1
|
Saha S, Chen Y, Russi S, Marchany-Rivera D, Cohen A, Perry SL. Scalable fabrication of an array-type fixed-target device for automated room temperature X-ray protein crystallography. Sci Rep 2025; 15:334. [PMID: 39747265 PMCID: PMC11696357 DOI: 10.1038/s41598-024-83341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
X-ray crystallography is one of the leading tools to analyze the 3-D structure, and therefore, function of proteins and other biological macromolecules. Traditional methods of mounting individual crystals for X-ray diffraction analysis can be tedious and result in damage to fragile protein crystals. Furthermore, the advent of multi-crystal and serial crystallography methods explicitly require the mounting of larger numbers of crystals. To address this need, we have developed a device that facilitates the straightforward mounting of protein crystals for diffraction analysis, and that can be easily manufactured at scale. Inspired by grid-style devices that have been reported in the literature, we have developed an X-ray compatible microfluidic device that can be used to trap protein crystals in an array configuration, while also providing excellent optical transparency, a low X-ray background, and compatibility with the robotic sample handling and environmental controls used at synchrotron macromolecular crystallography beamlines. At the Stanford Synchrotron Radiation Lightsource (SSRL), these capabilities allow for fully remote-access data collection at controlled humidity conditions. Furthermore, we have demonstrated continuous manufacturing of these devices via roll-to-roll fabrication to enable cost-effective and efficient large-scale production.
Collapse
Affiliation(s)
- Sarthak Saha
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yaozu Chen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Silvia Russi
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Aina Cohen
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Manna A, Sonker M, Koh D, Steiger M, Ansari A, Hu H, Quereda-Moraleda I, Grieco A, Doppler D, de Sanctis D, Basu S, Orlans J, Rose SL, Botha S, Martin-Garcia JM, Ros A. Cyclic Olefin Copolymer-Based Fixed-Target Sample Delivery Device for Protein X-ray Crystallography. Anal Chem 2024; 96:20371-20381. [PMID: 39679637 PMCID: PMC11696833 DOI: 10.1021/acs.analchem.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Serial macromolecular X-ray crystallography plays an important role in elucidating protein structures and consequently progressing the field of targeted therapeutics. The use of pulsed beams at different repetition frequencies requires the development of various sample-conserving injection strategies to minimize sample wastage between X-ray exposures. Fixed-target sample delivery methods that use solid support to hold the crystals in the X-ray beam path are gaining interest as a sample-conserving delivery system for X-ray crystallography with high crystal hit rates. Here, we present a novel fixed-target microfluidic system for delivering protein microcrystals to X-ray beams for diffraction data collection and structure determination. The fixed-target design consists of 3 symmetric sections arranged in an area of 1 in. × 1 in. with up to 18,000 crystal traps per device. Each trap is targeted to hold one crystal up to 50 μm in size in the largest dimension. The device has been fabricated using cyclic olefin copolymer (COC) for high-quality diffraction data collection with low background scattering induced through the fixed-target material. The newly developed fixed-target device is designed for vacuum compatibility which will enable the use in vacuum experimental chambers of X-ray radiation sources including the newly developed, first-of-its-kind compact X-ray light source (CXLS), which is currently in commissioning at Arizona State University. To assess the validity of the COC device, serial crystallography experiments were performed on the model protein lysozyme at the new European Synchrotron Radiation Facility-Extremely Brilliant Source (ESRF-EBS) beamline ID29. A 1.6 Å crystal structure of the protein was solved, demonstrating that, in general, the COC device can be used to generate high-quality data from macromolecular crystals at the CXLS and synchrotron radiation sources, which holds enormous potential for advancing the field of protein structure determination by fixed-target X-ray crystallography.
Collapse
Affiliation(s)
- Abhik Manna
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Mukul Sonker
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Domin Koh
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael Steiger
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Adil Ansari
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Hu
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Isabel Quereda-Moraleda
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Alice Grieco
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Diandra Doppler
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Shibom Basu
- European
Molecular Biology Laboratory, 38042 Grenoble, France
| | - Julien Orlans
- ESRF—The
European Synchrotron, P.O. Box 38000 Grenoble, France
| | - Samuel L. Rose
- ESRF—The
European Synchrotron, P.O. Box 38000 Grenoble, France
| | - Sabine Botha
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Jose Manuel Martin-Garcia
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Alexandra Ros
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Doak RB, Shoeman RL, Gorel A, Niziński S, Barends TR, Schlichting I. Sheet-on-sheet fixed target data collection devices for serial crystallography at synchrotron and XFEL sources. J Appl Crystallogr 2024; 57:1725-1732. [PMID: 39628875 PMCID: PMC11611291 DOI: 10.1107/s1600576724008914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/11/2024] [Indexed: 12/06/2024] Open
Abstract
Serial crystallography (SX) efficiently distributes over many crystals the radiation dose absorbed during diffraction data acquisition, enabling structure determination of samples at ambient temperature. SX relies on the rapid and reliable replacement of X-ray-exposed crystals with fresh crystals at a rate commensurate with the data acquisition rate. 'Solid supports', also known as 'fixed targets' or 'chips', offer one approach. These are microscopically thin solid panes into or onto which crystals are deposited to be individually interrogated by an X-ray beam. Solid supports are generally patterned using photolithography methods to produce a regular array of features that trap single crystals. A simpler and less expensive alternative is to merely sandwich the microcrystals between two unpatterned X-ray-transparent polymer sheets. Known as sheet-on-sheet (SOS) chips, these offer significantly more versatility. SOS chips place no constraint on the size or size distribution of the microcrystals or their growth conditions. Crystals ranging from true nanocrystals up to microcrystals can be investigated, as can crystals grown in media ranging from low viscosity (aqueous solution) up to high viscosity (such as lipidic cubic phase). Here, we describe our two SOS devices. The first is a compact and lightweight version designed specifically for synchrotron use. It incorporates a standard SPINE-type magnetic base for mounting on a conventional macromolecular crystallography goniometer. The second and larger chip is intended for both X-ray free-electron laser and synchrotron use and is fully compatible with the fast-scanning XY-raster stages developed for data collection with patterned chips.
Collapse
Affiliation(s)
- R. Bruce Doak
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| | - Robert L. Shoeman
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| | - Alexander Gorel
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| | - Stanisław Niziński
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| | - Thomas R.M. Barends
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| | - Ilme Schlichting
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| |
Collapse
|
4
|
Yang J, Jeon HJ, Park S, Park J, Jang S, Shin B, Bang K, Hawkes HJK, Park S, Kim S, Hwang KY. Structural Insights and Catalytic Mechanism of 3-Hydroxybutyryl-CoA Dehydrogenase from Faecalibacterium Prausnitzii A2-165. Int J Mol Sci 2024; 25:10711. [PMID: 39409040 PMCID: PMC11476959 DOI: 10.3390/ijms251910711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Atopic dermatitis (AD) is characterized by a T-helper cell type 2 (Th2) inflammatory response leading to skin damage with erythema and edema. Comparative fecal sample analysis has uncovered a strong correlation between AD and Faecalibacterium prausnitzii strain A2-165, specifically associated with butyrate production. Therefore, understanding the functional mechanisms of crucial enzymes in the butyrate pathway, such as 3-hydroxybutyryl-CoA dehydrogenase of A2-165 (A2HBD), is imperative. Here, we have successfully elucidated the three-dimensional structure of A2HBD in complex with acetoacetyl-CoA and NAD+ at a resolution of 2.2Å using the PAL-11C beamline (third generation). Additionally, X-ray data of A2HBD in complex with acetoacetyl-CoA at a resolution of 1.9 Å were collected at PAL-XFEL (fourth generation) utilizing Serial Femtosecond Crystallography (SFX). The monomeric structure of A2HBD consists of two domains, N-terminal and C-terminal, with cofactor binding occurring at the N-terminal domain, while the C-terminal domain facilitates dimerization. Our findings elucidate the binding mode of NAD+ to A2HBD. Upon acetoacetyl-CoA binding, the crystal structure revealed a significant conformational change in the Clamp-roof domain (root-mean-square deviation of 2.202 Å). Notably, residue R143 plays a critical role in capturing the adenine phosphate ring, underlining its significance in substrate recognition and catalytic activity. The binding mode of acetoacetyl-CoA was also clarified, indicating its lower stability compared to NAD+. Furthermore, the conformational change of hydrophobic residues near the catalytic cavity upon substrate binding resulted in cavity shrinkage from an open to closed conformation. This study confirms the conformational changes of catalytic triads involved in the catalytic reaction and presents a proposed mechanism for substrate reduction based on structural observations.
Collapse
Affiliation(s)
- Jaewon Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Hyung Jin Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Seonha Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Junga Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Seonhye Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Byeongmin Shin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Kyuhyeon Bang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Hye-Jin Kim Hawkes
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea;
| | - Sungha Park
- Department of Bioengineering, Incheon JEI University, Incheon 21987, Republic of Korea;
| | - Sulhee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Gotthard G, Mous S, Weinert T, Maia RNA, James D, Dworkowski F, Gashi D, Furrer A, Ozerov D, Panepucci E, Wang M, Schertler GFX, Heberle J, Standfuss J, Nogly P. Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography. IUCRJ 2024; 11:792-808. [PMID: 39037420 PMCID: PMC11364019 DOI: 10.1107/s2052252524005608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
Light-oxygen-voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intracellular signals responsible for various cell behaviors (e.g. phototropism and chloroplast relocation). This ability relies on the light-induced formation of a covalent thioether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thioether adduct and the C-terminal region implicated in the signal transduction process.
