1
|
Ramos J, Laux V, Mason SA, Lemée MH, Bowler MW, Diederichs K, Haertlein M, Forsyth VT, Mossou E, Larsen S, Langkilde AE. Structure and dynamics of the active site of hen egg-white lysozyme from atomic resolution neutron crystallography. Structure 2025; 33:136-148.e3. [PMID: 39577430 DOI: 10.1016/j.str.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
Hen egg-white lysozyme (HEWL) is a widely used model protein in crystallographic studies and its enzymatic mechanism has been extensively investigated for decades. Despite this, the interaction between the reaction intermediate and the catalytic Asp52, as well as the orientation of Asn44 and Asn46 side chains, remain ambiguous. Here, we report the crystal structures of perdeuterated HEWL and D2O buffer-exchanged HEWL from 0.91 and 1.1 Å resolution neutron diffraction data, respectively. These structures were obtained at room temperature and acidic pH, representing the active state of the enzyme. The unambiguous assignment of hydrogen positions based on the neutron scattering length density maps elucidates the roles of Asn44, Asn46, Asn59, and nearby water molecules in the stabilization of Asp52. Additionally, the identification of hydrogen positions reveals unique details of lysozyme's folding, hydrogen (H)/deuterium (D) exchange, and side chain disorder.
Collapse
Affiliation(s)
- Joao Ramos
- Institut Laue-Langevin, 71 avenue des Martyrs CS20156, 38042 Grenoble Cedex, France; Partnership for Structural Biology (PSB), 71 avenue des Martyrs CS 90181, 38042 Grenoble Cedex, France; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Valerie Laux
- Institut Laue-Langevin, 71 avenue des Martyrs CS20156, 38042 Grenoble Cedex, France; Partnership for Structural Biology (PSB), 71 avenue des Martyrs CS 90181, 38042 Grenoble Cedex, France
| | - Sax A Mason
- Institut Laue-Langevin, 71 avenue des Martyrs CS20156, 38042 Grenoble Cedex, France
| | - Marie-Hélène Lemée
- Institut Laue-Langevin, 71 avenue des Martyrs CS20156, 38042 Grenoble Cedex, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble, 71 avenue des Martyrs CS 40220, 38043 Grenoble Cedex, France
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Box 647, 78457 Konstanz, Germany
| | - Michael Haertlein
- Institut Laue-Langevin, 71 avenue des Martyrs CS20156, 38042 Grenoble Cedex, France; Partnership for Structural Biology (PSB), 71 avenue des Martyrs CS 90181, 38042 Grenoble Cedex, France
| | - V Trevor Forsyth
- Faculty of Medicine, Lund University, 221 00 Lund, Sweden; LINXS Institute for Advanced Neutron and X-ray Science, Scheelevagen 19, 223 70 Lund, Sweden
| | - Estelle Mossou
- Partnership for Structural Biology (PSB), 71 avenue des Martyrs CS 90181, 38042 Grenoble Cedex, France; European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Annette E Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
de Vries I, Adamopoulos A, Kazokaitė-Adomaitienė J, Heidebrecht T, Fish A, Celie PHN, Joosten RP, Perrakis A. JBP1 and JBP3 have conserved structures but different affinity to base-J. J Struct Biol 2024; 217:108161. [PMID: 39674235 DOI: 10.1016/j.jsb.2024.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Base-J (β-D-glucopyranosyloxymethyluracil) is an unusual kinetoplastid-specific DNA modification, recognized by base-J containing DNA (J-DNA) binding proteins JBP1 and JBP3. Recognition of J-DNA by both JBP1 and JBP3 takes place by a conserved J-DNA binding domain (JDBD). Here we show that JDBD-JBP3 has about 1,000-fold weaker affinity to base-J than JDBD-JBP1 and discriminates between J-DNA and unmodified DNA with a factor ∼5, whereas JDBD-JBP1 discriminates with a factor ∼10,000. Comparison of the crystal structures of JDBD-JBP3 we present here, with that of the previously characterized JDBD-JBP1, shows a flexible α5-helix that lacks a positively charged patch in JBP3. Mutations removing this positive charge in JDBD-JBP1, resulted in decreased binding affinity relative to wild-type JDBD-JBP1, indicating this patch is involved in DNA binding. We suggest that the α5-helix might rearrange upon JBP1 binding to J-DNA stabilizing the complex. This work contributes to our understanding of how JBPs bind to this unique DNA modification, which may contribute to identifying potential drug targets to end the base-J dependent parasite life cycle.
Collapse
Affiliation(s)
- Ida de Vries
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Athanassios Adamopoulos
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Justina Kazokaitė-Adomaitienė
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Tatjana Heidebrecht
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alex Fish
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Patrick H N Celie
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Robbie P Joosten
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Purwani NN, Rozeboom HJ, Willers VP, Wijma HJ, Fraaije MW. Discovery of a new class of bacterial heme-containing CC cleaving oxygenases. N Biotechnol 2024; 83:82-90. [PMID: 39053683 DOI: 10.1016/j.nbt.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Previously, some bacteria were shown to harbour enzymes capable of catalysing the oxidative cleavage of the double bond of t-anethole and related compounds. The cofactor dependence of these enzymes remained enigmatic due to a lack of biochemical information. We report on catalytic and structural details of a representative of this group of oxidative enzymes: t-anethole oxygenase from Stenotrophomonas maltophilia (TAOSm). The bacterial enzyme could be recombinantly expressed and purified, enabling a detailed biochemical study that has settled the dispute on its cofactor dependence. We have established that TAOSm contains a tightly bound b-type heme and merely depends on dioxygen for catalysis. It was found to accept t-anethole, isoeugenol and O-methyl isoeugenol as substrates, all being converted into the corresponding aromatic aldehydes without the need of any cofactor regeneration. The elucidated crystal structure of TAOSm has revealed that it contains a unique active site architecture that is conserved for this distinct class of heme-containing bacterial oxygenases. Similar to other hemoproteins, TAOSm has a histidine (His121) as proximal ligand. Yet, unique for TAOs, an arginine (Arg89) is located at the distal axial position. Site directed mutagenesis confirmed crucial roles for these heme-liganding residues and other residues that form the substrate binding pocket. In conclusion, the results reported here reveal a new class of bacterial heme-containing oxygenases that can be used for the cleavage of alkene double bonds, analogous to ozonolysis in organic chemistry.
Collapse
Affiliation(s)
- Ni Nyoman Purwani
- Molecular Enzymology, University of Groningen, Nijenborgh 4, Groningen 9747AG, the Netherlands; Department of Health, Faculty of Vocational Studies, Kampus B Universitas Airlangga, Surabaya, East Java 60286, Indonesia
| | - Henriette J Rozeboom
- Molecular Enzymology, University of Groningen, Nijenborgh 4, Groningen 9747AG, the Netherlands
| | - Vivian P Willers
- Molecular Enzymology, University of Groningen, Nijenborgh 4, Groningen 9747AG, the Netherlands
| | - Hein J Wijma
- Molecular Enzymology, University of Groningen, Nijenborgh 4, Groningen 9747AG, the Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Nijenborgh 4, Groningen 9747AG, the Netherlands.
| |
Collapse
|
4
|
Pećanac O, Martin C, Savino S, Rozeboom HJ, Fraaije MW, Lončar N. Biochemical and Structural Characterisation of a Bacterial Lactoperoxidase. Chembiochem 2024:e202400713. [PMID: 39570012 DOI: 10.1002/cbic.202400713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/22/2024]
Abstract
Peroxidases belong to a group of enzymes that are widely found in animals, plants and microorganisms. These enzymes are effective biocatalysts for a wide range of oxidations on various substrates. This work presents a biochemical and structural characterization of a novel heme-containing peroxidase from Cyanobacterium sp. TDX16, CyanoPOX. This cyanobacterial enzyme was successfully overexpressed in Escherichia coli as a soluble, heme-containing monomeric enzyme. Although CyanoPOX shares relatively low sequence identity (37 %) with bovine lactoperoxidase, it displays comparable biochemical properties. CyanoPOX is most stable and active in slightly acidic conditions (pH 6-6.5) and moderately thermostable (melting temperature around 48 °C). Several compounds that are typical substrates for mammalian lactoperoxidases were tested to establish the catalytic potential of CyanoPOX. Potassium iodide showed the highest catalytic efficiency (126 mM-1 s-1), while various aromatic compounds were also readily converted. Structural elucidation of CyanoPOX confirmed the presence of a non-covalently bound b-type heme cofactor that is situated in the central core of the protein. Except for a highly similar overall structure, CyanoPOX also has a conserved active site pocket when compared with mammalian lactoperoxidases. Due to its catalytic properties and high expression in a bacterial host, this newly discovered peroxidase shows promise for applications.
Collapse
Affiliation(s)
- Ognjen Pećanac
- GECCO Biotech, Zernikepark 6, 9747 AN, Groningen, The Netherlands
| | - Caterina Martin
- GECCO Biotech, Zernikepark 6, 9747 AN, Groningen, The Netherlands
| | - Simone Savino
- GECCO Biotech, Zernikepark 6, 9747 AN, Groningen, The Netherlands
| | - Henriette J Rozeboom
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Nikola Lončar
- GECCO Biotech, Zernikepark 6, 9747 AN, Groningen, The Netherlands
| |
Collapse
|
5
|
Santema LL, Rozeboom HJ, Borger VP, Kaya SG, Fraaije MW. Identification of a robust bacterial pyranose oxidase that displays an unusual pH dependence. J Biol Chem 2024; 300:107885. [PMID: 39395808 DOI: 10.1016/j.jbc.2024.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Pyranose oxidases are valuable biocatalysts, yet only a handful of bacterial pyranose oxidases are known. These bacterial enzymes exhibit noteworthy distinctions from their extensively characterized fungal counterparts, encompassing variations in substrate specificity and structural attributes. Herein a bacterial pyranose oxidase from Oscillatoria princeps (OPOx) was biochemically characterized in detail. In contrast to the fungal pyranose oxidases, OPOx could be well expressed in Escherichia coli as soluble, fully flavinylated, and active oxidase. It was found to be highly thermostable (melting temperature >90 °C) and showed activity on glucose, exhibiting an exceptionally low KM value (48 μM). Elucidation of its crystal structure revealed similarities with fungal pyranose oxidases, such as being a tetramer with a large central void leading to a narrow substrate access tunnel. In the active site, the FAD cofactor is covalently bound to a histidine. OPOx displays a relatively narrow pH optimum for activity with a sharp decline at relatively basic pH values which is accompanied by a drastic change in its flavin absorbance spectrum. The pH-dependent switch in flavin absorbance features and oxidase activity was shown to be fully reversible. It is hypothesized that a glutamic acid helps to stabilize the protonated form of the histidine that is tethered to the FAD. OPOx presents itself as a valuable biocatalyst as it is highly robust, well-expressed in E. coli, shows low KM values for monosaccharides, and has a peculiar pH-dependent "on-off switch".
