1
|
Xie T, Cao GY, Zhang S, Li MK, Jin X, Liu L, Wang G, Zhen L. Discovery of Thiazole Carboxamides as Novel Vanin-1 Inhibitors for Inflammatory Bowel Disease Treatment. J Med Chem 2024. [PMID: 39514323 DOI: 10.1021/acs.jmedchem.4c01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a clinically heterogeneous disease demanding more therapeutic targets and intervention strategies. Vanin-1, an oxidative stress-regulating protein, has emerged as a promising target for alleviating inflammation and oxidative stress. In this study, a series of thiazole carboxamide derivatives as vanin-1 inhibitors were designed and synthesized. The preferred compound, X17, demonstrated potent inhibition against vanin-1 at the protein, HT-29 cell, and tissue levels, whose binding mode with the target was confirmed via the cocrystal structure. X17 achieved a high bioavailability of 81% in rats, accompanied by concentration-dependent inhibition of serum vanin-1. In a DSS-induced mouse colitis model, X17 exhibited potent anti-inflammatory and antioxidant activities, repressing the inflammatory factor expressions and myeloperoxidase activity, elevating the colonic glutathione reserve, and restoring the intestinal barrier. Collectively, these findings depict the discovery of a potent vanin-1 inhibitor, providing an opportunity for further drug candidate development for treating IBD.
Collapse
Affiliation(s)
- Tao Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Gao-Yao Cao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Shize Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Meng-Ke Li
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xin Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
2
|
Feng Y, Xu S, Guo H, Ren TB, Huan SY, Yuan L, Zhang XB. Vanin-1-Activated Chemiluminescent Probe: Help to Early Diagnosis of Acute Kidney Injury with High Signal-to-Noise Ratio through Urinalysis. Anal Chem 2023; 95:14754-14761. [PMID: 37734030 DOI: 10.1021/acs.analchem.3c02875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Acute kidney injury (AKI) is a common medical condition with high morbidity and mortality. Although urinalysis provides a noninvasive and convenient diagnostic method for AKI at the molecular level, the low sensitivity of current chemical probes used in urinalysis hinders the time diagnosis of AKI. Herein, we achieved the sensitive and early diagnosis of AKI by the development of a chemiluminescent probe CL-Pa suitable for detection of urinary Vanin-1. Vanin-1 is considered as an early and sensitive biomarker for AKI, while few chemical probes have been applied to for its efficient detection. By virtue of the low autofluorescence interference during urine imaging in the chemiluminescence model, CL-Pa could realize the monitoring of the up-regulated urinary Vanin-1 with a high signal-to-noise ratio (∼588). Importantly, under the help of CL-Pa, the up-regulation of urinary Vanin-1 of cisplatin-induced AKI mice at 12 h post cisplatin injection was detected, which was much earlier than clinical biomarkers (sCr and BUN) and change of kidney histology (48 h post cisplatin injection). Furthermore, using this probe, the fluctuation of urinary Vanin-1 of mice with different degrees of AKI was monitored. This study demonstrated the ability of CL-Pa in sensitively detecting drug-induced AKI through urinalysis and suggested the great potential of CL-Pa for early diagnosis of AKI and evaluate the efficiency of anti-AKI drugs clinically.
Collapse
Affiliation(s)
- Yurong Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Haowei Guo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Tian-Bing Ren
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Yan Huan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
3
|
Mujafarkani N, Bassey V, Tokono JJ, Ahamed AJ, Benjamin I, Agurokpon DC, Waliya YJ, Louis H. Synthesis, characterization, and molecular modeling of phenylenediamine-phenylhydrazine-formaldehyde terpolymer (PPHF) as potent anti-inflammatory agent. Heliyon 2023; 9:e18067. [PMID: 37483726 PMCID: PMC10362139 DOI: 10.1016/j.heliyon.2023.e18067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Inflammation, a characteristic physiological response to infections and tissue damage, commences with processes involving tissue repair and pathogen elimination, contributing to the restoration of homeostasis at affected sites. Hence, this study presents a comprehensive analysis addressing diverse aspects associated with this phenomenon. The investigation encompasses the synthesis, spectral characterizations (FT-IR, 1H NMR, and 13C NMR), and molecular modeling of p-phenylenediamine-phenylhydrazine-formaldehyde terpolymer (PPHF), a potent agent in promoting inflammation. To explore the reactivity, bonding nature, and spectroscopy, as well as perform molecular docking for in-silico biological evaluation, density functional theory (DFT) utilizing the def2svp/B3LYP-D3BJ method was employed. The results reveal significant biological activity of the tested compound in relation to anti-inflammatory proteins, specifically 6JD8, 5TKB, and 4CYF. Notably, upon interaction between PPHF and 6JD8, a binding affinity of -4.5 kcal/mol was observed. Likewise, the interaction with 5TKB demonstrated an affinity of -7.8 kcal/mol. Furthermore, a bonding affinity of -8.1 kcal/mol was observed for the interaction with 4CYF. Importantly, these values closely correspond to those obtained from the interaction between the proteins and the standard drug ibuprofen (IBF), which exhibited binding affinities of -5.9 kcal/mol, -7.0 kcal/mol, and -6.1 kcal/mol, respectively. Thus, these results provide compelling evidence affirming the tremendous potential of p-phenylenediamine-phenylhydrazine-formaldehyde (PPHF) as a highly promising anti-inflammatory agent, owing to the presence of nitrogen-a heteroatom within the compound.
Collapse
Affiliation(s)
- N. Mujafarkani
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, 620020, Tamilnadu, India
| | - Victoria Bassey
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Jumbo J. Tokono
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - A. Jafar Ahamed
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, 620020, Tamilnadu, India
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Daniel C. Agurokpon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, University of Cross River State, Calabar Nigeria
| | - Yohanna J. Waliya
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
4
|
Nawaz MZ, Attique SA, Ain QU, Alghamdi HA, Bilal M, Yan W, Zhu D. Discovery and characterization of dual inhibitors of human Vanin-1 and Vanin-2 enzymes through molecular docking and dynamic simulation-based approach. Int J Biol Macromol 2022; 213:1088-1097. [PMID: 35697166 DOI: 10.1016/j.ijbiomac.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022]
Abstract
The vanins are ectoenzymes with pantetheinase activity and are involved in recycling pantothenic acid (vitamin B5) from pantetheine. Elevated levels of vanin have been linked with the development and severity of several diseases, including steatosis, diabetes, skin diseases, cancer, inflammatory diseases etc. Therefore, vanins have previously been used as a potential drug target to combat related diseases. In this study, we used a molecular docking and molecular dynamic simulation-based approach to screen dual inhibitors of hVnn1, and hVnn2 from a library of 120 chemical candidates. Molecular docking of drug candidates with hVnn1, and hVnn2 using GOLD and MOE revealed that the chemical compound "methotrexate (CID: 126941)" has the highest binding affinity against both the target enzymes which was further validated through molecular dynamic simulation. Toxicity profiling of drug candidates evaluated using Lipinski's rule of five and Molsoft tool, and AdmetSar 2.0 confirms the drug suitability of methotrexate, therefore, suggesting its use as a potential therapeutic agent to inhibit the activity of vainin enzyme in related disease conditions.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Computer Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Syed Awais Attique
- Department of Computer Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Qurat-Ul Ain
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China.
