• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5082026)   Today's Articles (1)
For: Mougiakakou SG, Prountzou A, Iliopoulou D, Nikita KS, Vazeou A, Bartsocas CS. Neural network based glucose - insulin metabolism models for children with Type 1 diabetes. Conf Proc IEEE Eng Med Biol Soc 2008;2006:3545-8. [PMID: 17947036 DOI: 10.1109/iembs.2006.260640] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Number Cited by Other Article(s)
1
Tucker AP, Erdman AG, Schreiner PJ, Ma S, Chow LS. Neural Networks With Gated Recurrent Units Reduce Glucose Forecasting Error Due to Changes in Sensor Location. J Diabetes Sci Technol 2024;18:124-134. [PMID: 35658633 PMCID: PMC10899835 DOI: 10.1177/19322968221100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
2
Tucker AP, Erdman AG, Schreiner PJ, Ma S, Chow LS. Examining Sensor Agreement in Neural Network Blood Glucose Prediction. J Diabetes Sci Technol 2022;16:1473-1482. [PMID: 34109837 PMCID: PMC9631521 DOI: 10.1177/19322968211018246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
3
D’Antoni F, Petrosino L, Sgarro F, Pagano A, Vollero L, Piemonte V, Merone M. Prediction of Glucose Concentration in Children with Type 1 Diabetes Using Neural Networks: An Edge Computing Application. Bioengineering (Basel) 2022;9:bioengineering9050183. [PMID: 35621461 PMCID: PMC9137786 DOI: 10.3390/bioengineering9050183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]  Open
4
GLYFE: review and benchmark of personalized glucose predictive models in type 1 diabetes. Med Biol Eng Comput 2021;60:1-17. [PMID: 34751904 DOI: 10.1007/s11517-021-02437-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/20/2021] [Indexed: 10/19/2022]
5
Kushner T, Breton MD, Sankaranarayanan S. Multi-Hour Blood Glucose Prediction in Type 1 Diabetes: A Patient-Specific Approach Using Shallow Neural Network Models. Diabetes Technol Ther 2020;22:883-891. [PMID: 32324062 DOI: 10.1089/dia.2020.0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
6
Kim DY, Choi DS, Kim J, Chun SW, Gil HW, Cho NJ, Kang AR, Woo J. Developing an Individual Glucose Prediction Model Using Recurrent Neural Network. SENSORS (BASEL, SWITZERLAND) 2020;20:E6460. [PMID: 33198170 PMCID: PMC7696446 DOI: 10.3390/s20226460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
7
Kriventsov S, Lindsey A, Hayeri A. The Diabits App for Smartphone-Assisted Predictive Monitoring of Glycemia in Patients With Diabetes: Retrospective Observational Study. JMIR Diabetes 2020;5:e18660. [PMID: 32960180 PMCID: PMC7539161 DOI: 10.2196/18660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022]  Open
8
Goyal M, Aydas B, Ghazaleh H, Rajasekharan S. CarbMetSim: A discrete-event simulator for carbohydrate metabolism in humans. PLoS One 2020;15:e0209725. [PMID: 32155149 PMCID: PMC7064176 DOI: 10.1371/journal.pone.0209725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/14/2020] [Indexed: 11/18/2022]  Open
9
Li K, Daniels J, Liu C, Herrero P, Georgiou P. Convolutional Recurrent Neural Networks for Glucose Prediction. IEEE J Biomed Health Inform 2020;24:603-613. [DOI: 10.1109/jbhi.2019.2908488] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
10
Martinsson J, Schliep A, Eliasson B, Mogren O. Blood Glucose Prediction with Variance Estimation Using Recurrent Neural Networks. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2019;4:1-18. [PMID: 35415439 PMCID: PMC8982803 DOI: 10.1007/s41666-019-00059-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/26/2019] [Accepted: 10/18/2019] [Indexed: 11/28/2022]
11
Montaser E, Diez JL, Rossetti P, Rashid M, Cinar A, Bondia J. Seasonal Local Models for Glucose Prediction in Type 1 Diabetes. IEEE J Biomed Health Inform 2019;24:2064-2072. [PMID: 31796419 DOI: 10.1109/jbhi.2019.2956704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
12
Faruqui SHA, Du Y, Meka R, Alaeddini A, Li C, Shirinkam S, Wang J. Development of a Deep Learning Model for Dynamic Forecasting of Blood Glucose Level for Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Controlled Trial. JMIR Mhealth Uhealth 2019;7:e14452. [PMID: 31682586 PMCID: PMC6858613 DOI: 10.2196/14452] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/26/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]  Open
