1
|
Zehe M, Kehrein J, Schollmayer C, Plank C, Kovacs H, Merino Asumendi E, Holzgrabe U, Grimm C, Sotriffer C. Combined In-Solution Fragment Screening and Crystallographic Binding-Mode Analysis with a Two-Domain Hsp70 Construct. ACS Chem Biol 2024; 19:392-406. [PMID: 38317495 DOI: 10.1021/acschembio.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Heat shock protein 70 (Hsp70) isoforms are key players in the regulation of protein homeostasis and cell death pathways and are therefore attractive targets in cancer research. Developing nucleotide-competitive inhibitors or allosteric modulators, however, has turned out to be very challenging for this protein family, and no Hsp70-directed therapeutics have so far become available. As the field could profit from alternative starting points for inhibitor development, we present the results of a fragment-based screening approach on a two-domain Hsp70 construct using in-solution NMR methods, together with X-ray-crystallographic investigations and mixed-solvent molecular dynamics simulations. The screening protocol resulted in hits on both domains. In particular, fragment binding in a deeply buried pocket at the substrate-binding domain could be detected. The corresponding site is known to be important for communication between the nucleotide-binding and substrate-binding domains of Hsp70 proteins. The main fragment identified at this position also offers an interesting starting point for the development of a dual Hsp70/Hsp90 inhibitor.
Collapse
Affiliation(s)
- Markus Zehe
- University of Würzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, DE-97074 Würzburg, Germany
| | - Josef Kehrein
- University of Würzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, DE-97074 Würzburg, Germany
| | - Curd Schollmayer
- University of Würzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, DE-97074 Würzburg, Germany
| | - Christina Plank
- University of Würzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, DE-97074 Würzburg, Germany
- University of Würzburg, Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor-Boveri-Institute, Am Hubland, DE-97074 Würzburg, Germany
| | - Helena Kovacs
- Bruker Switzerland AG, Industriestrasse 26, CH-8117 Fällanden, Switzerland
| | - Eduardo Merino Asumendi
- University of Würzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, DE-97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- University of Würzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, DE-97074 Würzburg, Germany
| | - Clemens Grimm
- University of Würzburg, Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor-Boveri-Institute, Am Hubland, DE-97074 Würzburg, Germany
| | - Christoph Sotriffer
- University of Würzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, DE-97074 Würzburg, Germany
| |
Collapse
|
2
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
3
|
Pasqua T, Filice E, Mazza R, Quintieri AM, Carmela Cerra M, Iannacone R, Melfi D, Indiveri C, Gattuso A, Angelone T. Cardiac and hepatic role of r-AtHSP70: basal effects and protection against ischemic and sepsis conditions. J Cell Mol Med 2015; 19:1492-503. [PMID: 25904190 PMCID: PMC4511348 DOI: 10.1111/jcmm.12491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins (HSPs), highly conserved in all organisms, act as molecular chaperones activated by several stresses. The HSP70 class of stress-induced proteins is the most studied subtype in cardiovascular and inflammatory disease. Because of the high similarity between plant and mammalian HSP70, the aim of this work was to evaluate whether recombinant HSP70 of plant origin (r-AtHSP70) was able to protect rat cardiac and hepatic function under ischemic and sepsis conditions. We demonstrated for the first time that, in ex vivo isolated