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | | | - Veronica P Borger
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Saniye G Kaya
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Russo S, Rozeboom HJ, Wijma HJ, Poelarends GJ, Fraaije MW. Biochemical, kinetic, and structural characterization of a Bacillus tequilensis nitroreductase. FEBS J 2024; 291:3889-3903. [PMID: 38946302 DOI: 10.1111/febs.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Nitroreductases (NRs) are NAD(P)H-dependent flavoenzymes that reduce nitro aromatic compounds to their corresponding arylamines via the nitroso and hydroxylamine intermediates. Because of their broad substrate scope and versatility, NRs have found application in multiple fields such as biocatalysis, bioremediation, cell-imaging and prodrug activation. However, only a limited number of members of the broad NR superfamily (> 24 000 sequences) have been experimentally characterized. Within this group of enzymes, only few are capable of amine synthesis, which is a fundamental chemical transformation for the pharmaceutical, agricultural, and textile industries. Herein, we provide a comprehensive description of a recently discovered NR from Bacillus tequilensis, named BtNR. This enzyme has previously been demonstrated to have the capability to fully convert nitro aromatic and heterocyclic compounds to their respective primary amines. In this study, we determined its biochemical, kinetic and structural properties, including its apparent melting temperature (Tm) of 59 °C, broad pH activity range (from pH 3 to 10) and a notably low redox potential (-236 ± 1 mV) in comparison to other well-known NRs. We also determined its steady-state and pre-steady-state kinetic parameters, which are consistent with other NRs. Additionally, we elucidated the crystal structure of BtNR, which resembles the well-characterized Escherichia coli oxygen-insensitive NAD(P)H nitroreductase (NfsB), and investigated the substrate binding in its active site through docking and molecular dynamics studies with four nitro aromatic substrates. Guided by these structural analyses, we probed the functional roles of active site residues by site-directed mutagenesis. Our findings provide valuable insights into the biochemical and structural properties of BtNR, as well as its potential applications in biotechnology.
Collapse
Affiliation(s)
- Sara Russo
- Molecular Enzymology Group, University of Groningen, The Netherlands
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | | | - Hein J Wijma
- Molecular Enzymology Group, University of Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, The Netherlands
| |
Collapse
|
7
|
Silvestri I, Manigrasso J, Andreani A, Brindani N, Mas C, Reiser JB, Vidossich P, Martino G, McCarthy AA, De Vivo M, Marcia M. Targeting the conserved active site of splicing machines with specific and selective small molecule modulators. Nat Commun 2024; 15:4980. [PMID: 38898052 PMCID: PMC11187226 DOI: 10.1038/s41467-024-48697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
The self-splicing group II introns are bacterial and organellar ancestors of the nuclear spliceosome and retro-transposable elements of pharmacological and biotechnological importance. Integrating enzymatic, crystallographic, and simulation studies, we demonstrate how these introns recognize small molecules through their conserved active site. These RNA-binding small molecules selectively inhibit the two steps of splicing by adopting distinctive poses at different stages of catalysis, and by preventing crucial active site conformational changes that are essential for splicing progression. Our data exemplify the enormous power of RNA binders to mechanistically probe vital cellular pathways. Most importantly, by proving that the evolutionarily-conserved RNA core of splicing machines can recognize small molecules specifically, our work provides a solid basis for the rational design of splicing modulators not only against bacterial and organellar introns, but also against the human spliceosome, which is a validated drug target for the treatment of congenital diseases and cancers.
Collapse
Affiliation(s)
- Ilaria Silvestri
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
- Institute of Crystallography, National Research Council, Via Vivaldi 43, 81100, Caserta, Italy
| | - Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alessandro Andreani
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Nicoletta Brindani
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Caroline Mas
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, ISBG, F-38000, Grenoble, France
| | | | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Gianfranco Martino
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Andrew A McCarthy
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
8
|
Faure C, Min Ng Y, Belle C, Soler-Lopez M, Khettabi L, Saïdi M, Berthet N, Maresca M, Philouze C, Rachidi W, Réglier M, du Moulinet d'Hardemare A, Jamet H. Interactions of Phenylalanine Derivatives with Human Tyrosinase: Lessons from Experimental and Theoretical tudies. Chembiochem 2024; 25:e202400235. [PMID: 38642076 DOI: 10.1002/cbic.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/22/2024]
Abstract
The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.
Collapse
Affiliation(s)
- Clarisse Faure
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Yi Min Ng
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Catherine Belle
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Mélissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Nathalie Berthet
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France)
| | - Christian Philouze
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Walid Rachidi
- IRIG-BGE U1038, INSERM, Univ. Grenoble Alpes, Biomics, 38054, Grenoble, France
| | - Marius Réglier
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France)
| | | | - Hélène Jamet
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| |
Collapse
|
9
|
Ma S, Damfo S, Bowler MW, Mykhaylyk V, Kozielski F. High-confidence placement of low-occupancy fragments into electron density using the anomalous signal of sulfur and halogen atoms. Acta Crystallogr D Struct Biol 2024; 80:451-463. [PMID: 38841886 PMCID: PMC11154595 DOI: 10.1107/s2059798324004480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.
Collapse
Affiliation(s)
- Shumeng Ma
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Shymaa Damfo
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Mounawarah 30078, Saudi Arabia
| | | | - Vitaliy Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - Frank Kozielski
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
10
|
Metz A, Stegmann DP, Panepucci EH, Buehlmann S, Huang CY, McAuley KE, Wang M, Wojdyla JA, Sharpe ME, Smith KML. HEIDI: an experiment-management platform enabling high-throughput fragment and compound screening. Acta Crystallogr D Struct Biol 2024; 80:328-335. [PMID: 38606665 PMCID: PMC11066879 DOI: 10.1107/s2059798324002833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
The Swiss Light Source facilitates fragment-based drug-discovery campaigns for academic and industrial users through the Fast Fragment and Compound Screening (FFCS) software suite. This framework is further enriched by the option to utilize the Smart Digital User (SDU) software for automated data collection across the PXI, PXII and PXIII beamlines. In this work, the newly developed HEIDI webpage (https://heidi.psi.ch) is introduced: a platform crafted using state-of-the-art software architecture and web technologies for sample management of rotational data experiments. The HEIDI webpage features a data-review tab for enhanced result visualization and provides programmatic access through a representational state transfer application programming interface (REST API). The migration of the local FFCS MongoDB instance to the cloud is highlighted and detailed. This transition ensures secure, encrypted and consistently accessible data through a robust and reliable REST API tailored for the FFCS software suite. Collectively, these advancements not only significantly elevate the user experience, but also pave the way for future expansions and improvements in the capabilities of the system.
Collapse
Affiliation(s)
- A. Metz
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - D. P. Stegmann
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - E. H. Panepucci
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - S. Buehlmann
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - C.-Y. Huang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - K. E. McAuley
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - M. Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - J. A. Wojdyla
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - M. E. Sharpe
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - K. M. L. Smith
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
11
|
Öster L, Castaldo M, de Vries E, Edfeldt F, Pemberton N, Gordon E, Cederblad L, Käck H. The structures of salt-inducible kinase 3 in complex with inhibitors reveal determinants for binding and selectivity. J Biol Chem 2024; 300:107201. [PMID: 38508313 PMCID: PMC11061224 DOI: 10.1016/j.jbc.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
The salt-inducible kinases (SIKs) 1 to 3, belonging to the AMPK-related kinase family, serve as master regulators orchestrating a diverse set of physiological processes such as metabolism, bone formation, immune response, oncogenesis, and cardiac rhythm. Owing to its key regulatory role, the SIK kinases have emerged as compelling targets for pharmacological intervention across a diverse set of indications. Therefore, there is interest in developing SIK inhibitors with defined selectivity profiles both to further dissect the downstream biology and for treating disease. However, despite a large pharmaceutical interest in the SIKs, experimental structures of SIK kinases are scarce. This is likely due to the challenges associated with the generation of proteins suitable for structural studies. By adopting a rational approach to construct design and protein purification, we successfully crystallized and subsequently solved the structure of SIK3 in complex with HG-9-91-01, a potent SIK inhibitor. To enable further SIK3-inhibitor complex structures we identified an antibody fragment that facilitated crystallization and enabled a robust protocol suitable for structure-based drug design. The structures reveal SIK3 in an active conformation, where the ubiquitin-associated domain is shown to provide further stabilization to this active conformation. We present four pharmacologically relevant and distinct SIK3-inhibitor complexes. These detail the key interaction for each ligand and reveal how different regions of the ATP site are engaged by the different inhibitors to achieve high affinity. Notably, the structure of SIK3 in complex with a SIK3 specific inhibitor offers insights into isoform selectivity.
Collapse
Affiliation(s)
- Linda Öster
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Marie Castaldo
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma de Vries
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Fredrik Edfeldt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Nils Pemberton
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Euan Gordon
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Cederblad
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Helena Käck
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
12
|
Petit-Hartlein I, Vermot A, Thepaut M, Humm AS, Dupeux F, Dupuy J, Chaptal V, Marquez JA, Smith SME, Fieschi F. X-ray structure and enzymatic study of a bacterial NADPH oxidase highlight the activation mechanism of eukaryotic NOX. eLife 2024; 13:RP93759. [PMID: 38640072 PMCID: PMC11031084 DOI: 10.7554/elife.93759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2's requirement for activation.
Collapse
Affiliation(s)
| | - Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
| | - Michel Thepaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
| | | | - Florine Dupeux
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
- European Molecular Biology LaboratoryGrenobleFrance
| | - Jerome Dupuy
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
| | | | | | - Susan ME Smith
- Department of Molecular and Cellular Biology, Kennesaw State UniversityKennesawUnited States
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
13
|
Carpentier P, van der Linden P, Mueller-Dieckmann C. The High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX), an ancillary tool for the macromolecular crystallography beamlines at the ESRF. Acta Crystallogr D Struct Biol 2024; 80:80-92. [PMID: 38265873 PMCID: PMC10836400 DOI: 10.1107/s2059798323010707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure-temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its interactions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule-gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.
