1
|
Baral J, Song D, Edwards TE, Dranow DM, Lorimer DD, Staker BL, Myler P, Smith CL. The crystal structures of apo and tryptophan-bound tryptophanyl-tRNA synthetase from Neisseria gonorrhoeae. Acta Crystallogr F Struct Biol Commun 2025; 81:130-137. [PMID: 40023769 PMCID: PMC11970124 DOI: 10.1107/s2053230x25001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/13/2025] [Indexed: 03/04/2025] Open
Abstract
Neisseria gonorrhoeae, the causative agent of the human disease gonorrhea, is the second most common sexually transmitted pathogen in the United States. Gonorrhea has a significantly high morbidity rate due to the ability of N. gonorrhoeae to rapidly develop antibiotic resistance. In this paper, crystal structures of tryptophanyl-tRNA synthetase (TrpRS) from N. gonorrhoeae (NgTrpRS) were determined in both its apo form and in complex with tryptophan. The structures reveal conserved HIGH and KMSKS motifs critical for ATP binding and catalysis, and highlight conformational changes in the active site upon tryptophan binding, including a methionine flip and the rearrangement of hydrogen-bonding residues. Structural alignments with human TrpRS isoforms demonstrate significant differences between the bacterial and human cytosolic forms, particularly in their active sites. While NgTrpRS and human mitochondrial TrpRS share conserved catalytic residues that are essential for binding tryptophan and indolmycin, the cytosolic TrpRS contains substitutions that introduce steric hindrance, limiting the binding of indolmycin. These results provide insight for the development of inhibitors targeting bacterial TrpRS without affecting the human mitochondrial or cytosolic isoforms, contributing to efforts to combat antibiotic-resistant N. gonorrhoeae infections.
Collapse
Affiliation(s)
- Jessika Baral
- Department of BiologyWashington University in St LouisSt LouisMO63130USA
| | - David Song
- Department of BiologyWashington University in St LouisSt LouisMO63130USA
| | | | | | | | - Bart L. Staker
- Center for Infectious Disease Research307 Westlake Avenue North, Suite 500SeattleWA98109USA
| | - Peter Myler
- Center for Infectious Disease Research307 Westlake Avenue North, Suite 500SeattleWA98109USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Craig L. Smith
- Department of BiologyWashington University in St LouisSt LouisMO63130USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| |
Collapse
|
2
|
Teng S, Wang J, Sroge CD, Abendroth J, Lorimer DD, Horanyi PS, Edwards TE, Tillery L, Craig JK, Van Voorhis WC, Myler PJ, Smith CL. Crystal structure of the S-adenosylmethionine-dependent mycolic acid synthase UmaA from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 2025; 81:146-154. [PMID: 40059638 PMCID: PMC11970121 DOI: 10.1107/s2053230x25001530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
Mycobacterium tuberculosis is a Gram-positive bacillus that causes tuberculosis and is a leading cause of mortality worldwide. This disease is a growing health threat due to the occurrence of multidrug resistance. Mycolic acids are essential for generating cell walls and their modification is important to the virulence and persistence of M. tuberculosis. A family of S-adenosylmethionine-dependent mycolic acid synthases modify mycolic acids and represent promising drug targets. UmaA is currently the least-understood member of this family. This paper describes the crystal structure of UmaA. UmaA is a monomer composed of two domains: a structurally conserved SAM-binding domain and a variable substrate-binding auxiliary domain. Fortuitously, our structure contains a nitrate in the active site, a structural mimic of carbonate, which is a known general base in cyclopropane-adding synthases. Further investigation indicated that the structure of the N-terminus is highly flexible. Finally, we have identified S-adenosyl-N-decyl-aminoethyl as a promising potential inhibitor.
Collapse
Affiliation(s)
- Sean Teng
- Department of BiologyWashington University in St LouisSt LouisMO63134USA
| | - Jie Wang
- Department of BiologyWashington University in St LouisSt LouisMO63134USA
| | - Collin D. Sroge
- UCB Biosciences, 7869 NE Day Road West, Bainbridge Island, WA98102, USA
| | - Jan Abendroth
- UCB Biosciences, 7869 NE Day Road West, Bainbridge Island, WA98102, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Donald D. Lorimer
- UCB Biosciences, 7869 NE Day Road West, Bainbridge Island, WA98102, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Peter S. Horanyi
- UCB Biosciences, 7869 NE Day Road West, Bainbridge Island, WA98102, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Thomas E. Edwards
- UCB Biosciences, 7869 NE Day Road West, Bainbridge Island, WA98102, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Logan Tillery
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Diseases, School of MedicineUniversity of Washington750 Republican StreetSeattleWA98109USA
| | - Justin K. Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Diseases, School of MedicineUniversity of Washington750 Republican StreetSeattleWA98109USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Diseases, School of MedicineUniversity of Washington750 Republican StreetSeattleWA98109USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue North, Suite 500SeattleWA98102USA
- Departments of Pediatrics, Global Health, and Biomedical Informatics and Medical EducationUniversity of WashingtonSeattleWashingtonUSA
| | - Craig L. Smith
- Department of BiologyWashington University in St LouisSt LouisMO63134USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| |
Collapse
|
3
|
Nguyen CL, Tramell AR, Norman JO, Abendroth J, Barrett KF, Craig JK, Edwards TE, Lorimer DD, Van Voorhis WC, McLaughlin KJ. Structural characterization of dUTPase from Legionella pneumophila. Acta Crystallogr F Struct Biol Commun 2025; 81:155-162. [PMID: 40091853 PMCID: PMC11970128 DOI: 10.1107/s2053230x25001815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Cellular deoxyuridine 5'-triphosphate nucleotidohydrolases (dUTPases) catalyze the hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and pyrophosphate (PPi). dUTPase is an essential metabolic enzyme which maintains the homeostatic dTTP:dUTP ratio. As DNA polymerases are unable to distinguish between thymine and uracil during replication, the dTTP:dUTP ratio is essential for preventing the misincorporation of uracil into DNA. In the absence of dUTPase regulation of the dTTP:dUTP ratio, many DNA double-strand breaks are induced by DNA-repair enzymes, which may ultimately lead to cell death. Legionnaires' disease is a rare but severe respiratory infection caused primarily by Legionella pneumophila serogroup 1. Increased characterization of the L. pneumophila proteome is of interest for the development of new treatments. Many DNA metabolism proteins have yet to be characterized in L. pneumophila, including dUTPase. Here, we present analysis of two crystal structures of L. pneumophila dUTPase in its apo and dUMP-bound states, determined to 1.80 and 1.95 Å resolution, respectively. The structures were solved by the Seattle Structural Genomics Center for Infectious Disease (SSGCID) as part of their mission to determine structures of proteins and other molecules with an important biological role in human pathogens.
Collapse
Affiliation(s)
- Chi L. Nguyen
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Abigail R. Tramell
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Jordan O. Norman
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, 7869 Day Road West, Bainbridge Island, WA98110, USA
| | - Kayleigh F. Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious DiseasesUniversity of Washington School of MedicineSeattleWA98195USA
| | - Justin K. Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious DiseasesUniversity of Washington School of MedicineSeattleWA98195USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, 7869 Day Road West, Bainbridge Island, WA98110, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, 7869 Day Road West, Bainbridge Island, WA98110, USA
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious DiseasesUniversity of Washington School of MedicineSeattleWA98195USA
| | - Krystle J. McLaughlin
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
- Department of ChemistryVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| |
Collapse
|
4
|
Nguyen CL, Fan W, Fisher S, Matthews K, Norman JO, Abendroth J, Barrett KF, Craig JK, Edwards TE, Lorimer DD, McLaughlin KJ. Structures of Legionella pneumophila serogroup 1 peptide deformylase bound to nickel(II) and actinonin. Acta Crystallogr F Struct Biol Commun 2025; 81:163-170. [PMID: 40091854 PMCID: PMC11970127 DOI: 10.1107/s2053230x25001876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Legionella pneumophila serogroup 1 is the primary causative agent of Legionnaires' disease, a rare but severe respiratory infection. While the fatality rate of Legionnaires' disease is low in the general population, it is more pronounced in vulnerable communities such as the immunocompromised. Thus, the development of new antimicrobials is of interest for use when existing antibiotics may not be applicable. Peptide deformylases (PDFs) have been under continued investigation as targets for novel antimicrobial compounds. PDF plays an essential role in protein synthesis, removing the N-terminal formyl group from new polypeptides, and is required for growth in most bacteria. Here, we report two crystal structures of L. pneumophila serogroup 1 PDF (LpPDF) bound to either Ni2+, an active state, or inhibited by actinonin and Zn2+; the structures were determined to 1.5 and 1.65 Å resolution, respectively, and were solved by the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is charged with determining structures of biologically important proteins and molecules from human pathogens. As actinonin is an antimicrobial natural product that has been used as a reference compound in drug development, these structures will help support the ongoing drug-development process.
Collapse
Affiliation(s)
- Chi L. Nguyen
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - William Fan
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Sean Fisher
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Krystal Matthews
- Chemistry DepartmentVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Jordan O. Norman
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Jan Abendroth
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Kayleigh F. Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious DiseasesUniversity of Washington School of MedicineSeattleWA98195USA
| | - Justin K. Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious DiseasesUniversity of Washington School of MedicineSeattleWA98195USA
| | - Thomas E. Edwards
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Donald D. Lorimer
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Krystle J. McLaughlin
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
- Chemistry DepartmentVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| |
Collapse
|
5
|
Agarwal AA, Georgiades JD, Dranow DM, Lorimer DD, Edwards T, Barrett KF, Craig JK, Van Voorhis WC, Myler PJ, Smith CL. Crystal structure of dihydroorotate dehydrogenase from Helicobacter pylori with bound flavin mononucleotide. Acta Crystallogr F Struct Biol Commun 2025; 81:108-117. [PMID: 39960828 DOI: 10.1107/s2053230x25000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025] Open
Abstract
Helicobacter pylori is the primary causative agent of peptic ulcer disease, among other gastrointestinal ailments, and currently affects over half of the global population. Although some treatments exist, growing resistance to these drugs has prompted efforts to develop novel approaches to fighting this pathogen. To generate many of the nucleotides essential to biochemical processes, H. pylori relies exclusively on the de novo biosynthesis of these molecules. Recent drug-discovery efforts have targeted the first committed step of this pathway, catalysed by a class 2 dihydroorotate dehydrogenase (DHODH). However, these initiatives have been limited by the lack of a crystal structure. Here, we detail the crystal structure of H. pylori DHODH (HpDHODH) at 2.25 Å resolution (PDB entry 6b8s). We performed a large-scale bioinformatics search to find evolutionary homologs. Our results indicate that HpDHODH shows high conservation of both sequence and structure in its active site. We identified key polar interactions between the HpDHODH protein and its requisite flavin mononucleotide (FMN) cofactor, identifying amino-acid residues that are critical to its function. Most notably, we found that HpDHODH maintains several structural features that allow it to associate with the inner membrane and utilize ubiquinone to achieve catalytic turnover. We discovered a hydrophobic channel that runs from the putative membrane interface on the N-terminal microdomain to the core of the protein. We predict that this channel establishes a connection between the ubiquinone pool in the membrane and the FMN in the active site. These findings provide a structural explanation for the competitive inhibition of ubiquinone by pyrazole-based compounds that was determined biochemically in other studies. Understanding this mechanism may facilitate the development of new drugs targeting this enzyme and push the effort to find a resistance-free treatment for H. pylori.