and perfused rat heart, exogenous r-AtHSP70 exerted direct negative inotropic and lusitropic effects via Akt/endothelial nitric oxide synthase pathway, induced post-conditioning cardioprotection via Reperfusion Injury Salvage Kinase and Survivor Activating Factor Enhancement pathways, and did not cause hepatic damage. In vivo administration of r-AtHSP70 protected both heart and liver against lipopolysaccharide-dependent sepsis, as revealed by the reduced plasma levels of interleukin-1β, tumour necrosis factor alpha, aspartate aminotransferase and alanine aminotransferase. These results suggest exogenous r-AtHSP70 as a molecular modulator able to protect myocardial function and to prevent cardiac and liver dysfunctions during inflammatory conditions.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Elisabetta Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Rosa Mazza
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Anna Maria Quintieri
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy.,National Institute of Cardiovascular Research, Bologna, Italy
| | - Rina Iannacone
- ALSIA-Research Center Metapontum Agrobios, Metaponto (MT), Italy
| | - Donato Melfi
- ALSIA-Research Center Metapontum Agrobios, Metaponto (MT), Italy
| | - Cesare Indiveri
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy.,National Institute of Cardiovascular Research, Bologna, Italy
| |
Collapse
|
4
|
Rohrer KM, Haug M, Schwörer D, Kalbacher H, Holzer U. Mutations in the substrate binding site of human heat-shock protein 70 indicate specific interaction with HLA-DR outside the peptide binding groove. Immunology 2014; 142:237-47. [PMID: 24428437 DOI: 10.1111/imm.12249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/03/2023] Open
Abstract
Heat-shock protein 70 (Hsp70)-peptide complexes are involved in MHC class I- and II-restricted antigen presentation, enabling enhanced activation of T cells. As shown previously, mammalian cytosolic Hsp70 (Hsc70) molecules interact specifically with HLA-DR molecules. This interaction might be of significance as Hsp70 molecules could transfer bound antigenic peptides in a ternary complex into the binding groove of HLA-DR molecules. The present study provides new insights into the distinct interaction of Hsp70 with HLA-DR molecules. Using a quantitative binding assay, it could be demonstrated that a point mutation of amino acids alanine 406 and valine 438 in the substrate binding pocket led to reduced peptide binding compared with the wild-type Hsp70 whereas HLA-DR binding remains unaffected. The removal of the C-terminal lid neither altered the substrate binding capacity nor the Hsp70 binding characteristics to HLA-DR. A truncated variant lacking the nucleotide binding domain showed no binding interactions with HLA-DR. Furthermore, the truncated ATPase subunit of constitutively expressed Hsc70 revealed similar binding affinities to HLA-DR compared with the complete Hsc70. Hence, it can be assumed that the Hsp70-HLA-DR interaction takes place outside the peptide binding groove and is attributed to the ATPase domain of HSP70 molecules. The Hsp70-chaperoned peptides might thereby be directly transferred into the binding groove of HLA-DR, so enabling enhanced presentation of the peptide on antigen-presenting cells and leading to an improved proliferation of responding T cells as shown previously.
Collapse
Affiliation(s)
- Karin M Rohrer
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
5
|
Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J Mol Biol 2013; 426:467-83. [PMID: 24120938 DOI: 10.1016/j.jmb.2013.10.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/20/2013] [Accepted: 10/05/2013] [Indexed: 12/18/2022]
Abstract
Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily.
Collapse
Affiliation(s)
- David Shaya
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001, USA
| | - Felix Findeisen
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001, USA
| | - Fayal Abderemane-Ali
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, F-44000 Nantes, France; Centre National de la Recherche Scientifique, UMR 6291, F-44000 Nantes, France; L'institut du thorax, L'UNAM, Université de Nantes, F-44000 Nantes, France
| | - Cristina Arrigoni
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001, USA
| | - Stephanie Wong
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001, USA
| | - Shailika Reddy Nurva
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001, USA
| | - Gildas Loussouarn
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, F-44000 Nantes, France; Centre National de la Recherche Scientifique, UMR 6291, F-44000 Nantes, France; L'institut du thorax, L'UNAM, Université de Nantes, F-44000 Nantes, France
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001, USA; Departments of Biochemistry and Biophysics and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-9001, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158-9001, USA; Physical Biosciences Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Marshall H, Venkat M, Hti Lar Seng NS, Cahn J, Juers DH. The use of trimethylamine N-oxide as a primary precipitating agent and related methylamine osmolytes as cryoprotective agents for macromolecular crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:69-81. [PMID: 22194335 PMCID: PMC3245723 DOI: 10.1107/s0907444911050360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022]
Abstract
Both crystallization and cryoprotection are often bottlenecks for high-resolution X-ray structure determination of macromolecules. Methylamine osmolytes are known stabilizers of protein structure. One such osmolyte, trimethylamine N-oxide (TMAO), has seen occasional use as an additive to improve macromolecular crystal quality and has recently been shown to be an effective cryoprotective agent for low-temperature data collection. Here, TMAO and the related osmolytes sarcosine and betaine are investigated as primary precipitating agents for protein crystal growth. Crystallization experiments were undertaken with 14 proteins. Using TMAO, seven proteins crystallized in a total of 13 crystal forms, including a new tetragonal crystal form of trypsin. The crystals diffracted well, and eight of the 13 crystal forms could be effectively cryocooled as grown with TMAO as an in situ cryoprotective agent. Sarcosine and betaine produced crystals of four and two of the 14 proteins, respectively. In addition to TMAO, sarcosine and betaine were effective post-crystallization cryoprotective agents for two different crystal forms of thermolysin. Precipitation reactions of TMAO with several transition-metal ions (Fe(3+), Co(2+), Cu(2+) and Zn(2+)) did not occur with sarcosine or betaine and were inhibited for TMAO at lower pH. Structures of proteins from TMAO-grown crystals and from crystals soaked in TMAO, sarcosine or betaine were determined, showing osmolyte binding in five of the 12 crystals tested. When an osmolyte was shown to bind, it did so near the protein surface, interacting with water molecules, side chains and backbone atoms, often at crystal contacts.
Collapse
Affiliation(s)
- Haley Marshall
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
| | - Murugappan Venkat
- Department of Physics, Whitman College, Walla Walla, Washington, USA
| | - Nang San Hti Lar Seng
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
| | - Jackson Cahn
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
| | - Douglas H. Juers
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
- Department of Physics, Whitman College, Walla Walla, Washington, USA
| |
Collapse
|
7
|
Buriani G, Mancini C, Benvenuto E, Baschieri S. Plant heat shock protein 70 as carrier for immunization against a plant-expressed reporter antigen. Transgenic Res 2011; 20:331-44. [PMID: 20559870 DOI: 10.1007/s11248-010-9418-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/04/2010] [Indexed: 01/18/2023]
Abstract
Mammalian Heat Shock Proteins (HSP), have potent immune-stimulatory properties due to the natural capability to associate with polypeptides and bind receptors on antigen presenting cells. The present study was aimed to explore whether plant HSP, and in particular HSP70, share similar properties. We wanted in particular to evaluate if HSP70 extracted in association to naturally bound polypeptides from plant tissues expressing a recombinant "reporter" antigen, carry antigen-derived polypeptides and can be used to activate antigen-specific immune responses. This application of HSP70 has been very poorly investigated so far. The analysis started by structurally modeling the plant protein and defining the conditions that ensure maximal expression levels and optimal recovery from plant tissues. Afterwards, HSP70 was purified from Nicotiana benthamiana leaves transiently expressing a heterologous "reporter" protein. The purification was carried out taking care to avoid the release from HSP70 of the polypeptides chaperoned within plant cells. The evaluation of antibody titers in mice sera subsequent to the subcutaneous delivery of the purified HSP70 demonstrated that it is highly effective in priming humoral immune responses specific to the plant expressed "reporter" protein. Overall results indicated that plant-derived HSP70 shares structural and functional properties with the mammalian homologue. This study paves the way to further investigations targeted at determining the properties of HSP70 extracted from plants expressing foreign recombinant antigens as a readily available immunological carrier for the efficient delivery of polypeptides derived from these antigens.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antibody Specificity