Collapse
Affiliation(s)
- Philippe Carpentier
- Université Grenoble Alpes CEA CNRS, IRIG–LCBM UMR 5249, 17 Avenue des Martyrs, 38000 Grenoble, France
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Peter van der Linden
- ESRF, PSCM (Partnership for Soft Condensed Matter), 71 Avenue des Martyrs, 38000 Grenoble, France
| | | |
Collapse
|
14
|
Tjallinks G, Boverio A, Maric I, Rozeboom H, Arentshorst M, Visser J, Ram AFJ, Mattevi A, Fraaije MW. Structure elucidation and characterization of patulin synthase, insights into the formation of a fungal mycotoxin. FEBS J 2023; 290:5114-5126. [PMID: 37366079 DOI: 10.1111/febs.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Patulin synthase (PatE) from Penicillium expansum is a flavin-dependent enzyme that catalyses the last step in the biosynthesis of the mycotoxin patulin. This secondary metabolite is often present in fruit and fruit-derived products, causing postharvest losses. The patE gene was expressed in Aspergillus niger allowing purification and characterization of PatE. This confirmed that PatE is active not only on the proposed patulin precursor ascladiol but also on several aromatic alcohols including 5-hydroxymethylfurfural. By elucidating its crystal structure, details on its catalytic mechanism were revealed. Several aspects of the active site architecture are reminiscent of that of fungal aryl-alcohol oxidases. Yet, PatE is most efficient with ascladiol as substrate confirming its dedicated role in biosynthesis of patulin.
Collapse
Affiliation(s)
- Gwen Tjallinks
- Molecular Enzymology, University of Groningen, The Netherlands
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Alessandro Boverio
- Molecular Enzymology, University of Groningen, The Netherlands
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ivana Maric
- Molecular Enzymology, University of Groningen, The Netherlands
| | | | | | - Jaap Visser
- Institute of Biology Leiden, Leiden University, The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Leiden University, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, The Netherlands
| |
Collapse
|
15
|
Martin MP, Endicott JA, Noble MEM, Tatum NJ. Crystallographic fragment screening in academic cancer drug discovery. Methods Enzymol 2023; 690:211-234. [PMID: 37858530 DOI: 10.1016/bs.mie.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Fragment-based drug discovery (FBDD) has brought several drugs to the clinic, notably to target proteins once considered to be challenging, or even undruggable. Screening in FBDD relies upon observing and/or measuring weak (millimolar-scale) binding events using biophysical techniques or crystallographic fragment screening. This latter structural approach provides no information about binding affinity but can reveal binding mode and atomic detail on protein-fragment interactions to accelerate hit-to-lead development. In recent years, high-throughput platforms have been developed at synchrotron facilities to screen thousands of fragment-soaked crystals. However, using accessible manual techniques it is possible to run informative, smaller-scale screens within an academic lab setting. This chapter describes general protocols for home laboratory-scale fragment screening, from fragment soaking through to structure solution and, where appropriate, signposts to background, protocols or alternatives elsewhere.
Collapse
Affiliation(s)
- Mathew P Martin
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Jane A Endicott
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Martin E M Noble
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Natalie J Tatum
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
16
|
Tong Y, Rozeboom HJ, Loonstra MR, Wijma HJ, Fraaije MW. Characterization of two bacterial multi-flavinylated proteins harboring multiple covalent flavin cofactors. BBA ADVANCES 2023; 4:100097. [PMID: 37455753 PMCID: PMC10339131 DOI: 10.1016/j.bbadva.2023.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
In recent years, studies have shown that a large number of bacteria secrete multi-flavinylated proteins. The exact roles and properties, of these extracellular flavoproteins that contain multiple covalently anchored FMN cofactors, are still largely unknown. Herein, we describe the biochemical and structural characterization of two multi-FMN-containing covalent flavoproteins, SaFMN3 from Streptomyces azureus and CbFMN4 from Clostridiaceae bacterium. Based on their primary structure, these proteins were predicted to contain three and four covalently tethered FMN cofactors, respectively. The genes encoding SaFMN3 and CbFMN4 were heterologously coexpressed with a flavin transferase (ApbE) in Escherichia coli, and could be purified by affinity chromatography in good yields. Both proteins were found to be soluble and to contain covalently bound FMN molecules. The SaFMN3 protein was studied in more detail and found to display a single redox potential (-184 mV) while harboring three covalently attached flavins. This is in line with the high sequence similarity when the domains of each flavoprotein are compared. The fully reduced form of SaFMN3 is able to use dioxygen as electron acceptor. Single domains from both proteins were expressed, purified and crystallized. The crystal structures were elucidated, which confirmed that the flavin cofactor is covalently attached to a threonine. Comparison of both crystal structures revealed a high similarity, even in the flavin binding pocket. Based on the crystal structure, mutants of the SaFMN3-D2 domain were designed to improve its fluorescence quantum yield by changing the microenvironment of the isoalloxazine moiety of the flavin cofactor. Residues that quench the flavin fluorescence were successfully identified. Our study reveals biochemical details of multi-FMN-containing proteins, contributing to a better understanding of their role in bacteria and providing leads to future utilization of these flavoprotein in biotechnology.
Collapse
|
17
|
Chopra A, Bauman JD, Ruiz FX, Arnold E. Halo Library, a Tool for Rapid Identification of Ligand Binding Sites on Proteins Using Crystallographic Fragment Screening. J Med Chem 2023; 66:6013-6024. [PMID: 37115705 PMCID: PMC10184123 DOI: 10.1021/acs.jmedchem.2c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
X-ray crystallographic fragment screening (XCFS) uses fragment-sized molecules (∼60 to 300 Da) to access binding sites on proteins that may be inaccessible to larger drug-like molecules (>300 Da). Previous studies have shown that fragments containing halogen atoms bind more often to proteins than non-halogenated fragments. Here, we designed the Halo Library containing 46 halogenated fragments (including the "universal fragment" 4-bromopyrazole), a majority of which have been reported to bind to or inhibit one or more targets. The library was screened against the crystals of HIV-1 reverse transcriptase with the drug rilpivirine, yielding an overall hit rate of 26%. Two new binding sites were discovered, and several hot spots were identified. This small library may thus provide a convenient tool for rapidly assessing the feasibility of a target for XCFS, mapping hot spots and cryptic sites, as well as finding fragment binders that can be useful for developing drug leads.
Collapse
Affiliation(s)
- Ashima Chopra
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Joseph D Bauman
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Francesc X Ruiz
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
18
|
Mehrabi P, Sung S, von Stetten D, Prester A, Hatton CE, Kleine-Döpke S, Berkes A, Gore G, Leimkohl JP, Schikora H, Kollewe M, Rohde H, Wilmanns M, Tellkamp F, Schulz EC. Millisecond cryo-trapping by the spitrobot crystal plunger simplifies time-resolved crystallography. Nat Commun 2023; 14:2365. [PMID: 37185266 PMCID: PMC10130016 DOI: 10.1038/s41467-023-37834-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/01/2023] [Indexed: 05/17/2023] Open
Abstract
We introduce the spitrobot, a protein crystal plunger, enabling reaction quenching via cryo-trapping with a time-resolution in the millisecond range. Protein crystals are mounted on canonical micromeshes on an electropneumatic piston, where the crystals are kept in a humidity and temperature-controlled environment, then reactions are initiated via the liquid application method (LAMA) and plunging into liquid nitrogen is initiated after an electronically set delay time to cryo-trap intermediate states. High-magnification images are automatically recorded before and after droplet deposition, prior to plunging. The SPINE-standard sample holder is directly plunged into a storage puck, enabling compatibility with high-throughput infrastructure. Here we demonstrate binding of glucose and 2,3-butanediol in microcrystals of xylose isomerase, and of avibactam and ampicillin in microcrystals of the extended spectrum beta-lactamase CTX-M-14. We also trap reaction intermediates and conformational changes in macroscopic crystals of tryptophan synthase to demonstrate that the spitrobot enables insight into catalytic events.
Collapse
Affiliation(s)
- Pedram Mehrabi
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - Sihyun Sung
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Andreas Prester
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Caitlin E Hatton
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Stephan Kleine-Döpke
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Alexander Berkes
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Gargi Gore
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | | | - Hendrik Schikora
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Martin Kollewe
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Holger Rohde
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Friedjof Tellkamp
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - Eike C Schulz
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
19
|
Carnie CJ, Armstrong L, Sebesta M, Ariza A, Wang X, Graham E, Zhu K, Ahel D. ERCC6L2 mitigates replication stress and promotes centromere stability. Cell Rep 2023; 42:112329. [PMID: 37014751 DOI: 10.1016/j.celrep.2023.112329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Structurally complex genomic regions, such as centromeres, are inherently difficult to duplicate. The mechanism behind centromere inheritance is not well understood, and one of the key questions relates to the reassembly of centromeric chromatin following DNA replication. Here, we define ERCC6L2 as a key regulator of this process. ERCC6L2 accumulates at centromeres and promotes deposition of core centromeric factors. Interestingly, ERCC6L2-/- cells show unrestrained replication of centromeric DNA, likely caused by the erosion of centromeric chromatin. Beyond centromeres, ERCC6L2 facilitates replication at genomic repeats and non-canonical DNA structures. Notably, ERCC6L2 interacts with the DNA-clamp PCNA through an atypical peptide, presented here in a co-crystal structure. Finally, ERCC6L2 also restricts DNA end resection, acting independently of the 53BP1-REV7-Shieldin complex. We propose a mechanistic model, which reconciles seemingly distinct functions of ERCC6L2 in DNA repair and DNA replication. These findings provide a molecular context for studies linking ERCC6L2 to human disease.