| | - Wei Yan
- Department of Marine Science, College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
5
|
Yoneyama H, Hosohata K, Jin D, Yoshida I, Toyoda M, Kitamura I, Takai S, Usami Y. Design, synthesis, and evaluation of new vanin-1 inhibitors based on RR6. Bioorg Med Chem 2022; 65:116791. [PMID: 35537325 DOI: 10.1016/j.bmc.2022.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Fourteen novel vanin-1 inhibitors coded OMP-# were designed from RR6 and successfully synthesized by a nucleophilic addition-elimination reaction of the pantetheinic acid-derived Weinreb amide as a key step under Barbier conditions. The synthesized OMP compounds exhibited inhibitory activity against human serum vanin-1 in vitro. Among the synthesized compounds, OMP-7, which possesses a trifluoromethoxy group at the para-position on the phenyl ring, exhibited the most potent activity, approximately 20 times that of the mother compound RR6. OMP-7 was further subjected to an in vivo assay using a normal hamster. More potent activity was observed than that of RR6 against both serum and renal vanin-1. The activity lasted for 4 h after injection against serum vanin-1 and 1 h after injection against renal vanin-1, whereas RR6 did not show the desired activity.
Collapse
Affiliation(s)
- Hiroki Yoneyama
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Keiko Hosohata
- Education and Research Center of Clinical Pharmacy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka 569-8686, Japan
| | - Iroha Yoshida
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Miyui Toyoda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Ikuko Kitamura
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka 569-8686, Japan
| | - Yoshihide Usami
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan.
| |
Collapse
|
6
|
Wang G, Wang J, Du L, Li M. Visualization-Based Discovery of Vanin-1 Inhibitors for Colitis. Front Chem 2022; 9:809495. [PMID: 35155380 PMCID: PMC8831383 DOI: 10.3389/fchem.2021.809495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The main effect of Vanin-1/VNN1 is related to its pantetheinase sulfhydrylase activity, which can hydrolyze pantetheine into pantothenic acid and cysteamine. In recent studies, the enzymatic activity of vanin-1/VNN1 has been found to be essential in the development of many diseases. The study of specific vanin-1/VNN1 inhibitors can give us a deeper understanding of its role in the disease process. In this study, different skeletal inhibitors were designed and synthesized using pyrimidine amide compounds as lead compounds. In order to screen inhibitors intuitively, a fluorescent probe PA-AFC for in vitro evaluation of inhibitors was designed and synthesized in this study, which has good sensitivity and specificity. The bioluminescent probe PA-AL was then used for cellular level and in vivo inhibitor evaluation. This screening method was convenient, economical and highly accurate. Finally, these inhibitors were applied to a mouse colitis model, confirming that vanin-1 is useful in IBD and providing a new therapeutic direction.
Collapse
|
7
|
Anti-Oxidant and Anti-Inflammatory Effects of Lipopolysaccharide from Rhodobacter sphaeroides against Ethanol-Induced Liver and Kidney Toxicity in Experimental Rats. Molecules 2021; 26:molecules26247437. [PMID: 34946518 PMCID: PMC8707101 DOI: 10.3390/molecules26247437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the protective effects of lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) against ethanol-induced hepatotoxicity and nephrotoxicity in experimental rats. The study involved an intact control group, LPS-RS group, two groups were given ethanol (3 and 5 g/kg/day) for 28 days, and two other groups (LPS-RS + 3 g/kg ethanol) and (LPS-RS + 5 g/kg ethanol) received a daily dose of LPS-RS (800 μg/kg) before ethanol. Ethanol significantly increased the expression of nuclear factor kappa B (NF-κB) and levels of malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in the liver tissue and decreased anti-oxidant enzymes. Hepcidin expression was downregulated in the liver, with increased serum levels of ferritin and iron. Prior-administration of LPS-RS alleviated the increase in oxidative stress and inflammatory markers, and preserved iron homeostasis markers. In the kidney, administration of ethanol caused significant increase in the expression of NF-κB and the levels of TNF-α and kidney injury markers; whereas LPS-RS + ethanol groups had significantly lower levels of those parameters. In conclusion; this study reports anti-oxidant, anti-inflammatory and iron homeostasis regulatory effects of the toll-like receptor 4 (TLR4) antagonist LPS-RS against ethanol induced toxicity in both the liver and the kidney of experimental rats.
Collapse
|
8
|
Lu P, Zhang C, Fu L, Wei Y, Huang Y, Wang X, Lv C, Chen L. Near-Infrared Fluorescent Probe for Imaging and Evaluating the Role of Vanin-1 in Chemotherapy. Anal Chem 2021; 93:10378-10387. [PMID: 34275284 DOI: 10.1021/acs.analchem.1c02386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pantetheinase (also known as Vanin-1) is highly expressed in the liver, kidneys, and intestine and is closely associated with a number of diseases. Vanin-1 can hydrolyze pantetheine to pantothenic acid (vitamin B5) and cysteamine and participate in the synthesis of glutathione (GSH). GSH is highly expressed in tumor cells and plays a major role in the resistance of tumor cells to cisplatin. Therefore, we urgently need a method to monitor the activity level of Vanin-1 in tumor cells and tissues and elucidate the relationship between the role of Vanin-1 in GSH synthesis and tumor resistance. Herein, we report a Cy-Pa fluorescent probe for imaging Vanin-1 in cells and in vivo that can qualitatively and quantitatively detect the fluctuation of Vanin-1 concentrations in HepG2 and HepG2/DDP cells or tumor tissues of tumor-bearing mice. This probe shows excellent potential in in situ real-time monitoring of endogenous Vanin-1. Moreover, we proved that Vanin-1 can inhibit GSH synthesis using the probe. When the Vanin-1 inhibitor RR6 was used in combination with cisplatin, HepG2 and HepG2/DDP cells showed increased resistance to cisplatin, while the therapeutic efficiency of cisplatin was reduced in HepG2 and HepG2/DDP xenografts. In this study, Vanin-1 was shown to play an important role in the treatment of cancer, and the study of Vanin-1 may provide an idea for the treatment of cancer in the future.
