1
|
Troman L, de Gaulejac E, Biswas A, Stiens J, Kuropka B, Moores CA, Reber S. Mechanistic basis of temperature adaptation in microtubule dynamics across frog species. Curr Biol 2025; 35:612-628.e6. [PMID: 39798564 DOI: 10.1016/j.cub.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025]
Abstract
Cellular processes are remarkably effective across diverse temperature ranges, even with highly conserved proteins. In the context of the microtubule cytoskeleton, which is critically involved in a wide range of cellular activities, this is particularly striking, as tubulin is one of the most conserved proteins while microtubule dynamic instability is highly temperature sensitive. Here, we leverage the diversity of natural tubulin variants from three closely related frog species that live at different temperatures. We determine the microtubule structure across all three species at between 3.0 and 3.6 Å resolution by cryo-electron microscopy and find small differences at the β-tubulin lateral interactions. Using in vitro reconstitution assays and quantitative biochemistry, we show that tubulin's free energy scales inversely with temperature. The observed weakening of lateral contacts and the low apparent activation energy for tubulin incorporation provide an explanation for the overall stability and higher growth rates of microtubules in cold-adapted frog species. This study thus broadens our conceptual framework for understanding microtubule dynamics and provides insights into how conserved cellular processes are tailored to different ecological niches.
Collapse
Affiliation(s)
- Luca Troman
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Ella de Gaulejac
- IRI Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Abin Biswas
- Max Planck Institute for Infection Biology, Virchowweg 12, 10117 Berlin, Germany; Marine Biological Laboratory, 7 Mbl St., Woods Hole, MA 02543, USA; Max-Planck-Zentrum für Physik und Medizin, Kussmaulallee 2, 91054 Erlangen, Germany
| | - Jennifer Stiens
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Benno Kuropka
- Freie Universität Berlin, Core Facility BioSupraMol, Thielallee 63, 14195 Berlin, Germany
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
| | - Simone Reber
- Max Planck Institute for Infection Biology, Virchowweg 12, 10117 Berlin, Germany; Marine Biological Laboratory, 7 Mbl St., Woods Hole, MA 02543, USA; Berliner Hochschule für Technik, Luxemburger Straße 10, 13353 Berlin, Germany.
| |
Collapse
|
2
|
Caspy I, Wang Z, Bharat TA. Structural biology inside multicellular specimens using electron cryotomography. Q Rev Biophys 2025; 58:e6. [PMID: 39801355 PMCID: PMC7617309 DOI: 10.1017/s0033583525000010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into a new era, enabling the routine structure determination of macromolecular complexes at an unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to visualise the native three-dimensional organisation of biological specimens, from cells to tissues and even entire organisms. Despite this huge potential, the study of tissue-like multicellular specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow are being developed or in urgent need of improvement. In this review, we outline the latest techniques currently utilised for in situ imaging of multicellular specimens, while clearly enumerating their associated limitations. We consider every step in typical workflows employed by various laboratories, including sample preparation, data collection and image analysis, to highlight recent progress and showcase prominent success stories. By considering the entire structural biology workflow for multicellular specimens, we identify which future exciting developments in hardware and software could enable comprehensive in situ structural biology investigations, bringing forth a new age of discovery in molecular structural and cell biology.
Collapse
Affiliation(s)
- Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Zhexin Wang
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
3
|
Bigo-Simon A, Estrozi LF, Chaumont A, Schurhammer R, Schoehn G, Combet J, Schmutz M, Schaaf P, Jierry L. 3D Cryo-Electron Microscopy Reveals the Structure of a 3-Fluorenylmethyloxycarbonyl Zipper Motif Ensuring the Self-Assembly of Tripeptide Nanofibers. ACS NANO 2024; 18:30448-30462. [PMID: 39441741 DOI: 10.1021/acsnano.4c08043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Short peptide-based supramolecular hydrogels appeared as highly interesting materials for applications in many fields. The optimization of their properties relies mainly on the design of a suitable hydrogelator through an empirical trial-and-error strategy based on the synthesis of various types of peptides. This approach is in part due to the lack of prior structural knowledge of the molecular architecture of the various families of nanofibers. The 3D structure of the nanofibers determines their ability to interact with entities present in their surrounding environment. Thus, it is important to resolve the internal structural organization of the material. Herein, using Fmoc-FFY tripeptide as a model amphiphilic hydrogelator and cryo-EM reconstruction approach, we succeeded to obtain a 3.8 Å resolution 3D structure of a self-assembled nanofiber with a diameter of approximately 4.1 nm and with apparently "infinite" length. The elucidation of the spatial organization of such nano-objects addresses fundamental questions about the way short amphiphilic N-Fmoc peptides lacking secondary structure can self-assemble and ensure the cohesion of such a lengthy nanostructure. This nanofiber is organized into a triple-stranded helix with an asymmetric unit composed of two Fmoc-FFY peptides per strand. The three identical amphiphilic strands are maintained together by strong lateral interactions coming from a 3-Fmoc zipper motif. This hydrophobic core of the nanofiber is surrounded by 12 phenyl groups from phenylalanine residues, nonplanar with the six Fmoc groups. Polar tyrosine residues at the C-term position constitute the hydrophilic shell and are exposed all around the external part of the assembly. This fiber has a highly hydrophobic central core with an internal diameter of only 2.4 Å. Molecular dynamics simulations highlight van der Waals and hydrogen bonds between peptides placed on top of each other. We demonstrate that the self-assembly of Fmoc-FFY, whether induced by annealing or by the action of a phosphatase on the phosphorylated precursor Fmoc-FFpY, results in two nanostructures with minor differences that we are unable to distinguish.
Collapse
Affiliation(s)
- Alexis Bigo-Simon
- CNRS, Institut Charles Sadron (UPR22), Université de Strasbourg, 23 rue du Loess, BP 84047,Strasbourg Cedex 2 67034, France
- Faculté de Chimie, Université de Strasbourg, UMR7140, 1 rue Blaise Pascal, Strasbourg Cedex 67008, France
| | - Leandro F Estrozi
- CNRS, CEA, IBSUniversité de Grenoble Alpes, Grenoble F-38000, France
| | - Alain Chaumont
- Faculté de Chimie, Université de Strasbourg, UMR7140, 1 rue Blaise Pascal, Strasbourg Cedex 67008, France
| | - Rachel Schurhammer
- Faculté de Chimie, Université de Strasbourg, UMR7140, 1 rue Blaise Pascal, Strasbourg Cedex 67008, France
| | - Guy Schoehn
- CNRS, CEA, IBSUniversité de Grenoble Alpes, Grenoble F-38000, France
| | - Jérôme Combet
- CNRS, Institut Charles Sadron (UPR22), Université de Strasbourg, 23 rue du Loess, BP 84047,Strasbourg Cedex 2 67034, France
| | - Marc Schmutz
- CNRS, Institut Charles Sadron (UPR22), Université de Strasbourg, 23 rue du Loess, BP 84047,Strasbourg Cedex 2 67034, France
| | - Pierre Schaaf
- CNRS, Institut Charles Sadron (UPR22), Université de Strasbourg, 23 rue du Loess, BP 84047,Strasbourg Cedex 2 67034, France
- INSERM Unite 1121, CRBSInstitut National de la Santé et de la Recherche Médicale, 1 rue Eugène Boeckel, Strasbourg 67000, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, Strasbourg 67000, France
| | - Loïc Jierry
- CNRS, Institut Charles Sadron (UPR22), Université de Strasbourg, 23 rue du Loess, BP 84047,Strasbourg Cedex 2 67034, France
| |
Collapse
|
4
|
Vargas J, Modrego A, Canabal H, Martin-Benito J. Semantic segmentation-based detection algorithm for challenging cryo-electron microscopy RNP samples. Front Mol Biosci 2024; 11:1473609. [PMID: 39411403 PMCID: PMC11473350 DOI: 10.3389/fmolb.2024.1473609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
In this study, we present a novel and robust methodology for the automatic detection of influenza A virus ribonucleoproteins (RNPs) in single-particle cryo-electron microscopy (cryo-EM) images. Utilizing a U-net architecture-a type of convolutional neural network renowned for its efficiency in biomedical image segmentation-our approach is based on a pretraining phase with a dataset annotated through visual inspection. This dataset facilitates the precise identification of filamentous RNPs, including the localization of the filaments and their terminal coordinates. A key feature of our method is the application of semantic segmentation techniques, enabling the automated categorization of micrograph pixels into distinct classifications of particle and background. This deep learning strategy allows to robustly detect these intricate particles, a crucial step in achieving high-resolution reconstructions in cryo-EM studies. To encourage collaborative advancements in the field, we have made our routines, the pretrained U-net model, and the training dataset publicly accessible. The reproducibility and accessibility of these resources aim to facilitate further research and validation in the realm of cryo-EM image analysis.
