1
|
Orun A, Slaughter CK, Shields ET, Vajapayajula A, Jones S, Shrestha R, Snow CD. Tuning Chemical DNA Ligation within DNA Crystals and Protein-DNA Cocrystals. ACS NANOSCIENCE AU 2024; 4:338-348. [PMID: 39430379 PMCID: PMC11487669 DOI: 10.1021/acsnanoscienceau.4c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 10/22/2024]
Abstract
Biomolecular crystals can serve as materials for a plethora of applications including precise guest entrapment. However, as grown, biomolecular crystals are fragile in solutions other than their growth conditions. For crystals to achieve their full potential as hosts for other molecules, crystals can be made stronger with bioconjugation. Building on our previous work using carbodiimide 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for chemical ligation, here, we investigate DNA junction architecture through sticky base overhang lengths and the role of scaffold proteins in cross-linking within two classes of biomolecular crystals: cocrystals of DNA-binding proteins and pure DNA crystals. Both crystal classes contain DNA junctions where DNA strands stack up end-to-end. Ligation yields were studied as a function of sticky base overhang length and terminal phosphorylation status. The best ligation performance for both crystal classes was achieved with longer sticky overhangs and terminal 3'phosphates. Notably, EDC chemical ligation was achieved in crystals with pore sizes too small for intracrystal transport of ligase enzyme. Postassembly cross-linking produced dramatic stability improvements for both DNA crystals and cocrystals in water and blood serum. The results presented may help crystals containing DNA achieve broader application utility, including as structural biology scaffolds.
Collapse
Affiliation(s)
- Abigail
R. Orun
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Caroline K. Slaughter
- Department
of Cell and Molecular Biology, Colorado
State University, Fort Collins, Colorado 80523, United States
| | - Ethan T. Shields
- Department
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Ananya Vajapayajula
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Sara Jones
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Rojina Shrestha
- Department
of Cell and Molecular Biology, Colorado
State University, Fort Collins, Colorado 80523, United States
| | - Christopher D. Snow
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Cell and Molecular Biology, Colorado
State University, Fort Collins, Colorado 80523, United States
- Department
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Halliwell CA, Jolley K, Yendall K, Elsegood MRJ, Parkinson GN, Fernandez A. A Simple and Sequential Strategy for the Introduction of Complexity and Hierarchy in Hydrogen-Bonded Organic Framework (HOF) Crystals for Environmental Applications. Angew Chem Int Ed Engl 2024; 63:e202404452. [PMID: 38959334 DOI: 10.1002/anie.202404452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a new class of crystalline porous organic molecular materials (POMMs) with great potential for a diverse range of applications. HOFs face common challenges to POMMs, and in general to purely organic crystals, that is, the difficulty of integrating complexity in crystals. Herein, we propose a simple and sequential strategy for the formation of HOFs with hierarchical superstructures. The strategy is based on controlling the assembly conditions, avoiding the use of any surface functionalization or template, which allows to obtain hierarchical crystalline porous superstructures in an easy manner. As proof of concept, we obtained the first example of core-shell (HOF-on-HOF) crystals and HOFs with hierarchical superstructures having superhydrophobicity and trapping abilities for the capture of persistent water contaminants such as oils and microplastics. We expect that this strategy could serve as inspiration for the construction of more intricate multiscale structures that could greatly expand the library of HOF materials.
Collapse
Affiliation(s)
- Christopher A Halliwell
- Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK
| | - Kenny Jolley
- Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK
| | - Keith Yendall
- School of Aeronautical, Automotive, Chemical and Materials Engineering, (AACME), Loughborough University, Loughborough, LE11 3TU, UK
| | - Mark R J Elsegood
- Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK
| | - Gary N Parkinson
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Antonio Fernandez
- Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
3
|
Costa-Rodrigues D, Leite JP, Saraiva MJ, Almeida MR, Gales L. Transthyretin monomers: a new plasma biomarker for pre-symptomatic transthyretin-related amyloidosis. Amyloid 2024; 31:202-208. [PMID: 38946492 DOI: 10.1080/13506129.2024.2368860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Genotyping and amyloid fibril detection in tissues are generally considered the diagnostic gold standard in transthyretin-related amyloidosis. Patients carry less stable TTR homotetramers prone to dissociation into non-native monomers, which rapidly self-assemble into oligomers and, ultimately, amyloid fibrils. Thus, the initial event of the amyloid cascade produces the smallest transthyretin species: the monomers. This creates engineering opportunities for diagnosis that remain unexplored. METHODS We hypothesise that molecular sieving represents a promising method for isolating and concentrating trace TTR monomers from the tetramers present in plasma samples. Subsequently, immunodetection can be utilised to distinguish monomeric TTR from other low molecular weight proteins within the adsorbed fraction. A two-step assay was devised (ImmunoSieve assay), combining molecular sieving and immunodetection for sensing monomeric transthyretin. This assay was employed to analyse plasma microsamples from 10 individuals, including 5 pre-symptomatic carriers of TTR-V30M, the most prevalent amyloidosis-associated TTR variant worldwide, and 5 healthy controls. RESULTS The ImmunoSieve assay enable sensitive detection of monomeric transthyretin in plasma microsamples. Moreover, the circulating monomeric TTR levels were significantly higher in carriers of amyloidogenic TTR mutation. CONCLUSIONS Monomeric TTR can function as a biomarker for evaluating disease progression and assessing responses to therapies targeted at stabilising native TTR.