Collapse
Affiliation(s)
- Ashna A Agarwal
- Department of Biology, Washington University in St Louis School of Medicine, St Louis, MO 63114, USA
| | - John D Georgiades
- Department of Biology, Washington University in St Louis School of Medicine, St Louis, MO 63114, USA
| | - David M Dranow
- Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98102, USA
| | - Donald D Lorimer
- Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98102, USA
| | - Thomas Edwards
- Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98102, USA
| | - Kayleigh F Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Justin K Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Craig L Smith
- Department of Biology, Washington University in St Louis School of Medicine, St Louis, MO 63114, USA
| |
Collapse
|
6
|
Davis DE, Ayanlade JP, Laseinde DT, Subramanian S, Udell H, Lorimer DJ, Dranow DM, Edwards TE, Myler PJ, Asojo OA. Crystal structure of glutamyl-tRNA synthetase from Helicobacter pylori. Acta Crystallogr F Struct Biol Commun 2024; 80:S2053230X24011099. [PMID: 39601417 PMCID: PMC11614106 DOI: 10.1107/s2053230x24011099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Helicobacter pylori is one of the most common bacterial infections; over two-thirds of the world's population is infected by early childhood. Persistent H. pylori infection results in gastric ulcers and cancers. Due to drug resistance, there is a need to develop alternative treatments to clear H. pylori. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) conducts structure-function analysis of potential therapeutic targets from H. pylori. Glutamyl-tRNA synthetase (GluRS) is essential for tRNA aminoacylation and is under investigation as a bacterial drug target. The SSGCID produced, crystallized and determined the apo structure of H. pylori GluRS (HpGluRS). HpGluRS has the prototypical bacterial GluRS topology and has similar binding sites and tertiary structures to other bacterial GluRS that are promising drug targets. Residues involved in glutamate binding are well conserved in comparison with Pseudomonas aeruginosa GluRS (PaGluRS), which has been studied to develop promising new inhibitors for P. aeruginosa. These structural similarities can be exploited for drug discovery and repurposing to generate new antibacterials to clear persistent H. pylori infection and reduce gastric ulcers and cancer.
Collapse
Affiliation(s)
- Dylan E. Davis
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH03756, USA
- College of Arts and ScienceDartmouth CollegeHanoverNH03755USA
| | - Jesuferanmi P. Ayanlade
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH03756, USA
- College of Arts and ScienceDartmouth CollegeHanoverNH03755USA
| | - David T. Laseinde
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH03756, USA
- College of Arts and SciencesUniversity of Southern MississippiHattiesburgMS39406USA
| | - Sandhya Subramanian
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue, North Suite 500SeattleWA98109USA
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Hannah Udell
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue, North Suite 500SeattleWA98109USA
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Donald J. Lorimer
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
- UCB BioSciences, Bainbridge Island, WA98110, USA
| | - David M. Dranow
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue, North Suite 500SeattleWA98109USA
- UCB BioSciences, Bainbridge Island, WA98110, USA
| | - Thomas E. Edwards
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue, North Suite 500SeattleWA98109USA
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Peter J. Myler
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue, North Suite 500SeattleWA98109USA
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | | |
Collapse
|
7
|
Kimble AD, Dawson OCO, Liu L, Subramanian S, Cooper A, Battaile K, Craig J, Harmon E, Myler P, Lovell S, Asojo OA. Crystal structure of N-terminally hexahistidine-tagged Onchocerca volvulus macrophage migration inhibitory factor-1. Acta Crystallogr F Struct Biol Commun 2024; 80:S2053230X24010550. [PMID: 39503735 PMCID: PMC11614107 DOI: 10.1107/s2053230x24010550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Onchocerca volvulus causes blindness, onchocerciasis, skin infections and devastating neurological diseases such as nodding syndrome. New treatments are needed because the currently used drug, ivermectin, is contraindicated in pregnant women and those co-infected with Loa loa. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) produced, crystallized and determined the apo structure of N-terminally hexahistidine-tagged O. volvulus macrophage migration inhibitory factor-1 (His-OvMIF-1). OvMIF-1 is a possible drug target. His-OvMIF-1 has a unique jellyfish-like structure with a prototypical macrophage migration inhibitory factor (MIF) trimer as the `head' and a unique C-terminal `tail'. Deleting the N-terminal tag reveals an OvMIF-1 structure with a larger cavity than that observed in human MIF that can be targeted for drug repurposing and discovery. Removal of the tag will be necessary to determine the actual biological oligomer of OvMIF-1 because size-exclusion chomatographic analysis of His-OvMIF-1 suggests a monomer, while PISA analysis suggests a hexamer stabilized by the unique C-terminal tails.
Collapse
Affiliation(s)
- Amber D. Kimble
- Department of Clinical Laboratory Science, College of Nursing and Allied Health SciencesHoward University801 North Capitol Street, 4th FloorWashingtonDC20002USA
| | | | - Lijun Liu
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue, North Suite 500SeattleWA98109USA
| | - Anne Cooper
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Kevin Battaile
- NYX, New York Structural Biology Center, Upton, NY11973, USA
| | - Justin Craig
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Elizabeth Harmon
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Peter Myler
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue, North Suite 500SeattleWA98109USA
| | - Scott Lovell
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
- University of Kansas2034 Becker DriveLawrenceKS66218USA
| | | |
Collapse
|
8
|
Andrade Meirelles M, Almeida VM, Sullivan JR, de Toledo I, Dos Reis CV, Cunha MR, Zigweid R, Shim A, Sankaran B, Woodward EL, Seibold S, Liu L, Mian MR, Battaile KP, Riley J, Duncan C, Simeons FRC, Ferguson L, Joji H, Read KD, Lovell S, Staker BL, Behr MA, Pilli RA, Couñago RM. Rational Exploration of 2,4-Diaminopyrimidines as DHFR Inhibitors Active against Mycobacterium abscessus and Mycobacterium avium, Two Emerging Human Pathogens. J Med Chem 2024; 67:19143-19164. [PMID: 39468773 DOI: 10.1021/acs.jmedchem.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Nontuberculous mycobacteria (NTM) are emerging human pathogens linked to severe pulmonary diseases. Current treatments involve the prolonged use of multiple drugs and are often ineffective. Bacterial dihydrofolate reductase (DHFR) is a key enzyme targeted by antibiotics in Gram-negative bacterial infections. However, existing DHFR inhibitors designed for Gram-negative bacteria often fail against mycobacterial DHFRs. Here, we detail the rational design of NTM DHFR inhibitors based on P218, a malarial DHFR inhibitor. We identified compound 8, a 2,4-diaminopyrimidine exhibiting improved pharmacological properties and activity against purified DHFR, and whole cell cultures of two predominant NTM species: Mycobacterium avium and Mycobacterium abscessus. This study underscores the potential of compound 8 as a promising candidate for the in vivo validation of DHFR as an effective treatment against NTM infections.
Collapse
Affiliation(s)
- Matheus Andrade Meirelles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970-Campinas, SP, Brazil
| | - Vitor M Almeida
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, UNICAMP, 13083-886-Campinas, SP, Brazil
| | - Jaryd R Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada
- McGill International TB Centre, Montréal H4A 3S5, Canada
| | - Ian de Toledo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970-Campinas, SP, Brazil
| | - Caio Vinicius Dos Reis
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, UNICAMP, 13083-886-Campinas, SP, Brazil
| | - Micael Rodrigues Cunha
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, UNICAMP, 13083-886-Campinas, SP, Brazil
| | - Rachel Zigweid
- Center for Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Abraham Shim
- Center for Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Elijah L Woodward
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Protein Structure and X-ray Crystallography Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Steve Seibold
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Protein Structure and X-ray Crystallography Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Lijun Liu
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Protein Structure and X-ray Crystallography Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mohammad Rasel Mian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Protein Structure and X-ray Crystallography Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin P Battaile
- New York Structural Biology Center, Upton, New York 11973, United States
| | - Jennifer Riley
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Christina Duncan
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Frederick R C Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Liam Ferguson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Halimatu Joji
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Scott Lovell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Protein Structure and X-ray Crystallography Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Bart L Staker
- Center for Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Marcel A Behr
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada
- McGill International TB Centre, Montréal H4A 3S5, Canada
- Department of Medicine, McGill University Health Centre, Montréal H4A 3J1, Canada
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970-Campinas, SP, Brazil
| | - Rafael M Couñago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, UNICAMP, 13083-886-Campinas, SP, Brazil
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Bolling C, Mendez A, Taylor S, Makumire S, Reers A, Zigweid R, Subramanian S, Dranow DM, Staker B, Edwards TE, Tate EW, Bell AS, Myler PJ, Asojo OA, Chakafana G. Ternary structure of Plasmodium vivaxN-myristoyltransferase with myristoyl-CoA and inhibitor IMP-0001173. Acta Crystallogr F Struct Biol Commun 2024; 80:269-277. [PMID: 39291304 PMCID: PMC11448930 DOI: 10.1107/s2053230x24008604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Plasmodium vivax is a major cause of malaria, which poses an increased health burden on approximately one third of the world's population due to climate change. Primaquine, the preferred treatment for P. vivax malaria, is contraindicated in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, a common genetic cause of hemolytic anemia, that affects ∼2.5% of the world's population and ∼8% of the population in areas of the world where P. vivax malaria is endemic. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) conducted a structure-function analysis of P. vivax N-myristoyltransferase (PvNMT) as part of efforts to develop alternative malaria drugs. PvNMT catalyzes the attachment of myristate to the N-terminal glycine of many proteins, and this critical post-translational modification is required for the survival of P. vivax. The first step is the formation of a PvNMT-myristoyl-CoA binary complex that can bind to peptides. Understanding how inhibitors prevent protein binding will facilitate the development of PvNMT as a viable drug target. NMTs are secreted in all life stages of malarial parasites, making them attractive targets, unlike current antimalarials that are only effective during the plasmodial erythrocytic stages. The 2.3 Å resolution crystal structure of the ternary complex of PvNMT with myristoyl-CoA and a novel inhibitor is reported. One asymmetric unit contains two monomers. The structure reveals notable differences between the PvNMT and human enzymes and similarities to other plasmodial NMTs that can be exploited to develop new antimalarials.