Collapse
Affiliation(s)
- Guillaume Gotthard
- Institute of Molecular Biology and Biophysics, Department of BiologyETH Zurich8093ZürichSwitzerland
- Laboratory of Biomolecular Research, Division of Biology and ChemistryPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Sandra Mous
- Institute of Molecular Biology and Biophysics, Department of BiologyETH Zurich8093ZürichSwitzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and ChemistryPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Raiza Nara Antonelli Maia
- Experimental Molecular Biophysics, Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Daniel James
- Laboratory of Biomolecular Research, Division of Biology and ChemistryPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Florian Dworkowski
- Macromolecular Crystallography, Swiss Light SourcePaul Scherrer Institute5232Villigen PSISwitzerland
| | - Dardan Gashi
- Laboratory of Biomolecular Research, Division of Biology and ChemistryPaul Scherrer Institute5232Villigen PSISwitzerland
- Laboratory of Femtochemistry, Photon Science DivisionPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Antonia Furrer
- Laboratory of Biomolecular Research, Division of Biology and ChemistryPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Dmitry Ozerov
- Science ITPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Ezequiel Panepucci
- Laboratory for Macromolecules and Bioimaging, Photon Science DivisionPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Meitian Wang
- Laboratory for Macromolecules and Bioimaging, Photon Science DivisionPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Gebhard F. X. Schertler
- Laboratory of Biomolecular Research, Division of Biology and ChemistryPaul Scherrer Institute5232Villigen PSISwitzerland
- Department of BiologyETH Zürich8093ZürichSwitzerland
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and ChemistryPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Przemyslaw Nogly
- Institute of Molecular Biology and Biophysics, Department of BiologyETH Zurich8093ZürichSwitzerland
- Dioscuri Center For Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian University in Kraków30-387KrakówPoland
| |
Collapse
|
6
|
Huang CY, Aumonier S, Olieric V, Wang M. Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals. Acta Crystallogr D Struct Biol 2024; 80:620-628. [PMID: 39052318 DOI: 10.1107/s2059798324006697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CLpro, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures.
Collapse
Affiliation(s)
- Chia Ying Huang
- Swiss Light Source, Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Sylvain Aumonier
- Swiss Light Source, Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Meitian Wang
- Swiss Light Source, Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
7
|
Khusainov G, Standfuss J, Weinert T. The time revolution in macromolecular crystallography. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:020901. [PMID: 38616866 PMCID: PMC11015943 DOI: 10.1063/4.0000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Macromolecular crystallography has historically provided the atomic structures of proteins fundamental to cellular functions. However, the advent of cryo-electron microscopy for structure determination of large and increasingly smaller and flexible proteins signaled a paradigm shift in structural biology. The extensive structural and sequence data from crystallography and advanced sequencing techniques have been pivotal for training computational models for accurate structure prediction, unveiling the general fold of most proteins. Here, we present a perspective on the rise of time-resolved crystallography as the new frontier of macromolecular structure determination. We trace the evolution from the pioneering time-resolved crystallography methods to modern serial crystallography, highlighting the synergy between rapid detection technologies and state-of-the-art x-ray sources. These innovations are redefining our exploration of protein dynamics, with high-resolution crystallography uniquely positioned to elucidate rapid dynamic processes at ambient temperatures, thus deepening our understanding of protein functionality. We propose that the integration of dynamic structural data with machine learning advancements will unlock predictive capabilities for protein kinetics, revolutionizing dynamics like macromolecular crystallography revolutionized structural biology.
Collapse
Affiliation(s)
- Georgii Khusainov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
8
|
Botha S, Fromme P. Review of serial femtosecond crystallography including the COVID-19 pandemic impact and future outlook. Structure 2023; 31:1306-1319. [PMID: 37898125 PMCID: PMC10842180 DOI: 10.1016/j.str.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023]
Abstract
Serial femtosecond crystallography (SFX) revolutionized macromolecular crystallography over the past decade by enabling the collection of X-ray diffraction data from nano- or micrometer sized crystals while outrunning structure-altering radiation damage effects at room temperature. The serial manner of data collection from millions of individual crystals coupled with the femtosecond duration of the ultrabright X-ray pulses enables time-resolved studies of macromolecules under near-physiological conditions to unprecedented temporal resolution. In 2020 the rapid spread of the coronavirus SARS-CoV-2 resulted in a global pandemic of coronavirus disease-2019. This led to a shift in how serial femtosecond experiments were performed, along with rapid funding and free electron laser beamtime availability dedicated to SARS-CoV-2-related studies. This review outlines the current state of SFX research, the milestones that were achieved, the impact of the global pandemic on this field as well as an outlook into exciting future directions.
Collapse
Affiliation(s)
- Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
9
|
Carrillo M, Mason TJ, Karpik A, Martiel I, Kepa MW, McAuley KE, Beale JH, Padeste C. Micro-structured polymer fixed targets for serial crystallography at synchrotrons and XFELs. IUCRJ 2023; 10:678-693. [PMID: 37727961 PMCID: PMC10619457 DOI: 10.1107/s2052252523007595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Fixed targets are a popular form of sample-delivery system used in serial crystallography at synchrotron and X-ray free-electron laser sources. They offer a wide range of sample-preparation options and are generally easy to use. The supports are typically made from silicon, quartz or polymer. Of these, currently, only silicon offers the ability to perform an aperture-aligned data collection where crystals are loaded into cavities in precise locations and sequentially rastered through, in step with the X-ray pulses. The polymer-based fixed targets have lacked the precision fabrication to enable this data-collection strategy and have been limited to directed-raster scans with crystals randomly distributed across the polymer surface. Here, the fabrication and first results from a new polymer-based fixed target, the micro-structured polymer fixed targets (MISP chips), are presented. MISP chips, like those made from silicon, have a precise array of cavities and fiducial markers. They consist of a structured polymer membrane and a stabilization frame. Crystals can be loaded into the cavities and the excess crystallization solution removed through apertures at their base. The fiducial markers allow for a rapid calculation of the aperture locations. The chips have a low X-ray background and, since they are optically transparent, also allow for an a priori analysis of crystal locations. This location mapping could, ultimately, optimize hit rates towards 100%. A black version of the MISP chip was produced to reduce light contamination for optical-pump/X-ray probe experiments. A study of the loading properties of the chips reveals that these types of fixed targets are best optimized for crystals of the order of 25 µm, but quality data can be collected from crystals as small as 5 µm. With the development of these chips, it has been proved that polymer-based fixed targets can be made with the precision required for aperture-alignment-based data-collection strategies. Further work can now be directed towards more cost-effective mass fabrication to make their use more sustainable for serial crystallography facilities and users.
Collapse
Affiliation(s)
- Melissa Carrillo
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Thomas J. Mason
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Agnieszka Karpik
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Engineering, Klosterzelgstrasse 2, 5210 Windisch, Switzerland
| | - Isabelle Martiel
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Michal W. Kepa
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | | | - John H. Beale
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Celestino Padeste
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
10
|
Leonarski F, Nan J, Matej Z, Bertrand Q, Furrer A, Gorgisyan I, Bjelčić M, Kepa M, Glover H, Hinger V, Eriksson T, Cehovin A, Eguiraun M, Gasparotto P, Mozzanica A, Weinert T, Gonzalez A, Standfuss J, Wang M, Ursby T, Dworkowski F. Kilohertz serial crystallography with the JUNGFRAU detector at a fourth-generation synchrotron source. IUCRJ 2023; 10:729-737. [PMID: 37830774 PMCID: PMC10619449 DOI: 10.1107/s2052252523008618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Serial and time-resolved macromolecular crystallography are on the rise. However, beam time at X-ray free-electron lasers is limited and most third-generation synchrotron-based macromolecular crystallography beamlines do not offer the necessary infrastructure yet. Here, a new setup is demonstrated, based on the JUNGFRAU detector and Jungfraujoch data-acquisition system, that enables collection of kilohertz serial crystallography data at fourth-generation synchrotrons. More importantly, it is shown that this setup is capable of collecting multiple-time-point time-resolved protein dynamics at kilohertz rates, allowing the probing of microsecond to second dynamics at synchrotrons in a fraction of the time needed previously. A high-quality complete X-ray dataset was obtained within 1 min from lysozyme microcrystals, and the dynamics of the light-driven sodium-pump membrane protein KR2 with a time resolution of 1 ms could be demonstrated. To make the setup more accessible for researchers, downstream data handling and analysis will be automated to allow on-the-fly spot finding and indexing, as well as data processing.