Collapse
Affiliation(s)
| | - Lucy Armstrong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Marek Sebesta
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Xiaomeng Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
20
|
García-Nieto A, Patel A, Li Y, Oldenkamp R, Feletto L, Graham JJ, Willems L, Muir KW, Panne D, Rowland BD. Structural basis of centromeric cohesion protection. Nat Struct Mol Biol 2023:10.1038/s41594-023-00968-y. [PMID: 37081319 DOI: 10.1038/s41594-023-00968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
In the early stages of mitosis, cohesin is released from chromosome arms but not from centromeres. The protection of centromeric cohesin by SGO1 maintains the sister chromatid cohesion that resists the pulling forces of microtubules until all chromosomes are attached in a bipolar manner to the mitotic spindle. Here we present the X-ray crystal structure of a segment of human SGO1 bound to a conserved surface of the cohesin complex. SGO1 binds to a composite interface formed by the SA2 and SCC1RAD21 subunits of cohesin. SGO1 shares this binding interface with CTCF, indicating that these distinct chromosomal regulators control cohesin through a universal principle. This interaction is essential for the localization of SGO1 to centromeres and protects centromeric cohesin against WAPL-mediated cohesin release. SGO1-cohesin binding is maintained until the formation of microtubule-kinetochore attachments and is required for faithful chromosome segregation and the maintenance of a stable karyotype.
Collapse
Affiliation(s)
- Alberto García-Nieto
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Amrita Patel
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Yan Li
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Roel Oldenkamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Leonardo Feletto
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Joshua J Graham
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Laureen Willems
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kyle W Muir
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
22
|
Scietti L, Forneris F. Modeling of Protein Complexes. Methods Mol Biol 2023; 2627:349-371. [PMID: 36959458 DOI: 10.1007/978-1-0716-2974-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The recent advances in structural biology, combined with continuously increasing computational capabilities and development of advanced softwares, have drastically simplified the workflow for protein homology modeling. Modeling of individual proteins is nowadays quick and straightforward for a large variety of protein targets, thanks to guided pipelines relying on advanced computational tools and user-friendly interfaces, which have extended and promoted the use of modeling also to scientists not focusing on molecular structures of proteins. Nevertheless, construction of models of multi-protein complexes remains quite challenging for the non-experts, often due to the usage of specific procedures depending on the system under investigation and the need for experimental validation approaches to strengthen the generated output.In this chapter, we provide a brief overview of the approaches enabling generation of multi-protein complex models starting from homology models of individual protein components. Using real-life examples, we include two examples to guide the reader in the generation of homomeric and heteromeric protein models.
Collapse
Affiliation(s)
- Luigi Scietti
- Department of Biology and Biotechnology, The Armenise-Harvard Laboratory of Structural Biology, University of Pavia, Pavia, Italy.
| | - Federico Forneris
- Department of Biology and Biotechnology, The Armenise-Harvard Laboratory of Structural Biology, University of Pavia, Pavia, Italy.
| |
Collapse
|
23
|
Wehlin A, Cornaciu I, Marquez JA, Perrakis A, von Castelmur E. Crystal structure of the phospholipase A and acyltransferase 4 (PLAAT4) catalytic domain. J Struct Biol 2022; 214:107903. [PMID: 36210037 DOI: 10.1016/j.jsb.2022.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Phospholipase A and Acyltransferase 4 (PLAAT4) is a class II tumor suppressor, that also plays a role as a restrictor of intracellular Toxoplasma gondii infection through restriction of parasitic vacuole size. The catalytic N-terminal domain (NTD) interacts with the C-terminal domain (CTD), which is important for sub-cellular targeting and enzymatic function. The dynamics of the NTD main (L1) loop and the L2(B6) loop adjacent to the active site, have been shown to be important regulators of enzymatic activity. Here, we present the crystal structure of PLAAT4 NTD, determined from severely intergrown crystals using automated, laser-based crystal harvesting and data reduction technologies. The structure showed the L1 loop in two distinct conformations, highlighting a complex network of interactions likely influencing its conformational flexibility. Ensemble refinement of the crystal structure recapitulates the major correlated motions observed in solution by NMR. Our analysis offers useful insights on millisecond dynamics based on the crystal structure, complementing NMR studies which preclude structural information at this time scale.
Collapse
Affiliation(s)
- Anna Wehlin
- Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL), 71 Avenue des Martyres, 38000 Grenoble, France; ALPX S.A.S. 71 Avenue des Martyrs, 38000 Grenoble, France
| | - José Antonio Marquez
- European Molecular Biology Laboratory (EMBL), 71 Avenue des Martyres, 38000 Grenoble, France; ALPX S.A.S. 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Anastassis Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Eleonore von Castelmur
- Department of Physics, Chemistry and Biology, Linköping University, Sweden; Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands; Wallenberg Center for Molecular Medicine, Linköping University, Sweden.
| |
Collapse
|
24
|
d'Amico EA, Ud Din Ahmad M, Cmentowski V, Girbig M, Müller F, Wohlgemuth S, Brockmeyer A, Maffini S, Janning P, Vetter IR, Carter AP, Perrakis A, Musacchio A. Conformational transitions of the Spindly adaptor underlie its interaction with Dynein and Dynactin. J Cell Biol 2022; 221:213466. [PMID: 36107127 PMCID: PMC9481740 DOI: 10.1083/jcb.202206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic Dynein 1, or Dynein, is a microtubule minus end-directed motor. Dynein motility requires Dynactin and a family of activating adaptors that stabilize the Dynein-Dynactin complex and promote regulated interactions with cargo in space and time. How activating adaptors limit Dynein activation to specialized subcellular locales is unclear. Here, we reveal that Spindly, a mitotic Dynein adaptor at the kinetochore corona, exists natively in a closed conformation that occludes binding of Dynein-Dynactin to its CC1 box and Spindly motif. A structure-based analysis identified various mutations promoting an open conformation of Spindly that binds Dynein-Dynactin. A region of Spindly downstream from the Spindly motif and not required for cargo binding faces the CC1 box and stabilizes the intramolecular closed conformation. This region is also required for robust kinetochore localization of Spindly, suggesting that kinetochores promote Spindly activation to recruit Dynein. Thus, our work illustrates how specific Dynein activation at a defined cellular locale may require multiple factors.
Collapse
Affiliation(s)
- Ennio A d'Amico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Misbha Ud Din Ahmad
- Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Verena Cmentowski
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | | | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andreas Brockmeyer
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Anastassis Perrakis
- Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Schneider DK, Soares AS, Lazo EO, Kreitler DF, Qian K, Fuchs MR, Bhogadi DK, Antonelli S, Myers SS, Martins BS, Skinner JM, Aishima J, Bernstein HJ, Langdon T, Lara J, Petkus R, Cowan M, Flaks L, Smith T, Shea-McCarthy G, Idir M, Huang L, Chubar O, Sweet RM, Berman LE, McSweeney S, Jakoncic J. AMX - the highly automated macromolecular crystallography (17-ID-1) beamline at the NSLS-II. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1480-1494. [PMID: 36345756 PMCID: PMC9641562 DOI: 10.1107/s1600577522009377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The highly automated macromolecular crystallography beamline AMX/17-ID-1 is an undulator-based high-intensity (>5 × 1012 photons s-1), micro-focus (7 µm × 5 µm), low-divergence (1 mrad × 0.35 mrad) energy-tunable (5-18 keV) beamline at the NSLS-II, Brookhaven National Laboratory, Upton, NY, USA. It is one of the three life science beamlines constructed by the NIH under the ABBIX project and it shares sector 17-ID with the FMX beamline, the frontier micro-focus macromolecular crystallography beamline. AMX saw first light in March 2016 and started general user operation in February 2017. At AMX, emphasis has been placed on high throughput, high capacity, and automation to enable data collection from the most challenging projects using an intense micro-focus beam. Here, the current state and capabilities of the beamline are reported, and the different macromolecular crystallography experiments that are routinely performed at AMX/17-ID-1 as well as some plans for the near future are presented.
Collapse
Affiliation(s)
| | | | - Edwin O. Lazo
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | | | - Kun Qian
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Martin R. Fuchs
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Dileep K. Bhogadi
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Steve Antonelli
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Stuart S. Myers
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | | | - John M. Skinner
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Jun Aishima
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Herbert J. Bernstein
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
- Ronin Institute, Montclair, New Jersey, USA
| | - Thomas Langdon
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - John Lara
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Robert Petkus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Matt Cowan
- CSI, Brookhaven National Laboratory, Upton, New York, USA
| | - Leonid Flaks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Thomas Smith
- Physics Department, Brookhaven National Laboratory, Upton, New York, USA
| | | | - Mourad Idir
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lei Huang
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Oleg Chubar
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Robert M. Sweet
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lonny E. Berman
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Sean McSweeney
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Jean Jakoncic
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
26
|
Ma S, Damfo S, Lou J, Pinotsis N, Bowler MW, Haider S, Kozielski F. Two Ligand-Binding Sites on SARS-CoV-2 Non-Structural Protein 1 Revealed by Fragment-Based X-ray Screening. Int J Mol Sci 2022; 23:12448. [PMID: 36293303 PMCID: PMC9604401 DOI: 10.3390/ijms232012448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The regular reappearance of coronavirus (CoV) outbreaks over the past 20 years has caused significant health consequences and financial burdens worldwide. The most recent and still ongoing novel CoV pandemic, caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has brought a range of devastating consequences. Due to the exceptionally fast development of vaccines, the mortality rate of the virus has been curbed to a significant extent. However, the limitations of vaccination efficiency and applicability, coupled with the still high infection rate, emphasise the urgent need for discovering safe and effective antivirals against SARS-CoV-2 by suppressing its replication or attenuating its virulence. Non-structural protein 1 (nsp1), a unique viral and conserved leader protein, is a crucial virulence factor for causing host mRNA degradation, suppressing interferon (IFN) expression and host antiviral signalling pathways. In view of the essential role of nsp1 in the CoV life cycle, it is regarded as an exploitable target for antiviral drug discovery. Here, we report a variety of fragment hits against the N-terminal domain of SARS-CoV-2 nsp1 identified by fragment-based screening via X-ray crystallography. We also determined the structure of nsp1 at atomic resolution (0.99 Å). Binding affinities of hits against nsp1 and potential stabilisation were determined by orthogonal biophysical assays such as microscale thermophoresis and thermal shift assays. We identified two ligand-binding sites on nsp1, one deep and one shallow pocket, which are not conserved between the three medically relevant SARS, SARS-CoV-2 and MERS coronaviruses. Our study provides an excellent starting point for the development of more potent nsp1-targeting inhibitors and functional studies on SARS-CoV-2 nsp1.