Collapse
Affiliation(s)
- Diogo Costa-Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - José P Leite
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Maria João Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Maria Rosário Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Luís Gales
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| |
Collapse
|
4
|
Reinke PYA, Schubert R, Oberthür D, Galchenkova M, Rahmani Mashhour A, Günther S, Chretien A, Round A, Seychell BC, Norton-Baker B, Kim C, Schmidt C, Koua FHM, Tolstikova A, Ewert W, Peña Murillo GE, Mills G, Kirkwood H, Brognaro H, Han H, Koliyadu J, Schulz J, Bielecki J, Lieske J, Maracke J, Knoska J, Lorenzen K, Brings L, Sikorski M, Kloos M, Vakili M, Vagovic P, Middendorf P, de Wijn R, Bean R, Letrun R, Han S, Falke S, Geng T, Sato T, Srinivasan V, Kim Y, Yefanov OM, Gelisio L, Beck T, Doré AS, Mancuso AP, Betzel C, Bajt S, Redecke L, Chapman HN, Meents A, Turk D, Hinrichs W, Lane TJ. SARS-CoV-2 M pro responds to oxidation by forming disulfide and NOS/SONOS bonds. Nat Commun 2024; 15:3827. [PMID: 38714735 PMCID: PMC11076503 DOI: 10.1038/s41467-024-48109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/19/2024] [Indexed: 05/10/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.
Collapse
Affiliation(s)
- Patrick Y A Reinke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anaïs Chretien
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Adam Round
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Brandon Charles Seychell
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Brenna Norton-Baker
- Max Plank Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Chemistry, University of California at Irvine, Irvine, CA, 92697-2025, USA
| | - Chan Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Faisal H M Koua
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Wiebke Ewert
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Gisel Esperanza Peña Murillo
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Grant Mills
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, Universität Hamburg, Build. 22a, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Johan Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Julia Lieske
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Julia Maracke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Lea Brings
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marcin Sikorski
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marco Kloos
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Mohammad Vakili
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Patrik Vagovic
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Philipp Middendorf
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Seonghyun Han
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Sven Falke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Tian Geng
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, CB21 6DG, Cambridge, UK
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Vasundara Srinivasan
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, Universität Hamburg, Build. 22a, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Yoonhee Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Oleksandr M Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Luca Gelisio
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tobias Beck
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Andrew S Doré
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, CB21 6DG, Cambridge, UK
- CHARM Therapeutics Ltd., B900 Babraham Research Campus, CB22 3AT, Cambridge, UK
| | - Adrian P Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- La Trobe Institute for Molecular Science, Department of Chemistry and Physics, La Trobe University, Melbourne, VIC, 3086, Australia
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE, Didcot, UK
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, Universität Hamburg, Build. 22a, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Saša Bajt
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, Universität zu Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Dušan Turk
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins Jamova 39, 1000, Ljubljana, Slovenia
| | - Winfried Hinrichs
- Universität Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Thomas J Lane
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany.
- CHARM Therapeutics Ltd., B900 Babraham Research Campus, CB22 3AT, Cambridge, UK.
| |
Collapse
|
5
|
Liutkus M, Sasselli IR, Rojas AL, Cortajarena AL. Diverse crystalline protein scaffolds through metal-dependent polymorphism. Protein Sci 2024; 33:e4971. [PMID: 38591647 PMCID: PMC11002994 DOI: 10.1002/pro.4971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
As protein crystals are increasingly finding diverse applications as scaffolds, controlled crystal polymorphism presents a facile strategy to form crystalline assemblies with controllable porosity with minimal to no protein engineering. Polymorphs of consensus tetratricopeptide repeat proteins with varying porosity were obtained through co-crystallization with metal salts, exploiting the innate metal ion geometric requirements. A single structurally exposed negative amino acid cluster was responsible for metal coordination, despite the abundance of negatively charged residues. Density functional theory calculations showed that while most of the crystals were the most thermodynamically stable assemblies, some were kinetically trapped states. Thus, crystalline porosity diversity is achieved and controlled with metal coordination, opening a new scope in the application of proteins as biocompatible protein-metal-organic frameworks (POFs). In addition, metal-dependent polymorphic crystals allow direct comparison of metal coordination preferences.
Collapse
Affiliation(s)
- Mantas Liutkus
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology AllianceSan SebastianSpain
| | - Ivan R. Sasselli
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology AllianceSan SebastianSpain
- Present address:
Centro de Física de Materiales (CFM)CSIC‐UPV/EHUSan SebastiánSpain
| | - Adriana L. Rojas
- Centre for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceBilbaoSpain
| | - Aitziber L. Cortajarena
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology AllianceSan SebastianSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| |
Collapse
|
6
|
Jacobs FJ, Helliwell JR, Brink A. Time-series analysis of rhenium(I) organometallic covalent binding to a model protein for drug development. IUCRJ 2024; 11:359-373. [PMID: 38639558 PMCID: PMC11067751 DOI: 10.1107/s2052252524002598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Metal-based complexes with their unique chemical properties, including multiple oxidation states, radio-nuclear capabilities and various coordination geometries yield value as potential pharmaceuticals. Understanding the interactions between metals and biological systems will prove key for site-specific coordination of new metal-based lead compounds. This study merges the concepts of target coordination with fragment-based drug methodologies, supported by varying the anomalous scattering of rhenium along with infrared spectroscopy, and has identified rhenium metal sites bound covalently with two amino acid types within the model protein. A time-based series of lysozyme-rhenium-imidazole (HEWL-Re-Imi) crystals was analysed systematically over a span of 38 weeks. The main rhenium covalent coordination is observed at His15, Asp101 and Asp119. Weak (i.e. noncovalent) interactions are observed at other aspartic, asparagine, proline, tyrosine and tryptophan side chains. Detailed bond distance comparisons, including precision estimates, are reported, utilizing the diffraction precision index supplemented with small-molecule data from the Cambridge Structural Database. Key findings include changes in the protein structure induced at the rhenium metal binding site, not observed in similar metal-free structures. The binding sites are typically found along the solvent-channel-accessible protein surface. The three primary covalent metal binding sites are consistent throughout the time series, whereas binding to neighbouring amino acid residues changes through the time series. Co-crystallization was used, consistently yielding crystals four days after setup. After crystal formation, soaking of the compound into the crystal over 38 weeks is continued and explains these structural adjustments. It is the covalent bond stability at the three sites, their proximity to the solvent channel and the movement of residues to accommodate the metal that are important, and may prove useful for future radiopharmaceutical development including target modification.