Collapse
Affiliation(s)
- Filip Leonarski
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Jie Nan
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Zdenek Matej
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Quentin Bertrand
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | | | - Monika Bjelčić
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Michal Kepa
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Hannah Glover
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Viktoria Hinger
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Thomas Eriksson
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | | | - Mikel Eguiraun
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Piero Gasparotto
- Scientific Computing, Theory and Data, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Aldo Mozzanica
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Meitian Wang
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Thomas Ursby
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Florian Dworkowski
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| |
Collapse
|
11
|
Liu Z, Gu KK, Shelby ML, Gilbile D, Lyubimov AY, Russi S, Cohen AE, Narayanasamy SR, Botha S, Kupitz C, Sierra RG, Poitevin F, Gilardi A, Lisova S, Coleman MA, Frank M, Kuhl TL. A user-friendly plug-and-play cyclic olefin copolymer-based microfluidic chip for room-temperature, fixed-target serial crystallography. Acta Crystallogr D Struct Biol 2023; 79:944-952. [PMID: 37747292 PMCID: PMC10565732 DOI: 10.1107/s2059798323007027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Over the past two decades, serial X-ray crystallography has enabled the structure determination of a wide range of proteins. With the advent of X-ray free-electron lasers (XFELs), ever-smaller crystals have yielded high-resolution diffraction and structure determination. A crucial need to continue advancement is the efficient delivery of fragile and micrometre-sized crystals to the X-ray beam intersection. This paper presents an improved design of an all-polymer microfluidic `chip' for room-temperature fixed-target serial crystallography that can be tailored to broadly meet the needs of users at either synchrotron or XFEL light sources. The chips are designed to be customized around different types of crystals and offer users a friendly, quick, convenient, ultra-low-cost and robust sample-delivery platform. Compared with the previous iteration of the chip [Gilbile et al. (2021), Lab Chip, 21, 4831-4845], the new design eliminates cleanroom fabrication. It has a larger imaging area to volume, while maintaining crystal hydration stability for both in situ crystallization or direct crystal slurry loading. Crystals of two model proteins, lysozyme and thaumatin, were used to validate the effectiveness of the design at both synchrotron (lysozyme and thaumatin) and XFEL (lysozyme only) facilities, yielding complete data sets with resolutions of 1.42, 1.48 and 1.70 Å, respectively. Overall, the improved chip design, ease of fabrication and high modifiability create a powerful, all-around sample-delivery tool that structural biologists can quickly adopt, especially in cases of limited sample volume and small, fragile crystals.
Collapse
Affiliation(s)
- Zhongrui Liu
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA
| | - Kevin K. Gu
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA
| | - Megan L. Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Deepshika Gilbile
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA
| | - Artem Y. Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sankar Raju Narayanasamy
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Fredric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Antonio Gilardi
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Matthias Frank
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Kosenko M, Onkhonova G, Susloparov I, Ryzhikov A. SARS-CoV-2 proteins structural studies using synchrotron radiation. Biophys Rev 2023; 15:1185-1194. [PMID: 37974992 PMCID: PMC10643813 DOI: 10.1007/s12551-023-01153-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
In the process of the development of structural biology, both the size and the complexity of the determined macromolecular structures have grown significantly. As a result, the range of application areas for the results of structural studies of biological macromolecules has expanded. Significant progress in the development of structural biology methods has been largely achieved through the use of synchrotron radiation. Modern sources of synchrotron radiation allow to conduct high-performance structural studies with high temporal and spatial resolution. Thus, modern techniques make it possible to obtain not only static structures, but also to study dynamic processes, which play a key role in understanding biological mechanisms. One of the key directions in the development of structural research is the drug design based on the structures of biomolecules. Synchrotron radiation offers insights into the three-dimensional time-resolved structure of individual viral proteins and their complexes at atomic resolution. The rapid and accurate determination of protein structures is crucial for understanding viral pathogenicity and designing targeted therapeutics. Through the application of experimental techniques, including X-ray crystallography and small-angle X-ray scattering (SAXS), it is possible to elucidate the structural details of SARS-CoV-2 virion containing 4 structural, 16 nonstructural proteins (nsp), and several accessory proteins. The most studied potential targets for vaccines and drugs are the structural spike (S) protein, which is responsible for entering the host cell, as well as nonstructural proteins essential for replication and transcription, such as main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp). This article provides a brief overview of structural analysis techniques, with focus on synchrotron radiation-based methods applied to the analysis of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Maksim Kosenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Galina Onkhonova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Ivan Susloparov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexander Ryzhikov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| |
Collapse
|
13
|
Welke N, Majernik N, Ash R, Moro A, Agustsson R, Manwani P, Li K, Sakdinawat A, Aquila A, Benediktovitch A, Halavanau A, Rosenzweig J, Bergmann U, Pellegrini C. Development of spinning-disk solid sample delivery system for high-repetition rate x-ray free electron laser experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:103005. [PMID: 37801013 DOI: 10.1063/5.0168125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
X-ray free-electron lasers (XFELs) deliver intense x-ray pulses that destroy the sample in a single shot by a Coulomb explosion. Experiments using XFEL pulse trains or the new generation of high-repetition rate XFELs require rapid sample replacement beyond those provided by the systems now used at low repletion-rate XFELs. We describe the development and characterization of a system based on a spinning disk to continuously deliver a solid sample into an XFEL interaction point at very high speeds. We tested our system at the Linac Coherent Light Source and European XFEL hard x-ray nano-focus instruments, employing it to deliver a 25 μm copper foil sample, which can be used as a gain medium for stimulated x-ray emission for the proposed x-ray laser oscillator.
Collapse
Affiliation(s)
- N Welke
- Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - N Majernik
- Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - R Ash
- Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - A Moro
- RadiaBeam Technologies, Santa Monica, California 90404, USA
| | - R Agustsson
- RadiaBeam Technologies, Santa Monica, California 90404, USA
| | - P Manwani
- Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - K Li
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Sakdinawat
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Aquila
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Benediktovitch
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - A Halavanau
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J Rosenzweig
- Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - U Bergmann
- Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - C Pellegrini
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
14
|
Gu KK, Liu Z, Narayanasamy SR, Shelby ML, Chan N, Coleman MA, Frank M, Kuhl TL. All polymer microfluidic chips-A fixed target sample delivery workhorse for serial crystallography. BIOMICROFLUIDICS 2023; 17:051302. [PMID: 37840537 PMCID: PMC10576627 DOI: 10.1063/5.0167164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The development of x-ray free electron laser (XFEL) light sources and serial crystallography methodologies has led to a revolution in protein crystallography, enabling the determination of previously unobtainable protein structures and near-atomic resolution of otherwise poorly diffracting protein crystals. However, to utilize XFEL sources efficiently demands the continuous, rapid delivery of a large number of difficult-to-handle microcrystals to the x-ray beam. A recently developed fixed-target system, in which crystals of interest are enclosed within a sample holder, which is rastered through the x-ray beam, is discussed in detail in this Perspective. The fixed target is easy to use, maintains sample hydration, and can be readily modified to allow a broad range of sample types and different beamline requirements. Recent innovations demonstrate the potential of such microfluidic-based fixed targets to be an all-around "workhorse" for serial crystallography measurements. This Perspective will summarize recent advancements in microfluidic fixed targets for serial crystallography, examine needs for future development, and guide users in designing, choosing, and utilizing a fixed-target sample delivery device for their system.
Collapse
Affiliation(s)
- Kevin K. Gu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Zhongrui Liu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Sankar Raju Narayanasamy
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Megan L. Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Nicholas Chan
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | | | | | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
15
|
Doppler D, Sonker M, Egatz-Gomez A, Grieco A, Zaare S, Jernigan R, Meza-Aguilar JD, Rabbani MT, Manna A, Alvarez RC, Karpos K, Cruz Villarreal J, Nelson G, Yang JH, Carrion J, Morin K, Ketawala GK, Pey AL, Ruiz-Fresneda MA, Pacheco-Garcia JL, Hermoso JA, Nazari R, Sierra R, Hunter MS, Batyuk A, Kupitz CJ, Sublett RE, Lisova S, Mariani V, Boutet S, Fromme R, Grant TD, Botha S, Fromme P, Kirian RA, Martin-Garcia JM, Ros A. Modular droplet injector for sample conservation providing new structural insight for the conformational heterogeneity in the disease-associated NQO1 enzyme. LAB ON A CHIP 2023; 23:3016-3033. [PMID: 37294576 PMCID: PMC10503405 DOI: 10.1039/d3lc00176h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room-temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.
Collapse
Affiliation(s)
- Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Alice Grieco
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Sahba Zaare
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Rebecca Jernigan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jose Domingo Meza-Aguilar
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Mohammad T Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Abhik Manna
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Roberto C Alvarez
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Garrett Nelson
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jay-How Yang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jackson Carrion
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Katherine Morin
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Gihan K Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Miguel Angel Ruiz-Fresneda
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Raymond Sierra
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Mark S Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Christopher J Kupitz
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Robert E Sublett
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Stella Lisova
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Valerio Mariani
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Richard A Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| |
Collapse
|
16
|
Shoeman RL, Hartmann E, Schlichting I. Growing and making nano- and microcrystals. Nat Protoc 2023; 18:854-882. [PMID: 36451055 DOI: 10.1038/s41596-022-00777-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/22/2022] [Indexed: 12/02/2022]
Abstract
Thanks to recent technological advances in X-ray and micro-electron diffraction and solid-state NMR, structural information can be obtained by using much smaller crystals. Thus, microcrystals have become a valuable commodity rather than a mere stepping stone toward obtaining macroscopic crystals. Microcrystals are particularly useful for structure determination using serial data collection approaches at synchrotrons and X-ray free-electron lasers. The latter's enormous peak brilliance and short X-ray pulse duration mean that structural information can be obtained before the effects of radiation damage are seen; these properties also facilitate time-resolved crystallography. To establish defined reaction initiation conditions, microcrystals with a desired and narrow size distribution are critical. Here, we describe milling and seeding techniques as well as filtration approaches for the reproducible and size-adjustable preparation of homogeneous nano- and microcrystals. Nanocrystals and crystal seeds can be obtained by milling using zirconium beads and the BeadBug homogenizer; fragmentation of large crystals yields micro- or nanocrystals by flowing crystals through stainless steel filters by using an HPLC pump. The approaches can be scaled to generate micro- to milliliter quantities of microcrystals, starting from macroscopic crystals. The procedure typically takes 3-5 d, including the time required to grow the microcrystals.