Collapse
Affiliation(s)
- J. Vargas
- Departamento de Óptica, Universidad Complutense de Madrid, Madrid, Spain
| | - A. Modrego
- Department of Macromolecular Structure, National Centre for Biotechnology, Madrid, Spain
| | - H. Canabal
- Departamento de Óptica, Universidad Complutense de Madrid, Madrid, Spain
| | - J. Martin-Benito
- Department of Macromolecular Structure, National Centre for Biotechnology, Madrid, Spain
| |
Collapse
|
5
|
Gilbert MAG, Fatima N, Jenkins J, O'Sullivan TJ, Schertel A, Halfon Y, Wilkinson M, Morrema THJ, Geibel M, Read RJ, Ranson NA, Radford SE, Hoozemans JJM, Frank RAW. CryoET of β-amyloid and tau within postmortem Alzheimer's disease brain. Nature 2024; 631:913-919. [PMID: 38987603 PMCID: PMC11269202 DOI: 10.1038/s41586-024-07680-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
A defining pathological feature of most neurodegenerative diseases is the assembly of proteins into amyloid that form disease-specific structures1. In Alzheimer's disease, this is characterized by the deposition of β-amyloid and tau with disease-specific conformations. The in situ structure of amyloid in the human brain is unknown. Here, using cryo-fluorescence microscopy-targeted cryo-sectioning, cryo-focused ion beam-scanning electron microscopy lift-out and cryo-electron tomography, we determined in-tissue architectures of β-amyloid and tau pathology in a postmortem Alzheimer's disease donor brain. β-amyloid plaques contained a mixture of fibrils, some of which were branched, and protofilaments, arranged in parallel arrays and lattice-like structures. Extracellular vesicles and cuboidal particles defined the non-amyloid constituents of β-amyloid plaques. By contrast, tau inclusions formed parallel clusters of unbranched filaments. Subtomogram averaging a cluster of 136 tau filaments in a single tomogram revealed the polypeptide backbone conformation and filament polarity orientation of paired helical filaments within tissue. Filaments within most clusters were similar to each other, but were different between clusters, showing amyloid heterogeneity that is spatially organized by subcellular location. The in situ structural approaches outlined here for human donor tissues have applications to a broad range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Madeleine A G Gilbert
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nayab Fatima
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joshua Jenkins
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Thomas J O'Sullivan
- Astbury Biostructure Laboratory CryoEM facility, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Andreas Schertel
- ZEISS Microscopy Customer Center Europe, Carl Zeiss Microscopy GmbH, Oberkochen, Germany
| | - Yehuda Halfon
- Astbury Biostructure Laboratory CryoEM facility, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tjado H J Morrema
- Department of Pathology, Unit Neuropathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Mirjam Geibel
- ZEISS Microscopy Customer Center Europe, Carl Zeiss Microscopy GmbH, Oberkochen, Germany
| | - Randy J Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jeroen J M Hoozemans
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - René A W Frank
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
6
|
Eisenberg D, Hou K, Ge P, Sawaya M, Dolinsky J, Yang Y, Jiang YX, Lutter L, Boyer D, Cheng X, Pi J, Zhang J, Lu J, Yang S, Yu Z, Feigon J. How short peptides can disassemble ultra-stable tau fibrils extracted from Alzheimer's disease brain by a strain-relief mechanism. RESEARCH SQUARE 2024:rs.3.rs-4152095. [PMID: 38766197 PMCID: PMC11100904 DOI: 10.21203/rs.3.rs-4152095/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer's dis-ease (AD). Previously we found that in vitro the D-peptide D-TLKIVWC disassembles tau fibrils from AD brains (AD-tau) into benign segments with no energy source present beyond ambient thermal agitation. This disassembly by a short peptide was unexpected, given that AD-tau is sufficiently stable to withstand disas-sembly in boiling SDS detergent. To consider D peptide-mediated disassembly as a potential therapeutic for AD, it is essential to understand the mechanism and energy source of the disassembly action. We find as-sembly of D-peptides into amyloid-like fibrils is essential for tau fibril disassembly. Cryo-EM and atomic force microscopy reveal that these D-peptide fibrils have a right-handed twist and embrace tau fibrils which have a left-handed twist. In binding to the AD-tau fibril, the oppositely twisted D-peptide fibril produces a strain, which is relieved by the disassembly of both fibrils. This strain-relief mechanism appears to operate in other examples of amyloid fibril disassembly and provides a new direction for the development of first-in-class therapeutics for amyloid diseases.
Collapse
Affiliation(s)
| | - Ke Hou
- University of California, Los Angeles
| | - Peng Ge
- University of California, Los Angeles
| | | | | | - Yuan Yang
- University of California Los Angeles
| | | | | | | | | | - Justin Pi
- University of California, Los Angeles
| | | | - Jiahui Lu
- University of California, Los Angeles
| | - Shixin Yang
- Janelia Research Campus, Howard Hughes Medical Institute
| | | | | |
Collapse
|
7
|
Hou K, Ge P, Sawaya MR, Dolinsky JL, Yang Y, Jiang YX, Lutter L, Boyer DR, Cheng X, Pi J, Zhang J, Lu J, Yang S, Yu Z, Feigon J, Eisenberg DS. How short peptides can disassemble ultra-stable tau fibrils extracted from Alzheimer's disease brain by a strain-relief mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586668. [PMID: 38585812 PMCID: PMC10996594 DOI: 10.1101/2024.03.25.586668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer's disease (AD). Previously we found that in vitro the D-peptide D-TLKIVWC disassembles tau fibrils from AD brains (AD-tau) into benign segments with no energy source present beyond ambient thermal agitation. This disassembly by a short peptide was unexpected, given that AD-tau is sufficiently stable to withstand disassembly in boiling SDS detergent. To consider D peptide-mediated disassembly as a potential therapeutic for AD, it is essential to understand the mechanism and energy source of the disassembly action. We find assembly of D-peptides into amyloid-like fibrils is essential for tau fibril disassembly. Cryo-EM and atomic force microscopy reveal that these D-peptide fibrils have a right-handed twist and embrace tau fibrils which have a left-handed twist. In binding to the AD-tau fibril, the oppositely twisted D-peptide fibril produces a strain, which is relieved by disassembly of both fibrils. This strain-relief mechanism appears to operate in other examples of amyloid fibril disassembly and provides a new direction for the development of first-in-class therapeutics for amyloid diseases.
Collapse
|
8
|
Singh K, Lau CK, Manigrasso G, Gama JB, Gassmann R, Carter AP. Molecular mechanism of dynein-dynactin complex assembly by LIS1. Science 2024; 383:eadk8544. [PMID: 38547289 PMCID: PMC7615804 DOI: 10.1126/science.adk8544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024]
Abstract
Cytoplasmic dynein is a microtubule motor vital for cellular organization and division. It functions as a ~4-megadalton complex containing its cofactor dynactin and a cargo-specific coiled-coil adaptor. However, how dynein and dynactin recognize diverse adaptors, how they interact with each other during complex formation, and the role of critical regulators such as lissencephaly-1 (LIS1) protein (LIS1) remain unclear. In this study, we determined the cryo-electron microscopy structure of dynein-dynactin on microtubules with LIS1 and the lysosomal adaptor JIP3. This structure reveals the molecular basis of interactions occurring during dynein activation. We show how JIP3 activates dynein despite its atypical architecture. Unexpectedly, LIS1 binds dynactin's p150 subunit, tethering it along the length of dynein. Our data suggest that LIS1 and p150 constrain dynein-dynactin to ensure efficient complex formation.