Collapse
Affiliation(s)
- Francois J.F. Jacobs
- Department of Chemistry, University of the Free State, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - John R. Helliwell
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alice Brink
- Department of Chemistry, University of the Free State, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Flood R, Mockler NM, Thureau A, Malinska M, Crowley PB. Supramolecular Synthons in Protein-Ligand Frameworks. CRYSTAL GROWTH & DESIGN 2024; 24:2149-2156. [PMID: 38463617 PMCID: PMC10921380 DOI: 10.1021/acs.cgd.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Supramolecular synthons, defined as reproducible intermolecular structural units, have greatly aided small molecule crystal engineering. In this paper, we propose that supramolecular synthons guide ligand-mediated protein crystallization. The protein RSL and the macrocycle sulfonato-calix[8]arene cocrystallize in at least four ways. One of these cocrystals is a highly porous cube comprising protein nodes connected by calixarene dimers. We show that mutating an aspartic acid to an asparagine results in two new cubic assemblies that depend also on the crystallization method. One of the new cubic arrangements is mediated by calixarene trimers and has a ∼30% increased cell volume relative to the original crystal with calixarene dimers. Crystals of the sulfonato-calix[8]arene sodium salt were obtained from buffered conditions similar to those used to grow the protein-calix[8]arene cocrystals. X-ray analysis reveals a coordination polymer of the anionic calix[8]arene and sodium cation in which the macrocycle is arranged as staggered stacks of the pleated loop conformation. Remarkably, the calixarene packing arrangement is the same in the simple salt as in the protein cocrystal. With the pleated loop conformation, the calixarene presents an extended surface for binding other calixarenes (oligomerization) as well as binding to a protein patch (biomolecular complexation). Small-angle X-ray scattering data suggest pH-dependent calixarene assembly in solution. Therefore, the calix[8]arene-calix[8]arene structural unit may be regarded as a supramolecular synthon that directs at least two types of protein assembly, suggesting applications in protein crystal engineering.
Collapse
Affiliation(s)
- Ronan
J. Flood
- SSPC,
Science Foundation Ireland Research Centre for Pharmaceuticals, School
of Biological and Chemical Sciences, University
of Galway, University
Road, Galway H91 TK33, Ireland
| | - Niamh M. Mockler
- SSPC,
Science Foundation Ireland Research Centre for Pharmaceuticals, School
of Biological and Chemical Sciences, University
of Galway, University
Road, Galway H91 TK33, Ireland
| | - Aurélien Thureau
- Synchrotron
SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, Cedex, Gif-sur-Yvette 91192, France
| | - Maura Malinska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Peter B. Crowley
- SSPC,
Science Foundation Ireland Research Centre for Pharmaceuticals, School
of Biological and Chemical Sciences, University
of Galway, University
Road, Galway H91 TK33, Ireland
| |
Collapse
|
8
|
Malla TN, Zielinski K, Aldama L, Bajt S, Feliz D, Hayes B, Hunter M, Kupitz C, Lisova S, Knoska J, Martin-Garcia JM, Mariani V, Pandey S, Poudyal I, Sierra RG, Tolstikova A, Yefanov O, Yoon CH, Ourmazd A, Fromme P, Schwander P, Barty A, Chapman HN, Stojkovic EA, Batyuk A, Boutet S, Phillips GN, Pollack L, Schmidt M. Heterogeneity in M. tuberculosis β-lactamase inhibition by Sulbactam. Nat Commun 2023; 14:5507. [PMID: 37679343 PMCID: PMC10485065 DOI: 10.1038/s41467-023-41246-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
For decades, researchers have elucidated essential enzymatic functions on the atomic length scale by tracing atomic positions in real-time. Our work builds on possibilities unleashed by mix-and-inject serial crystallography (MISC) at X-ray free electron laser facilities. In this approach, enzymatic reactions are triggered by mixing substrate or ligand solutions with enzyme microcrystals. Here, we report in atomic detail (between 2.2 and 2.7 Å resolution) by room-temperature, time-resolved crystallography with millisecond time-resolution (with timepoints between 3 ms and 700 ms) how the Mycobacterium tuberculosis enzyme BlaC is inhibited by sulbactam (SUB). Our results reveal ligand binding heterogeneity, ligand gating, cooperativity, induced fit, and conformational selection all from the same set of MISC data, detailing how SUB approaches the catalytic clefts and binds to the enzyme noncovalently before reacting to a trans-enamine. This was made possible in part by the application of singular value decomposition to the MISC data using a program that remains functional even if unit cell parameters change up to 3 Å during the reaction.
Collapse
Affiliation(s)
- Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kara Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Luis Aldama
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Sasa Bajt
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Denisse Feliz
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Brendon Hayes
- Linac Coherent Light Source LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mark Hunter
- Linac Coherent Light Source LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Christopher Kupitz
- Linac Coherent Light Source LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Stella Lisova
- Linac Coherent Light Source LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Juraj Knoska
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - Valerio Mariani
- Linac Coherent Light Source LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Raymond G Sierra
- Linac Coherent Light Source LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Chung Hong Yoon
- Linac Coherent Light Source LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Abbas Ourmazd
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, 20 Arizona State University, Tempe, AZ, USA
| | - Peter Schwander
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Anton Barty
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Center for Data and Computing in Natural Science CDCS, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Henry N Chapman
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen Synchrotron, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Emina A Stojkovic
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Alexander Batyuk
- Linac Coherent Light Source LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sébastien Boutet
- Linac Coherent Light Source LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - George N Phillips
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Pletzer-Zelgert J, Ehrt C, Fender I, Griewel A, Flachsenberg F, Klebe G, Rarey M. LifeSoaks: a tool for analyzing solvent channels in protein crystals and obstacles for soaking experiments. Acta Crystallogr D Struct Biol 2023; 79:837-856. [PMID: 37561404 PMCID: PMC10478636 DOI: 10.1107/s205979832300582x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Due to the structural complexity of proteins, their corresponding crystal arrangements generally contain a significant amount of solvent-occupied space. These areas allow a certain degree of intracrystalline protein flexibility and mobility of solutes. Therefore, knowledge of the geometry of solvent-filled channels and cavities is essential whenever the dynamics inside a crystal are of interest. Especially in soaking experiments for structure-based drug design, ligands must be able to traverse the crystal solvent channels and reach the corresponding binding pockets. Unsuccessful screenings are sometimes attributed to the geometry of the crystal packing, but the underlying causes are often difficult to understand. This work presents LifeSoaks, a novel tool for analyzing and visualizing solvent channels in protein crystals. LifeSoaks uses a Voronoi diagram-based periodic channel representation which can be efficiently computed. The size and location of channel bottlenecks, which might hinder molecular diffusion, can be directly derived from this representation. This work presents the calculated bottleneck radii for all crystal structures in the PDB and the analysis of a new, hand-curated data set of structures obtained by soaking experiments. The results indicate that the consideration of bottleneck radii and the visual inspection of channels are beneficial for planning soaking experiments.