Collapse
|
17
|
Simon PS, Makita H, Bogacz I, Fuller F, Bhowmick A, Hussein R, Ibrahim M, Zhang M, Chatterjee R, Cheah MH, Chernev P, Doyle MD, Brewster AS, Alonso-Mori R, Sauter NK, Bergmann U, Dobbek H, Zouni A, Messinger J, Kern J, Yachandra VK, Yano J. Capturing the sequence of events during the water oxidation reaction in photosynthesis using XFELs. FEBS Lett 2023; 597:30-37. [PMID: 36310373 PMCID: PMC9839502 DOI: 10.1002/1873-3468.14527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/17/2023]
Abstract
Ever since the discovery that Mn was required for oxygen evolution in plants by Pirson in 1937 and the period-four oscillation in flash-induced oxygen evolution by Joliot and Kok in the 1970s, understanding of this process has advanced enormously using state-of-the-art methods. The most recent in this series of innovative techniques was the introduction of X-ray free-electron lasers (XFELs) a decade ago, which led to another quantum leap in the understanding in this field, by enabling operando X-ray structural and X-ray spectroscopy studies at room temperature. This review summarizes the current understanding of the structure of Photosystem II (PS II) and its catalytic centre, the Mn4 CaO5 complex, in the intermediate Si (i = 0-4)-states of the Kok cycle, obtained using XFELs.
Collapse
Affiliation(s)
- Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Franklin Fuller
- Pulse Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rana Hussein
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mohamed Ibrahim
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Margaret D Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Roberto Alonso-Mori
- LINAC Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Holger Dobbek
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
18
|
Mehrabi P, Schulz EC. Sample Preparation for Time-Resolved Serial Crystallography: Practical Considerations. Methods Mol Biol 2023; 2652:361-379. [PMID: 37093487 DOI: 10.1007/978-1-0716-3147-8_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Time-resolved serial crystallography is an emerging method to elucidate the structure-function relationship of biomolecular systems at up to atomic resolution. However, to make this demanding method a success, a number of experimental requirements have to be met. In this chapter, we summarize general guidelines and protocols towards performing time-resolved crystallography experiments, with a particular emphasis on sample requirements and preparation but also a brief excursion into reaction initiation.
Collapse
Affiliation(s)
- Pedram Mehrabi
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany.
| | - Eike C Schulz
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
19
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
20
|
Zielinski KA, Prester A, Andaleeb H, Bui S, Yefanov O, Catapano L, Henkel A, Wiedorn MO, Lorbeer O, Crosas E, Meyer J, Mariani V, Domaracky M, White TA, Fleckenstein H, Sarrou I, Werner N, Betzel C, Rohde H, Aepfelbacher M, Chapman HN, Perbandt M, Steiner RA, Oberthuer D. Rapid and efficient room-temperature serial synchrotron crystallography using the CFEL TapeDrive. IUCRJ 2022; 9:778-791. [PMID: 36381150 PMCID: PMC9634612 DOI: 10.1107/s2052252522010193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 05/22/2023]
Abstract
Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired. On the way to high-throughput SSX using a conveyor belt based sample delivery system - the CFEL TapeDrive - with three different proteins of biological relevance (Klebsiella pneumoniae CTX-M-14 β-lactamase, Nectria haematococca xylanase GH11 and Aspergillus flavus urate oxidase), it is shown here that complete datasets can be collected in less than a minute and only minimal amounts of sample are required.
Collapse
Affiliation(s)
- Kara A Zielinski
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andreas Prester
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hina Andaleeb
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Soi Bui
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Lucrezia Catapano
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alessandra Henkel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Olga Lorbeer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Eva Crosas
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jan Meyer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Martin Domaracky
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas A. White
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Iosifina Sarrou
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nadine Werner
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Perbandt
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Roberto A. Steiner
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova 35131, Italy
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
21
|
Sherrell DA, Lavens A, Wilamowski M, Kim Y, Chard R, Lazarski K, Rosenbaum G, Vescovi R, Johnson JL, Akins C, Chang C, Michalska K, Babnigg G, Foster I, Joachimiak A. Fixed-target serial crystallography at the Structural Biology Center. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1141-1151. [PMID: 36073872 PMCID: PMC9455217 DOI: 10.1107/s1600577522007895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/05/2022] [Indexed: 05/30/2023]
Abstract
Serial synchrotron crystallography enables the study of protein structures under physiological temperature and reduced radiation damage by collection of data from thousands of crystals. The Structural Biology Center at Sector 19 of the Advanced Photon Source has implemented a fixed-target approach with a new 3D-printed mesh-holder optimized for sample handling. The holder immobilizes a crystal suspension or droplet emulsion on a nylon mesh, trapping and sealing a near-monolayer of crystals in its mother liquor between two thin Mylar films. Data can be rapidly collected in scan mode and analyzed in near real-time using piezoelectric linear stages assembled in an XYZ arrangement, controlled with a graphical user interface and analyzed using a high-performance computing pipeline. Here, the system was applied to two β-lactamases: a class D serine β-lactamase from Chitinophaga pinensis DSM 2588 and L1 metallo-β-lactamase from Stenotrophomonas maltophilia K279a.
Collapse
Affiliation(s)
- Darren A. Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Alex Lavens
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Ryan Chard
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Krzysztof Lazarski
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Gerold Rosenbaum
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Rafael Vescovi
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jessica L. Johnson
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Chase Akins
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Karolina Michalska
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ian Foster
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
22
|
Barends TR, Stauch B, Cherezov V, Schlichting I. Serial femtosecond crystallography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:59. [PMID: 36643971 PMCID: PMC9833121 DOI: 10.1038/s43586-022-00141-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the advent of X-ray Free Electron Lasers (XFELs), new, high-throughput serial crystallography techniques for macromolecular structure determination have emerged. Serial femtosecond crystallography (SFX) and related methods provide possibilities beyond canonical, single-crystal rotation crystallography by mitigating radiation damage and allowing time-resolved studies with unprecedented temporal resolution. This primer aims to assist structural biology groups with little or no experience in serial crystallography planning and carrying out a successful SFX experiment. It discusses the background of serial crystallography and its possibilities. Microcrystal growth and characterization methods are discussed, alongside techniques for sample delivery and data processing. Moreover, it gives practical tips for preparing an experiment, what to consider and do during a beamtime and how to conduct the final data analysis. Finally, the Primer looks at various applications of SFX, including structure determination of membrane proteins, investigation of radiation damage-prone systems and time-resolved studies.
Collapse
Affiliation(s)
- Thomas R.M. Barends
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Benjamin Stauch
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Ilme Schlichting
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,
| |
Collapse
|
23
|
Babnigg G, Sherrell D, Kim Y, Johnson JL, Nocek B, Tan K, Axford D, Li H, Bigelow L, Welk L, Endres M, Owen RL, Joachimiak A. Data collection from crystals grown in microfluidic droplets. Acta Crystallogr D Struct Biol 2022; 78:997-1009. [PMID: 35916224 PMCID: PMC9344473 DOI: 10.1107/s2059798322004661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
Protein crystals grown in microfluidic droplets have been shown to be an effective and robust platform for storage, transport and serial crystallography data collection with a minimal impact on diffraction quality. Single macromolecular microcrystals grown in nanolitre-sized droplets allow the very efficient use of protein samples and can produce large quantities of high-quality samples for data collection. However, there are challenges not only in growing crystals in microfluidic droplets, but also in delivering the droplets into X-ray beams, including the physical arrangement, beamline and timing constraints and ease of use. Here, the crystallization of two human gut microbial hydrolases in microfluidic droplets is described: a sample-transport and data-collection approach that is inexpensive, is convenient, requires small amounts of protein and is forgiving. It is shown that crystals can be grown in 50-500 pl droplets when the crystallization conditions are compatible with the droplet environment. Local and remote data-collection methods are described and it is shown that crystals grown in microfluidics droplets and housed as an emulsion in an Eppendorf tube can be shipped from the US to the UK using a FedEx envelope, and data can be collected successfully. Details of how crystals were delivered to the X-ray beam by depositing an emulsion of droplets onto a silicon fixed-target serial device are provided. After three months of storage at 4°C, the crystals endured and diffracted well, showing only a slight decrease in diffracting power, demonstrating a suitable way to grow crystals, and to store and collect the droplets with crystals for data collection. This sample-delivery and data-collection strategy allows crystal droplets to be shipped and set aside until beamtime is available.
Collapse
Affiliation(s)
- Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Darren Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Jessica L. Johnson
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Boguslaw Nocek
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Danny Axford
- Harwell Science and Innovation Campus, Diamond Light Source, Fermi Avenue, Didcot OX11 0DE, United Kingdom
| | - Hui Li
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Lance Bigelow
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Lukas Welk
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Michael Endres
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Robin L. Owen
- Harwell Science and Innovation Campus, Diamond Light Source, Fermi Avenue, Didcot OX11 0DE, United Kingdom
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
24
|
Nam KH. Beef tallow injection matrix for serial crystallography. Sci Rep 2022; 12:694. [PMID: 35027663 PMCID: PMC8758675 DOI: 10.1038/s41598-021-04714-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Serial crystallography (SX) enables the visualization of the time-resolved molecular dynamics of macromolecular structures at room temperature while minimizing radiation damage. In SX experiments, the delivery of a large number of crystals into an X-ray interaction point in a serial and stable manner is key. Sample delivery using viscous medium maintains the stable injection stream at low flow rates, markedly reducing sample consumption compared with that of a liquid jet injector and is widely applied in SX experiments with low repetition rates. As the sample properties and experimental environment can affect the stability of the injection stream of a viscous medium, it is important to develop sample delivery media with various characteristics to optimize the experimental environment. In this study, a beef tallow injection matrix possessing a higher melting temperature than previously reported fat-based shortening and lard media was introduced as a sample delivery medium and applied to SX. Beef tallow was prepared by heat treating fats from cattle, followed by the removal of soluble impurities from the extract by phase separation. Beef tallow exhibited a very stable injection stream at room temperature and a flow rate of < 10 nL/min. The room-temperature structures of lysozyme and glucose isomerase embedded in beef tallow were successfully determined at 1.55 and 1.60 Å, respectively. The background scattering of beef tallow was higher than that of previously reported fat-based shortening and lard media but negligible for data processing. In conclusion, the beef tallow matrix can be employed for sample delivery in SX experiments conducted at temperatures exceeding room temperature.
Collapse
Affiliation(s)
- Ki Hyun Nam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea. .,POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
25
|
Schulz EC, Yorke BA, Pearson AR, Mehrabi P. Best practices for time-resolved serial synchrotron crystallography. Acta Crystallogr D Struct Biol 2022; 78:14-29. [PMID: 34981758 PMCID: PMC8725164 DOI: 10.1107/s2059798321011621] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
With recent developments in X-ray sources, instrumentation and data-analysis tools, time-resolved crystallographic experiments, which were originally the preserve of a few expert groups, are becoming simpler and can be carried out at more radiation sources, and are thus increasingly accessible to a growing user base. However, these experiments are just that: discrete experiments, not just `data collections'. As such, careful planning and consideration of potential pitfalls is required to enable a successful experiment. Here, some of the key factors that should be considered during the planning and execution of a time-resolved structural study are outlined, with a particular focus on synchrotron-based experiments.
Collapse
Affiliation(s)
- Eike C. Schulz
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Briony A. Yorke
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Arwen R. Pearson
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Pedram Mehrabi
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
26
|
Axford D, Judge PJ, Bada Juarez JF, Kwan TOC, Birch J, Vinals J, Watts A, Moraes I. Two states of a light-sensitive membrane protein captured at room temperature using thin-film sample mounts. Acta Crystallogr D Struct Biol 2022; 78:52-58. [PMID: 34981761 PMCID: PMC8725165 DOI: 10.1107/s2059798321011220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Room-temperature diffraction methods are highly desirable for dynamic studies of biological macromolecules, since they allow high-resolution structural data to be collected as proteins undergo conformational changes. For crystals grown in lipidic cubic phase (LCP), an extruder is commonly used to pass a stream of microcrystals through the X-ray beam; however, the sample quantities required for this method may be difficult to produce for many membrane proteins. A more sample-efficient environment was created using two layers of low X-ray transmittance polymer films to mount crystals of the archaerhodopsin-3 (AR3) photoreceptor and room-temperature diffraction data were acquired. By using transparent and opaque polymer films, two structures, one corresponding to the desensitized, dark-adapted (DA) state and the other to the ground or light-adapted (LA) state, were solved to better than 1.9 Å resolution. All of the key structural features of AR3 were resolved, including the retinal chromophore, which is present as the 13-cis isomer in the DA state and as the all-trans isomer in the LA state. The film-sandwich sample environment enables diffraction data to be recorded at room temperature in both illuminated and dark conditions, which more closely approximate those in vivo. This simple approach is applicable to a wide range of membrane proteins crystallized in LCP and light-sensitive samples in general at synchrotron and laboratory X-ray sources.
Collapse
Affiliation(s)
- Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Peter J. Judge
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Juan F. Bada Juarez
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Tristan O. C. Kwan
- National Physical Laboratory, Hampton Road, Teddington, London, United Kingdom
| | - James Birch
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Javier Vinals
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anthony Watts
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Isabel Moraes
- National Physical Laboratory, Hampton Road, Teddington, London, United Kingdom
| |
Collapse
|
27
|
Pan D, Oyama R, Sato T, Nakane T, Mizunuma R, Matsuoka K, Joti Y, Tono K, Nango E, Iwata S, Nakatsu T, Kato H. Crystal structure of CmABCB1 multi-drug exporter in lipidic mesophase revealed by LCP-SFX. IUCRJ 2022; 9:134-145. [PMID: 35059217 PMCID: PMC8733880 DOI: 10.1107/s2052252521011611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
CmABCB1 is a Cyanidioschyzon merolae homolog of human ABCB1, a well known ATP-binding cassette (ABC) transporter responsible for multi-drug resistance in various cancers. Three-dimensional structures of ABCB1 homologs have revealed the snapshots of inward- and outward-facing states of the transporters in action. However, sufficient information to establish the sequential movements of the open-close cycles of the alternating-access model is still lacking. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has proven its worth in determining novel structures and recording sequential conformational changes of proteins at room temperature, especially for medically important membrane proteins, but it has never been applied to ABC transporters. In this study, 7.7 mono-acyl-glycerol with cholesterol as the host lipid was used and obtained well diffracting microcrystals of the 130 kDa CmABCB1 dimer. Successful SFX experiments were performed by adjusting the viscosity of the crystal suspension of the sponge phase with hy-droxy-propyl methyl-cellulose and using the high-viscosity sample injector for data collection at the SACLA beamline. An outward-facing structure of CmABCB1 at a maximum resolution of 2.22 Å is reported, determined by SFX experiments with crystals formed in the lipidic cubic phase (LCP-SFX), which has never been applied to ABC transporters. In the type I crystal, CmABCB1 dimers interact with adjacent molecules via not only the nucleotide-binding domains but also the transmembrane domains (TMDs); such an interaction was not observed in the previous type II crystal. Although most parts of the structure are similar to those in the previous type II structure, the substrate-exit region of the TMD adopts a different configuration in the type I structure. This difference between the two types of structures reflects the flexibility of the substrate-exit region of CmABCB1, which might be essential for the smooth release of various substrates from the transporter.
Collapse
Affiliation(s)
- Dongqing Pan
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryo Oyama
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomomi Sato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takanori Nakane
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Mizunuma
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keita Matsuoka
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toru Nakatsu
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroaki Kato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
28
|
Nass Kovacs G. Potential of X-ray free-electron lasers for challenging targets in structure-based drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:101-110. [PMID: 34906320 DOI: 10.1016/j.ddtec.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
X-ray crystallography has provided the vast majority of three-dimensional macromolecular structures. Most of these are high-resolution structures that enable a detailed understanding of the underlying molecular mechanisms. The standardized workflows and robust infrastructure of synchrotron-based macromolecular crystallography (MX) offer the high throughput essential to cost-conscious investigations in structure- and fragment-based drug discovery. Nonetheless conventional MX is limited by fundamental bottlenecks, in particular X-ray radiation damage, which limits the amount of data extractable from a crystal. While this limit can in principle be circumvented by using larger crystals, crystals of the requisite size often cannot be obtained in sufficient quality. That is especially true for membrane protein crystals, which constitute the majority of current drug targets. This conventional paradigm for MX-suitable samples changed dramatically with the advent of serial femtosecond crystallography (SFX) based on the ultra-short and extremely intense X-ray pulses of X-ray Free-Electron Lasers. SFX provides high-resolution structures from tiny crystals and does so with uniquely low levels of radiation damage. This has yielded a number of novel structures for G-protein coupled receptors, one of the most relevant membrane protein superfamilies for drug discovery, as well as tantalizing advances in time-resolved crystallography that elucidate protein dynamics. This article attempts to map the potential of SFX for drug discovery, while providing the reader with an overview of the yet remaining technical challenges associated with such a novel technique as SFX.