Collapse
Affiliation(s)
- Pengpeng Lu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Caiyun Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lili Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yinghui Wei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,College of Chemistry and Chemical Engineering, Qufu Normal University, University, Qufu 273165, China
| |
Collapse
|
9
|
Krzemień G, Pańczyk-Tomaszewska M, Górska E, Szmigielska A. Urinary vanin-1 for predicting acute pyelonephritis in young children with urinary tract infection: a pilot study. Biomarkers 2021; 26:318-324. [PMID: 33656956 DOI: 10.1080/1354750x.2021.1893813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Vanin-1, an epithelial glycosylphosphatidylolinositol (GPI)-anchored pantetheinase, is a valuable marker of renal injury. PURPOSE The aim of this study was to assess the predictive value of vanin-1 in acute pyelonephritis (APN) in comparison to the conventional serum inflammatory markers in children aged 1-24 months with the first episode of urinary tract infection (UTI). MATERIAL AND METHODS Urinary vanin-1, vanin-1/Cr ratio, WBC, CRP, PCT were analysed in 58 children with febrile UTI and in 18 children with non-febrile UTI. Febrile UTI group was divided into APN subgroup (n = 29) and non-APN subgroup (n = 29), based on the results of Tc-99m-ethylenedicysteine scan. RESULTS The mean vanin-1 level was higher in the APN group compared to the non-febrile UTI group (p = 0.02) and did not differ between APN and non-APN subgroup. In univariate analysis, vanin-1 (p = 0.042), CRP (p < 0.001), PCT (p < 0.001), and WBC (p = 0.022), were associated with APN, but only vanin-1 (p = 0.048) and CRP (p = 0.002) were independent markers of APN. In ROC analysis, vanin-1, with its best cut-off value of 16.53 ng/mL, had worse diagnostic profile (AUC 0.629, sensitivity 58,6%, specificity 63.8%) than CRP, PCT and WBC (AUC: 0.937; 0.880; 0.667, respectively). CONCLUSIONS Vanin-1 is not useful for predicting APN, since its diagnostic value is inferior to other conventional serum inflammatory markers.
Collapse
Affiliation(s)
- Grażyna Krzemień
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | | | - Elżbieta Górska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Szmigielska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Chen N, Wang C. Chemical Labeling of Protein 4'-Phosphopantetheinylation. Chembiochem 2021; 22:1357-1367. [PMID: 33289264 DOI: 10.1002/cbic.202000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Indexed: 11/11/2022]
Abstract
Nature uses a diverse array of protein post-translational modifications (PTMs) to regulate protein structure, activity, localization, and function. Among them, protein 4'-phosphopantetheinylation derived from coenzyme A (CoA) is an essential PTM for the biosynthesis of fatty acids, polyketides, and nonribosomal peptides in prokaryotes and eukaryotes. To explore its functions, various chemical probes mimicking the natural structure of 4'-phosphopantetheinylation have been developed. In this minireview, we summarize these chemical probes and describe their applications in direct and metabolic labeling of proteins in bacterial and mammalian cells.
Collapse
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
11
|
Gurung AB, Bhutia JT, Bhattacharjee A. High-throughput virtual screening of novel potent inhibitor(s) for Human Vanin-1 enzyme. J Biomol Struct Dyn 2020; 40:4208-4223. [PMID: 33289461 DOI: 10.1080/07391102.2020.1854857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vanin-1 (VNN1) is a glycosylphosphatidylinositol (GPI)-anchored ectoenzyme which hydrolyzes pantetheine to pantothenic acid and cysteamine. It has emerged as a promising drug target for many human diseases associated with oxidative stress and inflammatory pathways. In the present study we used structure-based virtual screening approach for the identification of small molecule inhibitors of vanin-1. A chemical library consisting of natural compounds, synthetic compounds and RRV analogs were screened for drug-like molecules. The filtered molecules were subjected to molecular docking studies. Three potential hits-ZINC04073864 (Natural compound), CID227017 (synthetic compound) and CID129558381 (RRV analog)-were identified for the target enzyme. The molecules form good number of hydrogen bonds with the catalytic residues such as Glu79, Lys178 and Cys211. The apo-VNN1 and VNN1-ligand complexes were subjected to molecular dynamics (MD) simulation for 30 ns. The geometric properties such as root mean square deviation, radius of gyration, solvent accessible surface area, number of hydrogen bonds and the distance between the catalytic triad residues-Glu79, Lys178 and Cys211 were altered upon binding of the compounds. Essential dynamics and entropic studies further confirmed that the fluctuations in VNN1 decrease upon binding of the compounds. The lead molecules were stable throughout the simulation time period. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) studies showed that Van der Waals interaction energy contributes significantly to the total binding free energy. Thus, our study reveals three lead molecules-ZINC04073864, CID227017 and CID129558381 as potential inhibitors of Vanin-1 which can be validated through further studies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India.,Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Jigmi Tshering Bhutia
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Atanu Bhattacharjee
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
12
|
Yoshida MA, Imoto J, Kawai Y, Funahashi S, Minei R, Akizuki Y, Ogura A, Nakabayashi K, Yura K, Ikeo K. Genomic and Transcriptomic Analyses of Bioluminescence Genes in the Enope Squid Watasenia scintillans. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:760-771. [PMID: 33098466 PMCID: PMC7708342 DOI: 10.1007/s10126-020-10001-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/28/2020] [Indexed: 05/26/2023]
Abstract
Watasenia scintillans, a sparkling enope squid, has bioluminescence organs to illuminate its body with its own luciferase activity. To clarify the molecular mechanism underlying its scintillation, we analysed high-throughput sequencing data acquired previously and obtained draft genome sequences accomplished with comparative genomic data among the cephalopods. The genome mapped by transcriptome data showed that (1) RNA editing contributed to transcriptome variation of lineage specific genes, such as W. scintillans luciferase, and (2) two types of luciferase enzymes were characterized with reasonable 3D models docked to a luciferin molecule. We report two different types of luciferase in one organism and possibly related to variety of colour types in the W. scintillans fluorescent organs.