Collapse
Affiliation(s)
| | - Christiane Ehrt
- Center for Bioinformatics, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Inken Fender
- Center for Bioinformatics, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Axel Griewel
- Center for Bioinformatics, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Florian Flachsenberg
- Center for Bioinformatics, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Universität Marburg, Marbacher Weg 6-10, 35032 Marburg, Germany
| | - Matthias Rarey
- Center for Bioinformatics, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| |
Collapse
|
10
|
Orun A, Shields ET, Dmytriw S, Vajapayajula A, Slaughter CK, Snow CD. Modular Protein-DNA Cocrystals as Precise, Programmable Assembly Scaffolds. ACS NANO 2023; 17:13110-13120. [PMID: 37407546 PMCID: PMC10373652 DOI: 10.1021/acsnano.2c07282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein-DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA-DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein-protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating I222 lattice, a phenomenon previously observed in metal-organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA-DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA-DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials.
Collapse
Affiliation(s)
- Abigail
R. Orun
- Department
of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, Colorado 80523, United States
| | - Ethan T. Shields
- Department
of Biomedical Engineering, Colorado State
University, 1376 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Sara Dmytriw
- Department
of Biomedical Engineering, Colorado State
University, 1376 Campus Delivery, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort
Collins, Colorado 80523, United States
| | - Ananya Vajapayajula
- Department
of Biomedical Engineering, Colorado State
University, 1376 Campus Delivery, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort
Collins, Colorado 80523, United States
| | - Caroline K. Slaughter
- Department
of Cell and Molecular Biology, Colorado
State University, Fort Collins, Colorado 80523, United States
| | - Christopher D. Snow
- Department
of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, Colorado 80523, United States
- Department
of Biomedical Engineering, Colorado State
University, 1376 Campus Delivery, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort
Collins, Colorado 80523, United States
- Department
of Cell and Molecular Biology, Colorado
State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
11
|
Jernigan RJ, Logeswaran D, Doppler D, Nagaratnam N, Sonker M, Yang JH, Ketawala G, Martin-Garcia JM, Shelby ML, Grant TD, Mariani V, Tolstikova A, Sheikh MZ, Yung MC, Coleman MA, Zaare S, Kaschner EK, Rabbani MT, Nazari R, Zacks MA, Hayes B, Sierra RG, Hunter MS, Lisova S, Batyuk A, Kupitz C, Boutet S, Hansen DT, Kirian RA, Schmidt M, Fromme R, Frank M, Ros A, Chen JJL, Botha S, Fromme P. Room-temperature structural studies of SARS-CoV-2 protein NendoU with an X-ray free-electron laser. Structure 2023; 31:138-151.e5. [PMID: 36630960 PMCID: PMC9830665 DOI: 10.1016/j.str.2022.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/08/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
NendoU from SARS-CoV-2 is responsible for the virus's ability to evade the innate immune system by cleaving the polyuridine leader sequence of antisense viral RNA. Here we report the room-temperature structure of NendoU, solved by serial femtosecond crystallography at an X-ray free-electron laser to 2.6 Å resolution. The room-temperature structure provides insight into the flexibility, dynamics, and other intrinsic properties of NendoU, with indications that the enzyme functions as an allosteric switch. Functional studies examining cleavage specificity in solution and in crystals support the uridine-purine cleavage preference, and we demonstrate that enzyme activity is fully maintained in crystal form. Optimizing the purification of NendoU and identifying suitable crystallization conditions set the benchmark for future time-resolved serial femtosecond crystallography studies. This could advance the design of antivirals with higher efficacy in treating coronaviral infections, since drugs that block allosteric conformational changes are less prone to drug resistance.
Collapse
Affiliation(s)
- Rebecca J Jernigan
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Dhenugen Logeswaran
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Diandra Doppler
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Nirupa Nagaratnam
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Mukul Sonker
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Jay-How Yang
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Gihan Ketawala
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Jose M Martin-Garcia
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Megan L Shelby
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Michelle Z Sheikh
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Mimi Cho Yung
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Sahba Zaare
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Fulton School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Emily K Kaschner
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Mohammad Towshif Rabbani
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Reza Nazari
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Michele A Zacks
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sebastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Debra T Hansen
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Richard A Kirian
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, WI 53211, USA
| | - Raimund Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Alexandra Ros
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
12
|
Zielinski KA, Prester A, Andaleeb H, Bui S, Yefanov O, Catapano L, Henkel A, Wiedorn MO, Lorbeer O, Crosas E, Meyer J, Mariani V, Domaracky M, White TA, Fleckenstein H, Sarrou I, Werner N, Betzel C, Rohde H, Aepfelbacher M, Chapman HN, Perbandt M, Steiner RA, Oberthuer D. Rapid and efficient room-temperature serial synchrotron crystallography using the CFEL TapeDrive. IUCRJ 2022; 9:778-791. [PMID: 36381150 PMCID: PMC9634612 DOI: 10.1107/s2052252522010193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 05/22/2023]
Abstract
Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired. On the way to high-throughput SSX using a conveyor belt based sample delivery system - the CFEL TapeDrive - with three different proteins of biological relevance (Klebsiella pneumoniae CTX-M-14 β-lactamase, Nectria haematococca xylanase GH11 and Aspergillus flavus urate oxidase), it is shown here that complete datasets can be collected in less than a minute and only minimal amounts of sample are required.