Collapse
Affiliation(s)
- Kashish Singh
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Giulia Manigrasso
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - José B. Gama
- Instituto de Investigação e Inovação em Saúde – i3S / Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde – i3S / Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrew P. Carter
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| |
Collapse
|
9
|
Louros N, Wilkinson M, Tsaka G, Ramakers M, Morelli C, Garcia T, Gallardo R, D'Haeyer S, Goossens V, Audenaert D, Thal DR, Mackenzie IR, Rademakers R, Ranson NA, Radford SE, Rousseau F, Schymkowitz J. Local structural preferences in shaping tau amyloid polymorphism. Nat Commun 2024; 15:1028. [PMID: 38310108 PMCID: PMC10838331 DOI: 10.1038/s41467-024-45429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Tauopathies encompass a group of neurodegenerative disorders characterised by diverse tau amyloid fibril structures. The persistence of polymorphism across tauopathies suggests that distinct pathological conditions dictate the adopted polymorph for each disease. However, the extent to which intrinsic structural tendencies of tau amyloid cores contribute to fibril polymorphism remains uncertain. Using a combination of experimental approaches, we here identify a new amyloidogenic motif, PAM4 (Polymorphic Amyloid Motif of Repeat 4), as a significant contributor to tau polymorphism. Calculation of per-residue contributions to the stability of the fibril cores of different pathologic tau structures suggests that PAM4 plays a central role in preserving structural integrity across amyloid polymorphs. Consistent with this, cryo-EM structural analysis of fibrils formed from a synthetic PAM4 peptide shows that the sequence adopts alternative structures that closely correspond to distinct disease-associated tau strains. Furthermore, in-cell experiments revealed that PAM4 deletion hampers the cellular seeding efficiency of tau aggregates extracted from Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy patients, underscoring PAM4's pivotal role in these tauopathies. Together, our results highlight the importance of the intrinsic structural propensity of amyloid core segments to determine the structure of tau in cells, and in propagating amyloid structures in disease.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Grigoria Tsaka
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Chiara Morelli
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Rodrigo Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sam D'Haeyer
- VIB Screening Core, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Dietmar Rudolf Thal
- KU Leuven, Leuven Brain Institute, 3000, Leuven, Belgium
- Laboratory for Neuropathology, KU Leuven, and Department of Pathology, UZ Leuven, 3000, Leuven, Belgium
| | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rosa Rademakers
- Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Lu J, Ge P, Sawaya MR, Hughes MP, Boyer DR, Cao Q, Abskharon R, Cascio D, Tayeb-Fligelman E, Eisenberg DS. Cryo-EM structures of the D290V mutant of the hnRNPA2 low-complexity domain suggests how D290V affects phase separation and aggregation. J Biol Chem 2024; 300:105531. [PMID: 38072051 PMCID: PMC10844680 DOI: 10.1016/j.jbc.2023.105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2) is a human ribonucleoprotein that transports RNA to designated locations for translation via its ability to phase separate. Its mutated form, D290V, is implicated in multisystem proteinopathy known to afflict two families, mainly with myopathy and Paget's disease of bone. Here, we investigate this mutant form of hnRNPA2 by determining cryo-EM structures of the recombinant D290V low complexity domain. We find that the mutant form of hnRNPA2 differs from the WT fibrils in four ways. In contrast to the WT fibrils, the PY-nuclear localization signals in the fibril cores of all three mutant polymorphs are less accessible to chaperones. Also, the mutant fibrils are more stable than WT fibrils as judged by phase separation, thermal stability, and energetic calculations. Similar to other pathogenic amyloids, the mutant fibrils are polymorphic. Thus, these structures offer evidence to explain how a D-to-V missense mutation diverts the assembly of reversible, functional amyloid-like fibrils into the assembly of pathogenic amyloid, and may shed light on analogous conversions occurring in other ribonucleoproteins that lead to neurological diseases such as amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Jiahui Lu
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Peng Ge
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Michael R Sawaya
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David R Boyer
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Duilio Cascio
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Einav Tayeb-Fligelman
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - David S Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA.
| |
Collapse
|
11
|
Wilkinson M, Xu Y, Thacker D, Taylor AIP, Fisher DG, Gallardo RU, Radford SE, Ranson NA. Structural evolution of fibril polymorphs during amyloid assembly. Cell 2023; 186:5798-5811.e26. [PMID: 38134875 DOI: 10.1016/j.cell.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Cryoelectron microscopy (cryo-EM) has provided unprecedented insights into amyloid fibril structures, including those associated with disease. However, these structures represent the endpoints of long assembly processes, and their relationship to fibrils formed early in assembly is unknown. Consequently, whether different fibril architectures, with potentially different pathological properties, form during assembly remains unknown. Here, we used cryo-EM to determine structures of amyloid fibrils at different times during in vitro fibrillation of a disease-related variant of human islet amyloid polypeptide (IAPP-S20G). Strikingly, the fibrils formed in the lag, growth, and plateau phases have different structures, with new forms appearing and others disappearing as fibrillation proceeds. A time course with wild-type hIAPP also shows fibrils changing with time, suggesting that this is a general property of IAPP amyloid assembly. The observation of transiently populated fibril structures has implications for understanding amyloid assembly mechanisms with potential new insights into amyloid progression in disease.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Dev Thacker
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander I P Taylor
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Declan G Fisher
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
12
|
Zielinski M, Peralta Reyes FS, Gremer L, Schemmert S, Frieg B, Schäfer LU, Willuweit A, Donner L, Elvers M, Nilsson LNG, Syvänen S, Sehlin D, Ingelsson M, Willbold D, Schröder GF. Cryo-EM of Aβ fibrils from mouse models find tg-APP ArcSwe fibrils resemble those found in patients with sporadic Alzheimer's disease. Nat Neurosci 2023; 26:2073-2080. [PMID: 37973869 PMCID: PMC10689242 DOI: 10.1038/s41593-023-01484-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023]
Abstract
The use of transgenic mice displaying amyloid-β (Aβ) brain pathology has been essential for the preclinical assessment of new treatment strategies for Alzheimer's disease. However, the properties of Aβ in such mice have not been systematically compared to Aβ in the brains of patients with Alzheimer's disease. Here, we determined the structures of nine ex vivo Aβ fibrils from six different mouse models by cryogenic-electron microscopy. We found novel Aβ fibril structures in the APP/PS1, ARTE10 and tg-SwDI models, whereas the human type II filament fold was found in the ARTE10, tg-APPSwe and APP23 models. The tg-APPArcSwe mice showed an Aβ fibril whose structure resembles the human type I filament found in patients with sporadic Alzheimer's disease. A detailed assessment of the Aβ fibril structure is key to the selection of adequate mouse models for the preclinical development of novel plaque-targeting therapeutics and positron emission tomography imaging tracers in Alzheimer's disease.
Collapse
Affiliation(s)
- Mara Zielinski
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | | | - Lothar Gremer
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany.
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Sarah Schemmert
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Benedikt Frieg
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Luisa U Schäfer
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Lili Donner
- Department of Vascular and Endovascular Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Lars N G Nilsson
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany.
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany.
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
13
|
Jia X, Gao Y, Huang Y, Sun L, Li S, Li H, Zhang X, Li Y, He J, Wu W, Venkannagari H, Yang K, Baker ML, Zhang Q. Architecture of the baculovirus nucleocapsid revealed by cryo-EM. Nat Commun 2023; 14:7481. [PMID: 37980340 PMCID: PMC10657434 DOI: 10.1038/s41467-023-43284-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used as a bioinsecticide and a protein expression vector. Despite their importance, very little is known about the structure of most baculovirus proteins. Here, we show a 3.2 Å resolution structure of helical cylindrical body of the AcMNPV nucleocapsid, composed of VP39, as well as 4.3 Å resolution structures of both the head and the base of the nucleocapsid composed of over 100 protein subunits. AcMNPV VP39 demonstrates some features of the HK97-like fold and utilizes disulfide-bonds and a set of interactions at its C-termini to mediate nucleocapsid assembly and stability. At both ends of the nucleocapsid, the VP39 cylinder is constricted by an outer shell ring composed of proteins AC104, AC142 and AC109. AC101(BV/ODV-C42) and AC144(ODV-EC27) form a C14 symmetric inner layer at both capsid head and base. In the base, these proteins interact with a 7-fold symmetric capsid plug, while a portal-like structure is seen in the central portion of head. Additionally, we propose an application of AlphaFold2 for model building in intermediate resolution density.