Collapse
Affiliation(s)
- Masa-Aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Sciences, Shimane University, Oki, Japan.
| | - Junichi Imoto
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
- Fisheries Data Sciences Division, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Fukuura 2-12-4, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Yuri Kawai
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Satomi Funahashi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Ryuhei Minei
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Yuki Akizuki
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Atsushi Ogura
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
13
|
Qian J, Teng Z, Wang J, Zhang L, Cao T, Zheng L, Cao Y, Qin W, Liu Y, Guo H. Visible to Near-Infrared Emission Ratiometric Fluorescent Probe for the Detection of Vanin-1 In Vivo. ACS Sens 2020; 5:2806-2813. [PMID: 32786380 DOI: 10.1021/acssensors.0c00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pantetheinase (Vanin-1) is an ectoenzyme, which involves the metabolic pathway of coenzyme A (CoA), and can decompose pantetheine into pantothenic acid (CoA precursor) and aminothiol cysteamine. Previous studies have revealed that Vanin-1 with essential biological functions is closely related to many diseases. However, the lack of simple and effective detection methods has severely hindered the further study of Vanin-1's physiological functions. In this work, we have developed a near-infrared (NIR) emission ratio fluorescent probe TMN-PA (I645 nm/I568 nm) that enables us to detect Vanin-1 rapidly (in 15 min) with a minimum detection limit of 0.37 ng/mL. What is more, this probe shows excellent potential in in situ real-time monitoring of the endogenous Vanin-1, contributing to further research on Vanin-1 and understanding its mechanisms in physiological pathology. To our knowledge, this probe is the first NIR emission ratio (I645 nm/I568 nm) fluorescent probe ever reported to monitor the activity of Vanin-1 in vivo.
Collapse
Affiliation(s)
- Jing Qian
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOF), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu Province 730046, P. R. China
| | - Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOF), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Ting Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOF), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lei Zheng
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOF), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOF), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOF), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu Province 730046, P. R. China
| |
Collapse
|
14
|
Yang Y, Hu Y, Shi W, Ma H. A near-infrared fluorescence probe for imaging of pantetheinase in cells and mice in vivo. Chem Sci 2020; 11:12802-12806. [PMID: 34123238 PMCID: PMC8163316 DOI: 10.1039/d0sc04537c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pantetheinase is an amidohydrolase that cleaves pantetheine into pantothenic acid and cysteamine. Functional studies have found that ubiquitous expression of this enzyme is associated with many inflammatory diseases. However, the lack of near-infrared fluorescence probes limits the better understanding of the functions of the enzyme. In this work, we have developed a new near-infrared fluorescence probe, CYLP, for bioimaging of pantetheinase by using pantothenic acid with a self-immolative linker as a recognition group. The probe produces a sensitive fluorescence off–on response at 710 nm to pantetheinase with a detection limit of 0.02 ng mL−1 and can be used to image the intraperitoneal pantetheinase activity in mice in vivo. Moreover, with the probe we have observed that pantetheinase is significantly increased in the tissues of mouse inflammatory models as well as in the intestines of mice with inflammatory bowel disease. Therefore, CYLP may provide a convenient and intuitive tool for studying the role of pantetheinase in diseases. A near-infrared fluorescence probe for detecting pantetheinase activity has been used for imaging pantetheinase in mice with inflammatory bowel disease.![]()
Collapse
Affiliation(s)
- Yuantao Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yiming Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Chen N, Liu Y, Li Y, Wang C. Chemical Proteomic Profiling of Protein 4′‐Phosphopantetheinylation in Mammalian Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuan Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuanpei Li
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University China
| |
Collapse
|
16
|
Chen N, Liu Y, Li Y, Wang C. Chemical Proteomic Profiling of Protein 4′‐Phosphopantetheinylation in Mammalian Cells. Angew Chem Int Ed Engl 2020; 59:16069-16075. [DOI: 10.1002/anie.202004105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuan Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuanpei Li
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University China
| |
Collapse
|
17
|
Spry C, Barnard L, Kok M, Powell AK, Mahesh D, Tjhin ET, Saliba KJ, Strauss E, de Villiers M. Toward a Stable and Potent Coenzyme A-Targeting Antiplasmodial Agent: Structure-Activity Relationship Studies of N-Phenethyl-α-methyl-pantothenamide. ACS Infect Dis 2020; 6:1844-1854. [PMID: 32375471 DOI: 10.1021/acsinfecdis.0c00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pantothenamides (PanAms) are potent antiplasmodials with low human toxicity currently being investigated as antimalarials with a novel mode of action. These structural analogues of pantothenate, the vitamin precursor of the essential cofactor coenzyme A, are susceptible to degradation by pantetheinase enzymes present in serum. We previously discovered that α-methylation of the β-alanine moiety of PanAms increases their stability in serum and identified N-phenethyl-α-methyl-pantothenamide as a pantetheinase-resistant PanAm with potent, on-target, and selective antiplasmodial activity. In this study, we performed structure-activity relationship investigations to establish whether stability and potency can be improved further through alternative modification of the scissile amide bond and through substitution/modification of the phenyl ring. Additionally, for the first time, the importance of the stereochemistry of the α-methyl group was evaluated in terms of stability versus potency. Our results demonstrate that α-methylation remains the superior choice for amide modification, and that while monofluoro-substitution of the phenyl ring (that often improves ADME properties) was tolerated, N-phenethyl-α-methyl-pantothenamide remains the most potent analogue. We show that the 2S,2'R-diastereomer is far more potent than the 2R,2'R-diastereomer and that this cannot be attributed to preferential metabolic activation by pantothenate kinase, the first enzyme of the coenzyme A biosynthesis pathway. Unexpectedly, the more potent 2S,2'R-diastereomer is also more prone to pantetheinase-mediated degradation. Finally, the results of in vitro studies to assess permeability and metabolic stability of the 2S,2'R-diastereomer suggested species-dependent degradation via amide hydrolysis. Our study provides important information for the continued development of PanAm-based antimalarials.
Collapse
Affiliation(s)
| | - Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Michélle Kok
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andrew K. Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
18
|
The novel homozygous p.Asn197_Ser201del mutation in BTD gene is associated with profound biotinidase deficiency in an Iranian consanguineous family. Mol Biol Rep 2020; 47:4021-4027. [PMID: 32281057 DOI: 10.1007/s11033-020-05424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Biotinidase deficiency is an autosomal recessive inherited inborn error of biotin metabolism. Biotin as a water-soluble vitamin is the prosthetic group of biotin-dependent carboxylase enzymes, and by enhancing their function plays a key role in amino acid catabolism, fatty acid synthesis, and gluconeogenesis. Beyond its prosthetic group role, it has been recognized that biotin regulates the level of gene transcription in the eukaryotic cells, therefore any defect in these pathways causes a multisystem metabolic disorder characterized by neurological and cutaneous symptoms. METHODS AND RESULTS We report the identification of a novel pathogenic variant in the BTD gene, c.528_542del15 (p.Asn197_Ser201del, UniProt P43251-1) in an Iranian consanguineous family with a severe form of the disease. The segregation analysis in the family was consistent with phenotype and the identified variant was predicated as a pathogenic mutation by the in-silico prediction tools. Computer structural modeling suggests the deleted amino acid residues are located near the biotinidase active site and disrupt the special conformations which are critical for the enzyme activity, and also N-glycosylation. CONCLUSIONS This study further expands the mutation spectrum of the BTD gene underlying cause of profound biotinidase deficiency.