Collapse
Affiliation(s)
- Kara A Zielinski
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andreas Prester
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hina Andaleeb
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Soi Bui
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Lucrezia Catapano
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alessandra Henkel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Olga Lorbeer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Eva Crosas
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jan Meyer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Martin Domaracky
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas A. White
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Iosifina Sarrou
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nadine Werner
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Perbandt
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Roberto A. Steiner
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova 35131, Italy
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
13
|
Ramberg KO, Guagnini F, Engilberge S, Wrońska MA, Rennie ML, Pérez J, Crowley PB. Segregated Protein-Cucurbit[7]uril Crystalline Architectures via Modulatory Peptide Tectons. Chemistry 2021; 27:14619-14627. [PMID: 34432924 PMCID: PMC8596587 DOI: 10.1002/chem.202103025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/30/2022]
Abstract
One approach to protein assembly involves water-soluble supramolecular receptors that act like glues. Bionanoarchitectures directed by these scaffolds are often system-specific, with few studies investigating their customization. Herein, the modulation of cucurbituril-mediated protein assemblies through the inclusion of peptide tectons is described. Three peptides of varying length and structural order were N-terminally appended to RSL, a β-propeller building block. Each fusion protein was incorporated into crystalline architectures mediated by cucurbit[7]uril (Q7). A trimeric coiled-coil served as a spacer within a Q7-directed sheet assembly of RSL, giving rise to a layered material of varying porosity. Within the spacer layers, the coiled-coils were dynamic. This result prompted consideration of intrinsically disordered peptides (IDPs) as modulatory tectons. Similar to the coiled-coil, a mussel adhesion peptide (Mefp) also acted as a spacer between protein-Q7 sheets. In contrast, the fusion of a nucleoporin peptide (Nup) to RSL did not recapitulate the sheet assembly. Instead, a Q7-directed cage was adopted, within which disordered Nup peptides were partially "captured" by Q7 receptors. IDP capture occurred by macrocycle recognition of an intrapeptide Phe-Gly motif in which the benzyl group was encapsulated by Q7. The modularity of these protein-cucurbituril architectures adds a new dimension to macrocycle-mediated protein assembly. Segregated protein crystals, with alternating layers of high and low porosity, could provide a basis for new types of materials.
Collapse
Affiliation(s)
- Kiefer O Ramberg
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Francesca Guagnini
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Sylvain Engilberge
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Małgorzata A Wrońska
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Martin L Rennie
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Javier Pérez
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192, Gif-sur-Yvette Cedex, France
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
14
|
Ash PA, Kendall-Price SET, Evans RM, Carr SB, Brasnett AR, Morra S, Rowbotham JS, Hidalgo R, Healy AJ, Cinque G, Frogley MD, Armstrong FA, Vincent KA. The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase. Chem Sci 2021; 12:12959-12970. [PMID: 34745526 PMCID: PMC8514002 DOI: 10.1039/d1sc01734a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure-function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to navigate through the full array of active site states previously observed in solution. Electrochemical control is combined with synchrotron infrared microspectroscopy, which enables us to measure high signal-to-noise IR spectra in situ from a small area of crystal. The output reports on active site speciation via the vibrational stretching band positions of the endogenous CO and CN- ligands at the hydrogenase active site. Variation of pH further demonstrates how equilibria between catalytically-relevant protonation states can be deliberately perturbed in the crystals, generating a map of electrochemical potential and pH conditions which lead to enrichment of specific states. Comparison of in crystallo redox titrations with measurements in solution or of electrode-immobilised Hyd1 confirms the integrity of the proton transfer and redox environment around the active site of the enzyme in crystals. Slowed proton-transfer equilibria in the hydrogenase in crystallo reveals transitions which are only usually observable by ultrafast methods in solution. This study therefore demonstrates the possibilities of electrochemical control over single metalloenzyme crystals in stabilising specific states for further study, and extends mechanistic understanding of proton transfer during the [NiFe] hydrogenase catalytic cycle.
Collapse
Affiliation(s)
- Philip A Ash
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- School of Chemistry, University of Leicester Leicester LE1 7RH UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester LE1 7RH UK
| | - Sophie E T Kendall-Price
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Rhiannon M Evans
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Stephen B Carr
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Amelia R Brasnett
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Simone Morra
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Jack S Rowbotham
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Ricardo Hidalgo
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Adam J Healy
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Department of Engineering Sciences, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
15
|
Rabe P, Kamps JJAG, Sutherlin KD, Linyard JDS, Aller P, Pham CC, Makita H, Clifton I, McDonough MA, Leissing TM, Shutin D, Lang PA, Butryn A, Brem J, Gul S, Fuller FD, Kim IS, Cheah MH, Fransson T, Bhowmick A, Young ID, O'Riordan L, Brewster AS, Pettinati I, Doyle M, Joti Y, Owada S, Tono K, Batyuk A, Hunter MS, Alonso-Mori R, Bergmann U, Owen RL, Sauter NK, Claridge TDW, Robinson CV, Yachandra VK, Yano J, Kern JF, Orville AM, Schofield CJ. X-ray free-electron laser studies reveal correlated motion during isopenicillin N synthase catalysis. SCIENCE ADVANCES 2021; 7:eabh0250. [PMID: 34417180 PMCID: PMC8378823 DOI: 10.1126/sciadv.abh0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/29/2021] [Indexed: 05/23/2023]
Abstract
Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.