Collapse
Affiliation(s)
- Cydni Bolling
- Chemistry and Biochemistry Department, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA
| | - Alex Mendez
- Chemistry and Biochemistry Department, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA
| | - Shane Taylor
- Chemistry and Biochemistry Department, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA
| | - Stanley Makumire
- Structural Biology Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, 90220 Oulu, Finland
| | - Alexandra Reers
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Rachael Zigweid
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | | | - Bart Staker
- Structural Biology Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, 90220 Oulu, Finland
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Edward W Tate
- Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Andrew S Bell
- Myricx Pharma, 125 Wood Street, London EC2V 7AN, United Kingdom
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Oluwatoyin A Asojo
- Dartmouth Cancer Center, Dartmouth College, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Graham Chakafana
- Chemistry and Biochemistry Department, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA
| |
Collapse
|
10
|
Milanes JE, Yan VC, Pham CD, Muller F, Kwain S, Rees KC, Dominy BN, Whitehead DC, Millward SW, Bolejack M, Shek R, Tillery L, Phan IQ, Staker B, Moseman EA, Zhang X, Ma X, Jebet A, Yin X, Morris JC. Enolase inhibitors as therapeutic leads for Naegleria fowleri infection. PLoS Pathog 2024; 20:e1012412. [PMID: 39088549 PMCID: PMC11321563 DOI: 10.1371/journal.ppat.1012412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/13/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024] Open
Abstract
Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amoebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate these agents are potent inhibitors of N. fowleri ENO (NfENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC50 = 0.14 ± 0.04 μM) that was toxic to trophozoites (EC50 = 0.21 ± 0.02 μM) while the reported CC50 was >300 μM. Molecular docking simulation revealed that HEX binds strongly to the active site of NfENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of NfENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the end of the one-week observation, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. However, intranasal HEX delivery was not curative as brains of six of the eight survivors were positive for amoebae. These findings suggest that HEX requires further evaluation to develop as a lead for treatment of PAM.
Collapse
Affiliation(s)
- Jillian E. Milanes
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Victoria C. Yan
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Cong-Dat Pham
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Florian Muller
- Sporos Bioventures, Houston, Texas, United States of America
| | - Samuel Kwain
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Kerrick C. Rees
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Brian N. Dominy
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Daniel C. Whitehead
- Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Steven W. Millward
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Madison Bolejack
- UCB BioSciences, Bainbridge Island, Washington, United States of America
| | - Roger Shek
- Center for Emerging and Re-emerging Infectious Diseases and Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Logan Tillery
- Center for Emerging and Re-emerging Infectious Diseases and Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Isabelle Q. Phan
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infection Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - E. Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Audriy Jebet
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - James C. Morris
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
11
|
Rodríguez-Hernández D, Fenwick MK, Zigweid R, Sankaran B, Myler PJ, Sunnerhagen P, Kaushansky A, Staker BL, Grøtli M. Exploring Subsite Selectivity within Plasmodium vivax N-Myristoyltransferase Using Pyrazole-Derived Inhibitors. J Med Chem 2024; 67:7312-7329. [PMID: 38680035 PMCID: PMC11089503 DOI: 10.1021/acs.jmedchem.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
N-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between Plasmodium vivax and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report PvNMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity. Various functional groups are appended to a pyrazole moiety in the inhibitor to target a pocket formed beneath the peptide binding cleft. The inhibitor core group polarity, lipophilicity, and size are also varied to probe the water structure near a channel. Selectivity index values range from 0.8 to 125.3. Cocrystal structures of two selective compounds, determined at 1.97 and 2.43 Å, show that extensions bind the targeted pocket but with different stabilities. A bulky naphthalene moiety introduced into the core binds next to instead of displacing protein-bound waters, causing a shift in the inhibitor position and expanding the binding site. Our structure-activity data provide a conceptual foundation for guiding future inhibitor optimizations.
Collapse
Affiliation(s)
- Diego Rodríguez-Hernández
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
- Department
of Structural and Functional Biology, Synthetic Biology Laboratory,
Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Michael K. Fenwick
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Rachael Zigweid
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Banumathi Sankaran
- Molecular
Biophysics and Integrated Bioimaging, Berkeley Center for Structural
Biology, Advanced Light Source, Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Peter J. Myler
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Per Sunnerhagen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Alexis Kaushansky
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Bart L. Staker
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Morten Grøtli
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
| |
Collapse
|
12
|
Ran X, Parikh P, Abendroth J, Arakaki TL, Clifton MC, Edwards TE, Lorimer DD, Mayclin S, Staker BL, Myler P, McLaughlin KJ. Structural and functional characterization of FabG4 from Mycolicibacterium smegmatis. Acta Crystallogr F Struct Biol Commun 2024; 80:82-91. [PMID: 38656226 PMCID: PMC11058512 DOI: 10.1107/s2053230x2400356x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The rise in antimicrobial resistance is a global health crisis and necessitates the development of novel strategies to treat infections. For example, in 2022 tuberculosis (TB) was the second leading infectious killer after COVID-19, with multi-drug-resistant strains of TB having an ∼40% fatality rate. Targeting essential biosynthetic pathways in pathogens has proven to be successful for the development of novel antimicrobial treatments. Fatty-acid synthesis (FAS) in bacteria proceeds via the type II pathway, which is substantially different from the type I pathway utilized in animals. This makes bacterial fatty-acid biosynthesis (Fab) enzymes appealing as drug targets. FabG is an essential FASII enzyme, and some bacteria, such as Mycobacterium tuberculosis, the causative agent of TB, harbor multiple homologs. FabG4 is a conserved, high-molecular-weight FabG (HMwFabG) that was first identified in M. tuberculosis and is distinct from the canonical low-molecular-weight FabG. Here, structural and functional analyses of Mycolicibacterium smegmatis FabG4, the third HMwFabG studied to date, are reported. Crystal structures of NAD+ and apo MsFabG4, along with kinetic analyses, show that MsFabG4 preferentially binds and uses NADH when reducing CoA substrates. As M. smegmatis is often used as a model organism for M. tuberculosis, these studies may aid the development of drugs to treat TB and add to the growing body of research that distinguish HMwFabGs from the archetypal low-molecular-weight FabG.
Collapse
Affiliation(s)
- Xinping Ran
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Prashit Parikh
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- Beryllium Discovery Corporation, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | | | - Matthew C. Clifton
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- Beryllium Discovery Corporation, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- Beryllium Discovery Corporation, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- UCB Pharma, Bedford, Massachusetts, USA
| | | | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Peter Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Krystle J. McLaughlin
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| |
Collapse
|
13
|
Milanes JE, Yan VC, Pham CD, Muller F, Kwain S, Rees KC, Dominy BN, Whitehead DC, Millward SW, Bolejack M, Abendroth J, Phan IQ, Staker B, Moseman EA, Zhang X, Ma X, Jebet A, Yin X, Morris JC. Enolase inhibitors as therapeutic leads for Naegleria fowleri infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575558. [PMID: 38293107 PMCID: PMC10827119 DOI: 10.1101/2024.01.16.575558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate that these agents are potent inhibitors of N. fowleri ENO ( Nf ENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC 50 value of 0.14 ± 0.04 µM) that was toxic to trophozoites (EC 50 value of 0.21 ± 0.02 µM) while the reported CC 50 was >300 µM. Molecular docking simulation revealed that HEX binds strongly to the active site of Nf ENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of Nf ENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the conclusion of the experiment, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. Brains of six of the eight survivors were positive for amoebae, suggesting the agent at the tested dose suppressed, but did not eliminate, infection. These findings suggest that HEX is a promising lead for the treatment of PAM.
Collapse
|
14
|
Fenwick M, Reers AR, Liu Y, Zigweid R, Sankaran B, Shin J, Hulverson MA, Hammerson B, Fernández Álvaro E, Myler PJ, Kaushansky A, Van Voorhis WC, Fan E, Staker BL. Identification of and Structural Insights into Hit Compounds Targeting N-Myristoyltransferase for Cryptosporidium Drug Development. ACS Infect Dis 2023; 9:1821-1833. [PMID: 37722671 PMCID: PMC10580320 DOI: 10.1021/acsinfecdis.3c00151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 09/20/2023]
Abstract
Each year, approximately 50,000 children under 5 die as a result of diarrhea caused by Cryptosporidium parvum, a protozoan parasite. There are currently no effective drugs or vaccines available to cure or prevent Cryptosporidium infection, and there are limited tools for identifying and validating targets for drug or vaccine development. We previously reported a high throughput screening (HTS) of a large compound library against Plasmodium N-myristoyltransferase (NMT), a validated drug target in multiple protozoan parasite species. To identify molecules that could be effective against Cryptosporidium, we counter-screened hits from the Plasmodium NMT HTS against Cryptosporidium NMT. We identified two potential hit compounds and validated them against CpNMT to determine if NMT might be an attractive drug target also for Cryptosporidium. We tested the compounds against Cryptosporidium using both cell-based and NMT enzymatic assays. We then determined the crystal structure of CpNMT bound to Myristoyl-Coenzyme A (MyrCoA) and structures of ternary complexes with MyrCoA and the hit compounds to identify the ligand binding modes. The binding site architectures display different conformational states in the presence of the two inhibitors and provide a basis for rational design of selective inhibitors.
Collapse
Affiliation(s)
- Michael
K. Fenwick
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Alexandra R. Reers
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Yi Liu
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rachael Zigweid
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Banumathi Sankaran
- Berkeley
Center for Structural Biology, Advanced Light Source, Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Janis Shin
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Matthew A. Hulverson
- Center
for Emerging and Re-emerging Infectious Diseases, Division of Allergy
and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Bradley Hammerson
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | | | - Peter J. Myler
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington, Seattle, Washington 98195, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Alexis Kaushansky
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Center
for Emerging and Re-emerging Infectious Diseases, Division of Allergy
and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Wesley C. Van Voorhis
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Emerging and Re-emerging Infectious Diseases, Division of Allergy
and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Erkang Fan
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bart L. Staker
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| |
Collapse
|
15
|
Moorefield J, Konuk Y, Norman JO, Abendroth J, Edwards TE, Lorimer DD, Mayclin SJ, Staker BL, Craig JK, Barett KF, Barrett LK, Van Voorhis WC, Myler PJ, McLaughlin KJ. Characterization of a family I inorganic pyrophosphatase from Legionella pneumophila Philadelphia 1. Acta Crystallogr F Struct Biol Commun 2023; 79:257-266. [PMID: 37728609 PMCID: PMC10565794 DOI: 10.1107/s2053230x23008002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Inorganic pyrophosphate (PPi) is generated as an intermediate or byproduct of many fundamental metabolic pathways, including DNA/RNA synthesis. The intracellular concentration of PPi must be regulated as buildup can inhibit many critical cellular processes. Inorganic pyrophosphatases (PPases) hydrolyze PPi into two orthophosphates (Pi), preventing the toxic accumulation of the PPi byproduct in cells and making Pi available for use in biosynthetic pathways. Here, the crystal structure of a family I inorganic pyrophosphatase from Legionella pneumophila is reported at 2.0 Å resolution. L. pneumophila PPase (LpPPase) adopts a homohexameric assembly and shares the oligonucleotide/oligosaccharide-binding (OB) β-barrel core fold common to many other bacterial family I PPases. LpPPase demonstrated hydrolytic activity against a general substrate, with Mg2+ being the preferred metal cofactor for catalysis. Legionnaires' disease is a severe respiratory infection caused primarily by L. pneumophila, and thus increased characterization of the L. pneumophila proteome is of interest.