Collapse
|
19
|
Naquet P, Kerr EW, Vickers SD, Leonardi R. Regulation of coenzyme A levels by degradation: the 'Ins and Outs'. Prog Lipid Res 2020; 78:101028. [PMID: 32234503 DOI: 10.1016/j.plipres.2020.101028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/09/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Coenzyme A (CoA) is the predominant acyl carrier in mammalian cells and a cofactor that plays a key role in energy and lipid metabolism. CoA and its thioesters (acyl-CoAs) regulate a multitude of metabolic processes at different levels: as substrates, allosteric modulators, and via post-translational modification of histones and other non-histone proteins. Evidence is emerging that synthesis and degradation of CoA are regulated in a manner that enables metabolic flexibility in different subcellular compartments. Degradation of CoA occurs through distinct intra- and extracellular pathways that rely on the activity of specific hydrolases. The pantetheinase enzymes specifically hydrolyze pantetheine to cysteamine and pantothenate, the last step in the extracellular degradation pathway for CoA. This reaction releases pantothenate in the bloodstream, making this CoA precursor available for cellular uptake and de novo CoA synthesis. Intracellular degradation of CoA depends on specific mitochondrial and peroxisomal Nudix hydrolases. These enzymes are also active against a subset of acyl-CoAs and play a key role in the regulation of subcellular (acyl-)CoA pools and CoA-dependent metabolic reactions. The evidence currently available indicates that the extracellular and intracellular (acyl-)CoA degradation pathways are regulated in a coordinated and opposite manner by the nutritional state and maximize the changes in the total intracellular CoA levels that support the metabolic switch between fed and fasted states in organs like the liver. The objective of this review is to update the contribution of these pathways to the regulation of metabolism, physiology and pathology and to highlight the many questions that remain open.
Collapse
Affiliation(s)
- Philippe Naquet
- Aix Marseille Univ, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Schuyler D Vickers
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America.
| |
Collapse
|
20
|
Bortnov V, Tonelli M, Lee W, Lin Z, Annis DS, Demerdash ON, Bateman A, Mitchell JC, Ge Y, Markley JL, Mosher DF. Solution structure of human myeloid-derived growth factor suggests a conserved function in the endoplasmic reticulum. Nat Commun 2019; 10:5612. [PMID: 31819058 PMCID: PMC6901522 DOI: 10.1038/s41467-019-13577-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Human myeloid-derived growth factor (hMYDGF) is a 142-residue protein with a C-terminal endoplasmic reticulum (ER) retention sequence (ERS). Extracellular MYDGF mediates cardiac repair in mice after anoxic injury. Although homologs of hMYDGF are found in eukaryotes as distant as protozoans, its structure and function are unknown. Here we present the NMR solution structure of hMYDGF, which consists of a short α-helix and ten β-strands distributed in three β-sheets. Conserved residues map to the unstructured ERS, loops on the face opposite the ERS, and the surface of a cavity underneath the conserved loops. The only protein or portion of a protein known to have a similar fold is the base domain of VNN1. We suggest, in analogy to the tethering of the VNN1 nitrilase domain to the plasma membrane via its base domain, that MYDGF complexed to the KDEL receptor binds cargo via its conserved residues for transport to the ER.
Collapse
Affiliation(s)
- Valeriu Bortnov
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Woonghee Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ziqing Lin
- Departments of Cell and Regenerative Biology and Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas S Annis
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Omar N Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ying Ge
- Departments of Cell and Regenerative Biology and Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John L Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
21
|
Bartucci R, Salvati A, Olinga P, Boersma YL. Vanin 1: Its Physiological Function and Role in Diseases. Int J Mol Sci 2019; 20:E3891. [PMID: 31404995 PMCID: PMC6719204 DOI: 10.3390/ijms20163891] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
The enzyme vascular non-inflammatory molecule-1 (vanin 1) is highly expressed at gene and protein level in many organs, such as the liver, intestine, and kidney. Its major function is related to its pantetheinase activity; vanin 1 breaks down pantetheine in cysteamine and pantothenic acid, a precursor of coenzyme A. Indeed, its physiological role seems strictly related to coenzyme A metabolism, lipid metabolism, and energy production. In recent years, many studies have elucidated the role of vanin 1 under physiological conditions in relation to oxidative stress and inflammation. Vanin's enzymatic activity was found to be of key importance in certain diseases, either for its protective effect or as a sensitizer, depending on the diseased organ. In this review, we discuss the role of vanin 1 in the liver, kidney, intestine, and lung under physiological as well as pathophysiological conditions. Thus, we provide a more complete understanding and overview of its complex function and contribution to some specific pathologies.
Collapse
Affiliation(s)
- Roberta Bartucci
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Division of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anna Salvati
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ykelien L Boersma
- Division of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
22
|
|
23
|
Dissecting Flavivirus Biology in Salivary Gland Cultures from Fed and Unfed Ixodes scapularis (Black-Legged Tick). mBio 2019; 10:mBio.02628-18. [PMID: 30696737 PMCID: PMC6355982 DOI: 10.1128/mbio.02628-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tick-borne flaviviruses (TBFVs) are responsible for more than 15,000 human disease cases each year, and Powassan virus lineage 2 (POWV-L2) deer tick virus has been a reemerging threat in North America over the past 20 years. Rapid transmission of TBFVs in particular emphasizes the importance of preventing tick bites, the difficulty in developing countermeasures to prevent transmission, and the importance of understanding TBFV infection in tick salivary glands (SGs). Tick blood feeding is responsible for phenomenal physiological changes and is associated with changes in TBFV multiplication within the tick and in SGs. Using SG cultures from Ixodes scapularis female ticks, the primary aims of this study were to identify cellular localization of virus-like particles in acini of infected SGs from fed and unfed ticks, localization of TBFV infection in infected SGs from fed ticks, and a tick transcript (with associated metabolic function) involved in POWV-L2 infection in SG cultures. The Ixodes scapularis tick transmits a number of pathogens, including tick-borne flaviviruses (TBFVs). In the United States, confirmed human infections with the Powassan virus (POWV) TBFV have a fatality rate of ∼10% and are increasing in incidence. Tick salivary glands (SGs) serve as an organ barrier to TBFV transmission, and little is known regarding the location of TBFV infection in SGs from fed ticks. Previous studies showed I. scapularis vanin (VNN) involved with TBFV infection of I. scapularis ISE6 embryonic cells, suggesting a potential role for this gene. The overall goal of this study was to use SG cultures to compare data on TBFV biology in SGs from fully engorged, replete (fed) ticks and from unfed ticks. TBFV multiplication was higher in SGs from fed ticks than in those from unfed ticks. Virus-like particles were observed only in granular acini of SGs from unfed ticks. The location of TBFV infection of SGs from fed ticks was observed in cells lining lobular ducts and trachea but not observed in acini. Transcript knockdown of VNN decreased POWV multiplication in infected SG cultures from both fed and unfed ticks. This work was the first to identify localization of TBFV multiplication in SG cultures from a fed tick and a tick transcript important for POWV multiplication in the tick SG, an organ critical for TBFV transmission. This research exemplifies the use of SG cultures in deciphering TBFV biology in the tick and as a translational tool for screening and identifying potential tick genes as potential countermeasure targets.