Collapse
Affiliation(s)
- Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jos J A G Kamps
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Kyle D Sutherlin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James D S Linyard
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Pierre Aller
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Cindy C Pham
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ian Clifton
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Denis Shutin
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Agata Butryn
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Franklin D Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mun Hon Cheah
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 751 20 Uppsala, Sweden
| | - Thomas Fransson
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Lee O'Riordan
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ilaria Pettinati
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Margaret Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706, USA
| | - Robin L Owen
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Allen M Orville
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
16
|
Nguyen D, Xie X, Jakobi S, Terwesten F, Metz A, Nguyen TXP, Palchykov VA, Heine A, Reuter K, Klebe G. Targeting a Cryptic Pocket in a Protein-Protein Contact by Disulfide-Induced Rupture of a Homodimeric Interface. ACS Chem Biol 2021; 16:1090-1098. [PMID: 34081441 DOI: 10.1021/acschembio.1c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interference with protein-protein interfaces represents an attractive as well as challenging option for therapeutic intervention and drug design. The enzyme tRNA-guanine transglycosylase, a target to fight Shigellosis, is only functional as a homodimer. Although we previously produced monomeric variants by site-directed mutagenesis, we only crystallized the functional dimer, simply because upon crystallization the local protein concentration increases and favors formation of the dimer interface, which represents an optimal and highly stable packing of the protein in the solid state. Unfortunately, this prevents access to structural information about the interface geometry in its monomeric state and complicates the development of modulators that can interfere with and prevent dimer formation. Here, we report on a cysteine-containing protein variant in which, under oxidizing conditions, a disulfide linkage is formed. This reinforces a novel packing geometry of the enzyme. In this captured quasi-monomeric state, the monomer units arrange in a completely different way and, thus, expose a loop-helix motif, originally embedded into the old interface, now to the surface. The motif adopts a geometry incompatible with the original dimer formation. Via the soaking of fragments into the crystals, we identified several hits accommodating a cryptic binding site next to the loop-helix motif and modulated its structural features. Our study demonstrates the druggability of the interface by breaking up the homodimeric protein using an introduced disulfide cross-link. By rational concepts, we increased the potency of these fragments to a level where we confirmed their binding by NMR to a nondisulfide-linked TGT variant. The idea of intermediately introducing a disulfide linkage may serve as a general concept of how to transform a homodimer interface into a quasi-monomeric state and give access to essential structural and design information.
Collapse
Affiliation(s)
- Dzung Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Stephan Jakobi
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Felix Terwesten
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Alexander Metz
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - T. X. Phong Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Vitalii A. Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipro National University, 72 Gagarina Avenue, Dnipro 49010, Ukraine
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| |
Collapse
|
17
|
Mockler NM, Engilberge S, Rennie ML, Raston CL, Crowley PB. Protein-macrocycle framework engineering: supramolecular copolymerisation with two disparate calixarenes. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1935946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Niamh M. Mockler
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sylvain Engilberge
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Martin L Rennie
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park SA Adelaide, Australia
| | - Peter B. Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
18
|
Porous assembly of an antifungal protein mediated by zinc and sulfonato-calix[8]arene. J Struct Biol 2021; 213:107711. [PMID: 33631304 DOI: 10.1016/j.jsb.2021.107711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Controlled protein assembly holds great potential in the fabrication of biohybrid materials. However, the structural diversity and complexity of proteins present an obstacle to controlled assembly. Supramolecular chemistry is a possible solution as it offers tools to mediate self-assembly with molecular precision. This paper deals with the calixarene- and zinc-mediated assembly and crystallization of the histidine-rich Penicillium chrysogenum antifungal protein B (PAFB). We report crystal structures of pure PAFB, PAFB in complex with Zn2+, and the ternary complex of PAFB, Zn2+ and sulfonato-calix[8]arene (sclx8). A comparison of the three crystal structures revealed the structural plasticity of PAFB. While the flexible and highly anionic sclx8 resulted in large molecular weight aggregates of PAFB in solution, diffraction-quality crystals of PAFB-sclx8 were not obtained. We report crystals of PAFB-Zn2+-sclx8 in which a trinuclear zinc cluster occurred adjacent to a calixarene binding site. Interestingly, the combination of sclx8 complexation and zinc coordination resulted in a porous framework with channels of circa 2 nm diameter. Detailed analysis of the crystal structure highlighted novel molecular recognition features. This research enriches the set of supramolecular interactions available to promote protein assembly.
Collapse
|
19
|
Ramberg KO, Engilberge S, Skorek T, Crowley PB. Facile Fabrication of Protein-Macrocycle Frameworks. J Am Chem Soc 2021; 143:1896-1907. [PMID: 33470808 PMCID: PMC8154523 DOI: 10.1021/jacs.0c10697] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Precisely defined protein aggregates,
as exemplified by crystals,
have applications in functional materials. Consequently, engineered
protein assembly is a rapidly growing field. Anionic calix[n]arenes
are useful scaffolds that can mold to cationic proteins and induce
oligomerization and assembly. Here, we describe protein-calixarene
composites obtained via cocrystallization of commercially available
sulfonato-calix[8]arene (sclx8) with the symmetric and “neutral” protein RSL. Cocrystallization
occurred across a wide range of conditions and protein charge states,
from pH 2.2–9.5, resulting in three crystal forms. Cationization
of the protein surface at pH ∼ 4 drives calixarene complexation
and yielded two types of porous frameworks with pore diameters >3
nm. Both types of framework provide evidence of protein encapsulation
by the calixarene. Calixarene-masked proteins act as nodes within
the frameworks, displaying octahedral-type coordination in one case.
The other framework formed millimeter-scale crystals within hours,
without the need for precipitants or specialized equipment. NMR experiments
revealed macrocycle-modulated side chain pKa values and suggested a mechanism for pH-triggered assembly.
The same low pH framework was generated at high pH with a permanently
cationic arginine-enriched RSL variant. Finally, in addition to protein
framework fabrication, sclx8 enables de novo structure determination.