Collapse
Affiliation(s)
- Xudong Jia
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yuanzhu Gao
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, China
| | - Yuxuan Huang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Linjun Sun
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Siduo Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Hongmei Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xueqing Zhang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yinyin Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jian He
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wenbi Wu
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Harikanth Venkannagari
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Kai Yang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, 77030, USA.
| | - Qinfen Zhang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
14
|
Oosterheert W, Blanc FEC, Roy A, Belyy A, Sanders MB, Hofnagel O, Hummer G, Bieling P, Raunser S. Molecular mechanisms of inorganic-phosphate release from the core and barbed end of actin filaments. Nat Struct Mol Biol 2023; 30:1774-1785. [PMID: 37749275 PMCID: PMC10643162 DOI: 10.1038/s41594-023-01101-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/18/2023] [Indexed: 09/27/2023]
Abstract
The release of inorganic phosphate (Pi) from actin filaments constitutes a key step in their regulated turnover, which is fundamental to many cellular functions. The mechanisms underlying Pi release from the core and barbed end of actin filaments remain unclear. Here, using human and bovine actin isoforms, we combine cryo-EM with molecular-dynamics simulations and in vitro reconstitution to demonstrate how actin releases Pi through a 'molecular backdoor'. While constantly open at the barbed end, the backdoor is predominantly closed in filament-core subunits and opens only transiently through concerted amino acid rearrangements. This explains why Pi escapes rapidly from the filament end but slowly from internal subunits. In a nemaline-myopathy-associated actin variant, the backdoor is predominantly open in filament-core subunits, resulting in accelerated Pi release and filaments with drastically shortened ADP-Pi caps. Our results provide the molecular basis for Pi release from actin and exemplify how a disease-linked mutation distorts the nucleotide-state distribution and atomic structure of the filament.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Florian E C Blanc
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ankit Roy
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Institute for Biophysics, Goethe University, Frankfurt am Main, Germany.
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
15
|
Li L, Nguyen BA, Mullapudi V, Li Y, Saelices L, Joachimiak LA. Disease-associated patterns of acetylation stabilize tau fibril formation. Structure 2023; 31:1025-1037.e4. [PMID: 37348495 PMCID: PMC10527703 DOI: 10.1016/j.str.2023.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/03/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Assembly of tau into beta-sheet-rich amyloids dictates the pathology of a diversity of diseases. Lysine acetylation has been proposed to drive tau amyloid assembly, but no direct mechanism has emerged. Using tau fragments, we identify patterns of acetylation that flank amyloidogenic motifs on the tau fragments that promote rapid fibril assembly. We determined a 3.9 Å cryo-EM amyloid fibril structure assembled from an acetylated tau fragment uncovering how lysine acetylation can mediate gain-of-function interactions. Comparison of the structure to an ex vivo tauopathy fibril reveals regions of structural similarity. Finally, we show that fibrils encoding disease-associated patterns of acetylation are active in cell-based tau aggregation assays. Our data uncover the dual role of lysine residues in limiting tau aggregation while their acetylation leads to stabilizing pro-aggregation interactions. Design of tau sequence with specific acetylation patterns may lead to controllable tau aggregation to direct folding of tau into distinct amyloid folds.
Collapse
Affiliation(s)
- Li Li
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Binh A Nguyen
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vishruth Mullapudi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lorena Saelices
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Leistner C, Wilkinson M, Burgess A, Lovatt M, Goodbody S, Xu Y, Deuchars S, Radford SE, Ranson NA, Frank RAW. The in-tissue molecular architecture of β-amyloid pathology in the mammalian brain. Nat Commun 2023; 14:2833. [PMID: 37198197 PMCID: PMC10192217 DOI: 10.1038/s41467-023-38495-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Amyloid plaques composed of Aβ fibrils are a hallmark of Alzheimer's disease (AD). However, the molecular architecture of amyloid plaques in the context of fresh mammalian brain tissue is unknown. Here, using cryogenic correlated light and electron tomography we report the in situ molecular architecture of Aβ fibrils in the AppNL-G-F familial AD mouse model containing the Arctic mutation and an atomic model of ex vivo purified Arctic Aβ fibrils. We show that in-tissue Aβ fibrils are arranged in a lattice or parallel bundles, and are interdigitated by subcellular compartments, extracellular vesicles, extracellular droplets and extracellular multilamellar bodies. The Arctic Aβ fibril differs significantly from an earlier AppNL-F fibril structure, indicating a striking effect of the Arctic mutation. These structural data also revealed an ensemble of additional fibrillar species, including thin protofilament-like rods and branched fibrils. Together, these results provide a structural model for the dense network architecture that characterises β-amyloid plaque pathology.
Collapse
Affiliation(s)
- Conny Leistner
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Ailidh Burgess
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Megan Lovatt
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Stanley Goodbody
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Susan Deuchars
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - René A W Frank
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
17
|
Manka SW, Wenborn A, Betts J, Joiner S, Saibil HR, Collinge J, Wadsworth JDF. A structural basis for prion strain diversity. Nat Chem Biol 2023; 19:607-613. [PMID: 36646960 PMCID: PMC10154210 DOI: 10.1038/s41589-022-01229-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/18/2022] [Indexed: 01/17/2023]
Abstract
Recent cryogenic electron microscopy (cryo-EM) studies of infectious, ex vivo, prion fibrils from hamster 263K and mouse RML prion strains revealed a similar, parallel in-register intermolecular β-sheet (PIRIBS) amyloid architecture. Rungs of the fibrils are composed of individual prion protein (PrP) monomers that fold to create distinct N-terminal and C-terminal lobes. However, disparity in the hamster/mouse PrP sequence precludes understanding of how divergent prion strains emerge from an identical PrP substrate. In this study, we determined the near-atomic resolution cryo-EM structure of infectious, ex vivo mouse prion fibrils from the ME7 prion strain and compared this with the RML fibril structure. This structural comparison of two biologically distinct mouse-adapted prion strains suggests defined folding subdomains of PrP rungs and the way in which they are interrelated, providing a structural definition of intra-species prion strain-specific conformations.
Collapse
Affiliation(s)
- Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Jemma Betts
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Susan Joiner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Helen R Saibil
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK.
| |
Collapse
|
18
|
Chase O, Javed A, Byrne MJ, Thuenemann EC, Lomonossoff GP, Ranson NA, López-Moya JJ. CryoEM and stability analysis of virus-like particles of potyvirus and ipomovirus infecting a common host. Commun Biol 2023; 6:433. [PMID: 37076658 PMCID: PMC10115852 DOI: 10.1038/s42003-023-04799-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Sweet potato feathery mottle virus (SPFMV) and Sweet potato mild mottle virus (SPMMV) are members of the genera Potyvirus and Ipomovirus, family Potyviridae, sharing Ipomoea batatas as common host, but transmitted, respectively, by aphids and whiteflies. Virions of family members consist of flexuous rods with multiple copies of a single coat protein (CP) surrounding the RNA genome. Here we report the generation of virus-like particles (VLPs) by transient expression of the CPs of SPFMV and SPMMV in the presence of a replicating RNA in Nicotiana benthamiana. Analysis of the purified VLPs by cryo-electron microscopy, gave structures with resolutions of 2.6 and 3.0 Å, respectively, showing a similar left-handed helical arrangement of 8.8 CP subunits per turn with the C-terminus at the inner surface and a binding pocket for the encapsidated ssRNA. Despite their similar architecture, thermal stability studies reveal that SPMMV VLPs are more stable than those of SPFMV.
Collapse
Affiliation(s)
- Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Abid Javed
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Oxfordshire, OX11 0DE, UK
| | - Eva C Thuenemann
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
19
|
Giulietti N, Chiariotti P, Revel GM. Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger's Algorithm. SENSORS (BASEL, SWITZERLAND) 2023; 23:4023. [PMID: 37112364 PMCID: PMC10141127 DOI: 10.3390/s23084023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Accurately assessing the geometric features of curvilinear structures on images is of paramount importance in many vision-based measurement systems targeting technological fields such as quality control, defect analysis, biomedical, aerial, and satellite imaging. This paper aims at laying the basis for the development of fully automated vision-based measurement systems targeting the measurement of elements that can be treated as curvilinear structures in the resulting image, such as cracks in concrete elements. In particular, the goal is to overcome the limitation of exploiting the well-known Steger's ridge detection algorithm in these applications because of the manual identification of the input parameters characterizing the algorithm, which are preventing its extensive use in the measurement field. This paper proposes an approach to make the selection phase of these input parameters fully automated. The metrological performance of the proposed approach is discussed. The method is demonstrated on both synthesized and experimental data.
