1
|
Yoon JH, Lee JE, Park SH, Park JY, Kim JH, Lee JM. Comparison of image quality and lesion conspicuity between conventional and deep learning reconstruction in gadoxetic acid-enhanced liver MRI. Insights Imaging 2024; 15:257. [PMID: 39466542 PMCID: PMC11519238 DOI: 10.1186/s13244-024-01825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE To compare the image quality and lesion conspicuity of conventional vs deep learning (DL)-based reconstructed three-dimensional T1-weighted images in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). METHODS This prospective study (NCT05182099) enrolled participants scheduled for gadoxetic acid-enhanced liver MRI due to suspected focal liver lesions (FLLs) who provided signed informed consent. A liver MRI was conducted using a 3-T scanner. T1-weighted images were reconstructed using both conventional and DL-based (AIRTM Recon DL 3D) reconstruction algorithms. Three radiologists independently reviewed the image quality and lesion conspicuity on a 5-point scale. RESULTS Fifty participants (male = 36, mean age 62 ± 11 years) were included for image analysis. The DL-based reconstruction showed significantly higher image quality than conventional images in all phases (3.71-4.40 vs 3.37-3.99, p < 0.001 for all), as well as significantly less noise and ringing artifacts than conventional images (p < 0.05 for all), while also showing significantly altered image texture (p < 0.001 for all). Lesion conspicuity was significantly higher in DL-reconstructed images than in conventional images in the arterial phase (2.15 [95% confidence interval: 1.78, 2.52] vs 2.03 [1.65, 2.40], p = 0.036), but no significant difference was observed in the portal venous phase and hepatobiliary phase (p > 0.05 for all). There was no significant difference in the figure-of-merit (0.728 in DL vs 0.709 in conventional image, p = 0.474). CONCLUSION DL reconstruction provided higher-quality three-dimensional T1-weighted imaging than conventional reconstruction in gadoxetic acid-enhanced liver MRI. CRITICAL RELEVANCE STATEMENT DL reconstruction of 3D T1-weighted images improves image quality and arterial phase lesion conspicuity in gadoxetic acid-enhanced liver MRI compared to conventional reconstruction. KEY POINTS DL reconstruction is feasible for 3D T1-weighted images across different spatial resolutions and phases. DL reconstruction showed superior image quality with reduced noise and ringing artifacts. Hepatic anatomic structures were more conspicuous on DL-reconstructed images.
Collapse
Affiliation(s)
- Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital and College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Lee
- Department of Radiology, Chungnam National University Hospital and College of Medicine, Daejeon, Republic of Korea
| | - So Hyun Park
- Department of Radiology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Jin Young Park
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital and College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital and College of Medicine, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Dong Z, Wald LL, Polimeni JR, Wang F. Single-shot echo planar time-resolved imaging for multi-echo functional MRI and distortion-free diffusion imaging. Magn Reson Med 2024. [PMID: 39428674 DOI: 10.1002/mrm.30327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE To develop a single-shot SNR-efficient distortion-free multi-echo imaging technique for dynamic imaging applications. METHODS Echo planar time-resolved imaging (EPTI) was first introduced as a multi-shot technique for distortion-free multi-echo imaging. This work aims to develop single-shot EPTI (ss-EPTI) to achieve improved robustness to motion/physiological noise, increased temporal resolution, and higher SNR efficiency. A new spatiotemporal encoding that enables reduced phase-encoding blips and minimized echo spacing under the single-shot regime was developed, which improves sampling efficiency and enhances spatiotemporal correlation in the k-TE space for improved reconstruction. A continuous readout with minimized deadtime was employed to optimize SNR efficiency. Moreover, k-TE partial Fourier and simultaneous multi-slice acquisition were integrated for further acceleration. RESULTS ss-EPTI provided distortion-free imaging with densely sampled multi-echo images at standard resolutions (e.g., ˜1.25 to 3 mm) in a single-shot. Improved SNR efficiency was observed in ss-EPTI due to improved motion/physiological-noise robustness and efficient continuous readout. Its ability to eliminate dynamic distortions-geometric changes across dynamics due to field changes induced by physiological variations or eddy