Collapse
Affiliation(s)
- Gabriela Nass Kovacs
- Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany.
| |
Collapse
|
29
|
Gilbile D, Shelby ML, Lyubimov AY, Wierman JL, Monteiro DCF, Cohen AE, Russi S, Coleman MA, Frank M, Kuhl TL. Plug-and-play polymer microfluidic chips for hydrated, room temperature, fixed-target serial crystallography. LAB ON A CHIP 2021; 21:4831-4845. [PMID: 34821226 PMCID: PMC8915944 DOI: 10.1039/d1lc00810b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The practice of serial X-ray crystallography (SX) depends on efficient, continuous delivery of hydrated protein crystals while minimizing background scattering. Of the two major types of sample delivery devices, fixed-target devices offer several advantages over widely adopted jet injectors, including: lower sample consumption, clog-free delivery, and the ability to control on-chip crystal density to improve hit rates. Here we present our development of versatile, inexpensive, and robust polymer microfluidic chips for routine and reliable room temperature serial measurements at both synchrotrons and X-ray free electron lasers (XFELs). Our design includes highly X-ray-transparent enclosing thin film layers tuned to minimize scatter background, adaptable sample flow layers tuned to match crystal size, and a large sample area compatible with both raster scanning and rotation based serial data collection. The optically transparent chips can be used both for in situ protein crystallization (to eliminate crystal handling) or crystal slurry loading, with prepared samples stable for weeks in a humidified environment and for several hours in ambient conditions. Serial oscillation crystallography, using a multi-crystal rotational data collection approach, at a microfocus synchrotron beamline (SSRL, beamline 12-1) was used to benchmark the performance of the chips. High-resolution structures (1.3-2.7 Å) were collected from five different proteins - hen egg white lysozyme, thaumatin, bovine liver catalase, concanavalin-A (type VI), and SARS-CoV-2 nonstructural protein NSP5. Overall, our modular fabrication approach enables precise control over the cross-section of materials in the X-ray beam path and facilitates chip adaption to different sample and beamline requirements for user-friendly, straightforward diffraction measurements at room temperature.
Collapse
Affiliation(s)
- Deepshika Gilbile
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA.
| | - Megan L Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Artem Y Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Diana C F Monteiro
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Matthew A Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Matthias Frank
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Tonya L Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Monteiro DCF, Amoah E, Rogers C, Pearson AR. Using photocaging for fast time-resolved structural biology studies. Acta Crystallogr D Struct Biol 2021; 77:1218-1232. [PMID: 34605426 PMCID: PMC8489231 DOI: 10.1107/s2059798321008809] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Careful selection of photocaging approaches is critical to achieve fast and well synchronized reaction initiation and perform successful time-resolved structural biology experiments. This review summarizes the best characterized and most relevant photocaging groups previously described in the literature. It also provides a walkthrough of the essential factors to consider in designing a suitable photocaged molecule to address specific biological questions, focusing on photocaging groups with well characterized spectroscopic properties. The relationships between decay rates (k in s-1), quantum yields (ϕ) and molar extinction coefficients (ϵmax in M-1 cm-1) are highlighted for different groups. The effects of the nature of the photocaged group on these properties is also discussed. Four main photocaging scaffolds are presented in detail, o-nitrobenzyls, p-hydroxyphenyls, coumarinyls and nitrodibenzofuranyls, along with three examples of the use of this technology. Furthermore, a subset of specialty photocages are highlighted: photoacids, molecular photoswitches and metal-containing photocages. These extend the range of photocaging approaches by, for example, controlling pH or generating conformationally locked molecules.
Collapse
Affiliation(s)
- Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Emmanuel Amoah
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Cromarte Rogers
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Arwen R. Pearson
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
31
|
Martiel I, Beale JH, Karpik A, Huang CY, Vera L, Olieric N, Wranik M, Tsai CJ, Mühle J, Aurelius O, John J, Högbom M, Wang M, Marsh M, Padeste C. Versatile microporous polymer-based supports for serial macromolecular crystallography. Acta Crystallogr D Struct Biol 2021; 77:1153-1167. [PMID: 34473086 PMCID: PMC8411977 DOI: 10.1107/s2059798321007324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
Serial data collection has emerged as a major tool for data collection at state-of-the-art light sources, such as microfocus beamlines at synchrotrons and X-ray free-electron lasers. Challenging targets, characterized by small crystal sizes, weak diffraction and stringent dose limits, benefit most from these methods. Here, the use of a thin support made of a polymer-based membrane for performing serial data collection or screening experiments is demonstrated. It is shown that these supports are suitable for a wide range of protein crystals suspended in liquids. The supports have also proved to be applicable to challenging cases such as membrane proteins growing in the sponge phase. The sample-deposition method is simple and robust, as well as flexible and adaptable to a variety of cases. It results in an optimally thin specimen providing low background while maintaining minute amounts of mother liquor around the crystals. The 2 × 2 mm area enables the deposition of up to several microlitres of liquid. Imaging and visualization of the crystals are straightforward on the highly transparent membrane. Thanks to their affordable fabrication, these supports have the potential to become an attractive option for serial experiments at synchrotrons and free-electron lasers.
Collapse
Affiliation(s)
- Isabelle Martiel
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - John H. Beale
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Agnieszka Karpik
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch, Switzerland
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Laura Vera
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Natacha Olieric
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Maximilian Wranik
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Ching-Ju Tsai
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Jonas Mühle
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Oskar Aurelius
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Juliane John
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - May Marsh
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Celestino Padeste
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
32
|
Sui S, Mulichak A, Kulathila R, McGee J, Filiatreault D, Saha S, Cohen A, Song J, Hung H, Selway J, Kirby C, Shrestha OK, Weihofen W, Fodor M, Xu M, Chopra R, Perry SL. A capillary-based microfluidic device enables primary high-throughput room-temperature crystallographic screening. J Appl Crystallogr 2021; 54:1034-1046. [PMID: 34429718 PMCID: PMC8366422 DOI: 10.1107/s1600576721004155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/18/2021] [Indexed: 11/10/2022] Open
Abstract
A novel capillary-based microfluidic strategy to accelerate the process of small-molecule-compound screening by room-temperature X-ray crystallography using protein crystals is reported. The ultra-thin microfluidic devices are composed of a UV-curable polymer, patterned by cleanroom photolithography, and have nine capillary channels per chip. The chip was designed for ease of sample manipulation, sample stability and minimal X-ray background. 3D-printed frames and cassettes conforming to SBS standards are used to house the capillary chips, providing additional mechanical stability and compatibility with automated liquid- and sample-handling robotics. These devices enable an innovative in situ crystal-soaking screening workflow, akin to high-throughput compound screening, such that quantitative electron density maps sufficient to determine weak binding events are efficiently obtained. This work paves the way for adopting a room-temperature microfluidics-based sample delivery method at synchrotron sources to facilitate high-throughput protein-crystallography-based screening of compounds at high concentration with the aim of discovering novel binding events in an automated manner.
Collapse
Affiliation(s)
- Shuo Sui
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Anne Mulichak
- IMCA-CAT, Argonne National Laboratory, Lemont, IL, USA
| | | | - Joshua McGee
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Sarthak Saha
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Aina Cohen
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | - Jinhu Song
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | | | - Jonathan Selway
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christina Kirby
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Om K. Shrestha
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Michelle Fodor
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mei Xu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rajiv Chopra
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
33
|
Smith CA. Making sense of SFX data: standards for data and structure validation for a non-standard experiment that has come of age. IUCRJ 2021; 8:482-484. [PMID: 34257999 PMCID: PMC8256701 DOI: 10.1107/s2052252521006552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
SFX diffraction data collection at XFELs is becoming more accessible. To extract the most useful biological information from these non-standard experiments, standards for SFX data analysis and structure validation must be redefined.
Collapse
Affiliation(s)
- Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, and Department of Chemistry, Stanford University, Menlo Park, CA, USA
| |
Collapse
|
34
|
Gorel A, Schlichting I, Barends TRM. Discerning best practices in XFEL-based biological crystallography - standards for nonstandard experiments. IUCRJ 2021; 8:532-543. [PMID: 34258002 PMCID: PMC8256713 DOI: 10.1107/s205225252100467x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a novel tool in structural biology. In contrast to conventional crystallography, SFX relies on merging partial intensities acquired with X-ray beams of often randomly fluctuating properties from a very large number of still diffraction images of generally randomly oriented microcrystals. For this reason, and possibly due to limitations of the still evolving data-analysis programs, XFEL-derived SFX data are typically of a lower quality than 'standard' crystallographic data. In contrast with this, the studies performed at XFELs often aim to investigate issues that require precise high-resolution data, for example to determine structures of intermediates at low occupancy, which often display very small conformational changes. This is a potentially dangerous combination and underscores the need for a critical evaluation of procedures including data-quality standards in XFEL-based structural biology. Here, such concerns are addressed.
Collapse
Affiliation(s)
- Alexander Gorel
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| |
Collapse
|
35
|
Lahey-Rudolph JM, Schönherr R, Barthelmess M, Fischer P, Seuring C, Wagner A, Meents A, Redecke L. Fixed-target serial femtosecond crystallography using in cellulo grown microcrystals. IUCRJ 2021; 8:665-677. [PMID: 34258014 PMCID: PMC8256716 DOI: 10.1107/s2052252521005297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/18/2021] [Indexed: 05/05/2023]
Abstract
The crystallization of recombinant proteins in living cells is an exciting new approach in structural biology. Recent success has highlighted the need for fast and efficient diffraction data collection, optimally directly exposing intact crystal-containing cells to the X-ray beam, thus protecting the in cellulo crystals from environmental challenges. Serial femtosecond crystallography (SFX) at free-electron lasers (XFELs) allows the collection of detectable diffraction even from tiny protein crystals, but requires very fast sample exchange to utilize each XFEL pulse. Here, an efficient approach is presented for high-resolution structure elucidation using serial femtosecond in cellulo diffraction of micometre-sized crystals of the protein HEX-1 from the fungus Neurospora crassa on a fixed target. Employing the fast and highly accurate Roadrunner II translation-stage system allowed efficient raster scanning of the pores of micro-patterned, single-crystalline silicon chips loaded with living, crystal-containing insect cells. Compared with liquid-jet and LCP injection systems, the increased hit rates of up to 30% and reduced background scattering enabled elucidation of the HEX-1 structure. Using diffraction data from only a single chip collected within 12 min at the Linac Coherent Light Source, a 1.8 Å resolution structure was obtained with significantly reduced sample consumption compared with previous SFX experiments using liquid-jet injection. This HEX-1 structure is almost superimposable with that previously determined using synchrotron radiation from single HEX-1 crystals grown by sitting-drop vapour diffusion, validating the approach. This study demonstrates that fixed-target SFX using micro-patterned silicon chips is ideally suited for efficient in cellulo diffraction data collection using living, crystal-containing cells, and offers huge potential for the straightforward structure elucidation of proteins that form intracellular crystals at both XFELs and synchrotron sources.