Collapse
Affiliation(s)
- Nicola Giulietti
- Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy
| | - Paolo Chiariotti
- Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy
| | - Gian Marco Revel
- Department of Industrial Engineering and Mathematical Science, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| |
Collapse
|
20
|
Sun C, Zhou K, DePaola P, Shin WS, Hillyer T, Sawaya MR, Zhu R, Peng C, Zhou ZH, Jiang L. Cryo-EM structure of amyloid fibril formed by α-synuclein hereditary A53E mutation reveals a distinct protofilament interface. J Biol Chem 2023; 299:104566. [PMID: 36871760 PMCID: PMC10124909 DOI: 10.1016/j.jbc.2023.104566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023] Open
Abstract
Synucleinopathies like Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA), have the same pathologic feature of misfolded α-synuclein protein (α-syn) accumulation in the brain. PD patients who carry α-syn hereditary mutations tend to have earlier onset and more severe clinical symptoms than sporadic PD patients. Therefore, revealing the effect of hereditary mutations to the α-syn fibril structure can help us understand these synucleinopathies' structural basis. Here, we present a 3.38 Å cryo-electron microscopy structure of α-synuclein fibrils containing the hereditary A53E mutation. The A53E fibril is symmetrically composed of two protofilaments, similar to other fibril structures of WT and mutant α-synuclein. The new structure is distinct from all other synuclein fibrils, not only at the interface between proto-filaments, but also between residues packed within the same proto-filament. A53E has the smallest interface with the least buried surface area among all α-syn fibrils, consisting of only two contacting residues. Within the same protofilament, A53E reveals distinct residue re-arrangement and structural variation at a cavity near its fibril core. Moreover, the A53E fibrils exhibit slower fibril formation and lower stability compared to WT and other mutants like A53T and H50Q, while also demonstrate strong cellular seeding in α-synuclein biosensor cells and primary neurons. In summary, our study aims to highlight structural differences - both within and between the protofilaments of A53E fibrils - and interpret fibril formation and cellular seeding of α-synuclein pathology in disease, which could further our understanding of the structure-activity relationship of α-synuclein mutants.
Collapse
Affiliation(s)
- Chuanqi Sun
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, California Nano Systems Institute, UCLA, Los Angeles, CA, USA
| | - Peter DePaola
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, CA, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Michael R Sawaya
- Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, CA, USA
| | - Ruowei Zhu
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Chao Peng
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, California Nano Systems Institute, UCLA, Los Angeles, CA, USA
| | - Lin Jiang
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Wilkinson M, Gallardo RU, Martinez RM, Guthertz N, So M, Aubrey LD, Radford SE, Ranson NA. Disease-relevant β 2-microglobulin variants share a common amyloid fold. Nat Commun 2023; 14:1190. [PMID: 36864041 PMCID: PMC9981686 DOI: 10.1038/s41467-023-36791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
β2-microglobulin (β2m) and its truncated variant ΔΝ6 are co-deposited in amyloid fibrils in the joints, causing the disorder dialysis-related amyloidosis (DRA). Point mutations of β2m result in diseases with distinct pathologies. β2m-D76N causes a rare systemic amyloidosis with protein deposited in the viscera in the absence of renal failure, whilst β2m-V27M is associated with renal failure, with amyloid deposits forming predominantly in the tongue. Here we use cryoEM to determine the structures of fibrils formed from these variants under identical conditions in vitro. We show that each fibril sample is polymorphic, with diversity arising from a 'lego-like' assembly of a common amyloid building block. These results suggest a 'many sequences, one amyloid fold' paradigm in contrast with the recently reported 'one sequence, many amyloid folds' behaviour of intrinsically disordered proteins such as tau and Aβ.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Aelin Therapeutics, Bio-Incubator Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Roberto Maya Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Peak Proteins, Birchwood House, Larkwood Way, Macclesfield, Cheshire, SK10 2XR, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Bicycle Therapeutics, Blocks A & B, Portway Building, Grant Park, Abingdon, Cambridge, CB21 6GS, UK
| | - Masatomo So
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
22
|
Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochem Soc Trans 2023; 51:87-99. [PMID: 36695514 PMCID: PMC9987995 DOI: 10.1042/bst20220221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions.
Collapse
|
23
|
Richards LS, Flores MD, Zink S, Schibrowsky NA, Sawaya MR, Rodriguez JA. Cryo-EM Structure of a Human LECT2 Amyloid Fibril Reveals a Network of Polar Ladders at its Core. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527771. [PMID: 36798409 PMCID: PMC9934627 DOI: 10.1101/2023.02.08.527771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
ALECT2 is a type of systemic amyloidosis caused by deposition of the leukocyte cell-derived chemotaxin-2 (LECT2) protein in the form of fibrils. In ALECT2, LECT2 fibril deposits can be found in the glomerulus, resulting in renal failure. Affected patients lack effective treatment options outside of renal transplant or dialysis. While the structure of LECT2 in its globular form has been determined by X-ray crystallography, structures of LECT2 amyloid fibrils remain unknown. Using single particle cryo-EM, we now find that human LECT2 forms robust twisting fibrils with canonical amyloid features. At their core, LECT2 fibrils contain two mating protofilaments, the ordered core of each protofilament spans residues 55-75 of the LECT2 sequence. The overall geometry of the LECT2 fibril displays features in line with other pathogenic amyloids. Its core is tightly packed and stabilized by a network of hydrophobic contacts and hydrogen-bonded uncharged polar residues, while its outer surface displays several charged residues. The robustness of LECT2 fibril cores is illustrated by their limited dissolution in 3M urea and their persistence after treatment with proteinase K. As such, the LECT2 fibril structure presents a potential new target for treatments against ALECT2.
Collapse
Affiliation(s)
- Logan S. Richards
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Maria D. Flores
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Samantha Zink
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Natalie A. Schibrowsky
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Li L, Nguyen B, Mullapudi V, Saelices L, Joachimiak LA. Disease-associated patterns of acetylation stabilize tau fibril formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523459. [PMID: 36711822 PMCID: PMC9882070 DOI: 10.1101/2023.01.10.523459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Assembly of the microtubule-associated protein into tauopathy fibril conformations dictates the pathology of a diversity of diseases. Recent cryogenic Electron Microscopy (cryo-EM) structures have uncovered distinct fibril conformations in different tauopathies but it remains unknown how these structures fold from a single protein sequence. It has been proposed that post-translational modifications may drive tau assembly but no direct mechanism for how modifications drive assembly has emerged. Leveraging established aggregation-regulating tau fragments that are normally inert, we tested the effect of chemical modification of lysines with acetyl groups on tau fragment conversion into amyloid aggregates. We identify specific patterns of acetylation that flank amyloidogenic motifs on the tau fragments that drive rapid fibril assembly. To understand how this pattern of acetylation may drive assembly, we determined a 3.9 Å cryo-EM structure of an amyloid fibril assembled from an acetylated tau fragment. The structure uncovers how lysine acetylation patterns mediate gain-of-function interactions to promote amyloid assembly. Comparison of the structure to an ex vivo tau fibril conformation from Pick's Disease reveals regions of high structural similarity. Finally, we show that our lysine- acetylated sequences exhibit fibril assembly activity in cell-based tau aggregation assays. Our data uncover the dual role of lysine residues in limiting aggregation while their acetylation leads to stabilizing pro-aggregation interactions. Design of tau sequence with specific acetylation patterns may lead to controllable tau aggregation to direct folding of tau into distinct folds.
Collapse
Affiliation(s)
- Li Li
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Binh Nguyen
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Vishruth Mullapudi
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lorena Saelices
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lukasz A. Joachimiak
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
25
|
Chai P, Rao Q, Zhang K. Multi-curve fitting and tubulin-lattice signal removal for structure determination of large microtubule-based motors. J Struct Biol 2022; 214:107897. [PMID: 36089228 DOI: 10.1016/j.jsb.2022.107897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/05/2022] [Accepted: 09/03/2022] [Indexed: 12/30/2022]
Abstract
Revealing high-resolution structures of microtubule-associated proteins (MAPs) is critical for understanding their fundamental roles in various cellular activities, such as cell motility and intracellular cargo transport. Nevertheless, large flexible molecular motors that dynamically bind and release microtubule networks are challenging for cryo-electron microscopy (cryo-EM). Traditional structure determination of MAPs bound to microtubules needs alignment information from the reconstruction of microtubules, which cannot be readily applied to large MAPs without a fixed binding pattern. Here, we developed a comprehensive approach to estimate the microtubule networks (multi-curve fitting), model the tubulin-lattice signals, and remove them (tubulin-lattice subtraction) from the raw cryo-EM micrographs. The approach does not require an ordered binding pattern of MAPs on microtubules, nor does it need a reconstruction of the microtubules. We demonstrated the capability of our approach using the reconstituted outer-arm dynein (OAD) bound to microtubule doublets. The tubulin-lattice subtraction improves the OAD alignment, thus leading to high-resolution reconstructions. In addition, the multi-curve fitting approach provides an accurate automatic alternative method to pick or segment filaments in 2D images and potentially in 3D tomograms. The accuracy of our approach has been demonstrated by using several other biological filaments. Our work provides a new tool to determine high-resolution structures of large MAPs bound to curved microtubule networks.