Collapse
|
24
|
Manea E. A step closer in defining glycosylphosphatidylinositol anchored proteins role in health and glycosylation disorders. Mol Genet Metab Rep 2018; 16:67-75. [PMID: 30094187 PMCID: PMC6080220 DOI: 10.1016/j.ymgmr.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/21/2018] [Accepted: 07/21/2018] [Indexed: 12/18/2022] Open
Abstract
Glycosylphosphatidylinositol anchored proteins (GPI-APs) represent a class of soluble proteins attached to the external leaflet of the plasma membrane by a post-translation modification, the GPI anchor. The 28 genes currently involved in the synthesis and remodelling of the GPI anchor add to the ever-growing class of congenital glycosylation disorders. Recent advances in next generation sequencing technology have led to the discovery of Mabry disease and CHIME syndrome genetic aetiology. Moreover, with each described mutation known phenotypes expand and new ones emerge without clear genotype-phenotype correlation. A protein database search was made for human GPI-APs with defined pathology to help building-up a physio-pathological mechanism from a clinical perspective. GPI-APs function in vitamin-B6 and folate transport, nucleotide metabolism and lipid homeostasis. Defining GPI-APs role in disease bears significant clinical implications.
Collapse
|
25
|
Lin Y, Gao Y, Ma Z, Li Z, Tang C, Qin X, Zhang Z, Wang G, Du L, Li M. Bioluminescent Probe for Detection of Starvation-Induced Pantetheinase Upregulation. Anal Chem 2018; 90:9545-9550. [PMID: 29976064 DOI: 10.1021/acs.analchem.8b02266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pantetheinase, a glycosylphosphatidylinositol (GPI) anchored enzyme, overexpresses in intestine, liver, and kidney with various biological functions such as its linkage to the inflammation and some metabolic diseases. It can hydrolyze pantetheine to cysteamine, an antioxidant, and pantothenic acid (Vitamin B5) that is an essential component of coenzyme A (CoA). Until now, very few analytic methods were developed for this enzyme, hampering the further investigation of its biological functions. In this work, we report the design, synthesis, and biological examination of a highly sensitive bioluminogenic probe for pantetheinase with a limit of detection of 1.14 ng/mL. Furthermore, animal experiments validated that our probe can be applied to detect the endogenous pantetheinase activity. To the best of our knowledge, this is the first bioluminogenic probe achieving the detection of pantetheinase level in vivo.
Collapse
Affiliation(s)
- Yuxing Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Yuqi Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Zhenzhen Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Chunchao Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Zheng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Guankai Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China.,State Key Laboratory of Microbial Technology , Shandong University , Jinan , Shandong 250100 , China
| |
Collapse
|
26
|
Barnard L, Mostert KJ, van Otterlo WAL, Strauss E. Developing Pantetheinase-Resistant Pantothenamide Antibacterials: Structural Modification Impacts on PanK Interaction and Mode of Action. ACS Infect Dis 2018; 4:736-743. [PMID: 29332383 DOI: 10.1021/acsinfecdis.7b00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pantothenamides (PanAms) are analogues of pantothenate, the biosynthetic precursor of coenzyme A (CoA), and show potent antimicrobial activity against several bacteria and the malaria parasite in vitro. However, pantetheinase enzymes that normally degrade pantetheine in human serum also act on the PanAms, thereby reducing their potency. In this study, we designed analogues of the known antibacterial PanAm N-heptylpantothenamide (N7-Pan) to be resistant to pantetheinase by using three complementary structural modification strategies. We show that, while two of these are effective in imparting resistance, the introduced modifications have an impact on the analogues' interaction with pantothenate kinase (PanK, the first CoA biosynthetic enzyme), which acts as a metabolic activator and/or target of the PanAms. This, in turn, directly affects their mode of action. Importantly, we discover that the phosphorylated version of N7-Pan shows pantetheinase resistance and antistaphylococcal activity, providing a lead for future studies in the ongoing search of PanAm analogues that show in vivo efficacy.
Collapse
Affiliation(s)
- Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Konrad J. Mostert
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
27
|
Francis WR, Christianson LM, Haddock SHD. Symplectin evolved from multiple duplications in bioluminescent squid. PeerJ 2017; 5:e3633. [PMID: 28785521 PMCID: PMC5541922 DOI: 10.7717/peerj.3633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
The squid Sthenoteuthis oualaniensis, formerly Symplectoteuthis oualaniensis, generates light using the luciferin coelenterazine and a unique enzyme, symplectin. Genetic information is limited for bioluminescent cephalopod species, so many proteins, including symplectin, occur in public databases only as sequence isolates with few identifiable homologs. As the distribution of the symplectin/pantetheinase protein family in Metazoa remains mostly unexplored, we have sequenced the transcriptomes of four additional luminous squid, and make use of publicly available but unanalyzed data of other cephalopods, to examine the occurrence and evolution of this protein family. While the majority of spiralians have one or two copies of this protein family, four well-supported groups of proteins are found in cephalopods, one of which corresponds to symplectin. A cysteine that is critical for symplectin functioning is conserved across essentially all members of the protein family, even those unlikely to be used for bioluminescence. Conversely, active site residues involved in pantetheinase catalysis are also conserved across essentially all of these proteins, suggesting that symplectin may have multiple functions including hydrolase activity, and that the evolution of the luminous phenotype required other changes in the protein outside of the main binding pocket.