currents-further improved the data's temporal stability. For multi-echo fMRI, ss-EPTI's multi-echo images recovered signal dropout in short-T 2 * $$ {\mathrm{T}}_2^{\ast } $$ regions and provided TE-dependent functional information to distinguish non-BOLD noise for further tSNR improvement. For diffusion MRI, it achieved shortened TEs for improved SNR and provided images free from both B0-induced and diffusion-encoding-dependent eddy-current-induced distortions with multi-TE diffusion metrics. CONCLUSION ss-EPTI provides SNR-efficient distortion-free multi-echo imaging with comparable temporal resolutions to ss-EPI, offering a new acquisition tool for dynamic imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Jang A, He X, Liu F. Physics-guided self-supervised learning: Demonstration for generalized RF pulse design. Magn Reson Med 2024. [PMID: 39385438 DOI: 10.1002/mrm.30307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/07/2024] [Accepted: 09/01/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE To introduce a new method for generalized RF pulse design using physics-guided self-supervised learning (GPS), which uses the Bloch equations as the guiding physics model. THEORY AND METHODS The GPS framework consists of a neural network module and a physics module, where the physics module is a Bloch simulator for MRI applications. For RF pulse design, the neural network module maps an input target profile to an RF pulse, which is subsequently loaded into the physics module. Through the supervision of the physics module, the neural network module designs an RF pulse corresponding to the target profile. GPS was applied to design 1D selective,B 1 $$ {B}_1 $$ -insensitive, saturation, and multidimensional RF pulses, each conventionally requiring dedicated design algorithms. We further demonstrate our method's flexibility and versatility by compensating for experimental and scanner imperfections through online adaptation. RESULTS Both simulations and experiments show that GPS can design a variety of RF pulses with corresponding profiles that agree well with the target input. Despite these verifications, GPS-designed pulses have unique differences compared to conventional designs, such as achievingB 1 $$ {B}_1 $$ -insensitivity using different mechanisms and using non-sampled regions of the conventional design to lower its peak power. Experiments, both ex vivo and in vivo, further verify that it can also be used for online adaptation to correct system imperfections, such asB 0 $$ {B}_0 $$ /B 1 + $$ {B}_1^{+} $$ inhomogeneity. CONCLUSION This work demonstrates the generalizability, versatility, and flexibility of the GPS method for designing RF pulses and showcases its utility in several applications.
Collapse
Affiliation(s)
- Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Xingxin He
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Atalık A, Chopra S, Sodickson DK. Accelerating multi-coil MR image reconstruction using weak supervision. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01206-2. [PMID: 39382814 DOI: 10.1007/s10334-024-01206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Deep-learning-based MR image reconstruction in settings where large fully sampled dataset collection is infeasible requires methods that effectively use both under-sampled and fully sampled datasets. This paper evaluates a weakly supervised, multi-coil, physics-guided approach to MR image reconstruction, leveraging both dataset types, to improve both the quality and robustness of reconstruction. A physics-guided end-to-end variational network (VarNet) is pretrained in a self-supervised manner using a 4 × under-sampled dataset following the self-supervised learning via data undersampling (SSDU) methodology. The pre-trained weights are transferred to another VarNet, which is fine-tuned using a smaller, fully sampled dataset by optimizing multi-scale structural similarity (MS-SSIM) loss in image space. The proposed methodology is compared with fully self-supervised and fully supervised training. Reconstruction quality improvements in SSIM, PSNR, and NRMSE when abundant training data is available (the high-data regime), and enhanced robustness when training data is scarce (the low-data regime) are demonstrated using weak supervision for knee and brain MR image reconstructions at 8 × and 10 × acceleration, respectively. Multi-coil physics-guided MR image reconstruction using both under-sampled and fully sampled datasets is achievable with transfer learning and fine-tuning. This methodology can provide improved reconstruction quality in the high-data regime and improved robustness in the low-data regime at high acceleration rates.
Collapse
Affiliation(s)
- Arda Atalık
- Center for Data Science, New York University, 60 Fifth Ave, New York, NY, 10011, USA.
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Sumit Chopra
- Courant Institute of Mathematical Sciences, New York University, 60 Fifth Ave, New York, NY, 10011, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Daniel K Sodickson
- Center for Data Science, New York University, 60 Fifth Ave, New York, NY, 10011, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
5
|
Ayde R, Vornehm M, Zhao Y, Knoll F, Wu EX, Sarracanie M. MRI at low field: A review of software solutions for improving SNR. NMR IN BIOMEDICINE 2024:e5268. [PMID: 39375036 DOI: 10.1002/nbm.5268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/12/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Low magnetic field magnetic resonance imaging (MRI) (B 0 $$ {B}_0 $$ < 1 T) is regaining interest in the magnetic resonance (MR) community as a complementary, more flexible, and cost-effective approach to MRI diagnosis. Yet, the impaired signal-to-noise ratio (SNR) per square root of time, or SNR efficiency, leading in turn to prolonged acquisition times, still challenges its relevance at the clinical level. To address this, researchers investigate various hardware and software solutions to improve SNR efficiency at low field, including the leveraging of latest advances in computing hardware. However, there may not be a single recipe for improving SNR at low field, and it is key to embrace the challenges and limitations of each proposed solution. In other words, suitable solutions depend on the final objective or application envisioned for a low-field scanner and, more importantly, on the characteristics of a specific lowB 0 $$ {B}_0 $$ field. In this review, we aim to provide an overview on software solutions to improve SNR efficiency at low field. First, we cover techniques for efficient k-space sampling and reconstruction. Then, we present post-acquisition techniques that enhance MR images such as denoising and super-resolution. In addition, we summarize recently introduced electromagnetic interference cancellation approaches showing great promises when operating in shielding-free environments. Finally, we discuss the advantages and limitations of these approaches that could provide directions for future applications.
Collapse
Affiliation(s)
- Reina Ayde
- Center for Adaptable MRI Technology, Institute of Medical Sciences, School of Medicine & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Marc Vornehm
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yujiao Zhao
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China
| | - Florian Knoll
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China
| | - Mathieu Sarracanie
- Center for Adaptable MRI Technology, Institute of Medical Sciences, School of Medicine & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Dubljevic N, Moore S, Lauzon ML, Souza R, Frayne R. Effect of MR head coil geometry on deep-learning-based MR image reconstruction. Magn Reson Med 2024; 92:1404-1420. [PMID: 38647191 DOI: 10.1002/mrm.30130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE To investigate whether parallel imaging-imposed geometric coil constraints can be relaxed when using a deep learning (DL)-based image reconstruction method as opposed to a traditional non-DL method. THEORY AND METHODS Traditional and DL-based MR image reconstruction approaches operate in fundamentally different ways: Traditional methods solve a system of equations derived from the image data whereas DL methods use data/target pairs to learn a generalizable reconstruction model. Two sets of head coil profiles were evaluated: (1) 8-channel and (2) 32-channel geometries. A DL model was compared to conjugate gradient SENSE (CG-SENSE) and L1-wavelet compressed sensing (CS) through quantitative metrics and visual assessment as coil overlap was increased. RESULTS Results were generally consistent between experiments. As coil overlap increased, there was a significant (p < 0.001) decrease in performance in most cases for all methods. The decrease was most pronounced for CG-SENSE, and the DL models significantly outperformed (p < 0.001) their non-DL counterparts in all scenarios. CS showed improved robustness to coil overlap and signal-to-noise ratio (SNR) versus CG-SENSE, but had quantitatively and visually poorer reconstructions characterized by blurriness as compared to DL. DL showed virtually no change in performance across SNR and very small changes across coil overlap. CONCLUSION The DL image reconstruction method produced images that were robust to coil overlap and of higher quality than CG-SENSE and CS. This suggests that geometric coil design constraints can be relaxed when using DL reconstruction methods.