Collapse
Affiliation(s)
- Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Qinhui Rao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
26
|
Oosterheert W, Klink BU, Belyy A, Pospich S, Raunser S. Structural basis of actin filament assembly and aging. Nature 2022; 611:374-379. [DOI: 10.1038/s41586-022-05241-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022]
Abstract
AbstractThe dynamic turnover of actin filaments (F-actin) controls cellular motility in eukaryotes and is coupled to changes in the F-actin nucleotide state1–3. It remains unclear how F-actin hydrolyses ATP and subsequently undergoes subtle conformational rearrangements that ultimately lead to filament depolymerization by actin-binding proteins. Here we present cryo-electron microscopy structures of F-actin in all nucleotide states, polymerized in the presence of Mg2+ or Ca2+ at approximately 2.2 Å resolution. The structures show that actin polymerization induces the relocation of water molecules in the nucleotide-binding pocket, activating one of them for the nucleophilic attack of ATP. Unexpectedly, the back door for the subsequent release of inorganic phosphate (Pi) is closed in all structures, indicating that Pi release occurs transiently. The small changes in the nucleotide-binding pocket after ATP hydrolysis and Pi release are sensed by a key amino acid, amplified and transmitted to the filament periphery. Furthermore, differences in the positions of water molecules in the nucleotide-binding pocket explain why Ca2+-actin shows slower polymerization rates than Mg2+-actin. Our work elucidates the solvent-driven rearrangements that govern actin filament assembly and aging and lays the foundation for the rational design of drugs and small molecules for imaging and therapeutic applications.
Collapse
|
27
|
Bayly-Jones C, Lupton CJ, Fritz C, Venugopal H, Ramsbeck D, Wermann M, Jäger C, de Marco A, Schilling S, Schlenzig D, Whisstock JC. Helical ultrastructure of the metalloprotease meprin α in complex with a small molecule inhibitor. Nat Commun 2022; 13:6178. [PMID: 36261433 PMCID: PMC9581967 DOI: 10.1038/s41467-022-33893-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The zinc-dependent metalloprotease meprin α is predominantly expressed in the brush border membrane of proximal tubules in the kidney and enterocytes in the small intestine and colon. In normal tissue homeostasis meprin α performs key roles in inflammation, immunity, and extracellular matrix remodelling. Dysregulated meprin α is associated with acute kidney injury, sepsis, urinary tract infection, metastatic colorectal carcinoma, and inflammatory bowel disease. Accordingly, meprin α is the target of drug discovery programs. In contrast to meprin β, meprin α is secreted into the extracellular space, whereupon it oligomerises to form giant assemblies and is the largest extracellular protease identified to date (~6 MDa). Here, using cryo-electron microscopy, we determine the high-resolution structure of the zymogen and mature form of meprin α, as well as the structure of the active form in complex with a prototype small molecule inhibitor and human fetuin-B. Our data reveal that meprin α forms a giant, flexible, left-handed helical assembly of roughly 22 nm in diameter. We find that oligomerisation improves proteolytic and thermal stability but does not impact substrate specificity or enzymatic activity. Furthermore, structural comparison with meprin β reveal unique features of the active site of meprin α, and helical assembly more broadly.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Claudia Fritz
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, 3800, VIC, Australia
| | - Daniel Ramsbeck
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Michael Wermann
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | | | - Alex de Marco
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Stephan Schilling
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
- Hochschule Anhalt, University of Applied Sciences, Köthen, Germany
| | - Dagmar Schlenzig
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany.
| | - James C Whisstock
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.
- EMBL Australia, Monash University, Melbourne, VIC, 3800, Australia.
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
28
|
Chaaban S, Carter AP. Structure of dynein-dynactin on microtubules shows tandem adaptor binding. Nature 2022; 610:212-216. [PMID: 36071160 PMCID: PMC7613678 DOI: 10.1038/s41586-022-05186-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
Cytoplasmic dynein is a microtubule motor that is activated by its cofactor dynactin and a coiled-coil cargo adaptor1-3. Up to two dynein dimers can be recruited per dynactin, and interactions between them affect their combined motile behaviour4-6. Different coiled-coil adaptors are linked to different cargos7,8, and some share motifs known to contact sites on dynein and dynactin4,9-13. There is limited structural information on how the resulting complex interacts with microtubules and how adaptors are recruited. Here we develop a cryo-electron microscopy processing pipeline to solve the high-resolution structure of dynein-dynactin and the adaptor BICDR1 bound to microtubules. This reveals the asymmetric interactions between neighbouring dynein motor domains and how they relate to motile behaviour. We found that two adaptors occupy the complex. Both adaptors make similar interactions with the dyneins but diverge in their contacts with each other and dynactin. Our structure has implications for the stability and stoichiometry of motor recruitment by cargos.
Collapse
Affiliation(s)
- Sami Chaaban
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew P Carter
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
29
|
Anderson JR, Li J, Springer TA, Brown A. Structures of VWF tubules before and after concatemerization reveal a mechanism of disulfide bond exchange. Blood 2022; 140:1419-1430. [PMID: 35776905 PMCID: PMC9507011 DOI: 10.1182/blood.2022016467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is an adhesive glycoprotein that circulates in the blood as disulfide-linked concatemers and functions in primary hemostasis. The loss of long VWF concatemers is associated with the excessive bleeding of type 2A von Willebrand disease (VWD). Formation of the disulfide bonds that concatemerize VWF requires VWF to self-associate into helical tubules, yet how the helical tubules template intermolecular disulfide bonds is not known. Here, we report electron cryomicroscopy (cryo-EM) structures of VWF tubules before and after intermolecular disulfide bond formation. The structures provide evidence that VWF tubulates through a charge-neutralization mechanism and that the A1 domain enhances tubule length by crosslinking successive helical turns. In addition, the structures reveal disulfide states before and after disulfide bond-mediated concatemerization. The structures and proposed assembly mechanism provide a foundation to rationalize VWD-causing mutations.
Collapse
Affiliation(s)
- Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jing Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA; and
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Abstract
To fulfill the cytoskeleton’s diverse functions in cell mechanics and motility, actin networks with specialized architectures are built by cross-linking proteins. How these cross-linkers specify cytoskeletal network geometry is poorly understood at the level of protein structure. Here, we introduce a machine-learning–enabled pipeline for visualizing cross-linkers bridging cytoskeletal filaments with cryogenic electron microscopy (cryo-EM). We apply our method to T-plastin, a member of the evolutionarily conserved plastin/fimbrin family, revealing a sequence of conformational changes that enables T-plastin to bridge pairs of actin filaments in both parallel and antiparallel orientations. This provides a structural framework for understanding how plastins can generate actin networks featuring mixed filament polarity. To orchestrate cell mechanics, trafficking, and motility, cytoskeletal filaments must assemble into higher-order networks whose local subcellular architecture and composition specify their functions. Cross-linking proteins bridge filaments at the nanoscale to control a network’s μm-scale geometry, thereby conferring its mechanical properties and functional dynamics. While these interfilament linkages are key determinants of cytoskeletal function, their structural mechanisms remain poorly understood. Plastins/fimbrins are an evolutionarily ancient family of tandem calponin-homology domain (CHD) proteins required to construct multiple classes of actin networks, which feature diverse geometries specialized to power cytokinesis, microvilli and stereocilia biogenesis, and persistent cell migration. Here, we focus on the structural basis of actin network assembly by human T-plastin, a ubiquitously expressed isoform necessary for the maintenance of stable cellular protrusions generated by actin polymerization forces. By implementing a machine-learning–enabled cryo-electron microscopy pipeline for visualizing cross-linkers bridging multiple filaments, we uncover a sequential bundling mechanism enabling T-plastin to bridge pairs of actin filaments in both parallel and antiparallel orientations. T-plastin populates distinct structural landscapes in these two bridging orientations that are selectively compatible with actin networks featuring divergent architectures and functions. Our structural, biochemical, and cell biological data highlight inter-CHD linkers as key structural elements underlying flexible but stable cross-linking that are likely to be disrupted by T-plastin mutations that cause hereditary bone diseases.