Collapse
Affiliation(s)
- Warren R Francis
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States of America.,Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lynne M Christianson
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States of America
| | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States of America
| |
Collapse
|
28
|
Mohr T, Haudek-Prinz V, Slany A, Grillari J, Micksche M, Gerner C. Proteome profiling in IL-1β and VEGF-activated human umbilical vein endothelial cells delineates the interlink between inflammation and angiogenesis. PLoS One 2017; 12:e0179065. [PMID: 28617818 PMCID: PMC5472280 DOI: 10.1371/journal.pone.0179065] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Endothelial cells represent major effectors in inflammation and angiogenesis, processes that drive a multitude of pathological states such as atherosclerosis and cancer. Both inflammation and angiogenesis are interconnected with each other in the sense that many pro-inflammatory proteins possess proangiogenic properties and vice versa. To elucidate this interplay further, we present a comparative proteome study of inflammatory and angiogenic activated endothelial cells. HUVEC were stimulated with interleukin 1-β and VEGF, respectively. Cultured primary cells were fractionated into secreted, cytoplasmic and nuclear protein fractions and processed for subsequent LC-MS/MS analysis. Obtained protein profiles were filtered for fraction-specific proteins to address potential cross fractional contamination, subjected to comparative computational biology analysis (GO-Term enrichment analysis, weighted gene co-expression analysis) and compared to published mRNA profiles of IL-1β respectively VEGF stimulated HUVEC. GO Term enrichment analysis and comparative pathway analysis revealed features such as NOD and NfkB signaling for inflammatory activated HUVEC and VEGF and ErB signaling for VEGF-activated HUVEC with potential crosstalk via map kinases MAP2K2. Weighted protein co-expression network analysis revealed several potential hub genes so far not associated with driver function in inflammation or angiogenesis such as HSPG2, ANXA3, and GPI. "Classical" inflammation or angiogenesis markers such as IL6, CXCL8 or CST1 were found in a less central position within the co-expression networks. In conclusion, this study reports a framework for the computational biology based analysis of proteomics data applied to cytoplasmic, nucleic and extracellular fractions of quiescent, inflammatory and angiogenic activated HUVEC. Novel potential hub genes relevant for these processes were successfully identified.
Collapse
Affiliation(s)
- Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- ScienceConsult – DI Thomas Mohr KG, Guntramsdorf, Austria
| | - Verena Haudek-Prinz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU – University of Life Sciences, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | - Michael Micksche
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Mariani F, Roncucci L. Role of the Vanins-Myeloperoxidase Axis in Colorectal Carcinogenesis. Int J Mol Sci 2017; 18:E918. [PMID: 28448444 PMCID: PMC5454831 DOI: 10.3390/ijms18050918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
The presence of chronic inflammation in the colonic mucosa leads to an increased risk of cancer. Among proteins involved in the regulation of mucosal inflammation and that may contribute both to structural damage of the intestinal mucosa and to intestinal carcinogenesis, there are myeloperoxidase (MPO) and vanins. The infiltration of colonic mucosa by neutrophils may promote carcinogenesis through MPO, a key enzyme contained in the lysosomes of neutrophils that regulates local inflammation and the generation of reactive oxygen species (ROS) and mutagenic species. The human vanin gene family consists of three genes: vanin-1, vanin-2 and vanin-3. All vanin molecules are pantetheinases, that hydrolyze pantetheine into pantothenic acid (vitamin B5), and cysteamine, a sulfhydryl compound. Vanin-1 loss confers an increased resistance to stress and acute intestinal inflammation, while vanin-2 regulates adhesion and transmigration of activated neutrophils. The metabolic product of these enzymes has a prominent role in the inflammation processes by affecting glutathione levels, inducing ulcers through a reduction in mucosal blood flow and oxygenation, decreasing local defense mechanisms, and in carcinogenesis by damaging DNA and regulating pathways involved in cell apoptosis, metabolism and growth, as Nrf2 and HIF-1α.
Collapse
Affiliation(s)
- Francesco Mariani
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Via Del Pozzo 71, I-41125 Modena, Italy.
| | - Luca Roncucci
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Via Del Pozzo 71, I-41125 Modena, Italy.
| |
Collapse
|
30
|
Grabowski JM, Gulia-Nuss M, Kuhn RJ, Hill CA. RNAi reveals proteins for metabolism and protein processing associated with Langat virus infection in Ixodes scapularis (black-legged tick) ISE6 cells. Parasit Vectors 2017; 10:24. [PMID: 28086865 PMCID: PMC5237174 DOI: 10.1186/s13071-016-1944-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tick-borne flaviviruses (TBFs) cause thousands of human cases of encephalitis worldwide each year, with some TBF infections progressing to hemorrhagic fever. TBFs are of medical and veterinary importance and strategies to reduce flavivirus transmission by the tick vector may have significant application. Analyses of the proteome of ISE6 cells derived from the black legged tick, Ixodes scapularis infected with the TBF, Langat virus (LGTV), have provided insights into proteins and cellular processes involved with LGTV infection. METHODS RNA interference (RNAi)-induced knockdown of transcripts was used to investigate the role of ten tick proteins in the LGTV infection cycle in ISE6 cells. LGTV-infected cells were separately transfected with dsRNA corresponding to each gene of interest and the effect on LGTV genome replication and release of infectious virus was assessed by RT-qPCR and plaque assays, respectively. RESULTS RNAi-induced knockdown of transcripts for two enzymes that likely function in amino acid, carbohydrate, lipid, terpenoid/polykeytide and vitamin metabolism, and a transcript for one protein of unknown function were associated with decreased replication of the LGTV genome and release of infectious virus from cells. The knockdown of transcripts for five enzymes predicted to function in metabolism, a protein likely associated with folding, sorting and degradation, and a protein of unknown function was associated with a decrease only in the amount of infectious LGTV released from cells. CONCLUSIONS These data suggest tick proteins potentially associated with metabolism and protein processing may be involved in LGTV infection of ISE6 cells. Our study provides information to begin to elucidate the function of these proteins and identify targets for the development of new interventions aimed at controlling the transmission of TBFs.