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Capsid Proteins/metabolism
- Drug Delivery Systems
- Female
- Genes, Reporter/genetics
- Genes, Reporter/physiology
- HSP70 Heat-Shock Proteins/chemistry
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/immunology
- HSP70 Heat-Shock Proteins/metabolism
- Immunization
- Immunoglobulin G/blood
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Molecular
- Molecular Sequence Data
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Subunit
Collapse
Affiliation(s)
- Giampaolo Buriani
- Technical Unit Radiation Biology and Human Health, Biotechnologies Laboratory, ENEA C.R. Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | | | | | | |
Collapse
|
8
|
Marcinowski M, Höller M, Feige MJ, Baerend D, Lamb DC, Buchner J. Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions. Nat Struct Mol Biol 2011; 18:150-8. [PMID: 21217698 DOI: 10.1038/nsmb.1970] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/01/2010] [Indexed: 01/13/2023]
Abstract
The endoplasmic reticulum is the site of folding, assembly and quality control for proteins of the secretory pathway. The ATP-regulated Hsp70 chaperone BiP (heavy chain-binding protein), together with cochaperones, has important roles in all of these processes. The functional cycle of Hsp70s is determined by conformational transitions that are required for substrate binding and release. Here, we used the intrinsically disordered C(H)1 domain of antibodies as an authentic substrate protein and analyzed the conformational cycle of BiP by single-molecule and ensemble Förster resonance energy transfer (FRET) measurements. Nucleotide binding resulted in concerted domain movements of BiP. Conformational transitions of the lid domain allowed BiP to discriminate between peptide and protein substrates. A major BiP cochaperone in antibody folding, ERdj3, modulated the conformational space of BiP in a nucleotide-dependent manner, placing the lid subdomain in an open, protein-accepting state.
Collapse
|
9
|
Dynamic interactions between clathrin and locally structured elements in a disordered protein mediate clathrin lattice assembly. J Mol Biol 2010; 404:274-90. [PMID: 20875424 DOI: 10.1016/j.jmb.2010.09.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 11/22/2022]
Abstract
Assembly of clathrin lattices is mediated by assembly/adaptor proteins that contain domains that bind lipids or membrane-bound cargo proteins and clathrin binding domains (CBDs) that recruit clathrin. Here, we characterize the interaction between clathrin and a large fragment of the CBD of the clathrin assembly protein AP180. Mutational, NMR chemical shift, and analytical ultracentrifugation analyses allowed us to precisely define two clathrin binding sites within this fragment, each of which is found to bind weakly to the N-terminal domain of the clathrin heavy chain (TD). The locations of the two clathrin binding sites are consistent with predictions from sequence alignments of previously identified clathrin binding elements and, by extension, indicate that the complete AP180 CBD contains ∼12 degenerate repeats, each containing a single clathrin binding site. Sequence and circular dichroism analyses have indicated that the AP180 CBD is predominantly unstructured and our NMR analyses confirm that this is largely the case for the AP180 fragment characterized here. Unexpectedly, unlike the many proteins that undergo binding-coupled folding upon interaction with their binding partners, the AP180 fragment is similarly unstructured in its bound and free states. Instead, we find that this fragment exhibits localized β-turn-like structures at the two clathrin binding sites both when free and when bound to clathrin. These observations are incorporated into a model in which weak binding by multiple, pre-structured clathrin binding elements regularly dispersed throughout a largely unstructured CBD allows efficient recruitment of clathrin to endocytic sites and dynamic assembly of the clathrin lattice.
Collapse
|
10
|
Manjasetty BA, Turnbull AP, Panjikar S, Büssow K, Chance MR. Automated technologies and novel techniques to accelerate protein crystallography for structural genomics. Proteomics 2008; 8:612-25. [PMID: 18210369 DOI: 10.1002/pmic.200700687] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The sequence infrastructure that has arisen through large-scale genomic projects dedicated to protein analysis, has provided a wealth of information and brought together scientists and institutions from all over the world. As a consequence, the development of novel technologies and methodologies in proteomics research is helping to unravel the biochemical and physiological mechanisms of complex multivariate diseases at both a functional and molecular level. In the late sixties, when X-ray crystallography had just been established, the idea of determining protein structure on an almost universal basis was akin to an impossible dream or a miracle. Yet only forty years after, automated protein structure determination platforms have been established. The widespread use of robotics in protein crystallography has had a huge impact at every stage of the pipeline from protein cloning, over-expression, purification, crystallization, data collection, structure solution, refinement, validation and data management- all of which have become more or less automated with minimal human intervention necessary. Here, recent advances in protein crystal structure analysis in the context of structural genomics will be discussed. In addition, this review aims to give an overview of recent developments in high throughput instrumentation, and technologies and strategies to accelerate protein structure/function analysis.