Collapse
Affiliation(s)
- Natalia Dubljevic
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stephen Moore
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- O'Brien Centre for the Health Sciences, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Michel Louis Lauzon
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Roberto Souza
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Richard Frayne
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Fujita N, Yokosawa S, Shirai T, Terada Y. Numerical and Clinical Evaluation of the Robustness of Open-source Networks for Parallel MR Imaging Reconstruction. Magn Reson Med Sci 2024; 23:460-478. [PMID: 37518672 PMCID: PMC11447470 DOI: 10.2463/mrms.mp.2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
PURPOSE Deep neural networks (DNNs) for MRI reconstruction often require large datasets for training. Still, in clinical settings, the domains of datasets are diverse, and how robust DNNs are to domain differences between training and testing datasets has been an open question. Here, we numerically and clinically evaluate the generalization of the reconstruction networks across various domains under clinically practical conditions and provide practical guidance on what points to consider when selecting models for clinical application. METHODS We compare the reconstruction performance between four network models: U-Net, the deep cascade of convolutional neural networks (DC-CNNs), Hybrid Cascade, and variational network (VarNet). We used the public multicoil dataset fastMRI for training and testing and performed a single-domain test, where the domains of the dataset used for training and testing were the same, and cross-domain tests, where the source and target domains were different. We conducted a single-domain test (Experiment 1) and cross-domain tests (Experiments 2-4), focusing on six factors (the number of images, sampling pattern, acceleration factor, noise level, contrast, and anatomical structure) both numerically and clinically. RESULTS U-Net had lower performance than the three model-based networks and was less robust to domain shifts between training and testing datasets. VarNet had the highest performance and robustness among the three model-based networks, followed by Hybrid Cascade and DC-CNN. Especially, VarNet showed high performance even with a limited number of training images (200 images/10 cases). U-Net was more robust to domain shifts concerning noise level than the other model-based networks. Hybrid Cascade showed slightly better performance and robustness than DC-CNN, except for robustness to noise-level domain shifts. The results of the clinical evaluations generally agreed with the results of the quantitative metrics. CONCLUSION In this study, we numerically and clinically evaluated the robustness of the publicly available networks using the multicoil data. Therefore, this study provided practical guidance for clinical applications.
Collapse
Affiliation(s)
- Naoto Fujita
- Institute of Applied Physics, University of Tsukuba
| | - Suguru Yokosawa
- FUJIFILM Corporation, Medical Systems Research & Development Center
| | - Toru Shirai
- FUJIFILM Corporation, Medical Systems Research & Development Center
| | | |
Collapse
|
8
|
Rizzuti G, Schakel T, Huttinga NRF, Dankbaar JW, van Leeuwen T, Sbrizzi A. Towards retrospective motion correction and reconstruction for clinical 3D brain MRI protocols with a reference contrast. MAGMA (NEW YORK, N.Y.) 2024; 37:807-823. [PMID: 38758490 PMCID: PMC11452448 DOI: 10.1007/s10334-024-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
OBJECT In a typical MR session, several contrasts are acquired. Due to the sequential nature of the data acquisition process, the patient may experience some discomfort at some point during the session, and start moving. Hence, it is quite common to have MR sessions where some contrasts are well-resolved, while other contrasts exhibit motion artifacts. Instead of repeating the scans that are corrupted by motion, we introduce a reference-guided retrospective motion correction scheme that takes advantage of the motion-free scans, based on a generalized rigid registration routine. MATERIALS AND METHODS We focus on various existing clinical 3D brain protocols at 1.5 Tesla MRI based on Cartesian sampling. Controlled experiments with three healthy volunteers and three levels of motion are performed. RESULTS Radiological inspection confirms that the proposed method consistently ameliorates the corrupted scans. Furthermore, for the set of specific motion tests performed in this study, the quality indexes based on PSNR and SSIM shows only a modest decrease in correction quality as a function of motion complexity. DISCUSSION While the results on controlled experiments are positive, future applications to patient data will ultimately clarify whether the proposed correction scheme satisfies the radiological requirements.