Collapse
Affiliation(s)
- Jeffrey M Grabowski
- Department of Entomology, College of Agriculture, Purdue University, 901 W State Street, West Lafayette, IN, 47907, USA.,Markey Center for Structural Biology, Department of Biological Sciences, College of Science, Purdue University, 915 W State Street, West Lafayette, IN, 47907, USA.,Current Address: NIH/NIAID, Rocky Mountain Laboratories, Laboratory of Virology, Biology of Vector-Borne Viruses Section, 903 S 4th St, Hamilton, MT, 59840, USA
| | - Monika Gulia-Nuss
- Department of Entomology, College of Agriculture, Purdue University, 901 W State Street, West Lafayette, IN, 47907, USA.,Current Address: Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology, and Natural Resources, University of Nevada-Reno, 1664 N Virginia Street, Reno, NV, 89503, USA
| | - Richard J Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences, College of Science, Purdue University, 915 W State Street, West Lafayette, IN, 47907, USA.,Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Catherine A Hill
- Department of Entomology, College of Agriculture, Purdue University, 901 W State Street, West Lafayette, IN, 47907, USA. .,Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
31
|
Genetic and pharmacological inhibition of vanin-1 activity in animal models of type 2 diabetes. Sci Rep 2016; 6:21906. [PMID: 26932716 PMCID: PMC4773925 DOI: 10.1038/srep21906] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/29/2016] [Indexed: 11/10/2022] Open
Abstract
Vanins are enzymes that convert pantetheine to pantothenic acid (vitamin B5). Insights into the function of vanins have evolved lately, indicating vanin-1 to play a role in inflammation, oxidative stress and cell migration. Moreover, vanin-1 has recently gained attention as a novel modulator of hepatic glucose and lipid metabolism. In the present study, we investigated the role of vanin-1 in the development of hepatic steatosis and insulin resistance in animal models of obesity and diabetes. In addition, we evaluated the potency of RR6, a novel pharmacological vanin-1 inhibitor, as an anti-diabetic drug. Increased vanin activity was observed in plasma and liver of high fat diet (HFD)-induced obese mice, as well as ZDF-diabetic rats. Ablation of vanin-1 (Vnn1−/− mice) mildly improved glucose tolerance and insulin sensitivity in HFD-fed mice, but had no effects on body weight, hepatic steatosis or circulating lipid levels. Oral administration of RR6 for 8 days completely inhibited plasma vanin activity, but did not affect hepatic glucose production, insulin sensitivity or hepatic steatosis in ZDF-diabetes rats. In conclusion, absence of vanin-1 activity improves insulin sensitivity in HFD-fed animals, yet short-term inhibition of vanin activity may have limited value as an anti-diabetic strategy.
Collapse
|
32
|
Wilson R, Golub SB, Rowley L, Angelucci C, Karpievitch YV, Bateman JF, Fosang AJ. Novel Elements of the Chondrocyte Stress Response Identified Using an in Vitro Model of Mouse Cartilage Degradation. J Proteome Res 2016; 15:1033-50. [PMID: 26794603 DOI: 10.1021/acs.jproteome.5b01115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The destruction of articular cartilage in osteoarthritis involves chondrocyte dysfunction and imbalanced extracellular matrix (ECM) homeostasis. Pro-inflammatory cytokines such as interleukin-1α (IL-1α) contribute to osteoarthritis pathophysiology, but the effects of IL-1α on chondrocytes within their tissue microenvironment have not been fully evaluated. To redress this we used label-free quantitative proteomics to analyze the chondrocyte response to IL-1α within a native cartilage ECM. Mouse femoral heads were cultured with and without IL-1α, and both the tissue proteome and proteins released into the media were analyzed. New elements of the chondrocyte response to IL-1α related to cellular stress included markers for protein misfolding (Armet, Creld2, and Hyou1), enzymes involved in glutathione biosynthesis and regeneration (Gstp1, Gsto1, and Gsr), and oxidative stress proteins (Prdx2, Txn, Atox1, Hmox1, and Vnn1). Other proteins previously not associated with the IL-1α response in cartilage included ECM components (Smoc2, Kera, and Crispld1) and cysteine proteases (cathepsin Z and legumain), while chondroadherin and cartilage-derived C-type lectin (Clec3a) were identified as novel products of IL-1α-induced cartilage degradation. This first proteome-level view of the cartilage IL-1α response identified candidate biomarkers of cartilage destruction and novel targets for therapeutic intervention in osteoarthritis.
Collapse
Affiliation(s)
- Richard Wilson
- Central Science Laboratory, University of Tasmania , Hobart, Tasmania 7001, Australia.,Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia
| | - Suzanne B Golub
- Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia.,Department of Pediatrics, University of Melbourne , Parkville, Victoria 3052, Australia
| | - Lynn Rowley
- Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia
| | - Constanza Angelucci
- Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia
| | - Yuliya V Karpievitch
- School of Physical Sciences, University of Tasmania , Hobart, Tasmania 7001, Australia.,Centre of Excellence in Plant Energy Biology, University of Western Australia and Harry Perkins Institute of Medical Research , Perth, Western Australia 6009, Australia
| | - John F Bateman
- Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3052, Australia
| | - Amanda J Fosang
- Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia.,Department of Pediatrics, University of Melbourne , Parkville, Victoria 3052, Australia
| |
Collapse
|
33
|
Kryshtafovych A, Moult J, Baslé A, Burgin A, Craig TK, Edwards RA, Fass D, Hartmann MD, Korycinski M, Lewis RJ, Lorimer D, Lupas AN, Newman J, Peat TS, Piepenbrink KH, Prahlad J, van Raaij MJ, Rohwer F, Segall AM, Seguritan V, Sundberg EJ, Singh AK, Wilson MA, Schwede T. Some of the most interesting CASP11 targets through the eyes of their authors. Proteins 2015; 84 Suppl 1:34-50. [PMID: 26473983 PMCID: PMC4834066 DOI: 10.1002/prot.24942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/17/2015] [Accepted: 10/11/2015] [Indexed: 11/17/2022]
Abstract
The Critical Assessment of protein Structure Prediction (CASP) experiment would not have been possible without the prediction targets provided by the experimental structural biology community. In this article, selected crystallographers providing targets for the CASP11 experiment discuss the functional and biological significance of the target proteins, highlight their most interesting structural features, and assess whether these features were correctly reproduced in the predictions submitted to CASP11. Proteins 2016; 84(Suppl 1):34–50. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - John Moult
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Alex Burgin
- Broad Institute, Cambridge, Massachusetts, 02142
| | | | - Robert A Edwards
- Department of Biology, San Diego State University, San Diego, California, 92182.,Department of Computer Science, San Diego State University, San Diego, California, 92182
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Mateusz Korycinski
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Janet Newman
- Biomedical Manufacturing Program, CSIRO, Parkville, VIC, Australia
| | - Thomas S Peat
- Biomedical Manufacturing Program, CSIRO, Parkville, VIC, Australia
| | - Kurt H Piepenbrink
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Janani Prahlad
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| | - Mark J van Raaij
- Centro Nactional De Biotecnologia (CNB-CSIC), Madrid, E-28049, Spain
| | - Forest Rohwer
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, 92182
| | - Anca M Segall
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, 92182
| | | | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Abhimanyu K Singh
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, 4056, Switzerland. .,SIB Swiss Institute of Bioinformatics, Basel, 4056, Switzerland.
| |
Collapse
|