13
Li K, Liu C, Zhu T, Herrero P, Georgiou P. GluNet: A Deep Learning Framework for Accurate Glucose Forecasting. IEEE J Biomed Health Inform 2019;24:414-423. [PMID: 31369390 DOI: 10.1109/jbhi.2019.2931842] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
14
Woldaregay AZ, Årsand E, Walderhaug S, Albers D, Mamykina L, Botsis T, Hartvigsen G. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif Intell Med 2019;98:109-134. [DOI: 10.1016/j.artmed.2019.07.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/22/2018] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
15
Rollins DK, Goeddel CE, Matthews SL, Mei Y, Roggendorf A, Littlejohn E, Quinn L, Cinar A. An Extended Static and Dynamic Feedback–Feedforward Control Algorithm for Insulin Delivery in the Control of Blood Glucose Level. Ind Eng Chem Res 2015. [DOI: 10.1021/ie505035r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Kotz K, Cinar A, Mei Y, Roggendorf A, Littlejohn E, Quinn L, Rollins DK. Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control. Ind Eng Chem Res 2014;53:18216-18225. [PMID: 25620845 PMCID: PMC4299404 DOI: 10.1021/ie404119b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 09/11/2014] [Accepted: 11/03/2014] [Indexed: 11/30/2022]
17
Barazandegan M, Ekram F, Kwok E, Gopaluni B, Tulsyan A. Assessment of type II diabetes mellitus using irregularly sampled measurements with missing data. Bioprocess Biosyst Eng 2014;38:615-29. [PMID: 25348655 DOI: 10.1007/s00449-014-1301-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
18
Daskalaki E, Nørgaard K, Züger T, Prountzou A, Diem P, Mougiakakou S. An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models. J Diabetes Sci Technol 2013;7:689-98. [PMID: 23759402 PMCID: PMC3869137 DOI: 10.1177/193229681300700314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
19
Georga EI, Protopappas VC, Ardigo D, Marina M, Zavaroni I, Polyzos D, Fotiadis DI. Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J Biomed Health Inform 2012;17:71-81. [PMID: 23008265 DOI: 10.1109/titb.2012.2219876] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
20
Daskalaki E, Prountzou A, Diem P, Mougiakakou SG. Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diabetes Technol Ther 2012;14:168-74. [PMID: 21992270 DOI: 10.1089/dia.2011.0093] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
21
Balakrishnan NP, Rangaiah GP, Samavedham L. Personalized blood glucose models for exercise, meal and insulin interventions in type 1 diabetic children. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012;2012:1250-1253. [PMID: 23366125 DOI: 10.1109/embc.2012.6346164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
22
Zarkogianni K, Vazeou A, Mougiakakou SG, Prountzou A, Nikita KS. An Insulin Infusion Advisory System Based on Autotuning Nonlinear Model-Predictive Control. IEEE Trans Biomed Eng 2011;58:2467-77. [DOI: 10.1109/tbme.2011.2157823] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
23
Mougiakakou SG, Bartsocas CS, Bozas E, Chaniotakis N, Iliopoulou D, Kouris I, Pavlopoulos S, Prountzou A, Skevofilakas M, Tsoukalis A, Varotsis K, Vazeou A, Zarkogianni K, Nikita KS. SMARTDIAB: a communication and information technology approach for the intelligent monitoring, management and follow-up of type 1 diabetes patients. ACTA ACUST UNITED AC 2010;14:622-33. [PMID: 20123578 DOI: 10.1109/titb.2009.2039711] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
24
Kovács L, Kulcsár B, Bokor J, Benyó Z. Model-based nonlinear optimal blood glucose control of type I diabetes patients. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2008;2008:1607-1610. [PMID: 19162983 DOI: 10.1109/iembs.2008.4649480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
25
Zarkogianni K, Mougiakakou SG, Prountzou A, Vazeou A, Bartsocas CS, Nikita KS. An insulin infusion advisory system for type 1 diabetes patients based on non-linear model predictive control methods. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2007;2007:5972-5. [PMID: 18003374 DOI: 10.1109/iembs.2007.4353708] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA