ovary in higher plants, the transcriptome analysis of them hasn't been reported. RESULTS In this study, we developed a procedure for isolating the in vivo apical and basal cells of the two-celled proembryo from tobacco (Nicotiana tabacum), and then performed a comparative transcriptome analysis of the two cells by suppression subtractive hybridization (SSH) combined with macroarray screening. After sequencing, we identified 797 differentially expressed ESTs corresponding to 299 unigenes. Library sequence analysis successfully identified tobacco homologies of genes involved in embryogenesis and seed development. By quantitative real-time PCR, we validated the differential expression of 40 genes, with 6 transcripts of them specifically expressed in the apical or basal cell. Expression analysis also revealed some transcripts displayed cell specific activation in one of the daughter cells after zygote division. These differential expressions were further validated by in situ hybridization (ISH). Tissue expression pattern analysis also revealed some potential roles of these candidate genes in development. CONCLUSIONS The results show that some differential or specific transcripts in the apical and basal cells of two-celled proembryo were successfully isolated, and the identification of these transcripts reveals that these two daughter cells possess distinct transcriptional profiles after zygote division. Further functional work on these differentially or specifically expressed genes will promote the elucidation of molecular mechanism controlling early embryogenesis.
Collapse
Affiliation(s)
- Tian-Xiang Hu
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Miao Yu
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Karami O, Aghavaisi B, Mahmoudi Pour A. Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2009; 2:177-90. [PMID: 19763658 PMCID: PMC2763145 DOI: 10.1007/s12154-009-0028-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 08/18/2009] [Accepted: 08/25/2009] [Indexed: 11/30/2022] Open
Abstract
Somatic embryogenesis (SE) is a model system for understanding the physiological, biochemical, and molecular biological events occurring during plant embryo development. Plant somatic cells have the ability to undergo sustained divisions and give rise to an entire organism. This remarkable feature is called plant cell totipotency. SE is a notable illustration of plant totipotency and involves reprogramming of development in somatic cells toward the embryogenic pathway. Plant growth regularities, especially auxins, are key components as their exogenous application recapitulates the embryogenic potential of the mitotically quiescent somatic cells. It has been observed that there are genetic and also physiological factors that trigger in vitro embryogenesis in various types of plant somatic cells. Analysis of the proteome and transcriptome has led to the identification and characterization of certain genes involved in SE. Most of these genes, however, are upregulated only in the late developmental stages, suggesting that they do not play a direct role in the vegetative-to-embryogenic transition. However, the molecular bases of those triggering factors and the genetic and biochemical mechanisms leading to in vitro embryogenesis are still unknown. Here, we describe the plant factors that participate in the vegetative-to-embryogenic transition and discuss their possible roles in this process.
Collapse
Affiliation(s)
- Omid Karami
- Department of Biotechnology, Bu-Ali Sina University, Hamedan, Iran
| | | | | |
Collapse
|
13
|
Histological comparison between wheat embryos developing in vitro from isolated zygotes and those developing in vivo. ACTA ACUST UNITED AC 2008; 22:15-25. [PMID: 20033452 DOI: 10.1007/s00497-008-0087-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/17/2008] [Indexed: 01/09/2023]
Abstract
There is currently great interest shown in understanding the process of embryogenesis and, due to the relative inaccessibility of these structures in planta, extended studies are carried out in various in vitro systems. The culture of isolated zygotes in particular provides an excellent platform to study the process of in planta embryogenesis. However, very few comparisons have been made between zygotic embryos grown entirely in cultures and those grown in vivo. The present study analyses the differences and similarities between the in vitro and in vivo development of wheat zygotic embryos at the level of morphology and histology. The study was possible thanks to an efficient culture system and an appropriate method of preparing isolated wheat zygotes for microscopy. The in vitro embryos were fixed, embedded and sectioned in the two-celled, globular, club-shaped and fully differentiated stages. Embryos developing in vitro closely followed the morphology of their in planta counterparts and their cell types and tissues were also similar, demonstrating the applicability of the present culture system for studying the process of zygotic embryogenesis. However, some important differences were also detected in the case of in vitro development: the disturbance of or lack of initial polarity led to changes in the division symmetry of the zygotes and subsequently to the formation of uniform cells in the globular structures. Presumably, differences between the in vitro and in planta environments resulted in a lower level of differentiation and maturation in in vitro embryos and in abundant starch and protein accumulation in the scutellum.
Collapse
|
14
|
Seguí-Simarro JM, Nuez F. How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. PHYSIOLOGIA PLANTARUM 2008; 134:1-12. [PMID: 18507790 DOI: 10.1111/j.1399-3054.2008.01113.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microspore embryogenesis is the most powerful androgenic pathway to produce haploid and doubled haploid plants. To deviate a microspore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the microspore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of microspore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. In this review, we compile the most recent advances in the understanding of the changes undergone by the induced microspore to readapt to the new developmental scenario. We devote special attention to the efforts made to uncover changes in the transcriptome of the induced microspore and microspore-derived embryo (MDE). Finally, we discuss the influence that an in vitro environment exerts over the MDE, as compared with its zygotic counterpart.
Collapse
Affiliation(s)
- José M Seguí-Simarro
- Instituto para la Conservación y Mejora de la Agrodiversidad Valenciana, Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Valencia, Spain.
| | | |
Collapse
|
15
|
Isolation of egg cells and zygotes of Torenia fournieri L. and determination of their surface charge. ZYGOTE 2008; 16:179-86. [PMID: 18405439 DOI: 10.1017/s0967199408004693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Egg cells of Torenia fournieri were isolated from embryo sacs 1 day after anthesis using enzymatic digestion or mechanical dissection. About 5% of the egg cells and zygotes (2-3 from 50 ovules) could be mechanically dissected within 2 h. When 0.1% cellulase and 0.1% pectinase were added to the mannitol isolation solution, about 18% of the egg cells (8-10 from 50 ovules) could be isolated within 2 h. The egg cells isolated by mechanical dissection could be used for in vitro fertilization studies without any of the potentially deleterious effects of the enzymes on the plasma membrane of egg cell. The egg cells isolated using enzymatic digestion could be used in the study of the molecular biology of female gamete because more egg cells could be isolated with this technique. Using enzymatic digestion, over 10 zygotes from 50 ovules (over 20%) were isolated from the pollinated ovules. Coupled with our successful isolation of mature sperm cells, the isolation of egg cells of T. fournieri will make in vitro fertilization possible in a dicotyledon plant.
Collapse
|
16
|
Abstract
Methods have been developed to isolate gametes of higher plants and to fertilize them in vitro. Zygotes, embryos, fertile plants and endosperm can now be obtained from in vitro fusion of pairs of sperm and egg cells and of pairs of sperm and central cells, respectively. This allows examination of the earliest developmental processes precisely timed after fertilization. The isolated egg and central cell, fertilized and cultured in vitro, are able to self-organize apart from each other and without mother tissue in the typically manner. Thus, this system is a powerful and unique model for studies of early zygotic embryogenesis and endosperm development. The underlying processes are now comparatively studied in detail by investigations of expression of genes and their corresponding proteins. The use of these techniques opens new avenues in fundamental and applied research in the areas of developmental and reproductive plant biology.
Collapse
Affiliation(s)
- Erhard Kranz
- Biozentrum Klein Flottbek und Botanischer Garten, Entwicklungsbiologie und Biotechnologie, Ohnhorststr. 18, Universität Hamburg, 22609 Hamburg, Germany
| | | | | |
Collapse
|
17
|
In vitro fertilization: analysis of early post-fertilization development using cytological and molecular techniques. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s00497-007-0060-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Uchiumi T, Uemura I, Okamoto T. Establishment of an in vitro fertilization system in rice (Oryza sativa L.). PLANTA 2007; 226:581-9. [PMID: 17361458 DOI: 10.1007/s00425-007-0506-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 02/26/2007] [Indexed: 05/11/2023]
Abstract
In vitro fertilization (IVF) systems using isolated male and female gametes have been utilized to dissect fertilization-induced events in angiosperms, such as egg activation, zygote development and early embryogenesis, as the female gametophytes of plants are deeply embedded within ovaries. In this study, a rice IVF system was established to take advantage of the abundant resources stemming from rice research for investigations into the mechanisms of fertilization and early embryogenesis. Fusion of gametes was performed using a modified electrofusion method, and the fusion product, a zygote, formed cell wall and an additional nucleolus. The zygote divided into a two-celled embryo 15-24 h after fusion, and developed into a globular-like embryo consisting of an average of 15-16 cells by 48 h after fusion. Comparison of the developmental processes of zygotes produced by IVF with those of zygotes generated in planta suggested that zygotes produced by IVF develop and grow into early globular stage embryos in a highly similar manner to those in planta. Although the IVF-produced globular embryos did not develop into late globular-stage or differentiated embryos, but into irregularly shaped cell masses, fertile plants were regenerated from the cell masses and the seeds harvested from these plants germinated normally. The rice IVF system reported here will be a powerful tool for studying the molecular mechanisms involved in the early embryogenesis of angiosperms and for making new cultivars.
Collapse
Affiliation(s)
- Takao Uchiumi
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
19
|
He YC, He YQ, Qu LH, Sun MX, Yang HY. Tobacco zygotic embryogenesis in vitro: the original cell wall of the zygote is essential for maintenance of cell polarity, the apical-basal axis and typical suspensor formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:515-27. [PMID: 17243994 DOI: 10.1111/j.1365-313x.2006.02970.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have developed a reliable in vitro zygotic embryogenesis system in tobacco. A single zygote of a dicotyledonous plant was able to develop into a fertile plant via direct embryogenesis with the aid of a co-culture system in which fertilized ovules were employed as feeders. The results confirmed that a tobacco zygote could divide in vitro following the basic embryogenic pattern of the Solanad type. The zygote cell wall and directional expansion are two critical points in maintaining apical-basal polarity and determining the developmental fate of the zygote. Only those isolated zygotes with an almost intact original cell wall could continue limited directional expansion in vitro, and only these directionally expanded zygotes could divide into typical apical and basal cells and finally develop into a typical embryo with a suspensor. In contrast, isolated zygote protoplasts deprived of cell walls could enlarge but could not directionally elongate, as in vivo zygotes do before cell division, even when the cell wall was regenerated during in vitro culture. The zygote protoplasts could also undergo asymmetrical division to form one smaller and one larger daughter cell, which could develop into an embryonic callus or a globular embryo without a suspensor. Even cell walls that hung loosely around the protoplasts appeared to function, and were closely correlated with the orientation of the first zygotic division and the apical-basal axis, further indicating the essential role of the original zygotic cell wall in maintaining apical-basal polarity and cell-division orientation, as well as subsequent cell differentiation during early embryo development in vitro.
Collapse
Affiliation(s)
- Yu-Chi He
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
20
|
In vitro fertilization as a tool for investigating sexual reproduction of angiosperms. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s00497-006-0029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Hoshino Y, Murata N, Shinoda K. Isolation of individual egg cells and zygotes in Alstroemeria followed by manual selection with a microcapillary-connected micropump. ANNALS OF BOTANY 2006; 97:1139-44. [PMID: 16621859 PMCID: PMC2803394 DOI: 10.1093/aob/mcl072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/08/2005] [Accepted: 02/11/2006] [Indexed: 05/08/2023]
Abstract
AIMS To develop a procedure for isolating living egg cells and zygotes from Alstroemeria ovules. SCOPE An attempt was made to isolate egg cells and zygotes from the ovules of Alstroemeria aurea. The ovules were histologically observed using a clearing procedure which revealed the localization and sizes of the embryo sacs and egg apparatus within the ovules. For the isolation of egg cells, ovules were cut into sections with a surgical blade and treated with an enzyme solution. Subsequently, these ovule sections were dissected using a glass needle under an inverted microscope. Egg cells successfully isolated by this procedure were collected using microcapillaries connected to a micropump. For zygote isolation, ovules were excised from ovaries 24 h after self-pollination. By treating excised ovules with an enzyme solution and subsequently dissecting them using a glass needle, zygotes were successfully isolated from the ovules and collected with a microcapillary. The isolated zygotes were associated with pollen tubes and one of the synergids. Egg cells and zygotes were viable for up to 2 h following isolation, as determined by fluorescein diacetate staining. CONCLUSIONS The procedures for isolating egg cells and zygotes in Alstroemeria were established, and each egg cell and zygote was captured with a microcapillary.
Collapse
Affiliation(s)
- Yoichiro Hoshino
- Field Science Center for Northern Biosphere, Hokkaido University, Kita 11, Nishi 10, Sapporo 060-0811, Japan.
| | | | | |
Collapse
|
22
|
Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T. The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:660-72. [PMID: 15703054 DOI: 10.1111/j.1365-313x.2005.02332.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we report the transcript profile of wheat egg cells and proembryos, just after the first cell division. Microdissected female gametophytes of wheat were used to isolate eggs and two-celled proembryos to construct cell type-specific cDNA libraries. In total, 1197 expressed sequence tags (ESTs) were generated. Analysis of these ESTs revealed numerous novel transcripts. In egg cells, 17.6% of the clustered ESTs represented novel transcripts, while 11.4% novel clusters were identified in the two-celled proembryo. Functional classification of sequences with similarity to previously characterized proteins indicates that the unfertilized egg cell has a higher metabolic activity and protein turnover than previously thought. Transcript composition of two-celled proembryos was significantly distinct from egg cells, reflecting DNA replication as well as high transcriptional and translational activity. Several novel transcripts of the egg cell are specific for this cell. In contrast, some fertilization induced novel mRNAs are abundant also in sporophytic tissues indicating a more general role in plant growth and development. The potential functions of genes based on similarity to known genes involved in developmental processes are discussed. Our analysis has identified numerous genes with potential roles in embryo sac function such as signaling, fertilization or induction of embryogenesis.
Collapse
Affiliation(s)
- Stefanie Sprunck
- Developmental Biology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Regeneration of fertile plants from isolated tobacco zygotes byin vitro culture. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf02889752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Faure JE. Double fertilization in flowering plants: discovery, study methods and mechanisms. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:551-8. [PMID: 11455878 DOI: 10.1016/s0764-4469(01)01325-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The double fertilization of flowering plants was discovered a century ago. The cytology of the gametes is now well known. However the description of the fertilization steps is still poor and most of the cellular and molecular mechanisms involved are unknown. Recent research using in vitro fertilization demonstrated that the early steps of fertilization share some homology with those in animal species. In particular, gamete fusion is followed by a cytosolic calcium increase in the fertilized egg as well as a calcium influx. Further understanding of fertilization also comes from the analysis of mutants isolated in Arabidopsis thaliana. Important new ideas have already emerged from these studies such as the importance of the female gametophyte in embryo development, and an early silencing of the male genome during the first days following gamete fusion.
Collapse
Affiliation(s)
- J E Faure
- Ecole normale supérieure, Laboratory of Plant Reproduction and Development, UMR 5667 CNRS-Inra-ENS-Lyon-UCB-Lyon-I, 69364 Lyon, France.
| |
Collapse
|
26
|
Magnard JL, Le Deunff E, Domenech J, Rogowsky PM, Testillano PS, Rougier M, Risueño MC, Vergne P, Dumas C. Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. PLANT MOLECULAR BIOLOGY 2000; 44:559-574. [PMID: 11197329 DOI: 10.1023/a:1026521506952] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reproduction in flowering plants is characterized by double fertilization and the resulting formation of both the zygotic embryo and the associated endosperm. In many species it is possible to experimentally deviate pollen development towards an embryogenic pathway. This developmental switch, referred to as microspore embryogenesis or androgenesis, leads to the formation of embryos similar to zygotic embryos. In a screen for genes specifically expressed during early androgenesis, two maize genes were isolated by mRNA differential display. Both genes represent new molecular markers expressed at a very young stage of androgenic embryogenesis. When their expression pattern was studied during normal reproductive development, both showed early endosperm-specific expression. Investigation of the cytological features of young androgenic embryos revealed that they present a partially coenocytic organization similar to that of early endosperm. These findings suggest that maize androgenesis may possibly involve both embryogenesis and the establishment of endosperm-like components.
Collapse
MESH Headings
- Blotting, Southern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- In Situ Hybridization
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Pollen/cytology
- Pollen/genetics
- Pollen/growth & development
- Polymorphism, Restriction Fragment Length
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reproduction/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Seeds/genetics
- Seeds/growth & development
- Sequence Analysis, DNA
- Zea mays/genetics
- Zea mays/growth & development
Collapse
Affiliation(s)
- J L Magnard
- Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, UMR 5667 CNRS-INRA-UCB Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Plant development involves specification and elaboration of axes of asymmetry. The apical-basal and inside-outside axes arise in embryogenesis, and are probably oriented maternally. They are maintained during growth post-germination and interact to establish novel axes of asymmetry in flowers and lateral organs (such as leaves). Whereas the genetic control of axis elaboration is now partially understood in embryos, floral meristems, and organs, the underlying mechanisms of axis specification remain largely obscure. Less functionally significant aspects of plant asymmetry (e.g. the handedness of spiral phyllotaxy) may originate in random events and therefore have no genetic control.
Collapse
Affiliation(s)
- A. Hudson
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JH United Kingdom; e-mail:
| |
Collapse
|
28
|
Holm PB, Olsen O, Schnorf M, Brinch-Pedersen H, Knudsen S. Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Res 2000; 9:21-32. [PMID: 10853266 DOI: 10.1023/a:1008974729597] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Barley zygote protoplasts were mechanically isolated, embedded in agarose droplets, and microinjected with a rice actin promoter Act1-gusA-nos gene construct. On average 62% of the cells survived the injection and of these 55% continued development into embryo-like structures and eventually to plants. PCR screening for the presence of a 307-bp fragment in the middle of the gusA gene showed that on average 21% of the derived structures contained this fragment. However, among the hundreds of injected zygotes, derived structures and regenerants we only found significant GUS expression in two cases (embryo-like structures nine days after injection). Two lines of green plants, derived from zygotes microinjected with linearized plasmid (line A147-1) or an isolated Act1-gusA-nos gene cassette (line A166-h) proved to be transgenic. Line A147-1 appeared to contain a single and intact copy of the expression cassette but a PCR based progeny analysis indicated the presence of additional shorter fragments of the cassette. Line A166-h appeared to contain a single fragment of the gusA gene that was transferred to the progeny as a single Mendelian trait. One additional fragment of the gusA gene was identified in this line. The present data show that transformation of barley by microinjection of DNA into isolated zygotes is feasible but also that gene expression rarely is achieved, possibly due to degradation of the introduced DNA.
Collapse
Affiliation(s)
- P B Holm
- Danish Institute of Agricultural Sciences, Department of Plant Biology, Research Centre Flakkebjerg, Slagelse, Denmark.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Tian HQ, Russell SD. Micromanipulation of male and female gametes ofNicotiana tabacum: II. Preliminary attempts for in vitro fertilization and egg cell culture. PLANT CELL REPORTS 1997; 16:657-661. [PMID: 30727614 DOI: 10.1007/bf01275510] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/1996] [Revised: 01/03/1997] [Accepted: 01/13/1997] [Indexed: 06/09/2023]
Abstract
This research is part of an attempt to establish an in vitro fertilization system in tobacco to aid in understanding mechanisms of fertilization. Fusions of isolated male and female gametes were induced in a polyethylene glycol solution. Fusion appears similar to that in maize. One nuclear division of both an unfertilized egg cell and a synergid was induced in KM8p medium with 1 mg/l 2,4-dichlorophenoxyacetic acid in a microchamber culture; one cellular division of the egg cell was also induced in the same medium in solid-drop culture. The osmolality of suspension culture feeder cells was critical for the development of these cells. These results indicate that in vitro fertilization is possible in tobacco, which would be the first such system in dicots.