Collapse
Affiliation(s)
- J. Mia Lahey-Rudolph
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert Schönherr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Miriam Barthelmess
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Pontus Fischer
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Carolin Seuring
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, 22671 Hamburg, Germany
| | - Armin Wagner
- Diamond Light Source, Diamond House DH2-52, Chilton, Didcot OX11 0DE, United Kingdom
| | - Alke Meents
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
36
|
Polyimide mesh-based sample holder with irregular crystal mounting holes for fixed-target serial crystallography. Sci Rep 2021; 11:13115. [PMID: 34162965 PMCID: PMC8222285 DOI: 10.1038/s41598-021-92687-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/11/2021] [Indexed: 01/07/2023] Open
Abstract
The serial crystallography (SX) technique enables the determination of the room-temperature structure of a macromolecule while causing minimal radiation damage, as well as the visualization of the molecular dynamics by time-resolved studies. The fixed-target (FT) scanning approach is one method for SX sample delivery that minimizes sample consumption and minimizes physical damage to crystals during data collection. Settling of the crystals on the sample holder in random orientation is important for complete three dimensional data collection. To increase the random orientation of crystals on the sample holder, we developed a polyimide mesh-based sample holder with irregular crystal mounting holes for FT-SX. The polyimide mesh was fabricated using a picosecond laser. Each hole in the polyimide mesh has irregularly shaped holes because of laser thermal damage, which may cause more crystals to settle at random orientations compared to regular shaped sample holders. A crystal sample was spread onto a polyimide-mesh, and a polyimide film was added to both sides to prevent dehydration. Using this sample holder, FT-SX was performed at synchrotron and determined the room-temperature lysozyme structure at 1.65 Å. The polyimide mesh with irregularly shaped holes will allow for expanded applications in sample delivery for FT-SX experiments.
Collapse
|
37
|
Norton-Baker B, Mehrabi P, Boger J, Schönherr R, von Stetten D, Schikora H, Kwok AO, Martin RW, Miller RJD, Redecke L, Schulz EC. A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip. Acta Crystallogr D Struct Biol 2021; 77:820-834. [PMID: 34076595 PMCID: PMC8171066 DOI: 10.1107/s2059798321003855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/10/2021] [Indexed: 11/12/2022] Open
Abstract
Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively unexplored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens.
Collapse
Affiliation(s)
- Brenna Norton-Baker
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Pedram Mehrabi
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Juliane Boger
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Robert Schönherr
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Hendrik Schikora
- Scientific Support Unit Machine Physics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - R. J. Dwayne Miller
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St George Street, Toronto, ON M5S 3H6, Canada
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Eike C. Schulz
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
38
|
Affiliation(s)
- Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA.
| |
Collapse
|
39
|
Illava G, Jayne R, Finke AD, Closs D, Zeng W, Milano SK, Huang Q, Kriksunov I, Sidorenko P, Wise FW, Zipfel WR, Apker BA, Thorne RE. Integrated sample-handling and mounting system for fixed-target serial synchrotron crystallography. Acta Crystallogr D Struct Biol 2021; 77:628-644. [PMID: 33950019 PMCID: PMC8098472 DOI: 10.1107/s2059798321001868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022] Open
Abstract
Serial synchrotron crystallography (SSX) is enabling the efficient use of small crystals for structure-function studies of biomolecules and for drug discovery. An integrated SSX system has been developed comprising ultralow background-scatter sample holders suitable for room and cryogenic temperature crystallographic data collection, a sample-loading station and a humid `gloveless' glovebox. The sample holders incorporate thin-film supports with a variety of designs optimized for different crystal-loading challenges. These holders facilitate the dispersion of crystals and the removal of excess liquid, can be cooled at extremely high rates, generate little background scatter, allow data collection over >90° of oscillation without obstruction or the risk of generating saturating Bragg peaks, are compatible with existing infrastructure for high-throughput cryocrystallography and are reusable. The sample-loading station allows sample preparation and loading onto the support film, the application of time-varying suction for optimal removal of excess liquid, crystal repositioning and cryoprotection, and the application of sealing films for room-temperature data collection, all in a controlled-humidity environment. The humid glovebox allows microscope observation of the sample-loading station and crystallization trays while maintaining near-saturating humidities that further minimize the risks of sample dehydration and damage, and maximize working times. This integrated system addresses common problems in obtaining properly dispersed, properly hydrated and isomorphous microcrystals for fixed-orientation and oscillation data collection. Its ease of use, flexibility and optimized performance make it attractive not just for SSX but also for single-crystal and few-crystal data collection. Fundamental concepts that are important in achieving desired crystal distributions on a sample holder via time-varying suction-induced liquid flows are also discussed.
Collapse
Affiliation(s)
- Gabrielle Illava
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | - David Closs
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| | - Wenjie Zeng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shawn K. Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Pavel Sidorenko
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Frank W. Wise
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Warren R. Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
40
|
Poddar H, Heyes DJ, Schirò G, Weik M, Leys D, Scrutton NS. A guide to time-resolved structural analysis of light-activated proteins. FEBS J 2021; 289:576-595. [PMID: 33864718 DOI: 10.1111/febs.15880] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
Dynamical changes in protein structures are essential for protein function and occur over femtoseconds to seconds timescales. X-ray free electron lasers have facilitated investigations of structural dynamics in proteins with unprecedented temporal and spatial resolution. Light-activated proteins are attractive targets for time-resolved structural studies, as the reaction chemistry and associated protein structural changes can be triggered by short laser pulses. Proteins with different light-absorbing centres have evolved to detect light and harness photon energy to bring about downstream chemical and biological output responses. Following light absorption, rapid chemical/small-scale structural changes are typically localised around the chromophore. These localised changes are followed by larger structural changes propagated throughout the photoreceptor/photocatalyst that enables the desired chemical and/or biological output response. Time-resolved serial femtosecond crystallography (SFX) and solution scattering techniques enable direct visualisation of early chemical change in light-activated proteins on timescales previously inaccessible, whereas scattering gives access to slower timescales associated with more global structural change. Here, we review how advances in time-resolved SFX and solution scattering techniques have uncovered mechanisms of photochemistry and its coupling to output responses. We also provide a prospective on how these time-resolved structural approaches might impact on other photoreceptors/photoenzymes that have not yet been studied by these methods.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Giorgio Schirò
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Martin Weik
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| |
Collapse
|
41
|
Snell EH, Helliwell JR. Microgravity as an environment for macromolecular crystallization – an outlook in the era of space stations and commercial space flight. CRYSTALLOGR REV 2021. [DOI: 10.1080/0889311x.2021.1900833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- E. H. Snell
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
- Materials Design and Innovation Department, SUNY Buffalo, Buffalo, NY, USA
| | - J. R. Helliwell
- Chemistry Department, University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
43
|
Alternative Geometric Arrangements of the Nozzle Outlet Orifice for Liquid Micro-Jet Focusing in Gas Dynamic Virtual Nozzles. MATERIALS 2021; 14:ma14061572. [PMID: 33807027 PMCID: PMC8005030 DOI: 10.3390/ma14061572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
Liquid micro-jets are crucial for sample delivery of protein crystals and other macromolecular samples in serial femtosecond crystallography. When combined with MHz repetition rate sources, such as the European X-ray free-electron laser (EuXFEL) facility, it is important that the diffraction patterns are collected before the samples are damaged. This requires extremely thin and very fast jets. In this paper we first explore numerically the influence of different nozzle orifice designs on jet parameters and finally compare our simulations with the experimental data obtained for one particular design. A gas dynamic virtual nozzle (GDVN) model, based on a mixture formulation of Newtonian, compressible, two-phase flow, is numerically solved with the finite volume method and volume of fluid approach to deal with the moving boundary between the gas and liquid phases. The goal is to maximize the jet velocity and its length while minimizing the jet thickness. The design studies incorporate differently shaped nozzle orifices, including an elongated orifice with a constant diameter and an orifice with a diverging angle. These are extensions of the nozzle geometry we investigated in our previous studies. Based on these simulations it is concluded that the extension of the constant diameter channel makes a negligible contribution to the jet’s length and its velocity. A change in the angle of the nozzle outlet orifice, however, has a significant effect on jet parameters. We find these kinds of simulation extremely useful for testing and optimizing novel nozzle designs.