Collapse
Affiliation(s)
- Julia Moorefield
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Yagmur Konuk
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Jordan O. Norman
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Stephen J. Mayclin
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Justin K. Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kayleigh F. Barett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lynn K. Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Krystle J. McLaughlin
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| |
Collapse
|
16
|
Alenazi J, Mayclin S, Subramanian S, Myler PJ, Asojo OA. Crystal structure of a short-chain dehydrogenase/reductase from Burkholderia phymatum in complex with NAD. Acta Crystallogr F Struct Biol Commun 2022; 78:52-58. [PMID: 35102893 PMCID: PMC8805215 DOI: 10.1107/s2053230x22000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
Burkholderia phymatum is an important symbiotic nitrogen-fixing betaproteobacterium. B. phymatum is beneficial, unlike other Burkholderia species, which cause disease or are potential bioagents. Structural genomics studies at the SSGCID include characterization of the structures of short-chain dehydrogenases/reductases (SDRs) from multiple Burkholderia species. The crystal structure of a short-chain dehydrogenase from B. phymatum (BpSDR) was determined in space group C2221 at a resolution of 1.80 Å. BpSDR shares less than 38% sequence identity with any known structure. The monomer is a prototypical SDR with a well conserved cofactor-binding domain despite its low sequence identity. The substrate-binding cavity is unique and offers insights into possible functions and likely inhibitors of the enzymatic functions of BpSDR.
Collapse
Affiliation(s)
- Jawaher Alenazi
- Department of Chemistry and Biochemistry, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA
| | - Stephen Mayclin
- UCB Pharma, Bedford, Massachusetts, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, 307 Westlake Avenue North Suite 500, Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, 307 Westlake Avenue North Suite 500, Seattle, Washington, USA
| | - Oluwatoyin A. Asojo
- Department of Chemistry and Biochemistry, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA
| |
Collapse
|
17
|
Beard DK, Subramanian S, Abendroth J, Dranow DM, Edwards TE, Myler PJ, Asojo OA. Crystal structure of betaine aldehyde dehydrogenase from Burkholderia pseudomallei. Acta Crystallogr F Struct Biol Commun 2022; 78:45-51. [PMID: 35102892 PMCID: PMC8805214 DOI: 10.1107/s2053230x21013455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/19/2021] [Indexed: 11/10/2022] Open
Abstract
Burkholderia pseudomallei infection causes melioidosis, which is often fatal if untreated. There is a need to develop new and more effective treatments for melioidosis. This study reports apo and cofactor-bound crystal structures of the potential drug target betaine aldehyde dehydrogenase (BADH) from B. pseudomallei. A structural comparison identified similarities to BADH from Pseudomonas aeruginosa which is inhibited by the drug disulfiram. This preliminary analysis could facilitate drug-repurposing studies for B. pseudomallei.
Collapse
Affiliation(s)
- Dylan K Beard
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Sandhya Subramanian
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | | | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Peter J Myler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Oluwatoyin A Asojo
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| |
Collapse
|
18
|
Davidson J, Nicholas K, Young J, Conrady DG, Mayclin S, Subramanian S, Staker BL, Myler PJ, Asojo OA. Crystal structure of a putative short-chain dehydrogenase/reductase from Paraburkholderia xenovorans. Acta Crystallogr F Struct Biol Commun 2022; 78:25-30. [PMID: 34981772 PMCID: PMC8725002 DOI: 10.1107/s2053230x21012632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
Paraburkholderia xenovorans degrades organic wastes, including polychlorinated biphenyls. The atomic structure of a putative dehydrogenase/reductase (SDR) from P. xenovorans (PxSDR) was determined in space group P21 at a resolution of 1.45 Å. PxSDR shares less than 37% sequence identity with any known structure and assembles as a prototypical SDR tetramer. As expected, there is some conformational flexibility and difference in the substrate-binding cavity, which explains the substrate specificity. Uniquely, the cofactor-binding cavity of PxSDR is not well conserved and differs from those of other SDRs. PxSDR has an additional seven amino acids that form an additional unique loop within the cofactor-binding cavity. Further studies are required to determine how these differences affect the enzymatic functions of the SDR.
Collapse
Affiliation(s)
- Jaysón Davidson
- Department of Chemistry and Biochemistry, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA
| | - Kyndall Nicholas
- Department of Chemistry and Biochemistry, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA
| | - Jeremy Young
- Department of Chemistry and Biochemistry, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA
| | - Deborah G. Conrady
- UCB Pharma, Bedford, Massachusetts, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Stephen Mayclin
- UCB Pharma, Bedford, Massachusetts, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Oluwatoyin A. Asojo
- Department of Chemistry and Biochemistry, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA
| |
Collapse
|
19
|
Porter I, Neal T, Walker Z, Hayes D, Fowler K, Billups N, Rhoades A, Smith C, Smith K, Staker BL, Dranow DM, Mayclin SJ, Subramanian S, Edwards TE, Myler PJ, Asojo OA. Crystal structures of FolM alternative dihydrofolate reductase 1 from Brucella suis and Brucella canis. Acta Crystallogr F Struct Biol Commun 2022; 78:31-38. [PMID: 34981773 PMCID: PMC8725004 DOI: 10.1107/s2053230x21013078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2023] Open
Abstract
Members of the bacterial genus Brucella cause brucellosis, a zoonotic disease that affects both livestock and wildlife. Brucella are category B infectious agents that can be aerosolized for biological warfare. As part of the structural genomics studies at the Seattle Structural Genomics Center for Infectious Disease (SSGCID), FolM alternative dihydrofolate reductases 1 from Brucella suis and Brucella canis were produced and their structures are reported. The enzymes share ∼95% sequence identity but have less than 33% sequence identity to other homologues with known structure. The structures are prototypical NADPH-dependent short-chain reductases that share their highest tertiary-structural similarity with protozoan pteridine reductases, which are being investigated for rational therapeutic development.
Collapse
Affiliation(s)
- Imani Porter
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Trinity Neal
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Zion Walker
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Dylan Hayes
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Kayla Fowler
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Nyah Billups
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Anais Rhoades
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Christian Smith
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Kaelyn Smith
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Stephen J Mayclin
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Oluwatoyin A Asojo
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| |
Collapse
|
20
|
Phan IQ, Rice CA, Craig J, Noorai RE, McDonald JR, Subramanian S, Tillery L, Barrett LK, Shankar V, Morris JC, Van Voorhis WC, Kyle DE, Myler PJ. The transcriptome of Balamuthia mandrillaris trophozoites for structure-guided drug design. Sci Rep 2021; 11:21664. [PMID: 34737367 PMCID: PMC8569187 DOI: 10.1038/s41598-021-99903-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Balamuthia mandrillaris, a pathogenic free-living amoeba, causes cutaneous skin lesions as well as granulomatous amoebic encephalitis, a 'brain-eating' disease. As with the other known pathogenic free-living amoebas (Naegleria fowleri and Acanthamoeba species), drug discovery efforts to combat Balamuthia infections of the central nervous system are sparse; few targets have been validated or characterized at the molecular level, and little is known about the biochemical pathways necessary for parasite survival. Current treatments of encephalitis due to B. mandrillaris lack efficacy, leading to case fatality rates above 90%. Using our recently published methodology to discover potential drugs against pathogenic amoebas, we screened a collection of 85 compounds with known antiparasitic activity and identified 59 compounds that impacted the growth of Balamuthia trophozoites at concentrations below 220 µM. Since there is no fully annotated genome or proteome of B. mandrillaris, we sequenced and assembled its transcriptome from a high-throughput RNA-sequencing (RNA-Seq) experiment and located the coding sequences of the genes potentially targeted by the growth inhibitors from our compound screens. We determined the sequence of 17 of these target genes and obtained expression clones for 15 that we validated by direct sequencing. These will be used in the future in combination with the identified hits in structure guided drug discovery campaigns to develop new approaches for the treatment of Balamuthia infections.
Collapse
Affiliation(s)
- Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA.
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Christopher A Rice
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA.
| | - Justin Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rooksana E Noorai
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, SC, USA
| | - Jacquelyn R McDonald
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Logan Tillery
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lynn K Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vijay Shankar
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - James C Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA.
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
Naegleria fowleri: Protein structures to facilitate drug discovery for the deadly, pathogenic free-living amoeba. PLoS One 2021; 16:e0241738. [PMID: 33760815 PMCID: PMC7990177 DOI: 10.1371/journal.pone.0241738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Naegleria fowleri is a pathogenic, thermophilic, free-living amoeba which causes primary amebic meningoencephalitis (PAM). Penetrating the olfactory mucosa, the brain-eating amoeba travels along the olfactory nerves, burrowing through the cribriform plate to its destination: the brain’s frontal lobes. The amoeba thrives in warm, freshwater environments, with peak infection rates in the summer months and has a mortality rate of approximately 97%. A major contributor to the pathogen’s high mortality is the lack of sensitivity of N. fowleri to current drug therapies, even in the face of combination-drug therapy. To enable rational drug discovery and design efforts we have pursued protein production and crystallography-based structure determination efforts for likely drug targets from N. fowleri. The genes were selected if they had homology to drug targets listed in Drug Bank or were nominated by primary investigators engaged in N. fowleri research. In 2017, 178 N. fowleri protein targets were queued to the Seattle Structural Genomics Center of Infectious Disease (SSGCID) pipeline, and to date 89 soluble recombinant proteins and 19 unique target structures have been produced. Many of the new protein structures are potential drug targets and contain structural differences compared to their human homologs, which could allow for the development of pathogen-specific inhibitors. Five of the structures were analyzed in more detail, and four of five show promise that selective inhibitors of the active site could be found. The 19 solved crystal structures build a foundation for future work in combating this devastating disease by encouraging further investigation to stimulate drug discovery for this neglected pathogen.
Collapse
|
22
|
McLaughlin KJ. Developing a macromolecular crystallography driven CURE. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:020406. [PMID: 33834085 PMCID: PMC8012065 DOI: 10.1063/4.0000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
|
23
|
Grabowski M, Cooper DR, Brzezinski D, Macnar JM, Shabalin IG, Cymborowski M, Otwinowski Z, Minor W. Synchrotron Radiation as a Tool for Macromolecular X-Ray Crystallography: a XXI Century Perspective. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION B, BEAM INTERACTIONS WITH MATERIALS AND ATOMS 2021; 489:30-40. [PMID: 33603257 PMCID: PMC7886262 DOI: 10.1016/j.nimb.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intense X-rays available at powerful synchrotron beamlines provide macromolecular crystallographers with an incomparable tool for investigating biological phenomena on an atomic scale. The resulting insights into the mechanism's underlying biological processes have played an essential role and shaped biomedical sciences during the last 30 years, considered the "golden age" of structural biology. In this review, we analyze selected aspects of the impact of synchrotron radiation on structural biology. Synchrotron beamlines have been used to determine over 70% of all macromolecular structures deposited into the Protein Data Bank (PDB). These structures were deposited by over 13,000 different research groups. Interestingly, despite the impressive advances in synchrotron technologies, the median resolution of macromolecular structures determined using synchrotrons has remained constant throughout the last 30 years, at about 2 Å. Similarly, the median times from the data collection to the deposition and release have not changed significantly. We describe challenges to reproducibility related to recording all relevant data and metadata during the synchrotron experiments, including diffraction images. Finally, we discuss some of the recent opinions suggesting a diminishing importance of X-ray crystallography due to impressive advances in Cryo-EM and theoretical modeling. We believe that synchrotrons of the future will increasingly evolve towards a life science center model, where X-ray crystallography, Cryo-EM, and other experimental and computational resources and knowledge are encompassed within a versatile research facility. The recent response of crystallographers to the COVID-19 pandemic suggests that X-ray crystallography conducted at synchrotron beamlines will continue to play an essential role in structural biology and drug discovery for years to come.