Collapse
Affiliation(s)
- Kiefer O Ramberg
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Sylvain Engilberge
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.,Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Tomasz Skorek
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
20
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|
21
|
Orville AM. Recent results in time resolved serial femtosecond crystallography at XFELs. Curr Opin Struct Biol 2020; 65:193-208. [PMID: 33049498 DOI: 10.1016/j.sbi.2020.08.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/30/2022]
Abstract
Time-resolved serial femtosecond crystallography (tr-SFX) methods exploit slurries of crystalline samples that range in size from hundreds of nanometers to a few tens of micrometers, at near-physiological temperature and pressure, to generate atomic resolution models and probe authentic function with the same experiment. 'Dynamic structural biology' is often used to encompass the research philosophy and techniques. Reaction cycles for tr-SFX studies are initiated by photons or ligand addition/mixing strategies, wherein the latter are potentially generalizable across enzymology. Thus, dynamic structural biology often creates stop-motion molecular movies of macromolecular function. In metal-dependent systems, complementary spectroscopic information can also be collected from the same samples and X-ray pulses, which provides even more detailed mechanistic insights. These types of experimental data also complement quantum mechanical and classical dynamics numerical calculations. Correlated structural-functional results will yield more detailed mechanistic insights and will likely translate into better drugs and treatments impacting human health, and better catalysis for clean energy and agriculture.
Collapse
Affiliation(s)
- Allen M Orville
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, United Kingdom.
| |
Collapse
|
22
|
Plaza-Garrido M, Salinas-Garcia MC, Alba-Elena D, Martínez JC, Camara-Artigas A. Lysozyme crystals dyed with bromophenol blue: where has the dye gone? ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:845-856. [PMID: 32876060 DOI: 10.1107/s2059798320008803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/30/2020] [Indexed: 11/10/2022]
Abstract
Protein crystals can easily be coloured by adding dyes to their mother liquor, but most structures of these protein-dye complexes remain unsolved. Here, structures of lysozyme in complex with bromophenol blue obtained by soaking orthorhombic and tetragonal crystals in a saturated solution of the dye at different pH values from 5.0 to 7.5 are reported. Two different binding sites can be found in the lysozyme-bromophenol blue crystals: binding site I is located near the amino- and carboxyl-termini, while binding site II is located adjacent to helices α1 (residues 4-15) and α3 (residues 88-100). In the orthorhombic crystals soaked at pH 7.0, binding of the dye takes place in both sites without significant changes in the unit cell. However, soaking tetragonal crystals with bromophenol blue results in two different complexes. Crystals soaked at pH 5.5 (HEWL-T1) show a single dye molecule bound to site II, and the crystals belong to space group P43212 without significant changes in the unit cell (a = b = 78.50, c = 37.34 Å). On the other hand, crystals soaked at pH 6.5 in the presence of imidazole (HEWL-T2) show up to eight molecules of the dye bound to site II, and display changes in space group (P212121) and unit cell (a = 38.00, b = 76.65, c = 84.86 Å). In all of the structures, the dye molecules are placed at the surface of the protein near to positively charged residues accessible through the main solvent channels of the crystal. Differences in the arrangement of the dye molecules at the surface of the protein suggest that the binding is not specific and is mainly driven by electrostatic interactions.
Collapse
Affiliation(s)
- Marina Plaza-Garrido
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - M Carmen Salinas-Garcia
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Daniel Alba-Elena
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Jose C Martínez
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana Camara-Artigas
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
23
|
Heater BS, Yang Z, Lee MM, Chan MK. In Vivo Enzyme Entrapment in a Protein Crystal. J Am Chem Soc 2020; 142:9879-9883. [DOI: 10.1021/jacs.9b13462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bradley S. Heater
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zaofeng Yang
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Marianne M. Lee
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Michael K. Chan
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
24
|
Porous crystals as scaffolds for structural biology. Curr Opin Struct Biol 2020; 60:85-92. [PMID: 31896427 DOI: 10.1016/j.sbi.2019.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Molecular scaffolds provide routes to otherwise inaccessible organized states of matter. Scaffolds that are crystalline can be observed in atomic detail using diffraction, along with any guest molecules that have adopted coherent structures therein. This approach, scaffold-assisted structure determination, is not yet routine. However, with varying degrees of guest immobilization, porous crystal scaffolds have recently been decorated with guest molecules. Herein we analyze recent milestones, compare the relative advantages and challenges of different types of scaffold crystals, and weigh the merits of diverse guest installation strategies.
Collapse
|
25
|
Salinas-Garcia MC, Plaza-Garrido M, Alba-Elena D, Camara-Artigas A. Major conformational changes in the structure of lysozyme obtained from a crystal with a very low solvent content. Acta Crystallogr F Struct Biol Commun 2019; 75:687-696. [PMID: 31702582 PMCID: PMC6839823 DOI: 10.1107/s2053230x19013189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
A new crystal form of lysozyme with a very low solvent content (26.35%) has been obtained in the orthorhombic space group P212121 (with unit-cell parameters a = 30.04, b = 51.68, c = 61.53 Å). The lysozyme structure obtained from these crystals does not show the typical overall fold. Instead, major conformational changes take place in some elements of the secondary structure and in the hydrophobic core of the protein. At the end of the central α-helix (α2), Glu35 is usually buried in the catalytic site and shows an abnormally high pKa value, which is key to the activity of the enzyme. The high pKa value of this glutamate residue is favoured by the hydrophobic environment, particularly by its neighbour Trp108, which is important for structural stability and saccharide binding. In this new structure, Trp108 shows a 90° rotation of its side chain, which results in the rearrangement of the hydrophobic core. Conformational changes also result in the exposure of Glu35 to the solvent, which impairs the catalytic site by increasing the distance between Glu35 and Asp52 and lowering the pKa value of the glutamate. Altogether, this new lysozyme structure reveals major conformational changes in the hydrophobic core and catalytic site that might play a role in the folding and bactericidal function of the protein.