Collapse
Affiliation(s)
- Shumeng Ma
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Shymaa Damfo
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiaqi Lou
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | | | - Shozeb Haider
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- UCL Centre for Advanced Research Computing, University College London, London WC1H 9RN, UK
| | - Frank Kozielski
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
27
|
Swale C, Bellini V, Bowler MW, Flore N, Brenier-Pinchart MP, Cannella D, Belmudes L, Mas C, Couté Y, Laurent F, Scherf A, Bougdour A, Hakimi MA. Altiratinib blocks Toxoplasma gondii and Plasmodium falciparum development by selectively targeting a spliceosome kinase. Sci Transl Med 2022; 14:eabn3231. [PMID: 35921477 DOI: 10.1126/scitranslmed.abn3231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Apicomplexa comprise a large phylum of single-celled, obligate intracellular protozoa that include Toxoplasma gondii, Plasmodium, and Cryptosporidium spp., which infect humans and animals and cause severe parasitic diseases. Available therapeutics against these diseases are limited by suboptimal efficacy and frequent side effects, as well as the emergence and spread of resistance. We use a drug repurposing strategy and identify altiratinib, a compound originally developed to treat glioblastoma, as a promising drug candidate with broad spectrum activity against apicomplexans. Altiratinib is parasiticidal and blocks the development of intracellular zoites in the nanomolar range and with a high selectivity index when used against T. gondii. We have identified TgPRP4K of T. gondii as the primary target of altiratinib using genetic target deconvolution, which highlighted key residues within the kinase catalytic site that conferred drug resistance when mutated. We have further elucidated the molecular basis of the inhibitory mechanism and species selectivity of altiratinib for TgPRP4K and for its Plasmodium falciparum counterpart, PfCLK3. Our data identified structural features critical for binding of the other PfCLK3 inhibitor, TCMDC-135051. Consistent with the splicing control activity of this kinase family, we have shown that altiratinib can cause global disruption of splicing, primarily through intron retention in both T. gondii and P. falciparum. Thus, our data establish parasitic PRP4K/CLK3 as a potential pan-apicomplexan target whose repertoire of inhibitors can be expanded by the addition of altiratinib.
Collapse
Affiliation(s)
- Christopher Swale
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Valeria Bellini
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Nardella Flore
- Institut Pasteur, Université de Paris, Unité de Biologie des Interactions Hôte-Parasite, CNRS ERL 9195, INSERM U1201, F-75015 Paris, France
| | - Marie-Pierre Brenier-Pinchart
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Dominique Cannella
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Lucid Belmudes
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, EMBL, 71 avenue des Martyrs, F-38042, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - Fabrice Laurent
- INRAE, Université François Rabelais de Tours, Centre Val de Loire, UMR1282 ISP, Laboratoire Apicomplexes et Immunité Mucosale, 37380 Nouzilly, France
| | - Artur Scherf
- Institut Pasteur, Université de Paris, Unité de Biologie des Interactions Hôte-Parasite, CNRS ERL 9195, INSERM U1201, F-75015 Paris, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
28
|
Unravelling the Adaptation Mechanisms to High Pressure in Proteins. Int J Mol Sci 2022; 23:ijms23158469. [PMID: 35955607 PMCID: PMC9369236 DOI: 10.3390/ijms23158469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
Life is thought to have appeared in the depth of the sea under high hydrostatic pressure. Nowadays, it is known that the deep biosphere hosts a myriad of life forms thriving under high-pressure conditions. However, the evolutionary mechanisms leading to their adaptation are still not known. Here, we show the molecular bases of these mechanisms through a joint structural and dynamical study of two orthologous proteins. We observed that pressure adaptation involves the decoupling of protein–water dynamics and the elimination of cavities in the protein core. This is achieved by rearranging the charged residues on the protein surface and using bulkier hydrophobic residues in the core. These findings will be the starting point in the search for a complete genomic model explaining high-pressure adaptation.
Collapse
|
29
|
Boverio A, Widodo WS, Santema LL, Rozeboom H, Xiang R, Guallar V, Mattevi A, Fraaije MW. Structural Elucidation and Engineering of a Bacterial Carbohydrate Oxidase. Biochemistry 2022; 62:429-436. [PMID: 35881507 PMCID: PMC9850908 DOI: 10.1021/acs.biochem.2c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Flavin-dependent carbohydrate oxidases are valuable tools in biotechnological applications due to their high selectivity in the oxidation of carbohydrates. In this study, we report the biochemical and structural characterization of a recently discovered carbohydrate oxidase from the bacterium Ralstonia solanacearum, which is a member of the vanillyl alcohol oxidase flavoprotein family. Due to its exceptionally high activity toward N-acetyl-d-galactosamine and N-acetyl-d-glucosamine, the enzyme was named N-acetyl-glucosamine oxidase (NagOx). In contrast to most known (fungal) carbohydrate oxidases, NagOx could be overexpressed in a bacterial host, which facilitated detailed biochemical and enzyme engineering studies. Steady state kinetic analyses revealed that non-acetylated hexoses were also accepted as substrates albeit with lower efficiency. Upon determination of the crystal structure, structural insights into NagOx were obtained. A large cavity containing a bicovalently bound FAD, tethered via histidyl and cysteinyl linkages, was observed. Substrate docking highlighted how a single residue (Leu251) plays a key role in the accommodation of N-acetylated sugars in the active site. Upon replacement of Leu251 (L251R mutant), an enzyme variant was generated with a drastically modified substrate acceptance profile, tuned toward non-N-acetylated monosaccharides and disaccharides. Furthermore, the activity toward bulkier substrates such as the trisaccharide maltotriose was introduced by this mutation. Due to its advantage of being overexpressed in a bacterial host, NagOx can be considered a promising alternative engineerable biocatalyst for selective oxidation of monosaccharides and oligosaccharides.
Collapse
Affiliation(s)
- Alessandro Boverio
- Molecular
Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands,Department
of Biology and Biotechnology, University
of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Wahyu S. Widodo
- Molecular
Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Lars L. Santema
- Molecular
Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Henriëtte
J. Rozeboom
- Molecular
Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Ruite Xiang
- Electronic
and Atomic Protein Modelling Group, Barcelona
Supercomputing Center, E-08034 Barcelona, Spain
| | - Víctor Guallar
- Electronic
and Atomic Protein Modelling Group, Barcelona
Supercomputing Center, E-08034 Barcelona, Spain
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University
of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Marco W. Fraaije
- Molecular
Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands,
| |
Collapse
|
30
|
Arnoldi I, Mancini G, Fumagalli M, Gastaldi D, D'Andrea L, Bandi C, Di Venere M, Iadarola P, Forneris F, Gabrieli P. A salivary factor binds a cuticular protein and modulates biting by inducing morphological changes in the mosquito labrum. Curr Biol 2022; 32:3493-3504.e11. [PMID: 35835123 DOI: 10.1016/j.cub.2022.06.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
The mosquito proboscis is an efficient microelectromechanical system, which allows the insect to feed on vertebrate blood quickly and painlessly. Its efficiency is further enhanced by the insect saliva, although through unclear mechanisms. Here, we describe the initial trigger of an unprecedented feedback signaling pathway in Aedes mosquitoes affecting feeding behavior. We identified LIPS proteins in the saliva of Aedes mosquitoes that promote feeding in the vertebrate skin. LIPS show a new all-helical protein fold constituted by two domains. The N-terminal domain interacts with a cuticular protein (Cp19) located at the tip of the mosquito labrum. Upon interaction, the morphology of the labral cuticle changes, and this modification is most likely sensed by proprioceptive neurons. Our study identifies an additional role of mosquito saliva and underlines that the external cuticle is a possible site of key molecular interactions affecting the insect biology and its vector competence.
Collapse
Affiliation(s)
- Irene Arnoldi
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Giulia Mancini
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Dario Gastaldi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Luca D'Andrea
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Claudio Bandi
- Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Monica Di Venere
- Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Paolo Iadarola
- Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Paolo Gabrieli
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.
| |
Collapse
|
31
|
Clark JM, Salgado-Polo F, Macdonald SJF, Barrett TN, Perrakis A, Jamieson C. Structure-Based Design of a Novel Class of Autotaxin Inhibitors Based on Endogenous Allosteric Modulators. J Med Chem 2022; 65:6338-6351. [PMID: 35440138 PMCID: PMC9059126 DOI: 10.1021/acs.jmedchem.2c00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autotaxin (ATX) facilitates the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA), a bioactive phospholipid, which facilitates a diverse range of cellular effects in multiple tissue types. Abnormal LPA expression can lead to the progression of diseases such as cancer and fibrosis. Previously, we identified a potent ATX steroid-derived hybrid (partially orthosteric and allosteric) inhibitor which did not form interactions with the catalytic site. Herein, we describe the design, synthesis, and biological evaluation of a focused library of novel steroid-derived analogues targeting the bimetallic catalytic site, representing an entirely unique class of ATX inhibitors of type V designation, which demonstrate significant pathway-relevant biochemical and phenotypic biological effects. The current compounds modulated LPA-mediated ATX allostery and achieved indirect blockage of LPA1 internalization, in line with the observed reduction in downstream signaling cascades and chemotaxis induction. These novel type V ATX inhibitors represent a promising tool to inactivate the ATX-LPA signaling axis.
Collapse
Affiliation(s)
- Jennifer M Clark
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Fernando Salgado-Polo
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Simon J F Macdonald
- Medicines Design, GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Tim N Barrett
- Medicines Design, GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
32
|
Beyer HM, Iwaï H. Structural Basis for the Propagation of Homing Endonuclease-Associated Inteins. Front Mol Biosci 2022; 9:855511. [PMID: 35372505 PMCID: PMC8966425 DOI: 10.3389/fmolb.2022.855511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Inteins catalyze their removal from a host protein through protein splicing. Inteins that contain an additional site-specific endonuclease domain display genetic mobility via a process termed “homing” and thereby act as selfish DNA elements. We elucidated the crystal structures of two archaeal inteins associated with an active or inactive homing endonuclease domain. This analysis illustrated structural diversity in the accessory domains (ACDs) associated with the homing endonuclease domain. To augment homing endonucleases with highly specific DNA cleaving activity using the intein scaffold, we engineered the ACDs and characterized their homing site recognition. Protein engineering of the ACDs in the inteins illuminated a possible strategy for how inteins could avoid their extinction but spread via the acquisition of a diverse accessory domain.