Collapse
Affiliation(s)
- Gabrio Rizzuti
- Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Tim Schakel
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Niek R F Huttinga
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jan Willem Dankbaar
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Tristan van Leeuwen
- Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
- Centrum Wiskunde & Informatica, Science Park Amsterdam 123, 1098 XG, Amsterdam, The Netherlands
| | - Alessandro Sbrizzi
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Hu Y, Gan W, Ying C, Wang T, Eldeniz C, Liu J, Chen Y, An H, Kamilov US. SPICER: Self-supervised learning for MRI with automatic coil sensitivity estimation and reconstruction. Magn Reson Med 2024; 92:1048-1063. [PMID: 38725383 DOI: 10.1002/mrm.30121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE To introduce a novel deep model-based architecture (DMBA), SPICER, that uses pairs of noisy and undersampled k-space measurements of the same object to jointly train a model for MRI reconstruction and automatic coil sensitivity estimation. METHODS SPICER consists of two modules to simultaneously reconstructs accurate MR images and estimates high-quality coil sensitivity maps (CSMs). The first module, CSM estimation module, uses a convolutional neural network (CNN) to estimate CSMs from the raw measurements. The second module, DMBA-based MRI reconstruction module, forms reconstructed images from the input measurements and the estimated CSMs using both the physical measurement model and learned CNN prior. With the benefit of our self-supervised learning strategy, SPICER can be efficiently trained without any fully sampled reference data. RESULTS We validate SPICER on both open-access datasets and experimentally collected data, showing that it can achieve state-of-the-art performance in highly accelerated data acquisition settings (up to10 × $$ 10\times $$ ). Our results also highlight the importance of different modules of SPICER-including the DMBA, the CSM estimation, and the SPICER training loss-on the final performance of the method. Moreover, SPICER can estimate better CSMs than pre-estimation methods especially when the ACS data is limited. CONCLUSION Despite being trained on noisy undersampled data, SPICER can reconstruct high-quality images and CSMs in highly undersampled settings, which outperforms other self-supervised learning methods and matches the performance of the well-known E2E-VarNet trained on fully sampled ground-truth data.
Collapse
Affiliation(s)
- Yuyang Hu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Weijie Gan
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Chunwei Ying
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Tongyao Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Jiaming Liu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Yasheng Chen
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Hongyu An
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Ulugbek S Kamilov
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
10
|
Berkarda Z, Wiedemann S, Wilpert C, Strecker R, Koerzdoerfer G, Nickel D, Bamberg F, Benndorf M, Mayrhofer T, Russe MF, Weiss J, Diallo TD. Deep learning reconstructed T2-weighted Dixon imaging of the spine: Impact on acquisition time and image quality. Eur J Radiol 2024; 178:111633. [PMID: 39067266 DOI: 10.1016/j.ejrad.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE To assess the image quality and impact on acquisition time of a novel deep learning based T2 Dixon sequence (T2DL) of the spine. METHODS This prospective, single center study included n = 44 consecutive patients with a clinical indication for lumbar MRI at our university radiology department between September 2022 and March 2023. MRI examinations were performed on 1.5-T and 3-T scanners (MAGNETOM Aera and Vida; Siemens Healthineers, Erlangen, Germany) using dedicated spine coils. The MR study protocol consisted of our standard clinical protocol, including a T2 weighted standard Dixon sequence (T2std) and an additional T2DL acquisition. The latter used a conventional sampling pattern with a higher parallel acceleration factor. The individual contrasts acquired for Dixon water-fat separation were then reconstructed using a dedicated research application. After reconstruction of the contrast images from k-space data, a conventional water-fat separation was performed to provide derived water images. Two readers with 6 and 4 years of experience in interpreting MSK imaging, respectively, analyzed the images in a randomized fashion. Regarding overall image quality, banding