Collapse
Affiliation(s)
- Marek Grabowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
| | - Dariusz Brzezinski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna M. Macnar
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
| | - Marcin Cymborowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
| | - Zbyszek Otwinowski
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
| |
Collapse
|
24
|
Rodarte JV, Abendroth J, Edwards TE, Lorimer DD, Staker BL, Zhang S, Myler PJ, McLaughlin KJ. Crystal structure of acetoacetyl-CoA reductase from Rickettsia felis. Acta Crystallogr F Struct Biol Commun 2021; 77:54-60. [PMID: 33620038 PMCID: PMC7900926 DOI: 10.1107/s2053230x21001497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
Rickettsia felis, a Gram-negative bacterium that causes spotted fever, is of increasing interest as an emerging human pathogen. R. felis and several other Rickettsia strains are classed as National Institute of Allergy and Infectious Diseases priority pathogens. In recent years, R. felis has been shown to be adaptable to a wide range of hosts, and many fevers of unknown origin are now being attributed to this infectious agent. Here, the structure of acetoacetyl-CoA reductase from R. felis is reported at a resolution of 2.0 Å. While R. felis acetoacetyl-CoA reductase shares less than 50% sequence identity with its closest homologs, it adopts a fold common to other short-chain dehydrogenase/reductase (SDR) family members, such as the fatty-acid synthesis II enzyme FabG from the prominent pathogens Staphylococcus aureus and Bacillus anthracis. Continued characterization of the Rickettsia proteome may prove to be an effective means of finding new avenues of treatment through comparative structural studies.
Collapse
Affiliation(s)
- Justas V. Rodarte
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, New York, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences Inc., 7869 Day Road West, Bainbridge Island, Washington, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences Inc., 7869 Day Road West, Bainbridge Island, Washington, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences Inc., 7869 Day Road West, Bainbridge Island, Washington, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Sunny Zhang
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Krystle J. McLaughlin
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, New York, USA
| |
Collapse
|
25
|
Riboldi GP, Zigweid R, Myler PJ, Mayclin SJ, Couñago RM, Staker BL. Identification of P218 as a potent inhibitor of Mycobacterium ulcerans DHFR. RSC Med Chem 2021; 12:103-109. [PMID: 34046602 PMCID: PMC8130613 DOI: 10.1039/d0md00303d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a debilitating chronic disease that mainly affects the skin. Current treatments for Buruli ulcer are efficacious, but rely on the use of antibiotics with severe side effects. The enzyme dihydrofolate reductase (DHFR) plays a critical role in the de novo biosynthesis of folate species and is a validated target for several antimicrobials. Here we describe the biochemical and structural characterization of M. ulcerans DHFR and identified P218, a safe antifolate compound in clinical evaluation for malaria, as a potent inhibitor of this enzyme. We expect our results to advance M. ulcerans DHFR as a target for future structure-based drug discovery campaigns.
Collapse
Affiliation(s)
- Gustavo P Riboldi
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP) Campinas SP 13083-875 Brazil
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP Campinas SP 13083-886 Brazil
| | - Rachael Zigweid
- Center for Infectious Disease Research, Seattle Children's Research Institute Seattle Washington 98109 USA
| | - Peter J Myler
- Center for Infectious Disease Research, Seattle Children's Research Institute Seattle Washington 98109 USA
- Department of Pediatrics, University of Washington Seattle Washington 91895 USA
| | - Stephen J Mayclin
- Seattle Structural Genomics Center for Infectious Disease (SSGCID) Seattle Washington 98109 USA
- UCB Bainbridge Island Washington 98110 USA
| | - Rafael M Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP) Campinas SP 13083-875 Brazil
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP Campinas SP 13083-886 Brazil
| | - Bart L Staker
- Center for Infectious Disease Research, Seattle Children's Research Institute Seattle Washington 98109 USA
| |
Collapse
|
26
|
Michailidou F, Klöcker N, Cornelissen NV, Singh RK, Peters A, Ovcharenko A, Kümmel D, Rentmeister A. Maßgeschneiderte SAM‐Synthetasen zur enzymatischen Herstellung von AdoMet‐Analoga mit Photoschutzgruppen und zur reversiblen DNA‐Modifizierung in Kaskadenreaktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Freideriki Michailidou
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
- Derzeitige Adresse: ETH Zürich Fachbereich Chemie und angewandte Biowissenschaften Laboratorium für Organische Chemie Vladimir-Prelog-Weg 1–5/10 8093 Zürich Schweiz
| | - Nils Klöcker
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Nicolas V. Cornelissen
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Rohit K. Singh
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Aileen Peters
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Anna Ovcharenko
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Daniel Kümmel
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Andrea Rentmeister
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| |
Collapse
|
27
|
Michailidou F, Klöcker N, Cornelissen NV, Singh RK, Peters A, Ovcharenko A, Kümmel D, Rentmeister A. Engineered SAM Synthetases for Enzymatic Generation of AdoMet Analogs with Photocaging Groups and Reversible DNA Modification in Cascade Reactions. Angew Chem Int Ed Engl 2020; 60:480-485. [PMID: 33017502 PMCID: PMC7839696 DOI: 10.1002/anie.202012623] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Methylation and demethylation of DNA, RNA and proteins has emerged as a major regulatory mechanism. Studying the function of these modifications would benefit from tools for their site‐specific inhibition and timed removal. S‐Adenosyl‐L‐methionine (AdoMet) analogs in combination with methyltransferases (MTases) have proven useful to map or block and release MTase target sites, however their enzymatic generation has been limited to aliphatic groups at the sulfur atom. We engineered a SAM synthetase from Cryptosporidium hominis (PC‐ChMAT) for efficient generation of AdoMet analogs with photocaging groups that are not accepted by any WT MAT reported to date. The crystal structure of PC‐ChMAT at 1.87 Å revealed how the photocaged AdoMet analog is accommodated and guided engineering of a thermostable MAT from Methanocaldococcus jannaschii. PC‐MATs were compatible with DNA‐ and RNA‐MTases, enabling sequence‐specific modification (“writing”) of plasmid DNA and light‐triggered removal (“erasing”).
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany.,Current address: ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Nils Klöcker
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Nicolas V Cornelissen
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Rohit K Singh
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Aileen Peters
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Anna Ovcharenko
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Daniel Kümmel
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| |
Collapse
|
28
|
A Phenotarget Approach for Identifying an Alkaloid Interacting with the Tuberculosis Protein Rv1466. Mar Drugs 2020; 18:md18030149. [PMID: 32150903 PMCID: PMC7143284 DOI: 10.3390/md18030149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
In recent years, there has been a revival of interest in phenotypic-based drug discovery (PDD) due to target-based drug discovery (TDD) falling below expectations. Both PDD and TDD have their unique advantages and should be used as complementary methods in drug discovery. The PhenoTarget approach combines the strengths of the PDD and TDD approaches. Phenotypic screening is conducted initially to detect cellular active components and the hits are then screened against a panel of putative targets. This PhenoTarget protocol can be equally applied to pure compound libraries as well as natural product fractions. Here we described the use of the PhenoTarget approach to identify an anti-tuberculosis lead compound. Fractions from Polycarpa aurata were identified with activity against Mycobacterium tuberculosis H37Rv. Native magnetic resonance mass spectrometry (MRMS) against a panel of 37 proteins from Mycobacterium proteomes showed that a fraction from a 95% ethanol re-extraction specifically formed a protein-ligand complex with Rv1466, a putative uncharacterized Mycobacterium tuberculosis protein. The natural product responsible was isolated and characterized to be polycarpine. The molecular weight of the ligand bound to Rv1466, 233 Da, was half the molecular weight of polycarpine less one proton, indicating that polycarpine formed a covalent bond with Rv1466.
Collapse
|
29
|
Tillery LM, Barrett KF, Dranow DM, Craig J, Shek R, Chun I, Barrett LK, Phan IQ, Subramanian S, Abendroth J, Lorimer DD, Edwards TE, Van Voorhis WC. Toward a structome of Acinetobacter baumannii drug targets. Protein Sci 2020; 29:789-802. [PMID: 31930600 DOI: 10.1002/pro.3826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Acinetobacter baumannii is well known for causing hospital-associated infections due in part to its intrinsic antibiotic resistance as well as its ability to remain viable on surfaces and resist cleaning agents. In a previous publication, A. baumannii strain AB5075 was studied by transposon mutagenesis and 438 essential gene candidates for growth on rich-medium were identified. The Seattle Structural Genomics Center for Infectious Disease entered 342 of these candidate essential genes into our pipeline for structure determination, in which 306 were successfully cloned into expression vectors, 192 were detectably expressed, 165 screened as soluble, 121 were purified, 52 crystalized, 30 provided diffraction data, and 29 structures were deposited in the Protein Data Bank. Here, we report these structures, compare them with human orthologs where applicable, and discuss their potential as drug targets for antibiotic development against A. baumannii.
Collapse
Affiliation(s)
- Logan M Tillery
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Kayleigh F Barrett
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Justin Craig
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Roger Shek
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Ian Chun
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Lynn K Barrett
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Seattle Children's Research Institute, Seattle, Washington
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Seattle Children's Research Institute, Seattle, Washington
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Wesley C Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| |
Collapse
|
30
|
Buchko GW, Abendroth J, Robinson JI, Phan IQ, Myler PJ, Edwards TE. Structural diversity in the Mycobacteria DUF3349 superfamily. Protein Sci 2019; 29:670-685. [PMID: 31658388 DOI: 10.1002/pro.3758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 11/11/2022]
Abstract
A protein superfamily with a "Domain of Unknown Function,", DUF3349 (PF11829), is present predominately in Mycobacterium and Rhodococcus bacterial species suggesting that these proteins may have a biological function unique to these bacteria. We previously reported the inaugural structure of a DUF3349 superfamily member, Mycobacterium tuberculosis Rv0543c. Here, we report the structures determined for three additional DUF3349 proteins: Mycobacterium smegmatis MSMEG_1063 and MSMEG_1066 and Mycobacterium abscessus MAB_3403c. Like Rv0543c, the NMR solution structure of MSMEG_1063 revealed a monomeric five α-helix bundle with a similar overall topology. Conversely, the crystal structure of MSMEG_1066 revealed a five α-helix protein with a strikingly different topology and a tetrameric quaternary structure that was confirmed by size exclusion chromatography. The NMR solution structure of a fourth member of the DUF3349 superfamily, MAB_3403c, with 18 residues missing at the N-terminus, revealed a monomeric α-helical protein with a folding topology similar to the three C-terminal helices in the protomer of the MSMEG_1066 tetramer. These structures, together with a GREMLIN-based bioinformatics analysis of the DUF3349 primary amino acid sequences, suggest two subfamilies within the DUF3349 family. The division of the DUF3349 into two distinct subfamilies would have been lost if structure solution had stopped with the first structure in the DUF3349 family, highlighting the insights generated by solving multiple structures within a protein superfamily. Future studies will determine if the structural diversity at the tertiary and quaternary levels in the DUF3349 protein superfamily have functional roles in Mycobacteria and Rhodococcus species with potential implications for structure-based drug discovery.