Collapse
Affiliation(s)
- H Q Tian
- Department of Botany and Microbiology, University of Oklahoma, 73019, Norman, OK, USA
| | - S D Russell
- Department of Botany and Microbiology, University of Oklahoma, 73019, Norman, OK, USA.
| |
Collapse
|
31
|
Tian HQ, Russell SD. Micromanipulation of male and female gametes ofNicotiana tabacum: I. Isolation of gametes. PLANT CELL REPORTS 1997; 16:555-560. [PMID: 30727578 DOI: 10.1007/bf01142323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/1996] [Revised: 01/03/1997] [Accepted: 01/13/1997] [Indexed: 06/09/2023]
Abstract
The isolation of male and female gametes is a precondition for the micromanipulation of flowering plant gametes. To reflect their condition at fertilization, isolated gametes need to be physiologically mature and vigorous. Sperm cells are isolated from pollen tubes grown on cut styles using the "in vivo/in vitro" technique. Embryo sacs are isolated 2 days after anthesis using brief treatments of minimal concentrations of cell-wall-digesting enzymes on ovules of emasculated flowers. Egg cells are then mechanically separated from the embryo sac, allowing unambiguous identification of cells. Two days is usually the minimum required for the pollen tube to penetrate the ovule and effect fertilization in vivo.
Collapse
Affiliation(s)
- H Q Tian
- Department of Biology, Wuhan University, Wuhan, China
| | - S D Russell
- Department of Biology, Wuhan University, Wuhan, China.
| |
Collapse
|
32
|
Abstract
The isolation of viable egg cells of rape (Brassica napus L.) has been achieved from microdissected ovules. The non-gametic cells of the embryo sac, synergids and central cells have also been isolated. Their morphology corresponded to that of these cells in situ, making a discrimination from isolated sporophytic cells possible. Two hours after isolation the egg cells were still viable. Viable egg cells have been reproducibly isolated with a frequency of 25% per dissected ovule.
Collapse
Affiliation(s)
- N Katoh
- Japan Tobacco Inc., Oyama, Japan
| | | | | |
Collapse
|
33
|
Sheridan WF, Avalkina NA, Shamrov II, Batygina TB, Golubovskaya IN. The mac1 gene: controlling the commitment to the meiotic pathway in maize. Genetics 1996; 142:1009-20. [PMID: 8849906 PMCID: PMC1207000 DOI: 10.1093/genetics/142.3.1009] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The switch from the vegetative to the reproductive pathway of development in flowering plants requires the commitment of the subepidermal cells of the ovules and anthers to enter the meiotic pathway. These cells, the hypodermal cells, either directly or indirectly form the archesporial cells that, in turn, differentiate into the megasporocytes and microsporocytes. We have isolated a recessive pleiotropic mutation that we have termed multiple archesporial cells1 (mac1) and located it to the short arm of chromosome 10. Its cytological phenotype suggests that this locus plays an important role in the switch of the hypodermal cells from the vegetative to the meiotic (sporogenous) pathway in maize ovules. During normal ovule development in maize, only a single hypodermal cell develops into an archesporial cell and this differentiates into the single megasporocyte. In mac1 mutant ovules several hypodermal cells develop into archesporial cells, and the resulting megasporocytes undergo a normal meiosis. More than one megaspore survives in the tetrad and more than one embryo sac is formed in each ovule. Ears on mutant plants show partial sterility resulting from abnormalities in megaspore differentiation and embryo sac formation. The sporophytic expression of this gene is therefore also important for normal female gametophyte development.