Collapse
Affiliation(s)
- Hannes M. Beyer
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- *Correspondence: Hideo Iwaï, or,
| |
Collapse
|
33
|
Actinobacteria challenge the paradigm: A unique protein architecture for a well-known, central metabolic complex. Proc Natl Acad Sci U S A 2021; 118:2112107118. [PMID: 34819376 DOI: 10.1073/pnas.2112107118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
α-oxoacid dehydrogenase complexes are large, tripartite enzymatic machineries carrying out key reactions in central metabolism. Extremely conserved across the tree of life, they have been, so far, all considered to be structured around a high-molecular weight hollow core, consisting of up to 60 subunits of the acyltransferase component. We provide here evidence that Actinobacteria break the rule by possessing an acetyltranferase component reduced to its minimally active, trimeric unit, characterized by a unique C-terminal helix bearing an actinobacterial specific insertion that precludes larger protein oligomerization. This particular feature, together with the presence of an odhA gene coding for both the decarboxylase and the acyltransferase domains on the same polypetide, is spread over Actinobacteria and reflects the association of PDH and ODH into a single physical complex. Considering the central role of the pyruvate and 2-oxoglutarate nodes in central metabolism, our findings pave the way to both therapeutic and metabolic engineering applications.
Collapse
|
34
|
Avraham O, Bayer EA, Livnah O. Wilavidin* - a novel member of the avidin family that forms unique biotin-binding hexamers. FEBS J 2021; 289:1700-1714. [PMID: 34726340 DOI: 10.1111/febs.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Nature's optimization of protein functions is a highly intricate evolutionary process. In addition to optimal tertiary folding, the intramolecular recognition among the monomers that generate higher-order quaternary arrangements is driven by stabilizing interactions that have a pivotal role for ideal activity. Homotetrameric avidin and streptavidin are regularly utilized in many applications, whereby their ultra-high affinity toward biotin is dependent on their quaternary arrangements. In recent years, a new subfamily of avidins was discovered that comprises homodimers rather than tetramers, in which the high affinity toward biotin is maintained. Intriguingly, several of the respective dimers have been shown to assemble into higher-order cylindrical hexamers or octamers that dissociate into dimers upon biotin binding. Here, we present wilavidin, a newly discovered member of the dimeric subfamily, forming hexamers in the apo form, which are uniquely maintained upon biotin binding with six high-affinity binding sites. Removal of the short C-terminal segment of wilavidin resulted in the presence of the dimer only, thus emphasizing the role of this segment in stabilizing the hexamer. Utilization of a hexavalent biotin-binding form of avidin would be beneficial for expanding the biotechnological toolbox. Additionally, this unique family of dimeric avidins and their propensity to oligomerize to hexamers or octamers can serve as a basis for protein oligomerization and intermonomeric recognition as well as cumulative interactions that determine molecular assemblies.
Collapse
Affiliation(s)
- Orly Avraham
- The Wolfson Centre for Applied Structural Biology, Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.,Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
35
|
Affiliation(s)
- Melanie Vollmar
- Diamond Light Source Ltd., Harwell Science & Innovation Campus, Didcot, UK
| | - Gwyndaf Evans
- Diamond Light Source Ltd., Harwell Science & Innovation Campus, Didcot, UK
- Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, UK
| |
Collapse
|
36
|
Lazo EO, Antonelli S, Aishima J, Bernstein HJ, Bhogadi D, Fuchs MR, Guichard N, McSweeney S, Myers S, Qian K, Schneider D, Shea-McCarthy G, Skinner J, Sweet R, Yang L, Jakoncic J. Robotic sample changers for macromolecular X-ray crystallography and biological small-angle X-ray scattering at the National Synchrotron Light Source II. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1649-1661. [PMID: 34475312 PMCID: PMC8415329 DOI: 10.1107/s1600577521007578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/24/2021] [Indexed: 05/13/2023]
Abstract
Here we present two robotic sample changers integrated into the experimental stations for the macromolecular crystallography (MX) beamlines AMX and FMX, and the biological small-angle scattering (bioSAXS) beamline LiX. They enable fully automated unattended data collection and remote access to the beamlines. The system designs incorporate high-throughput, versatility, high-capacity, resource sharing and robustness. All systems are centered around a six-axis industrial robotic arm coupled with a force torque sensor and in-house end effectors (grippers). They have the same software architecture and the facility standard EPICS-based BEAST alarm system. The MX system is compatible with SPINE bases and Unipucks. It comprises a liquid nitrogen dewar holding 384 samples (24 Unipucks) and a stay-cold gripper, and utilizes machine vision software to track the sample during operations and to calculate the final mount position on the goniometer. The bioSAXS system has an in-house engineered sample storage unit that can hold up to 360 samples (20 sample holders) which keeps samples at a user-set temperature (277 K to 300 K). The MX systems were deployed in early 2017 and the bioSAXS system in early 2019.
Collapse
Affiliation(s)
- Edwin O. Lazo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Stephen Antonelli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jun Aishima
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Herbert J. Bernstein
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dileep Bhogadi
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Martin R. Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Sean McSweeney
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Stuart Myers
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kun Qian
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dieter Schneider
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Grace Shea-McCarthy
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Skinner
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Robert Sweet
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jean Jakoncic
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
37
|
Baba S, Matsuura H, Kawamura T, Sakai N, Nakamura Y, Kawano Y, Mizuno N, Kumasaka T, Yamamoto M, Hirata K. Guidelines for de novo phasing using multiple small-wedge data collection. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1284-1295. [PMID: 34475278 PMCID: PMC8415328 DOI: 10.1107/s1600577521008067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/05/2021] [Indexed: 05/30/2023]
Abstract
Intense micro-focus X-ray beamlines available at synchrotron facilities have achieved high-quality data collection even from the microcrystals of membrane proteins. The automatic data collection system developed at SPring-8, named ZOO, has contributed to many structure determinations of membrane proteins using small-wedge synchrotron crystallography (SWSX) datasets. The `small-wedge' (5-20°) datasets are collected from multiple crystals and then merged to obtain the final structure factors. To our knowledge, no systematic investigation on the dose dependence of data accuracy has so far been reported for SWSX, which is between `serial crystallography' and `rotation crystallography'. Thus, herein, we investigated the optimal dose conditions for experimental phasing with SWSX. Phase determination using anomalous scattering signals was found to be more difficult at higher doses. Furthermore, merging more homogeneous datasets grouped by hierarchical clustering with controlled doses mildly reduced the negative factors in data collection, such as `lack of signal' and `radiation damage'. In turn, as more datasets were merged, more probable phases could be obtained across a wider range of doses. Therefore, our findings show that it is essential to choose a lower dose than 10 MGy for de novo structure determination by SWSX. In particular, data collection using a dose of 5 MGy proved to be optimal in balancing the amount of signal available while reducing the amount of damage as much as possible.
Collapse
Affiliation(s)
- Seiki Baba
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Kawamura
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Naoki Sakai
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yuki Nakamura
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yoshiaki Kawano
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Nobuhiro Mizuno
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Masaki Yamamoto
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunio Hirata
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
38
|
Farhat DC, Bowler MW, Communie G, Pontier D, Belmudes L, Mas C, Corrao C, Couté Y, Bougdour A, Lagrange T, Hakimi MA, Swale C. A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma. eLife 2021; 10:68312. [PMID: 34263725 PMCID: PMC8313237 DOI: 10.7554/elife.68312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Correct 3’end processing of mRNAs is one of the regulatory cornerstones of gene expression. In a parasite that must adapt to the regulatory requirements of its multi-host life style, there is a need to adopt additional means to partition the distinct transcriptional signatures of the closely and tandemly arranged stage-specific genes. In this study, we report our findings in T. gondii of an m6A-dependent 3’end polyadenylation serving as a transcriptional barrier at these loci. We identify the core polyadenylation complex within T. gondii and establish CPSF4 as a reader for m6A-modified mRNAs, via a YTH domain within its C-terminus, a feature which is shared with plants. We bring evidence of the specificity of this interaction both biochemically, and by determining the crystal structure at high resolution of the T. gondii CPSF4-YTH in complex with an m6A-modified RNA. We show that the loss of m6A, both at the level of its deposition or its recognition is associated with an increase in aberrantly elongated chimeric mRNAs emanating from impaired transcriptional termination, a phenotype previously noticed in the plant model Arabidopsis thaliana. Nanopore direct RNA sequencing shows the occurrence of transcriptional read-through breaching into downstream repressed stage-specific genes, in the absence of either CPSF4 or the m6A RNA methylase components in both T. gondii and A. thaliana. Taken together, our results shed light on an essential regulatory mechanism coupling the pathways of m6A metabolism directly to the cleavage and polyadenylation processes, one that interestingly seem to serve, in both T. gondii and A. thaliana, as a guardian against aberrant transcriptional read-throughs.
Collapse
Affiliation(s)
- Dayana C Farhat
- IAB,Team Host-Pathogen Interactions & Immunity to Infection, INSERMU1209, CNRSUMR5309, Grenoble Alpes University, Grenoble, France
| | | | | | - Dominique Pontier
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), Perpignan, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, EMBL, Grenoble, France
| | - Charlotte Corrao
- IAB,Team Host-Pathogen Interactions & Immunity to Infection, INSERMU1209, CNRSUMR5309, Grenoble Alpes University, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
| | - Alexandre Bougdour
- IAB,Team Host-Pathogen Interactions & Immunity to Infection, INSERMU1209, CNRSUMR5309, Grenoble Alpes University, Grenoble, France
| | - Thierry Lagrange
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), Perpignan, France
| | - Mohamed-Ali Hakimi
- IAB,Team Host-Pathogen Interactions & Immunity to Infection, INSERMU1209, CNRSUMR5309, Grenoble Alpes University, Grenoble, France
| | - Christopher Swale
- IAB,Team Host-Pathogen Interactions & Immunity to Infection, INSERMU1209, CNRSUMR5309, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
39
|
Structural and functional comparison of fumarylacetoacetate domain containing protein 1 in human and mouse. Biosci Rep 2021; 40:222164. [PMID: 32068790 PMCID: PMC7056447 DOI: 10.1042/bsr20194431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
FAH domain containing protein 1 (FAHD1) is a mammalian mitochondrial protein, displaying bifunctionality as acylpyruvate hydrolase (ApH) and oxaloacetate decarboxylase (ODx) activity. We report the crystal structure of mouse FAHD1 and structural mapping of the active site of mouse FAHD1. Despite high structural similarity with human FAHD1, a rabbit monoclonal antibody (RabMab) could be produced that is able to recognize mouse FAHD1, but not the human form, whereas a polyclonal antibody recognized both proteins. Epitope mapping in combination with our deposited crystal structures revealed that the epitope overlaps with a reported SIRT3 deacetylation site in mouse FAHD1.