Collapse
Affiliation(s)
- M. Carmen Salinas-Garcia
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Marina Plaza-Garrido
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Daniel Alba-Elena
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Ana Camara-Artigas
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
26
|
Engilberge S, Rennie ML, Dumont E, Crowley PB. Tuning Protein Frameworks via Auxiliary Supramolecular Interactions. ACS NANO 2019; 13:10343-10350. [PMID: 31490058 DOI: 10.1021/acsnano.9b04115] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein crystals with their precise, periodic array of functional building blocks have potential applications in biomaterials, sensing, and catalysis. This paper describes how a highly porous crystalline framework of a cationic redox protein and an anionic macrocycle can be modulated by a small cationic effector. Ternary composites of protein (∼13 kDa), calix[8]arene (∼1.5 kDa), and effector (∼0.2 kDa) formed distinct crystalline architectures, dependent on the effector concentration and the crystallization technique. A combination of X-ray crystallography and density functional theory (DFT) calculations was used to decipher the framework variations, which appear to be dependent on a calixarene conformation change mediated by the effector. This "switch" calixarene was observed in three states, each of which is associated with a different interaction network. Two structures obtained by co-crystallization with the effector contained an additional protein "pillar", resulting in framework duplication and decreased porosity. These results suggest how protein assembly can be engineered by supramolecular host-guest interactions.
Collapse
Affiliation(s)
- Sylvain Engilberge
- School of Chemistry , National University of Ireland Galway , University Road , Galway H91 TK33 , Ireland
| | - Martin L Rennie
- School of Chemistry , National University of Ireland Galway , University Road , Galway H91 TK33 , Ireland
| | - Elise Dumont
- Université de Lyon, ENS de Lyon, CNRS UMR 5182 , Université Claude Bernard Lyon 1, Laboratoire de Chimie , 69342 Lyon , France
| | - Peter B Crowley
- School of Chemistry , National University of Ireland Galway , University Road , Galway H91 TK33 , Ireland
| |
Collapse
|
27
|
Moreau DW, Atakisi H, Thorne RE. Ice formation and solvent nanoconfinement in protein crystals. IUCRJ 2019; 6:346-356. [PMID: 31098016 PMCID: PMC6503922 DOI: 10.1107/s2052252519001878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/31/2019] [Indexed: 05/06/2023]
Abstract
Ice formation within protein crystals is a major obstacle to the cryocrystallographic study of protein structure, and has limited studies of how the structural ensemble of a protein evolves with temperature in the biophysically interesting range from ∼260 K to the protein-solvent glass transition near 200 K. Using protein crystals with solvent cavities as large as ∼70 Å, time-resolved X-ray diffraction was used to study the response of protein and internal solvent during rapid cooling. Solvent nanoconfinement suppresses freezing temperatures and ice-nucleation rates so that ice-free, low-mosaicity diffraction data can be reliably collected down to 200 K without the use of cryoprotectants. Hexagonal ice (Ih) forms in external solvent, but internal crystal solvent forms stacking-disordered ice (Isd) with a near-random stacking of cubic and hexagonal planes. Analysis of powder diffraction from internal ice and single-crystal diffraction from the host protein structure shows that the maximum crystallizable solvent fraction decreases with decreasing crystal solvent-cavity size, and that an ∼6 Å thick layer of solvent adjacent to the protein surface cannot crystallize. These results establish protein crystals as excellent model systems for the study of nanoconfined solvent. By combining fast cooling, intense X-ray beams and fast X-ray detectors, complete structural data sets for high-value targets, including membrane proteins and large complexes, may be collected at ∼220-240 K that have much lower mosaicities and comparable B factors, and that may allow more confident identification of ligand binding than in current cryocrystallographic practice.
Collapse
Affiliation(s)
- David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
28
|
Hartje LF, Snow CD. Protein crystal based materials for nanoscale applications in medicine and biotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1547. [DOI: 10.1002/wnan.1547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Luke F. Hartje
- Department of Biochemistry and Molecular Biology Colorado State University Fort Collins Colorado
| | - Christopher D. Snow
- Department of Chemical and Biological Engineering Colorado State University Fort Collins Colorado
| |
Collapse
|
29
|
Juers DH, Farley CA, Saxby CP, Cotter RA, Cahn JKB, Holton-Burke RC, Harrison K, Wu Z. The impact of cryosolution thermal contraction on proteins and protein crystals: volumes, conformation and order. Acta Crystallogr D Struct Biol 2018; 74:922-938. [PMID: 30198901 PMCID: PMC6130464 DOI: 10.1107/s2059798318008793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/15/2018] [Indexed: 11/11/2022] Open
Abstract
Cryocooling of macromolecular crystals is commonly employed to limit radiation damage during X-ray diffraction data collection. However, cooling itself affects macromolecular conformation and often damages crystals via poorly understood processes. Here, the effects of cryosolution thermal contraction on macromolecular conformation and crystal order in crystals ranging from 32 to 67% solvent content are systematically investigated. It is found that the solution thermal contraction affects macromolecule configurations and volumes, unit-cell volumes, crystal packing and crystal order. The effects occur through not only thermal contraction, but also pressure caused by the mismatched contraction of cryosolvent and pores. Higher solvent-content crystals are more affected. In some cases the solvent contraction can be adjusted to reduce mosaicity and increase the strength of diffraction. Ice formation in some crystals is found to cause damage via a reduction in unit-cell volume, which is interpreted through solvent transport out of unit cells during cooling. The results point to more deductive approaches to cryoprotection optimization by adjusting the cryosolution composition to reduce thermal contraction-induced stresses in the crystal with cooling.
Collapse
Affiliation(s)
- Douglas H. Juers
- Department of Physics, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
- Program in BBMB, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - Christopher A. Farley
- Department of Physics, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | | | - Rosemary A. Cotter
- Program in BBMB, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - Jackson K. B. Cahn
- Program in BBMB, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | | | - Kaitlin Harrison
- Program in BBMB, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - Zhenguo Wu
- Department of Physics, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| |
Collapse
|
30
|
Zhang Y, Zhang X, Tang J, Snow CD, Sun G, Kowalski AE, Hartje LF, Zhao N, Wang Y, Belfiore LA. Synthesis of luminescent lanthanide complexes within crosslinked protein crystal matrices. CrystEngComm 2018. [DOI: 10.1039/c8ce00318a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Eu(TTA)3phen was synthesized inside of crosslinked protein crystals. And we characterized the volumetric changes quantitatively induced by DMSO.
Collapse
|