Collapse
Affiliation(s)
- W F Sheridan
- Department of Biology, University of North Dakota, Grand Forks 58202-9019, USA
| | | | | | | | | |
Collapse
|
34
|
Fischer C, Neuhaus G. In vitro development of globular zygotic wheat embryos. PLANT CELL REPORTS 1995; 15:186-191. [PMID: 24185773 DOI: 10.1007/bf00193717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/1995] [Revised: 05/02/1995] [Indexed: 06/02/2023]
Abstract
We have established in vitro culture conditions for globular zygotic wheat embryos (Triticum aestivum L.). Their nutritional requirements have been systematically investigated. The initial sucrose concentration, as well as the sucrose concentration during the culture, a 6-benzylaminopurine supplement, the use of nitrates and ammonium as nitrogen source have a major influence on the embryo development. Proline has an inhibitory effect on the germination. A double layer system with different media was used to give a continuous variation of the medium composition with time. These culture conditions allowed normal direct embryogenesis in up to 47% of the globular embryos.
Collapse
Affiliation(s)
- C Fischer
- Institute for Plant Sciences, Swiss Federal Institute of Technology (ETH), Universitätstr. 2, CH-8092, Zürich, Switzerland
| | | |
Collapse
|
35
|
Kovács M, Barnabás B, Kranz E. Electro-fused isolated wheat (Triticum aestivum L.) gametes develop into multicellular structures. PLANT CELL REPORTS 1995; 15:178-180. [PMID: 24185771 DOI: 10.1007/bf00193715] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/1994] [Revised: 05/22/1995] [Indexed: 06/02/2023]
Abstract
The electrofusion-mediated fertilization of single egg cells of wheat with isolated individually selected wheat sperm cells was successfully carried out for the first time. On average the fusion frequency was 30% but under optimal conditions it was possible to reach as much as 55%. Two days after electric fusion 60% of the fusion products started to divide, 88.5% of them forming multicellular structures and in a few cases microcalluses. The culture of single unfertilized egg cells with or without the application of AC field and electric pulses induced no cell division. The egg cells and fusion products were cultured in a maize feeder-cell system.
Collapse
Affiliation(s)
- M Kovács
- Cell Biology Department, Agricultural Research Institute of the Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | | | | |
Collapse
|
36
|
Mol R, Matthys-Rochon E, Dumas C. Embryogenesis and plant regeneration from maize zygotes by in vitro culture of fertilized embryo sacs. PLANT CELL REPORTS 1995; 14:743-7. [PMID: 24186704 DOI: 10.1007/bf00232914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/1994] [Revised: 02/15/1995] [Indexed: 05/26/2023]
Abstract
Fertilized embryo sacs of Zea mays were isolated and cultured In vitro. Each explant contained one zygote and 2-4 endosperm nuclei which formed, respectively, embryo and cellular endosperm during the culture. In our double-layer/two-phase culture system, NBM medium (Mòl et al. 1993) supplemented with 0.1-1.0 mg·l(-1) zeatin and 12 % sucrose showed the best results. On this medium, embryos were isolated from 37-54 % of two-week-old explants. They were similar to maize embryos developing in vivo. We have shown that development of stage-2 embryos (according to Abbe and Stein 1954) with two leaf primordia and normally differentiated provascular tissue is possible from the maize zygote in an in vitro culture system. Some embryos with enlarged and deformed scutellum or whole apical parts were also found. Up to 62 % of the embryos germinating on a simple medium regenerated into mature and fertile plants; i.e. 23 % of explants yielded plants. This unproved culture method results in better embryo differentiation and 14-fold increase of regeneration frequency than previous protocol.
Collapse
Affiliation(s)
- R Mol
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, PL 61-713, Poznan, Poland
| | | | | |
Collapse
|
37
|
|
38
|
Dumas C, Faure JE. Use of in vitro fertilization and zygote culture in crop improvement. Curr Opin Biotechnol 1995. [DOI: 10.1016/0958-1669(95)80029-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
|