Collapse
|
40
|
Jeong JH, Eo C, Kim HY, Kim JH, Lee CS, Choi HJ, Kim YG. Upgrade of BL-5C as a highly automated macromolecular crystallography beamline at Pohang Light Source II. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:602-608. [PMID: 33650572 DOI: 10.1107/s1600577521000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
BL-5C is an in-vacuum undulator beamline dedicated to macromolecular crystallography (MX) at the 3 GeV Pohang Light Source II in Korea. The beamline delivers X-ray beams with a focal spot size of 200 µm × 40 µm (FWHM, H × V) over the energy range 6.5-16.5 keV. The measured flux is 7 × 1011 photons s-1 at 12.659 keV through an aperture size of 50 µm. The experimental station is newly equipped with the photon-counting detector EIGER 9M, the multi-axis micro-diffractometer MD2, and a robotic sample changer with a high-capacity dewar. These instruments enable the operation of this beamline as an automated MX beamline specialized in X-ray fragment screening. This beamline can collect more than 400 data sets a day without human intervention, and a difference map can be automatically calculated by using the data processing pipeline for ligand or fragment identification.
Collapse
Affiliation(s)
- Jae Hee Jeong
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Cheolsoo Eo
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Hyo Yun Kim
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jin Hong Kim
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Chae Soon Lee
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Hyeong Joo Choi
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| | - Yeon Gil Kim
- Beamline Science, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Pohang, Kyungbuk 37673, Republic of Korea
| |
Collapse
|
41
|
Daniel E, Maksimainen MM, Smith N, Ratas V, Biterova E, Murthy SN, Rahman MT, Kiema TR, Sridhar S, Cordara G, Dalwani S, Venkatesan R, Prilusky J, Dym O, Lehtiö L, Koski MK, Ashton AW, Sussman JL, Wierenga RK. IceBear: an intuitive and versatile web application for research-data tracking from crystallization experiment to PDB deposition. Acta Crystallogr D Struct Biol 2021; 77:151-163. [PMID: 33559605 PMCID: PMC7869904 DOI: 10.1107/s2059798320015223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022] Open
Abstract
The web-based IceBear software is a versatile tool to monitor the results of crystallization experiments and is designed to facilitate supervisor and student communications. It also records and tracks all relevant information from crystallization setup to PDB deposition in protein crystallography projects. Fully automated data collection is now possible at several synchrotrons, which means that the number of samples tested at the synchrotron is currently increasing rapidly. Therefore, the protein crystallography research communities at the University of Oulu, Weizmann Institute of Science and Diamond Light Source have joined forces to automate the uploading of sample metadata to the synchrotron. In IceBear, each crystal selected for data collection is given a unique sample name and a crystal page is generated. Subsequently, the metadata required for data collection are uploaded directly to the ISPyB synchrotron database by a shipment module, and for each sample a link to the relevant ISPyB page is stored. IceBear allows notes to be made for each sample during cryocooling treatment and during data collection, as well as in later steps of the structure determination. Protocols are also available to aid the recycling of pins, pucks and dewars when the dewar returns from the synchrotron. The IceBear database is organized around projects, and project members can easily access the crystallization and diffraction metadata for each sample, as well as any additional information that has been provided via the notes. The crystal page for each sample connects the crystallization, diffraction and structural information by providing links to the IceBear drop-viewer page and to the ISPyB data-collection page, as well as to the structure deposited in the Protein Data Bank.
Collapse
Affiliation(s)
- Ed Daniel
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Mirko M. Maksimainen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Neil Smith
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Ville Ratas
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ekaterina Biterova
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sudarshan N. Murthy
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M. Tanvir Rahman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Shruthi Sridhar
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Gabriele Cordara
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Subhadra Dalwani
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rajaram Venkatesan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jaime Prilusky
- Bioinformatics and Biological Computing Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orly Dym
- Israel Structural Proteomics Center, Life Science Core Facility, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lari Lehtiö
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Alun W. Ashton
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Joel L. Sussman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rik K. Wierenga
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
42
|
Wright ND, Collins P, Koekemoer L, Krojer T, Talon R, Nelson E, Ye M, Nowak R, Newman J, Ng JT, Mitrovich N, Wiggers H, von Delft F. The low-cost Shifter microscope stage transforms the speed and robustness of protein crystal harvesting. Acta Crystallogr D Struct Biol 2021; 77:62-74. [PMID: 33404526 PMCID: PMC7787106 DOI: 10.1107/s2059798320014114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/22/2020] [Indexed: 12/05/2022] Open
Abstract
Despite the tremendous success of X-ray cryo-crystallography in recent decades, the transfer of crystals from the drops in which they are grown to diffractometer sample mounts remains a manual process in almost all laboratories. Here, the Shifter, a motorized, interactive microscope stage that transforms the entire crystal-mounting workflow from a rate-limiting manual activity to a controllable, high-throughput semi-automated process, is described. By combining the visual acuity and fine motor skills of humans with targeted hardware and software automation, it was possible to transform the speed and robustness of crystal mounting. Control software, triggered by the operator, manoeuvres crystallization plates beneath a clear protective cover, allowing the complete removal of film seals and thereby eliminating the tedium of repetitive seal cutting. The software, either upon request or working from an imported list, controls motors to position crystal drops under a hole in the cover for human mounting at a microscope. The software automatically captures experimental annotations for uploading to the user's data repository, removing the need for manual documentation. The Shifter facilitates mounting rates of 100-240 crystals per hour in a more controlled process than manual mounting, which greatly extends the lifetime of the drops and thus allows a dramatic increase in the number of crystals retrievable from any given drop without loss of X-ray diffraction quality. In 2015, the first in a series of three Shifter devices was deployed as part of the XChem fragment-screening facility at Diamond Light Source, where they have since facilitated the mounting of over 120 000 crystals. The Shifter was engineered to have a simple design, providing a device that could be readily commercialized and widely adopted owing to its low cost. The versatile hardware design allows use beyond fragment screening and protein crystallography.
Collapse
Affiliation(s)
- Nathan David Wright
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Patrick Collins
- I04-1, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Lizbé Koekemoer
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Romain Talon
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- I04-1, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Elliot Nelson
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Mingda Ye
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Radosław Nowak
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Joseph Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Jia Tsing Ng
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nick Mitrovich
- Oxford Lab Technologies Ltd, Kemp House, 160 City Road, London EC1V 2N, United Kingdom
| | - Helton Wiggers
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Frank von Delft
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- I04-1, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
- Faculty of Science, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
43
|
Ziegler SJ, Mallinson SJ, St. John PC, Bomble YJ. Advances in integrative structural biology: Towards understanding protein complexes in their cellular context. Comput Struct Biotechnol J 2020; 19:214-225. [PMID: 33425253 PMCID: PMC7772369 DOI: 10.1016/j.csbj.2020.11.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/26/2023] Open
Abstract
Microorganisms rely on protein interactions to transmit signals, react to stimuli, and grow. One of the best ways to understand these protein interactions is through structural characterization. However, in the past, structural knowledge was limited to stable, high-affinity complexes that could be crystallized. Recent developments in structural biology have revolutionized how protein interactions are characterized. The combination of multiple techniques, known as integrative structural biology, has provided insight into how large protein complexes interact in their native environment. In this mini-review, we describe the past, present, and potential future of integrative structural biology as a tool for characterizing protein interactions in their cellular context.
Collapse
Key Words
- CLEM, correlated light and electron microscopy
- Crosslinking mass spectrometry
- Cryo-electron microscopy
- Cryo-electron tomography
- EPR, electron paramagnetic resonance
- FRET, Forster resonance energy transfer
- ISB, Integrative structural biology
- Integrative structural biology
- ML, machine learning
- MR, molecular replacement
- MSAs, multiple sequence alignments
- MX, macromolecular crystallography
- NMR, nuclear magnetic resonance
- PDB, Protein Data Bank
- Protein docking
- Protein structure prediction
- Quinary interactions
- SAD, single-wavelength anomalous dispersion
- SANS, small angle neutron scattering
- SAXS, small angle X-ray scattering
- X-ray crystallography
- XL-MS, cross-linking mass spectrometry
- cryo-EM SPA, cryo-EM single particle analysis
- cryo-EM, cryo-electron microscopy
- cryo-ET, cryo-electron tomography
Collapse
Affiliation(s)
- Samantha J. Ziegler
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Sam J.B. Mallinson
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Peter C. St. John
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| |
Collapse
|
44
|
Mahootchi E, Raasakka A, Luan W, Muruganandam G, Loris R, Haavik J, Kursula P. Structure and substrate specificity determinants of the taurine biosynthetic enzyme cysteine sulphinic acid decarboxylase. J Struct Biol 2020; 213:107674. [PMID: 33253877 DOI: 10.1016/j.jsb.2020.107674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/03/2023]
Abstract
Pyridoxal 5́-phosphate (PLP) is an important cofactor for amino acid decarboxylases with many biological functions, including the synthesis of signalling molecules, such as serotonin, dopamine, histamine, γ-aminobutyric acid, and taurine. Taurine is an abundant amino acid with multiple physiological functions, including osmoregulation, pH regulation, antioxidative protection, and neuromodulation. In mammalian tissues, taurine is mainly produced by decarboxylation of cysteine sulphinic acid to hypotaurine, catalysed by the PLP-dependent cysteine sulphinic acid decarboxylase (CSAD), followed by oxidation of the product to taurine. We determined the crystal structure of mouse CSAD and compared it to other PLP-dependent decarboxylases in order to identify determinants of substrate specificity and catalytic activity. Recognition of the substrate involves distinct side chains forming the substrate-binding cavity. In addition, the backbone conformation of a buried active-site loop appears to be a critical determinant for substrate side chain binding in PLP-dependent decarboxylases. Phe94 was predicted to affect substrate specificity, and its mutation to serine altered both the catalytic properties of CSAD and its stability. Using small-angle X-ray scattering, we further showed that CSAD presents open/close motions in solution. The structure of apo-CSAD indicates that the active site gets more ordered upon internal aldimine formation. Taken together, the results highlight details of substrate recognition in PLP-dependent decarboxylases and provide starting points for structure-based inhibitor design with the aim of affecting the biosynthesis of taurine and other abundant amino acid metabolites.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Weisha Luan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway; Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
45
|
Beyer HM, Virtanen SI, Aranko AS, Mikula KM, Lountos GT, Wlodawer A, Ollila OHS, Iwaï H. The Convergence of the Hedgehog/Intein Fold in Different Protein Splicing Mechanisms. Int J Mol Sci 2020; 21:ijms21218367. [PMID: 33171880 PMCID: PMC7664689 DOI: 10.3390/ijms21218367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Protein splicing catalyzed by inteins utilizes many different combinations of amino-acid types at active sites. Inteins have been classified into three classes based on their characteristic sequences. We investigated the structural basis of the protein splicing mechanism of class 3 inteins by determining crystal structures of variants of a class 3 intein from Mycobacterium chimaera and molecular dynamics simulations, which suggested that the class 3 intein utilizes a different splicing mechanism from that of class 1 and 2 inteins. The class 3 intein uses a bond cleavage strategy reminiscent of proteases but share the same Hedgehog/INTein (HINT) fold of other intein classes. Engineering of class 3 inteins from a class 1 intein indicated that a class 3 intein would unlikely evolve directly from a class 1 or 2 intein. The HINT fold appears as structural and functional solution for trans-peptidyl and trans-esterification reactions commonly exploited by diverse mechanisms using different combinations of amino-acid types for the active-site residues.