Collapse
Affiliation(s)
- Garry W Buchko
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington.,School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB, Bainbridge Island, Washington
| | - John I Robinson
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB, Bainbridge Island, Washington
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington.,Department of Medical Education and Biomedical Informatics, University of Washington, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB, Bainbridge Island, Washington
| |
Collapse
|
31
|
Ferguson L, Wells G, Bhakta S, Johnson J, Guzman J, Parish T, Prentice RA, Brucoli F. Integrated Target-Based and Phenotypic Screening Approaches for the Identification of Anti-Tubercular Agents That Bind to the Mycobacterial Adenylating Enzyme MbtA. ChemMedChem 2019; 14:1735-1741. [PMID: 31454170 PMCID: PMC6800809 DOI: 10.1002/cmdc.201900217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/20/2019] [Indexed: 12/27/2022]
Abstract
Iron is essential for the pathogenicity and virulence of Mycobacterium tuberculosis, which synthesises salicyl-capped siderophores (mycobactins) to acquire this element from the host. MbtA is the adenylating enzyme that catalyses the initial reaction of mycobactin biosynthesis and is solely expressed by mycobacteria. A 3200-member library comprised of lead-like, structurally diverse compounds was screened against M. tuberculosis for whole-cell inhibitory activity. A set of 846 compounds that inhibited the tubercle bacilli growth were then tested for their ability to bind to MbtA using a fluorescence-based thermal shift assay and NMR-based Water-LOGSY and saturation transfer difference (STD) experiments. We identified an attractive hit molecule, 5-hydroxyindol-3-ethylamino-(2-nitro-4-trifluoromethyl)benzene (5), that bound with high affinity to MbtA and produced a MIC90 value of 13 μm. The ligand was docked into the MbtA crystal structure and displayed an excellent fit within the MbtA active pocket, adopting a binding mode different from that of the established MbtA inhibitor Sal-AMS.
Collapse
Affiliation(s)
- Lindsay Ferguson
- School of Science, University of the West of Scotland, Paisley, PA1 2BE, Scotland, UK
| | - Geoff Wells
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, WC1E 7HX, UK
| | - James Johnson
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Junitta Guzman
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Robin A. Prentice
- Seattle Structural Genomics Center for Infectious Disease, Seattle WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, USA
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
32
|
Abendroth J, Sankaran B, Myler PJ, Lorimer DD, Edwards TE. Ab initio structure solution of a proteolytic fragment using ARCIMBOLDO. Acta Crystallogr F Struct Biol Commun 2018; 74:530-535. [PMID: 30198884 PMCID: PMC6130419 DOI: 10.1107/s2053230x18010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/12/2018] [Indexed: 11/10/2022] Open
Abstract
Crystal structure determination requires solving the phase problem. This can be accomplished using ab initio direct methods for small molecules and macromolecules at resolutions higher than 1.2 Å, whereas macromolecular structure determination at lower resolution requires either molecular replacement using a homologous structure or experimental phases using a derivative such as covalent labeling (for example selenomethionine or mercury derivatization) or heavy-atom soaking (for example iodide ions). Here, a case is presented in which crystals were obtained from a 30.8 kDa protein sample and yielded a 1.6 Å resolution data set with a unit cell that could accommodate approximately 8 kDa of protein. Thus, it was unclear what had been crystallized. Molecular replacement with pieces of homologous proteins and attempts at iodide ion soaking failed to yield a solution. The crystals could not be reproduced. Sequence-independent molecular replacement using the structures available in the Protein Data Bank also failed to yield a solution. Ultimately, ab initio structure solution proved successful using the program ARCIMBOLDO, which identified two α-helical elements and yielded interpretable maps. The structure was the C-terminal dimerization domain of the intended target from Mycobacterium smegmatis. This structure is presented as a user-friendly test case in which an unknown protein fragment could be determined using ARCIMBOLDO.
Collapse
Affiliation(s)
- Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| |
Collapse
|
33
|
Dumais M, Davies DR, Lin T, Staker BL, Myler PJ, Van Voorhis WC. Structure and analysis of nucleoside diphosphate kinase from Borrelia burgdorferi prepared in a transition-state complex with ADP and vanadate moieties. Acta Crystallogr F Struct Biol Commun 2018; 74:373-384. [PMID: 29870023 PMCID: PMC5987747 DOI: 10.1107/s2053230x18007392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/16/2018] [Indexed: 01/13/2023] Open
Abstract
Nucleoside diphosphate kinases (NDKs) are implicated in a wide variety of cellular functions owing to their enzymatic conversion of NDP to NTP. NDK from Borrelia burgdorferi (BbNDK) was selected for functional and structural analysis to determine whether its activity is required for infection and to assess its potential for therapeutic inhibition. The Seattle Structural Genomics Center for Infectious Diseases (SSGCID) expressed recombinant BbNDK protein. The protein was crystallized and structures were solved of both the apoenzyme and a liganded form with ADP and vanadate ligands. This provided two structures and allowed the elucidation of changes between the apo and ligand-bound enzymes. Infectivity studies with ndk transposon mutants demonstrated that NDK function was important for establishing a robust infection in mice, and provided a rationale for therapeutic targeting of BbNDK. The protein structure was compared with other NDK structures found in the Protein Data Bank and was found to have similar primary, secondary, tertiary and quaternary structures, with conserved residues acting as the catalytic pocket, primarily using His132 as the phosphohistidine-transfer residue. Vanadate and ADP complexes model the transition state of this phosphoryl-transfer reaction, demonstrating that the pocket closes when bound to ADP, while allowing the addition or removal of a γ-phosphate. This analysis provides a framework for the design of potential therapeutics targeting BbNDK inhibition.
Collapse
Affiliation(s)
- Mitchell Dumais
- Department of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| | | | - Tao Lin
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Bart L. Staker
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle, Washington, USA
| | - Peter J. Myler
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle, Washington, USA
- Department of Biomedical Informatics and Health Education, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Wesley C. Van Voorhis
- Department of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| |
Collapse
|
34
|
Helgren TR, Seven ES, Chen C, Edwards TE, Staker BL, Abendroth J, Myler PJ, Horn JR, Hagen TJ. The identification of inhibitory compounds of Rickettsia prowazekii methionine aminopeptidase for antibacterial applications. Bioorg Med Chem Lett 2018; 28:1376-1380. [PMID: 29551481 PMCID: PMC5908248 DOI: 10.1016/j.bmcl.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 11/25/2022]
Abstract
Methionine aminopeptidase (MetAP) is a dinuclear metalloprotease responsible for the cleavage of methionine initiator residues from nascent proteins. MetAP activity is necessary for bacterial proliferation and is therefore a projected novel antibacterial target. A compound library consisting of 294 members containing metal-binding functional groups was screened against Rickettsia prowazekii MetAP to determine potential inhibitory motifs. The compounds were first screened against the target at a concentration of 10 µM and potential hits were determined to be those exhibiting greater than 50% inhibition of enzymatic activity. These hit compounds were then rescreened against the target in 8-point dose-response curves and 11 compounds were found to inhibit enzymatic activity with IC50 values of less than 10 µM. Finally, compounds (1-5) were docked against RpMetAP with AutoDock to determine potential binding mechanisms and the results were compared with crystal structures deposited within the PDB.
Collapse
Affiliation(s)
- Travis R Helgren
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Elif S Seven
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Congling Chen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | - Jan Abendroth
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | - James R Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Timothy J Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA.
| |
Collapse
|
35
|
Asojo OA, Dranow DM, Serbzhinskiy D, Subramanian S, Staker B, Edwards TE, Myler PJ. Crystal structure of chorismate mutase from Burkholderia thailandensis. Acta Crystallogr F Struct Biol Commun 2018; 74:294-299. [PMID: 29717997 PMCID: PMC5931142 DOI: 10.1107/s2053230x1800506x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/28/2018] [Indexed: 11/10/2022] Open
Abstract
Burkholderia thailandensis is often used as a model for more virulent members of this genus of proteobacteria that are highly antibiotic-resistant and are potential agents of biological warfare that are infective by inhalation. As part of ongoing efforts to identify potential targets for the development of rational therapeutics, the structures of enzymes that are absent in humans, including that of chorismate mutase from B. thailandensis, have been determined by the Seattle Structural Genomics Center for Infectious Disease. The high-resolution structure of chorismate mutase from B. thailandensis was determined in the monoclinic space group P21 with three homodimers per asymmetric unit. The overall structure of each protomer has the prototypical AroQγ topology and shares conserved binding-cavity residues with other chorismate mutases, including those with which it has no appreciable sequence identity.
Collapse
Affiliation(s)
- Oluwatoyin A. Asojo
- National School of Tropical Medicine, Baylor College of Medicine, 1102 Bates Avenue Suite 550, Mail Stop BCM320, Houston, TX 77030-3411, USA
| | - David M. Dranow
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Dmitry Serbzhinskiy
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Thomas E. Edwards
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
36
|
Asojo OA, Subramanian S, Abendroth J, Exley I, Lorimer DD, Edwards TE, Myler PJ. Crystal structure of chorismate mutase from Burkholderia phymatum. Acta Crystallogr F Struct Biol Commun 2018; 74:187-192. [PMID: 29633965 PMCID: PMC5894103 DOI: 10.1107/s2053230x18002868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/18/2018] [Indexed: 11/10/2022] Open
Abstract
The bacterium Burkholderia phymatum is a promiscuous symbiotic nitrogen-fixating bacterium that belongs to one of the largest groups of Betaproteobacteria. Other Burkholderia species are known to cause disease in plants and animals, and some are potential agents for biological warfare. Structural genomics efforts include characterizing the structures of enzymes from pathways that can be targeted for drug development. As part of these efforts, chorismate mutase from B. phymatum was produced and crystallized, and a 1.95 Å resolution structure is reported. This enzyme shares less than 33% sequence identity with other homologs of known structure. There are two classes of chorismate mutase: AroQ and AroH. The bacterial subclass AroQγ has reported roles in virulence. Chorismate mutase from B. phymatum has the prototypical AroQγ topology and retains the characteristic chorismate mutase active site. This suggests that substrate-based chorismate mutase inhibitors will not be specific and are likely to affect beneficial bacteria such as B. phymatum.