Collapse
Affiliation(s)
- Babu A Manjasetty
- Case Center for Synchrotron Biosciences, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY11973, USA.
| | | | | | | | | |
Collapse
|
11
|
Awad W, Estrada I, Shen Y, Hendershot LM. BiP mutants that are unable to interact with endoplasmic reticulum DnaJ proteins provide insights into interdomain interactions in BiP. Proc Natl Acad Sci U S A 2008; 105:1164-9. [PMID: 18203820 PMCID: PMC2234109 DOI: 10.1073/pnas.0702132105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Indexed: 11/18/2022] Open
Abstract
The heat shock protein (Hsp)70 family of molecular chaperones interacts with unfolded proteins through a C-terminal substrate-binding domain (SBD) that is controlled by nucleotide binding to the N-terminal domain. The ATPase cycle is regulated by cochaperones, including DnaJ proteins that accelerate ATP hydrolysis to stabilize the Hsp70-substrate complex. We found that R197 in hamster BiP, which resides at the surface of the nucleotide-binding domain, is critical for both association with endoplasmic reticulum DnaJ proteins and interaction with the SBD. Decreasing the positive charge at this residue enhanced basal ATPase activity, destabilized interaction with the SBD, and reduced substrate release both in vitro and in vivo. Mutation of three glutamic acids in the SBD mimicked many of these effects. Our data provide insights into communications between the two domains and suggest a mechanism by which DnaJ proteins increase ATP hydrolysis.
Collapse
Affiliation(s)
- Walid Awad
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Isaac Estrada
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ying Shen
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Linda M. Hendershot
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
12
|
Jiang J, Maes EG, Taylor AB, Wang L, Hinck AP, Lafer EM, Sousa R. Structural basis of J cochaperone binding and regulation of Hsp70. Mol Cell 2008; 28:422-33. [PMID: 17996706 DOI: 10.1016/j.molcel.2007.08.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/16/2007] [Accepted: 08/27/2007] [Indexed: 12/01/2022]
Abstract
The many protein processing reactions of the ATP-hydrolyzing Hsp70s are regulated by J cochaperones, which contain J domains that stimulate Hsp70 ATPase activity and accessory domains that present protein substrates to Hsp70s. We report the structure of a J domain complexed with a J responsive portion of a mammalian Hsp70. The J domain activates ATPase activity by directing the linker that connects the Hsp70 nucleotide binding domain (NBD) and substrate binding domain (SBD) toward a hydrophobic patch on the NBD surface. Binding of the J domain to Hsp70 displaces the SBD from the NBD, which may allow the SBD flexibility to capture diverse substrates. Unlike prokaryotic Hsp70, the SBD and NBD of the mammalian chaperone interact in the ADP state. Thus, although both nucleotides and J cochaperones modulate Hsp70 NBD:linker and NBD:SBD interactions, the intrinsic persistence of those interactions differs in different Hsp70s and this may optimize their activities for different cellular roles.
Collapse
Affiliation(s)
- Jianwen Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Shaner L, Sousa R, Morano KA. Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry 2007; 45:15075-84. [PMID: 17154545 PMCID: PMC2676923 DOI: 10.1021/bi061279k] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.
Collapse
Affiliation(s)
- Lance Shaner
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Kevin A. Morano
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030
| |
Collapse
|