Collapse
|
31
|
Bücker R, Seuring C, Cazey C, Veith K, García-Alai M, Grünewald K, Landau M. The Cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils. Nat Commun 2022; 13:4356. [PMID: 35896552 PMCID: PMC9329304 DOI: 10.1038/s41467-022-32039-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
The amyloid-antimicrobial link hypothesis is based on antimicrobial properties found in human amyloids involved in neurodegenerative and systemic diseases, along with amyloidal structural properties found in antimicrobial peptides (AMPs). Supporting this hypothesis, we here determined the fibril structure of two AMPs from amphibians, uperin 3.5 and aurein 3.3, by cryogenic electron microscopy (cryo-EM), revealing amyloid cross-β fibrils of mated β-sheets at atomic resolution. Uperin 3.5 formed a 3-blade symmetrical propeller of nine peptides per fibril layer including tight β-sheet interfaces. This cross-β cryo-EM structure complements the cross-α fibril conformation previously determined by crystallography, substantiating a secondary structure switch mechanism of uperin 3.5. The aurein 3.3 arrangement consisted of six peptides per fibril layer, all showing kinked β-sheets allowing a rounded compactness of the fibril. The kinked β-sheets are similar to LARKS (Low-complexity, Amyloid-like, Reversible, Kinked Segments) found in human functional amyloids.
Collapse
Grants
- Joachim Herz Foundation (Add-on fellowship, R.B.).
- This research was supported by the Ministry of Science, Research, Equalities and Districts of the Free and Hanseatic City of Hamburg (K.G., M.L., R.B.), Israel Science Foundation (grant no. 2111/20, M.L.), Israel Ministry of Science, Technology & Space (grant no. 3-15517, M.L.), U.S.-Israel Binational Science Foundation (BSF) (grant no. 2017280, M.L.),
Collapse
Affiliation(s)
- Robert Bücker
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Rigaku Europe SE, Neu-Isenburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Cornelia Cazey
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory, EMBL Hamburg, Hamburg, Germany
| | - Maria García-Alai
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, EMBL Hamburg, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Department of Chemistry, University of Hamburg, Hamburg, Germany.
- Leibniz Institute of Virology, Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Meytal Landau
- Centre for Structural Systems Biology, Hamburg, Germany.
- European Molecular Biology Laboratory, EMBL Hamburg, Hamburg, Germany.
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
32
|
Manka SW, Zhang W, Wenborn A, Betts J, Joiner S, Saibil HR, Collinge J, Wadsworth JDF. 2.7 Å cryo-EM structure of ex vivo RML prion fibrils. Nat Commun 2022; 13:4004. [PMID: 35831275 PMCID: PMC9279362 DOI: 10.1038/s41467-022-30457-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Mammalian prions propagate as distinct strains and are composed of multichain assemblies of misfolded host-encoded prion protein (PrP). Here, we present a near-atomic resolution cryo-EM structure of PrP fibrils present in highly infectious prion rod preparations isolated from the brains of RML prion-infected mice. We found that prion rods comprise single-protofilament helical amyloid fibrils that coexist with twisted pairs of the same protofilaments. Each rung of the protofilament is formed by a single PrP monomer with the ordered core comprising PrP residues 94-225, which folds to create two asymmetric lobes with the N-linked glycans and the glycosylphosphatidylinositol anchor projecting from the C-terminal lobe. The overall architecture is comparable to that of recently reported PrP fibrils isolated from the brain of hamsters infected with the 263K prion strain. However, there are marked conformational variations that could result from differences in PrP sequence and/or represent distinguishing features of the distinct prion strains.
Collapse
Affiliation(s)
- Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Wenjuan Zhang
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jemma Betts
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Susan Joiner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK.
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
33
|
Schneider J, Jasnin M. Capturing actin assemblies in cells using in situ cryo-electron tomography. Eur J Cell Biol 2022; 101:151224. [PMID: 35500467 DOI: 10.1016/j.ejcb.2022.151224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Actin contributes to an exceptionally wide range of cellular processes through the assembly and disassembly of highly dynamic and ordered structures. Visualizing these structures in cells can help us understand how the molecular players of the actin machinery work together to produce force-generating systems. In recent years, cryo-electron tomography (cryo-ET) has become the method of choice for structural analysis of the cell interior at the molecular scale. Here we review advances in cryo-ET workflows that have enabled this transformation, especially the automation of sample preparation procedures, data collection, and processing. We discuss new structural analyses of dynamic actin assemblies in cryo-preserved cells, which have provided mechanistic insights into actin assembly and function at the nanoscale. Finally, we highlight the latest visual proteomics studies of actin filaments and their interactors reaching sub-nanometer resolutions in cells.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
34
|
Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43. Nature 2022; 605:304-309. [PMID: 35344984 PMCID: PMC9844993 DOI: 10.1038/s41586-022-04670-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/22/2022] [Indexed: 01/19/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is the third most common neurodegenerative condition after Alzheimer's and Parkinson's diseases1. FTLD typically presents in 45 to 64 year olds with behavioural changes or progressive decline of language skills2. The subtype FTLD-TDP is characterized by certain clinical symptoms and pathological neuronal inclusions with TAR DNA-binding protein (TDP-43) immunoreactivity3. Here we extracted amyloid fibrils from brains of four patients representing four of the five FTLD-TDP subclasses, and determined their structures by cryo-electron microscopy. Unexpectedly, all amyloid fibrils examined were composed of a 135-residue carboxy-terminal fragment of transmembrane protein 106B (TMEM106B), a lysosomal membrane protein previously implicated as a genetic risk factor for FTLD-TDP4. In addition to TMEM106B fibrils, we detected abundant non-fibrillar aggregated TDP-43 by immunogold labelling. Our observations confirm that FTLD-TDP is associated with amyloid fibrils, and that the fibrils are formed by TMEM106B rather than TDP-43.
Collapse
|
35
|
Umrekar TR, Winterborn YB, Sivabalasarma S, Brantl J, Albers SV, Beeby M. Evolution of Archaellum Rotation Involved Invention of a Stator Complex by Duplicating and Modifying a Core Component. Front Microbiol 2021; 12:773386. [PMID: 34912317 PMCID: PMC8667602 DOI: 10.3389/fmicb.2021.773386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
Novelty in biology can arise from opportunistic repurposing of nascent characteristics of existing features. Understanding how this process happens at the molecular scale, however, suffers from a lack of case studies. The evolutionary emergence of rotary motors is a particularly clear example of evolution of a new function. The simplest of rotary motors is the archaellum, a molecular motor that spins a helical propeller for archaeal motility analogous to the bacterial flagellum. Curiously, emergence of archaellar rotation may have pivoted on the simple duplication and repurposing of a pre-existing component to produce a stator complex that anchors to the cell superstructure to enable productive rotation of the rotor component. This putative stator complex is composed of ArlF and ArlG, gene duplications of the filament component ArlB, providing an opportunity to study how gene duplication and neofunctionalization contributed to the radical innovation of rotary function. Toward understanding how this happened, we used electron cryomicroscopy to determine the structure of isolated ArlG filaments, the major component of the stator complex. Using a hybrid modeling approach incorporating structure prediction and validation, we show that ArlG filaments are open helices distinct to the closed helical filaments of ArlB. Curiously, further analysis reveals that ArlG retains a subset of the inter-protomer interactions of homologous ArlB, resulting in a superficially different assembly that nevertheless reflects the common ancestry of the two structures. This relatively simple mechanism to change quaternary structure was likely associated with the evolutionary neofunctionalization of the archaellar stator complex, and we speculate that the relative deformable elasticity of an open helix may facilitate elastic energy storage during the transmission of the discrete bursts of energy released by ATP hydrolysis to continuous archaellar rotation, allowing the inherent properties of a duplicated ArlB to be co-opted to fulfill a new role. Furthermore, agreement of diverse experimental evidence in our work supports recent claims to the power of new structure prediction techniques.