Collapse
Affiliation(s)
- Hannes M. Beyer
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
| | - Salla I. Virtanen
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
| | - A. Sesilja Aranko
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
| | - Kornelia M. Mikula
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA;
| | - O. H. Samuli Ollila
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
- Correspondence: ; Tel.: +358-2941-59752
| |
Collapse
|
46
|
Münzker L, Petrick JK, Schleberger C, Clavel D, Cornaciu I, Wilcken R, Márquez JA, Klebe G, Marzinzik A, Jahnke W. Fragment-Based Discovery of Non-bisphosphonate Binders of Trypanosoma brucei Farnesyl Pyrophosphate Synthase. Chembiochem 2020; 21:3096-3111. [PMID: 32537808 DOI: 10.1002/cbic.202000246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT). Nitrogen-containing bisphosphonates, a current treatment for bone diseases, have been shown to block the growth of the T. brucei parasites by inhibiting farnesyl pyrophosphate synthase (FPPS); however, due to their poor pharmacokinetic properties, they are not well suited for antiparasitic therapy. Recently, an allosteric binding pocket was discovered on human FPPS, but its existence on trypanosomal FPPS was unclear. We applied NMR and X-ray fragment screening to T. brucei FPPS and report herein on four fragments bound to this previously unknown allosteric site. Surprisingly, non-bisphosphonate active-site binders were also identified. Moreover, fragment screening revealed a number of additional binding sites. In an early structure-activity relationship (SAR) study, an analogue of an active-site binder was unexpectedly shown to bind to the allosteric site. Overlaying identified fragment binders of a parallel T. cruzi FPPS fragment screen with the T. brucei FPPS structure, and medicinal chemistry optimisation based on two binders revealed another example of fragment "pocket hopping". The discovery of binders with new chemotypes sets the framework for developing advanced compounds with pharmacokinetic properties suitable for the treatment of parasitic infections by inhibition of FPPS in T. brucei parasites.
Collapse
Affiliation(s)
- Lena Münzker
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Joy Kristin Petrick
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Christian Schleberger
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Damien Clavel
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Irina Cornaciu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France.,ALPX, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Rainer Wilcken
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - José A Márquez
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France.,ALPX, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Gerhard Klebe
- Institut für Pharmazie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Andreas Marzinzik
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| |
Collapse
|
47
|
Gavira JA, Rodriguez-Ruiz I, Martinez-Rodriguez S, Basu S, Teychené S, McCarthy AA, Mueller-Dieckman C. Attaining atomic resolution from in situ data collection at room temperature using counter-diffusion-based low-cost microchips. Acta Crystallogr D Struct Biol 2020; 76:751-758. [PMID: 32744257 DOI: 10.1107/s2059798320008475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Sample handling and manipulation for cryoprotection currently remain critical factors in X-ray structural determination. While several microchips for macromolecular crystallization have been proposed during the last two decades to partially overcome crystal-manipulation issues, increased background noise originating from the scattering of chip-fabrication materials has so far limited the attainable resolution of diffraction data. Here, the conception and use of low-cost, X-ray-transparent microchips for in situ crystallization and direct data collection, and structure determination at atomic resolution close to 1.0 Å, is presented. The chips are fabricated by a combination of either OSTEMER and Kapton or OSTEMER and Mylar materials for the implementation of counter-diffusion crystallization experiments. Both materials produce a sufficiently low scattering background to permit atomic resolution diffraction data collection at room temperature and the generation of 3D structural models of the tested model proteins lysozyme, thaumatin and glucose isomerase. Although the high symmetry of the three model protein crystals produced almost complete data sets at high resolution, the potential of in-line data merging and scaling of the multiple crystals grown along the microfluidic channels is also presented and discussed.
Collapse
Affiliation(s)
- Jose A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Spain
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, INSA, UPS Toulouse, Toulouse, France
| | - Sergio Martinez-Rodriguez
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Spain
| | - Shibom Basu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, INSA, UPS Toulouse, Toulouse, France
| | - Andrew A McCarthy
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | | |
Collapse
|
48
|
Martinelli L, Adamopoulos A, Johansson P, Wan PT, Gunnarsson J, Guo H, Boyd H, Zelcer N, Sixma TK. Structural analysis of the LDL receptor-interacting FERM domain in the E3 ubiquitin ligase IDOL reveals an obscured substrate-binding site. J Biol Chem 2020; 295:13570-13583. [PMID: 32727844 PMCID: PMC7521653 DOI: 10.1074/jbc.ra120.014349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
Hepatic abundance of the low-density lipoprotein receptor (LDLR) is a critical determinant of circulating plasma LDL cholesterol levels and hence development of coronary artery disease. The sterol-responsive E3 ubiquitin ligase inducible degrader of the LDLR (IDOL) specifically promotes ubiquitination and subsequent lysosomal degradation of the LDLR and thus controls cellular LDL uptake. IDOL contains an extended N-terminal FERM (4.1 protein, ezrin, radixin, and moesin) domain, responsible for substrate recognition and plasma membrane association, and a second C-terminal RING domain, responsible for the E3 ligase activity and homodimerization. As IDOL is a putative lipid-lowering drug target, we investigated the molecular details of its substrate recognition. We produced and isolated full-length IDOL protein, which displayed high autoubiquitination activity. However, in vitro ubiquitination of its substrate, the intracellular tail of the LDLR, was low. To investigate the structural basis for this, we determined crystal structures of the extended FERM domain of IDOL and multiple conformations of its F3ab subdomain. These reveal the archetypal F1-F2-F3 trilobed FERM domain structure but show that the F3c subdomain orientation obscures the target-binding site. To substantiate this finding, we analyzed the full-length FERM domain and a series of truncated FERM constructs by small-angle X-ray scattering (SAXS). The scattering data support a compact and globular core FERM domain with a more flexible and extended C-terminal region. This flexibility may explain the low activity in vitro and suggests that IDOL may require activation for recognition of the LDLR.
Collapse
Affiliation(s)
- Luca Martinelli
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Patrik Johansson
- IMED Biotech Unit, Discovery Sciences, AstraZeneca, Mölndal, Sweden
| | - Paul T Wan
- IMED Biotech Unit, Discovery Sciences, AstraZeneca, Mölndal, Sweden
| | - Jenny Gunnarsson
- IMED Biotech Unit, Discovery Sciences, AstraZeneca, Mölndal, Sweden
| | - Hongwei Guo
- IMED Biotech Unit, Discovery Sciences, AstraZeneca, Mölndal, Sweden
| | - Helen Boyd
- IMED Biotech Unit, Discovery Sciences, AstraZeneca, Mölndal, Sweden
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands.
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Lee Y, Warne T, Nehmé R, Pandey S, Dwivedi-Agnihotri H, Chaturvedi M, Edwards PC, García-Nafría J, Leslie AGW, Shukla AK, Tate CG. Molecular basis of β-arrestin coupling to formoterol-bound β 1-adrenoceptor. Nature 2020; 583:862-866. [PMID: 32555462 DOI: 10.1038/s41586-020-2419-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
The β1-adrenoceptor (β1AR) is a G-protein-coupled receptor (GPCR) that couples1 to the heterotrimeric G protein Gs. G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of β-arrestin 1 (βarr1, also known as arrestin 2), which displaces Gs and induces signalling through the MAP kinase pathway2. The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism3-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects4. To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the β1AR-βarr1 complex in lipid nanodiscs bound to the biased agonist formoterol5, and the crystal structure of formoterol-bound β1AR coupled to the G-protein-mimetic nanobody6 Nb80. βarr1 couples to β1AR in a manner distinct to that7 of Gs coupling to β2AR-the finger loop of βarr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal α5 helix of Gs. The conformation of the finger loop in βarr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin8. β1AR coupled to βarr1 shows considerable differences in structure compared with β1AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of β1AR, and find that formoterol has a lower affinity for the β1AR-βarr1 complex than for the β1AR-Gs complex. The structural differences between these complexes of β1AR provide a foundation for the design of small molecules that could bias signalling in the β-adrenoceptors.
Collapse
Affiliation(s)
- Yang Lee
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tony Warne
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Rony Nehmé
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Creoptix AG, Wädenswil, Switzerland
| | - Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | - Madhu Chaturvedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC), Zaragoza, Spain.,Laboratorio de Microscopías Avanzadas, University of Zaragoza, Zaragoza, Spain
| | | | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | |
Collapse
|
50
|
Fontecilla-Camps JC, Bricogne G. Jean-Luc Ferrer (1964–2020): structural biologist, beamline instrumentation innovator and entrepreneur. Acta Crystallogr D Struct Biol 2020. [DOI: 10.1107/s2059798320007081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|