Collapse
|
44
|
Stohrer C, Horrell S, Meier S, Sans M, von Stetten D, Hough M, Goldman A, Monteiro DCF, Pearson AR. Homogeneous batch micro-crystallization of proteins from ammonium sulfate. Acta Crystallogr D Struct Biol 2021; 77:194-204. [PMID: 33559608 PMCID: PMC7869895 DOI: 10.1107/s2059798320015454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/21/2020] [Indexed: 01/19/2023] Open
Abstract
The emergence of X-ray free-electron lasers has led to the development of serial macromolecular crystallography techniques, making it possible to study smaller and more challenging crystal systems and to perform time-resolved studies on fast time scales. For most of these studies the desired crystal size is limited to a few micrometres, and the generation of large amounts of nanocrystals or microcrystals of defined size has become a bottleneck for the wider implementation of these techniques. Despite this, methods to reliably generate microcrystals and fine-tune their size have been poorly explored. Working with three different enzymes, L-aspartate α-decarboxylase, copper nitrite reductase and copper amine oxidase, the precipitating properties of ammonium sulfate were exploited to quickly transition from known vapour-diffusion conditions to reproducible, large-scale batch crystallization, circumventing the tedious determination of phase diagrams. Furthermore, the specific ammonium sulfate concentration was used to fine-tune the crystal size and size distribution. Ammonium sulfate is a common precipitant in protein crystallography, making these findings applicable to many crystallization systems to facilitate the production of large amounts of microcrystals for serial macromolecular crystallography experiments.
Collapse
Affiliation(s)
- Claudia Stohrer
- Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Sam Horrell
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Susanne Meier
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marta Sans
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Adrian Goldman
- Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
- Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, FIN-00014 Helsinki, Finland
| | - Diana C. F. Monteiro
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Arwen R. Pearson
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
45
|
Han H, Round E, Schubert R, Gül Y, Makroczyová J, Meza D, Heuser P, Aepfelbacher M, Barák I, Betzel C, Fromme P, Kursula I, Nissen P, Tereschenko E, Schulz J, Uetrecht C, Ulicný J, Wilmanns M, Hajdu J, Lamzin VS, Lorenzen K. The XBI BioLab for life science experiments at the European XFEL. J Appl Crystallogr 2021; 54:7-21. [PMID: 33833637 PMCID: PMC7941304 DOI: 10.1107/s1600576720013989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
The science of X-ray free-electron lasers (XFELs) critically depends on the performance of the X-ray laser and on the quality of the samples placed into the X-ray beam. The stability of biological samples is limited and key biomolecular transformations occur on short timescales. Experiments in biology require a support laboratory in the immediate vicinity of the beamlines. The XBI BioLab of the European XFEL (XBI denotes XFEL Biology Infrastructure) is an integrated user facility connected to the beamlines for supporting a wide range of biological experiments. The laboratory was financed and built by a collaboration between the European XFEL and the XBI User Consortium, whose members come from Finland, Germany, the Slovak Republic, Sweden and the USA, with observers from Denmark and the Russian Federation. Arranged around a central wet laboratory, the XBI BioLab provides facilities for sample preparation and scoring, laboratories for growing prokaryotic and eukaryotic cells, a Bio Safety Level 2 laboratory, sample purification and characterization facilities, a crystallization laboratory, an anaerobic laboratory, an aerosol laboratory, a vacuum laboratory for injector tests, and laboratories for optical microscopy, atomic force microscopy and electron microscopy. Here, an overview of the XBI facility is given and some of the results of the first user experiments are highlighted.
Collapse
Affiliation(s)
- Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Ekaterina Round
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Yasmin Gül
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jana Makroczyová
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Domingo Meza
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Philipp Heuser
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK – 8000 Aarhus C, Denmark
| | - Elena Tereschenko
- Institute of Crystallography, Russian Academy of Sciences, 59 Leninsky prospekt, Moscow, 117333, Russian Federation
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Charlotte Uetrecht
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Jozef Ulicný
- Department of Biophysics, Institute of Physics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovak Republic
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Janos Hajdu
- The European Extreme Light Infrastructure, Institute of Physics, Academy of Sciences of the Czech Republic, Za Radnici 835, 25241 Dolní Břežany, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | | |
Collapse
|
46
|
Analysis of Multi-Hit Crystals in Serial Synchrotron Crystallography Experiments Using High-Viscosity Injectors. CRYSTALS 2021. [DOI: 10.3390/cryst11010049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serial Synchrotron Crystallography (SSX) is rapidly emerging as a promising technique for collecting data for time-resolved structural studies or for performing room temperature micro-crystallography measurements using micro-focused beamlines. SSX is often performed using high frame rate detectors in combination with continuous sample scanning or high-viscosity or liquid jet injectors. When performed using ultra-bright X-ray Free Electron Laser (XFEL) sources serial crystallography typically involves a process known as ’diffract-and-destroy’ where each crystal is measured just once before it is destroyed by the intense XFEL pulse. In SSX, however, particularly when using high-viscosity injectors (HVIs) such as Lipidico, the crystal can be intercepted multiple times by the X-ray beam prior to exiting the interaction region. This has a number of important consequences for SSX including whether these multiple-hits can be incorporated into the data analysis or whether they need to be excluded due to the potential impact of radiation damage. Here, we investigate the occurrence and characteristics of multiple hits on single crystals using SSX with lipidico. SSX data are collected from crystals as they tumble within a high viscous stream of silicone grease flowing through a micro-focused X-ray beam. We confirmed that, using the Eiger 16M, we are able to collect up to 42 frames of data from the same single crystal prior to it leaving the X-ray interaction region. The frequency and occurrence of multiple hits may be controlled by varying the sample flow rate and X-ray beam size. Calculations of the absorbed dose confirm that these crystals are likely to undergo radiation damage but that nonetheless incorporating multiple hits into damage-free data should lead to a significant reduction in the number of crystals required for structural analysis when compared to just looking at a single diffraction pattern from each crystal.
Collapse
|
47
|
Abstract
X-ray crystallography enables detailed structural studies of proteins to understand and modulate their function. Conducting crystallographic experiments at cryogenic temperatures has practical benefits but potentially limits the identification of functionally important alternative protein conformations that can be revealed only at room temperature (RT). This review discusses practical aspects of preparing, acquiring, and analyzing X-ray crystallography data at RT to demystify preconceived impracticalities that freeze progress of routine RT data collection at synchrotron sources. Examples are presented as conceptual and experimental templates to enable the design of RT-inspired studies; they illustrate the diversity and utility of gaining novel insights into protein conformational landscapes. An integrative view of protein conformational dynamics enables opportunities to advance basic and biomedical research.
Collapse
|
48
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|
49
|
Zhu L, Chen X, Abola EE, Jing L, Liu W. Serial Crystallography for Structure-Based Drug Discovery. Trends Pharmacol Sci 2020; 41:830-839. [PMID: 32950259 PMCID: PMC7572805 DOI: 10.1016/j.tips.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Rational drug discovery has greatly accelerated the development of safer and more efficacious therapeutics, assisted significantly by insights from experimentally determined 3D structures of ligands in complex with their targets. Serial crystallography (SX) with X-ray free-electron lasers has enabled structural determination using micrometer- or nanometer-size crystals. This technology, applied in the past decade to solve structures of notoriously difficult-to-study drug targets at room temperature, has now been adapted for use in synchrotron radiation facilities. Ultrashort time scales allow time-resolved characterization of dynamic structural changes and pave the road to study the molecular mechanisms by 'molecular movie.' This article summarizes the latest progress in SX technology and deliberates its demanding applications in future structure-based drug discovery.
Collapse
Affiliation(s)
- Lan Zhu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Xiaoyu Chen
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Enrique E Abola
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Liang Jing
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
50
|
Martiel I, Huang CY, Villanueva-Perez P, Panepucci E, Basu S, Caffrey M, Pedrini B, Bunk O, Stampanoni M, Wang M. Low-dose in situ prelocation of protein microcrystals by 2D X-ray phase-contrast imaging for serial crystallography. IUCRJ 2020; 7:1131-1141. [PMID: 33209324 PMCID: PMC7642777 DOI: 10.1107/s2052252520013238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS). This imaging step provides microcrystal coordinates for automated serial data collection at a microfocus macromolecular crystallography beamline on samples with an essentially flat geometry. This prelocation method was applied to microcrystals of a soluble protein and a membrane protein, grown in a commonly used double-sandwich in situ crystallization plate. The inner sandwiches of thin plastic film enclosing the microcrystals in lipid cubic phase were flash cooled and imaged at TOMCAT. Based on the obtained crystal coordinates, both still and rotation wedge serial data were collected automatically at the SLS PXI beamline, yielding in both cases a high indexing rate. This workflow can be easily implemented at many synchrotron facilities using existing equipment, or potentially integrated as an online technique in the next-generation macromolecular crystallography beamline, and thus benefit a number of dose-sensitive challenging protein targets.
Collapse
Affiliation(s)
- Isabelle Martiel
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Pablo Villanueva-Perez
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Ezequiel Panepucci
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Shibom Basu
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- EMBL Grenoble, 71 avenue des Martyrs, Grenoble, 38042, France
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin 2, D02 R590, Ireland
| | - Bill Pedrini
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Oliver Bunk
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Marco Stampanoni
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- Institute of Biomedical Engineering, University and ETH Zurich, Zurich, 8092, Switzerland
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| |
Collapse
|