Collapse
Affiliation(s)
- Oluwatoyin A. Asojo
- National School of Tropical Medicine, Baylor College of Medicine, 1102 Bates Avenue Suite 550, Mail Stop BCM320, Houston, TX 77030-3411, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| | - Ilyssa Exley
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
37
|
Buchko GW, Echols N, Flynn EM, Ng HL, Stephenson S, Kim HB, Myler PJ, Terwilliger TC, Alber T, Kim CY. Structural and Biophysical Characterization of the Mycobacterium tuberculosis Protein Rv0577, a Protein Associated with Neutral Red Staining of Virulent Tuberculosis Strains and Homologue of the Streptomyces coelicolor Protein KbpA. Biochemistry 2017; 56:4015-4027. [PMID: 28692281 DOI: 10.1021/acs.biochem.7b00511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis protein Rv0577 is a prominent antigen in tuberculosis patients, the component responsible for neutral red staining of virulent strains of M. tuberculosis, a putative component in a methylglyoxal detoxification pathway, and an agonist of toll-like receptor 2. It also has an amino acid sequence that is 36% identical to that of Streptomyces coelicolor AfsK-binding protein A (KbpA), a component in the complex secondary metabolite pathways in the Streptomyces genus. To gain insight into the biological function of Rv0577 and the family of KpbA kinase regulators, the crystal structure for Rv0577 was determined to a resolution of 1.75 Å, binding properties with neutral red and deoxyadenosine were surveyed, backbone dynamics were measured, and thermal stability was assayed by circular dichroism spectroscopy. The protein is composed of four approximate repeats with a βαβββ topology arranged radially in consecutive pairs to form two continuous eight-strand β-sheets capped on both ends with an α-helix. The two β-sheets intersect in the center at roughly a right angle and form two asymmetric deep "saddles" that may serve to bind ligands. Nuclear magnetic resonance chemical shift perturbation experiments show that neutral red and deoxyadenosine bind to Rv0577. Binding to deoxyadenosine is weaker with an estimated dissociation constants of 4.1 ± 0.3 mM for saddle 1. Heteronuclear steady-state {1H}-15N nuclear Overhauser effect, T1, and T2 values were generally uniform throughout the sequence with only a few modest pockets of differences. Circular dichroism spectroscopy characterization of the thermal stability of Rv0577 indicated irreversible unfolding upon heating with an estimated melting temperature of 56 °C.
Collapse
Affiliation(s)
- Garry W Buchko
- Seattle Structural Genomics Center for Infectious Diseases.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Nathaniel Echols
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94158-2330, United States.,Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - E Megan Flynn
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Ho-Leung Ng
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Samuel Stephenson
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Heung-Bok Kim
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Diseases.,Department of Medical Education and Biomedical Informatics and Department of Global Health, University of Washington , Seattle, Washington 98195, United States.,Center for Infectious Disease Research , Seattle, Washington 98109-5219, United States
| | - Thomas C Terwilliger
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Tom Alber
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94158-2330, United States.,Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Chang-Yub Kim
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
38
|
Allen SJ, Eaton RM, Bush MF. Structural Dynamics of Native-Like Ions in the Gas Phase: Results from Tandem Ion Mobility of Cytochrome c. Anal Chem 2017. [PMID: 28636328 DOI: 10.1021/acs.analchem.7b01234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ion mobility (IM) is a gas-phase separation technique that is used to determine the collision cross sections of native-like ions of proteins and protein complexes, which are in turn used as restraints for modeling the structures of those analytes in solution. Here, we evaluate the stability of native-like ions using tandem IM experiments implemented using structures for lossless ion manipulations (SLIM). In this implementation of tandem IM, ions undergo a first dimension of IM up to a switch that is used to selectively transmit ions of a desired mobility. Selected ions are accumulated in a trap and then released after a delay to initiate the second dimension of IM. For delays ranging from 16 to 33 231 ms, the collision cross sections of native-like, 7+ cytochrome c ions increase monotonically from 15.1 to 17.1 nm2. The largest products formed in these experiments at near-ambient temperature are still far smaller than those formed in energy-dependent experiments (∼21 nm2). However, the collision cross section increases by ∼2% between delay times of 16 and 211 ms, which may have implications for other IM experiments on these time scales. Finally, two subpopulations from the full population were each mobility selected and analyzed as a function of delay time, showing that the three populations can be differentiated for at least 1 s. Together, these results suggest that elements of native-like structure can have long lifetimes at near-ambient temperature in the gas phase but that gas-phase dynamics should be considered when interpreting results from IM.
Collapse
Affiliation(s)
- Samuel J Allen
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Rachel M Eaton
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
39
|
Moen SO, Edwards TE, Dranow DM, Clifton MC, Sankaran B, Van Voorhis WC, Sharma A, Manoil C, Staker BL, Myler PJ, Lorimer DD. Ligand co-crystallization of aminoacyl-tRNA synthetases from infectious disease organisms. Sci Rep 2017; 7:223. [PMID: 28303005 PMCID: PMC5428304 DOI: 10.1038/s41598-017-00367-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 12/15/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) charge tRNAs with their cognate amino acid, an essential precursor step to loading of charged tRNAs onto the ribosome and addition of the amino acid to the growing polypeptide chain during protein synthesis. Because of this important biological function, aminoacyl-tRNA synthetases have been the focus of anti-infective drug development efforts and two aaRS inhibitors have been approved as drugs. Several researchers in the scientific community requested aminoacyl-tRNA synthetases to be targeted in the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure determination pipeline. Here we investigate thirty-one aminoacyl-tRNA synthetases from infectious disease organisms by co-crystallization in the presence of their cognate amino acid, ATP, and/or inhibitors. Crystal structures were determined for a CysRS from Borrelia burgdorferi bound to AMP, GluRS from Borrelia burgdorferi and Burkholderia thailandensis bound to glutamic acid, a TrpRS from the eukaryotic pathogen Encephalitozoon cuniculi bound to tryptophan, a HisRS from Burkholderia thailandensis bound to histidine, and a LysRS from Burkholderia thailandensis bound to lysine. Thus, the presence of ligands may promote aaRS crystallization and structure determination. Comparison with homologous structures shows conformational flexibility that appears to be a recurring theme with this enzyme class.
Collapse
Affiliation(s)
- Spencer O Moen
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Beryllium Discovery Corp, Bainbridge Island, WA, 98110, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA. .,Beryllium Discovery Corp, Bainbridge Island, WA, 98110, USA.
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Beryllium Discovery Corp, Bainbridge Island, WA, 98110, USA
| | - Matthew C Clifton
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Beryllium Discovery Corp, Bainbridge Island, WA, 98110, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Advanced Light Source, Berkeley, CA, 94720, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,University of Washington, Seattle, WA, 98195-6423, USA
| | - Amit Sharma
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Colin Manoil
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195-5065, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA, 98109, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA, 98109, USA.,University of Washington, Department of Medical Education and Biomedical Informatics & Department of Global Health, Seattle, WA, 98195, USA
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Bethesda, MD, USA.,Beryllium Discovery Corp, Bainbridge Island, WA, 98110, USA
| |
Collapse
|
40
|
Dubey R, Staker BL, Foe IT, Bogyo M, Myler PJ, Ngô HM, Gubbels MJ. Membrane skeletal association and post-translational allosteric regulation of Toxoplasma gondii GAPDH1. Mol Microbiol 2017; 103:618-634. [PMID: 27859784 PMCID: PMC5296235 DOI: 10.1111/mmi.13577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 01/07/2023]
Abstract
When Toxoplasma gondii egresses from the host cell, glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH1), which is primary a glycolysis enzyme but actually a quintessential multifunctional protein, translocates to the unique cortical membrane skeleton. Here, we report the 2.25 Å resolution crystal structure of the GAPDH1 holoenzyme in a quaternary complex providing the basis for the molecular dissection of GAPDH1 structure-function relationships Knockdown of GAPDH1 expression and catalytic site disruption validate the essentiality of GAPDH1 in intracellular replication but we confirmed that glycolysis is not strictly essential. We identify, for the first time, S-loop phosphorylation as a novel, critical regulator of enzymatic activity that is consistent with the notion that the S-loop is critical for cofactor binding, allosteric activation and oligomerization. We show that neither enzymatic activity nor phosphorylation state correlate with the ability to translocate to the cortex. However, we demonstrate that association of GAPDH1 with the cortex is mediated by the N-terminus, likely palmitoylation. Overall, glycolysis and cortical translocation are functionally decoupled by post-translational modifications.
Collapse
Affiliation(s)
- Rashmi Dubey
- Department of Biology, Boston College, MA 02467, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA 98109, USA,The Center for Infectious Disease Research, Seattle (formerly Seattle BioMed), WA 98109, USA
| | - Ian T. Foe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 55324, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 55324, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA 98109, USA,The Center for Infectious Disease Research, Seattle (formerly Seattle BioMed), WA 98109, USA,Department of Global Health and Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Huân M. Ngô
- Center for Structural Genomics of Infectious Disease, Northwestern University, Chicago, IL 60611, USA,BrainMicro LLC, New Haven, CT 06511, USA,Corresponding authors: Huân Ngô and Marc-Jan Gubbels
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, MA 02467, USA,Corresponding authors: Huân Ngô and Marc-Jan Gubbels
| |
Collapse
|
41
|
Helgren TR, Chen C, Wangtrakuldee P, Edwards TE, Staker BL, Abendroth J, Sankaran B, Housley NA, Myler PJ, Audia JP, Horn JR, Hagen TJ. Rickettsia prowazekii methionine aminopeptidase as a promising target for the development of antibacterial agents. Bioorg Med Chem 2017; 25:813-824. [PMID: 28089350 PMCID: PMC5319851 DOI: 10.1016/j.bmc.2016.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023]
Abstract
Methionine aminopeptidase (MetAP) is a class of ubiquitous enzymes essential for the survival of numerous bacterial species. These enzymes are responsible for the cleavage of N-terminal formyl-methionine initiators from nascent proteins to initiate post-translational modifications that are often essential to proper protein function. Thus, inhibition of MetAP activity has been implicated as a novel antibacterial target. We tested this idea in the present study by targeting the MetAP enzyme in the obligate intracellular pathogen Rickettsia prowazekii. We first identified potent RpMetAP inhibitory species by employing an in vitro enzymatic activity assay. The molecular docking program AutoDock was then utilized to compare published crystal structures of inhibited MetAP species to docked poses of RpMetAP. Based on these in silico and in vitro screens, a subset of 17 compounds was tested for inhibition of R. prowazekii growth in a pulmonary vascular endothelial cell (EC) culture infection model system. All compounds were tested over concentration ranges that were determined to be non-toxic to the ECs and 8 of the 17 compounds displayed substantial inhibition of R. prowazekii growth. These data highlight the therapeutic potential for inhibiting RpMetAP as a novel antimicrobial strategy and set the stage for future studies in pre-clinical animal models of infection.
Collapse
Affiliation(s)
- Travis R Helgren
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Congling Chen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Phumvadee Wangtrakuldee
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Bart L Staker
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Jan Abendroth
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicole A Housley
- Department of Microbiology and Immunology and The Center for Lung Biology, University of South Alabama College of Medicine, Laboratory of Infectious Diseases, 307 North University Blvd, Mobile, AL 36688, USA
| | - Peter J Myler
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Department of Global Health and Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Jonathon P Audia
- Department of Microbiology and Immunology and The Center for Lung Biology, University of South Alabama College of Medicine, Laboratory of Infectious Diseases, 307 North University Blvd, Mobile, AL 36688, USA
| | - James R Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Timothy J Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA.
| |
Collapse
|
42
|
Cala AR, Nadeau MT, Abendroth J, Staker BL, Reers AR, Weatherhead AW, Dobson RCJ, Myler PJ, Hudson AO. The crystal structure of dihydrodipicolinate reductase from the human-pathogenic bacterium Bartonella henselae strain Houston-1 at 2.3 Å resolution. Acta Crystallogr F Struct Biol Commun 2016; 72:885-891. [PMID: 27917836 PMCID: PMC5137465 DOI: 10.1107/s2053230x16018525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/19/2016] [Indexed: 11/10/2022] Open
Abstract
In bacteria, the second committed step in the diaminopimelate/lysine anabolic pathways is catalyzed by the enzyme dihydrodipicolinate reductase (DapB). DapB catalyzes the reduction of dihydrodipicolinate to yield tetrahydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of DapB from the human-pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are reported. Protein crystals were grown in conditions consisting of 5%(w/v) PEG 4000, 200 mM sodium acetate, 100 mM sodium citrate tribasic pH 5.5 and were shown to diffract to ∼2.3 Å resolution. They belonged to space group P4322, with unit-cell parameters a = 109.38, b = 109.38, c = 176.95 Å. Rr.i.m. was 0.11, Rwork was 0.177 and Rfree was 0.208. The three-dimensional structural features of the enzymes show that DapB from B. henselae is a tetramer consisting of four identical polypeptides. In addition, the substrate NADP+ was found to be bound to one monomer, which resulted in a closed conformational change in the N-terminal domain.
Collapse
Affiliation(s)
- Ali R. Cala
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Maria T. Nadeau
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Jan Abendroth
- Beryllium Discovery Inc., Bainbridge Island, WA 98110, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Alexandra R. Reers
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Anthony W. Weatherhead
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Biomedical Informatics and Health Education, University of Washington, Seattle, WA 98195, USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| |
Collapse
|
43
|
Staker BL, Buchko GW, Myler PJ. Recent contributions of structure-based drug design to the development of antibacterial compounds. Curr Opin Microbiol 2016; 27:133-8. [PMID: 26458180 DOI: 10.1016/j.mib.2015.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/09/2015] [Accepted: 09/23/2015] [Indexed: 11/28/2022]
Abstract
According to a Pew Research study published in February 2015, there are 37 antibacterial programs currently in clinical trials in the United States. Protein structure-based methods for guiding small molecule design were used in at least 34 of these programs. Typically, this occurred at an early stage (drug discovery and/or lead optimization) prior to an Investigational New Drug (IND) application, although sometimes in retrospective studies to rationalize biological activity. Recognizing that structure-based methods are resource-intensive and often require specialized equipment and training, the NIAID has funded two Structural Genomics Centers to determine structures of infectious disease species proteins with the aim of supporting individual investigators' research programs with structural biology methods.
Collapse
Affiliation(s)
- Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease, United States; Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States.
| | - Garry W Buchko
- Seattle Structural Genomics Center for Infectious Disease, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, United States; Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States; Department of Global Health, University of Washington, Seattle, WA 98195, United States; Department of Biomedical Informatics and Health Education, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
44
|
Balaña-Fouce R, Reguera RM. Yeast-based systems for tropical disease drug discovery. Expert Opin Drug Discov 2016; 11:429-32. [DOI: 10.1517/17460441.2016.1160052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
- Instituto de Biotecnología de León (INBIOTEC) Avda, León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
| |
Collapse
|
45
|
Naqvi KF, Staker BL, Dobson RCJ, Serbzhinskiy D, Sankaran B, Myler PJ, Hudson AO. Cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the human pathogenic bacterium Bartonella henselae strain Houston-1 at 2.1 Å resolution. Acta Crystallogr F Struct Biol Commun 2016; 72:2-9. [PMID: 26750477 PMCID: PMC4708043 DOI: 10.1107/s2053230x15023213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of L-aspartate 4-semialdehyde and pyruvate to synthesize L-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mM sodium citrate tribasic pH 5.5 and were shown to diffract to ∼2.10 Å resolution. They belonged to space group P212121, with unit-cell parameters a = 79.96, b = 106.33, c = 136.25 Å. The final R values were Rr.i.m. = 0.098, Rwork = 0.183, Rfree = 0.233.
Collapse
Affiliation(s)
- Kubra F. Naqvi
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Dmitry Serbzhinskiy
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Ernest Orlando Lawrence Berkeley National Laboratory, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Biomedical Informatics and Health Education, University of Washington, Seattle, WA 98195, USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| |
Collapse
|
46
|
Buchko GW, Edwards TE, Hewitt SN, Phan IQH, Van Voorhis WC, Miller SI, Myler PJ. Backbone chemical shift assignments for the sensor domain of the Burkholderia pseudomallei histidine kinase RisS: "missing" resonances at the dimer interface. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:381-5. [PMID: 25957069 PMCID: PMC4569509 DOI: 10.1007/s12104-015-9614-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/28/2015] [Indexed: 05/11/2023]
Abstract
Using a deuterated sample, all the observable backbone (1)H(N), (15)N, (13)C(a), and (13)C' chemical shifts for the dimeric, periplasmic sensor domain of the Burkholderia pseudomallei histidine kinase RisS were assigned. Approximately one-fifth of the amide resonances are "missing" in the (1)H-(15)N HSQC spectrum and map primarily onto α-helices at the dimer interface observed in a crystal structure suggesting this region either undergoes intermediate timescale motion (μs-ms) and/or is heterogeneous.
Collapse
Affiliation(s)
- Garry W Buchko
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA.
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Beryllium, Bainbridge Island, WA, 98110, USA
| | - Stephen N Hewitt
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195-7185, USA
| | - Isabelle Q H Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Center for Infectous Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, 98109-5219, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195-7185, USA
| | - Samuel I Miller
- Department of Medicine, University of Washington, Seattle, WA, 98195-7185, USA
- Department of Microbiology and Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Center for Infectous Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, 98109-5219, USA
- Department of Biomedical Informatics and Medical Education and Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
47
|
Leibly DJ, Arbing MA, Pashkov I, DeVore N, Waldo GS, Terwilliger TC, Yeates TO. A Suite of Engineered GFP Molecules for Oligomeric Scaffolding. Structure 2015; 23:1754-1768. [PMID: 26278175 DOI: 10.1016/j.str.2015.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/08/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
Applications ranging from synthetic biology to protein crystallization could be advanced by facile systems for connecting multiple proteins together in predefined spatial relationships. One approach to this goal is to engineer many distinct assembly forms of a single carrier protein or scaffold, to which other proteins of interest can then be readily attached. In this work we chose GFP as a scaffold and engineered many alternative oligomeric forms, driven by either specific disulfide bond formation or metal ion addition. We generated a wide range of spatial arrangements of GFP subunits from 11 different oligomeric variants, and determined their X-ray structures in a total of 33 distinct crystal forms. Some of the oligomeric GFP variants show geometric polymorphism depending on conditions, while others show considerable geometric rigidity. Potential future applications of this system are discussed.
Collapse
Affiliation(s)
- David J Leibly
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Mark A Arbing
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Inna Pashkov
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Natasha DeVore
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Geoffrey S Waldo
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Thomas C Terwilliger
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
48
|
Buchko GW, Abendroth J, Clifton MC, Robinson H, Zhang Y, Hewitt SN, Staker BL, Edwards TE, Van Voorhis WC, Myler PJ. Structure of a CutA1 divalent-cation tolerance protein from Cryptosporidium parvum, the protozoal parasite responsible for cryptosporidiosis. Acta Crystallogr F Struct Biol Commun 2015; 71:522-30. [PMID: 25945704 PMCID: PMC4427160 DOI: 10.1107/s2053230x14028210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/29/2014] [Indexed: 11/11/2022] Open
Abstract
Cryptosporidiosis is an infectious disease caused by protozoan parasites of the Cryptosporidium genus. Infection is associated with mild to severe diarrhea that usually resolves spontaneously in healthy human adults, but may lead to severe complications in young children and in immunocompromised patients. The genome of C. parvum contains a gene, CUTA_CRYPI, that may play a role in regulating the intracellular concentration of copper, which is a toxic element in excess. Here, the crystal structure of this CutA1 protein, Cp-CutA1, is reported at 2.0 Å resolution. As observed for other CutA1 structures, the 117-residue protein is a trimer with a core ferrodoxin-like fold. Circular dichroism spectroscopy shows little, in any, unfolding of Cp-CutA1 up to 353 K. This robustness is corroborated by (1)H-(15)N HSQC spectra at 333 K, which are characteristic of a folded protein, suggesting that NMR spectroscopy may be a useful tool to further probe the function of the CutA1 proteins. While robust, Cp-CutA1 is not as stable as the homologous protein from a hyperthermophile, perhaps owing to a wide β-bulge in β2 that protrudes Pro48 and Ser49 outside the β-sheet.
Collapse
Affiliation(s)
- Garry W. Buchko
- Seattle Structural Genomics Center for Infectious Disease, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, Washington, USA
| | - Matthew C. Clifton
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, Washington, USA
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Yanfeng Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Stephen N. Hewitt
- Seattle Structural Genomics Center for Infectious Disease, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, Washington, USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, Seattle, Washington, USA
- Department of Medical Education and Biomedical Informatics and Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
49
|
Lorimer DD, Choi R, Abramov A, Nakazawa Hewitt S, Gardberg AS, Van Voorhis WC, Staker BL, Myler PJ, Edwards TE. Structures of a histidine triad family protein from Entamoeba histolytica bound to sulfate, AMP and GMP. Acta Crystallogr F Struct Biol Commun 2015; 71:572-6. [PMID: 25945711 PMCID: PMC4427167 DOI: 10.1107/s2053230x1500237x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
Three structures of the histidine triad family protein from Entamoeba histolytica, the causative agent of amoebic dysentery, were solved at high resolution within the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The structures have sulfate (PDB entry 3oj7), AMP (PDB entry 3omf) or GMP (PDB entry 3oxk) bound in the active site, with sulfate occupying the same space as the α-phosphate of the two nucleotides. The C(α) backbones of the three structures are nearly superimposable, with pairwise r.m.s.d.s ranging from 0.06 to 0.13 Å.
Collapse
Affiliation(s)
- Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, WA 98110, USA
| | - Ryan Choi
- Seattle Structural Genomics Center for Infectious Disease, USA
- CERID, University of Washington, Seattle, WA 98109, USA
| | - Ariel Abramov
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Stephen Nakazawa Hewitt
- Seattle Structural Genomics Center for Infectious Disease, USA
- CERID, University of Washington, Seattle, WA 98109, USA
| | - Anna S. Gardberg
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, WA 98110, USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
- Department of Global Health and Medical Education and Biomedical Bioinformatics, University of Washington, Seattle, WA 98109, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, WA 98110, USA
| |
Collapse
|
50
|
Crystal structures of Mycobacterial MeaB and MMAA-like GTPases. ACTA ACUST UNITED AC 2015; 16:91-9. [PMID: 25832174 DOI: 10.1007/s10969-015-9197-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
Abstract
The methylmalonyl Co-A mutase-associated GTPase MeaB from Methylobacterium extorquens is involved in glyoxylate regulation and required for growth. In humans, mutations in the homolog methylmalonic aciduria associated protein (MMAA) cause methylmalonic aciduria, which is often fatal. The central role of MeaB from bacteria to humans suggests that MeaB is also important in other, pathogenic bacteria such as Mycobacterium tuberculosis. However, the identity of the mycobacterial MeaB homolog is presently unclear. Here, we identify the M. tuberculosis protein Rv1496 and its homologs in M. smegmatis and M. thermoresistibile as MeaB. The crystal structures of all three homologs are highly similar to MeaB and MMAA structures and reveal a characteristic three-domain homodimer with GDP bound in the G domain active site. A structure of Rv1496 obtained from a crystal grown in the presence of GTP exhibited electron density for GDP, suggesting GTPase activity. These structures identify the mycobacterial MeaB and provide a structural framework for therapeutic targeting of M. tuberculosis MeaB.
Collapse
|