Collapse
Affiliation(s)
- Trishant R. Umrekar
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Brantl
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Pospich S, Sweeney HL, Houdusse A, Raunser S. High-resolution structures of the actomyosin-V complex in three nucleotide states provide insights into the force generation mechanism. eLife 2021; 10:e73724. [PMID: 34812732 PMCID: PMC8735999 DOI: 10.7554/elife.73724] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular motor myosin undergoes a series of major structural transitions during its force-producing motor cycle. The underlying mechanism and its coupling to ATP hydrolysis and actin binding are only partially understood, mostly due to sparse structural data on actin-bound states of myosin. Here, we report 26 high-resolution cryo-EM structures of the actomyosin-V complex in the strong-ADP, rigor, and a previously unseen post-rigor transition state that binds the ATP analog AppNHp. The structures reveal a high flexibility of myosin in each state and provide valuable insights into the structural transitions of myosin-V upon ADP release and binding of AppNHp, as well as the actomyosin interface. In addition, they show how myosin is able to specifically alter the structure of F-actin.
Collapse
Affiliation(s)
- Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - H Lee Sweeney
- Department of Pharmacology and Therapeutics and the Myology Institute, University of FloridaGainesvilleUnited States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Centre National de la Recherche ScientifiqueParisFrance
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
37
|
Cao Q, Boyer DR, Sawaya MR, Abskharon R, Saelices L, Nguyen BA, Lu J, Murray KA, Kandeel F, Eisenberg DS. Cryo-EM structures of hIAPP fibrils seeded by patient-extracted fibrils reveal new polymorphs and conserved fibril cores. Nat Struct Mol Biol 2021; 28:724-730. [PMID: 34518699 PMCID: PMC10396428 DOI: 10.1038/s41594-021-00646-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Amyloidosis of human islet amyloid polypeptide (hIAPP) is a pathological hallmark of type II diabetes (T2D), an epidemic afflicting nearly 10% of the world's population. To visualize disease-relevant hIAPP fibrils, we extracted amyloid fibrils from islet cells of a T2D donor and amplified their quantity by seeding synthetic hIAPP. Cryo-EM studies revealed four fibril polymorphic atomic structures. Their resemblance to four unseeded hIAPP fibrils varies from nearly identical (TW3) to non-existent (TW2). The diverse repertoire of hIAPP polymorphs appears to arise from three distinct protofilament cores entwined in different combinations. The structural distinctiveness of TW1, TW2 and TW4 suggests they may be faithful replications of the pathogenic seeds. If so, the structures determined here provide the most direct view yet of hIAPP amyloid fibrils formed during T2D.
Collapse
Affiliation(s)
- Qin Cao
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - David R Boyer
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Michael R Sawaya
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Lorena Saelices
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Binh A Nguyen
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jiahui Lu
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Kevin A Murray
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - David S Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Kommera PR, Ramakrishnaiah V, Sweeney C, Donatelli J, Zwart PH. GPU-accelerated multitiered iterative phasing algorithm for fluctuation X-ray scattering. J Appl Crystallogr 2021; 54:1179-1188. [PMID: 34429723 PMCID: PMC8366419 DOI: 10.1107/s1600576721005744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
The multitiered iterative phasing (MTIP) algorithm is used to determine the biological structures of macromolecules from fluctuation scattering data. It is an iterative algorithm that reconstructs the electron density of the sample by matching the computed fluctuation X-ray scattering data to the external observations, and by simultaneously enforcing constraints in real and Fourier space. This paper presents the first ever MTIP algorithm acceleration efforts on contemporary graphics processing units (GPUs). The Compute Unified Device Architecture (CUDA) programming model is used to accelerate the MTIP algorithm on NVIDIA GPUs. The computational performance of the CUDA-based MTIP algorithm implementation outperforms the CPU-based version by an order of magnitude. Furthermore, the Heterogeneous-Compute Interface for Portability (HIP) runtime APIs are used to demonstrate portability by accelerating the MTIP algorithm across NVIDIA and AMD GPUs.
Collapse
Affiliation(s)
- Pranay Reddy Kommera
- Applied Computer Science, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Vinay Ramakrishnaiah
- Applied Computer Science, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Christine Sweeney
- Applied Computer Science, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jeffrey Donatelli
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Applied Mathematics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Petrus H. Zwart
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Junglas B, Huber ST, Heidler T, Schlösser L, Mann D, Hennig R, Clarke M, Hellmann N, Schneider D, Sachse C. PspA adopts an ESCRT-III-like fold and remodels bacterial membranes. Cell 2021; 184:3674-3688.e18. [PMID: 34166616 DOI: 10.1016/j.cell.2021.05.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/01/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
PspA is the main effector of the phage shock protein (Psp) system and preserves the bacterial inner membrane integrity and function. Here, we present the 3.6 Å resolution cryoelectron microscopy (cryo-EM) structure of PspA assembled in helical rods. PspA monomers adopt a canonical ESCRT-III fold in an extended open conformation. PspA rods are capable of enclosing lipids and generating positive membrane curvature. Using cryo-EM, we visualized how PspA remodels membrane vesicles into μm-sized structures and how it mediates the formation of internalized vesicular structures. Hotspots of these activities are zones derived from PspA assemblies, serving as lipid transfer platforms and linking previously separated lipid structures. These membrane fusion and fission activities are in line with the described functional properties of bacterial PspA/IM30/LiaH proteins. Our structural and functional analyses reveal that bacterial PspA belongs to the evolutionary ancestry of ESCRT-III proteins involved in membrane remodeling.
Collapse
Affiliation(s)
- Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Stefan T Huber
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Thomas Heidler
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Daniel Mann
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Raoul Hennig
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mairi Clarke
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany.
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
40
|
Thurber KR, Yin Y, Tycko R. Automated picking of amyloid fibrils from cryo-EM images for helical reconstruction with RELION. J Struct Biol 2021; 213:107736. [PMID: 33831509 DOI: 10.1016/j.jsb.2021.107736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) is an important tool for determining the molecular structure of proteins and protein assemblies, including helical assemblies such as amyloid fibrils. In reconstruction of amyloid fibril structures from cryo-EM images, an important early step is the selection of fibril locations. This fibril picking step is typically done by hand, a tedious process when thousands of images need to be analyzed. Here we present a computer program called FibrilFinder that identifies the locations and directions of fibril segments in cryo-EM images, by using the properties that the fibrils should be linear objects and have widths within a specified range. The program outputs the fibril locations in text files compatible with the RELION density reconstruction program. After RELION is used to extract the particle image boxes contained in the fibril segments identified by FibrilFinder, a second program called FibrilFixer removes boxes that contain more than one fibril, for instance because two fibrils cross each other. As concrete and realistic examples, we describe the application of the two programs to cryo-EM images of two different amyloid fibrils, namely 40-residue amyloid-β fibrils derived from human brain tissue by seeded growth and fibrils formed by the C-terminal half of the low-complexity domain of the RNA-binding protein FUS. Both examples of amyloid fibrils can be picked from cryo-EM images using the same set of FibrilFinder and FibrilFixer parameters, showing that this software does not require re-optimization for each sample. A set of 1337 cryo-EM images was analyzed in 17 min with one multi-core computer. The new fibril picking software should enable the rapid analysis and comparison of more helical structures using cryo-EM, and perhaps serve as part of the greater automation of the entire structure determination process.
Collapse
Affiliation(s)
- Kent R Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| | - Yi Yin
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| |
Collapse
|
41
|
Stabrin M, Schoenfeld F, Wagner T, Pospich S, Gatsogiannis C, Raunser S. TranSPHIRE: automated and feedback-optimized on-the-fly processing for cryo-EM. Nat Commun 2020; 11:5716. [PMID: 33177513 PMCID: PMC7658977 DOI: 10.1038/s41467-020-19513-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Single particle cryo-EM requires full automation to allow high-throughput structure determination. Although software packages exist where parts of the cryo-EM pipeline are automated, a complete solution that offers reliable on-the-fly processing, resulting in high-resolution structures, does not exist. Here we present TranSPHIRE: A software package for fully-automated processing of cryo-EM datasets during data acquisition. TranSPHIRE transfers data from the microscope, automatically applies the common pre-processing steps, picks particles, performs 2D clustering, and 3D refinement parallel to image recording. Importantly, TranSPHIRE introduces a machine learning-based feedback loop to re-train its picking model to adapt to any given data set live during processing. This elegant approach enables TranSPHIRE to process data more effectively, producing high-quality particle stacks. TranSPHIRE collects and displays all metrics and microscope settings to allow users to quickly evaluate data during acquisition. TranSPHIRE can run on a single work station and also includes the automated processing of filaments.
Collapse
Affiliation(s)
- Markus Stabrin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Fabian Schoenfeld
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
| |
Collapse
|