artifacts, artifacts, sharpness, noise, and diagnostic confidence were analyzed using a 5-point Likert scale (from 1 = non-diagnostic to 5 = excellent image quality). Statistical analyses included the Wilcoxon signed-rank test and weighted Cohen's kappa statistics. RESULTS Forty-four patients (mean age 53 years (±18), male sex: 39 %) were prospectively included. Thirty-one examinations were performed on 1.5 T and 13 examinations on 3 T scanners. A sequence was successfully acquired in all patients. The total acquisition time of T2DL was 93 s at 1.5-T and 86 s at 3-T, compared to 235 s, and 257 s, respectively for T2std (reduction of acquisition time: 60.4 % at 1.5-T, and 66.5 % at 3-T; p < 0.01). Overall image quality was rated equal for both sequences (median T2DL: 5[3 -5], and median T2std: 5 [2 -5]; p = 0.57). T2DL showed significantly reduced noise levels compared to T2std (5 [4 -5] versus 4 [3 -4]; p < 0.001). In addition, sharpness was rated to be significantly higher in T2DL (5 [4 -5] versus 4 [3 -5]; p < 0.001). Although T2DL displayed significantly more banding artifacts (5 [2 -5] versus 5 [4 -5]; p < 0.001), no significant impact on readers diagnostic confidence between sequences was noted (T2std: 5 [2 -5], and T2DL: 5 [3 -5]; p = 0.61). Substantial inter-reader and intrareader agreement was observed for T2DL overall image quality (κ: 0.77, and κ: 0.8, respectively). CONCLUSION T2DL is feasible, yields an image quality comparable to the reference standard while substantially reducing the acquisition time.
Collapse
Affiliation(s)
- Zeynep Berkarda
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Simon Wiedemann
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Caroline Wilpert
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ralph Strecker
- EMEA Scientific Partnerships, Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Benndorf
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Mayrhofer
- School of Business Studies, Stralsund University of Applied Sciences, Stralsund, Germany; Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maximilian Frederik Russe
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Thierno D Diallo
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
11
|
Wang J, An D, Haldar JP. The "hidden noise" problem in MR image reconstruction. Magn Reson Med 2024; 92:982-996. [PMID: 38576156 PMCID: PMC11209803 DOI: 10.1002/mrm.30100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/20/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE The performance of modern image reconstruction methods is commonly judged using quantitative error metrics like root mean squared-error and the structural similarity index, which are calculated by comparing reconstructed images against fully sampled reference data. In practice, the reference data will contain noise and is not a true gold standard. In this work, we demonstrate that the "hidden noise" present in reference data can substantially confound standard approaches for ranking different image reconstruction results. METHODS Using both experimental and simulated k-space data and several different image reconstruction techniques, we examined whether there was correlation between performance metrics obtained with typical noisy reference data versus those obtained with higher-quality reference data. RESULTS For conventional performance metrics, the reconstructions that matched best with the higher-quality reference data were substantially different from the reconstructions that matched best with typical noisy reference data. This leads to suboptimal reconstruction results if the performance with respect to noisy reference data is used to select which reconstruction methods/parameters to employ. These issues were reduced when employing alternative error metrics that better account for noise. CONCLUSION Reference data containing hidden noise can substantially mislead the ranking of image reconstruction methods when using conventional error metrics, but this issue can be mitigated with alternative error metrics.
Collapse
Affiliation(s)
- Jiayang Wang
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Di An
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Justin P. Haldar
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| |
Collapse
|
12
|
Siedler TM, Jakob PM, Herold V. Enhancing quality and speed in database-free neural network reconstructions of undersampled MRI with SCAMPI. Magn Reson Med 2024; 92:1232-1247. [PMID: 38748852 DOI: 10.1002/mrm.30114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE We present SCAMPI (Sparsity Constrained Application of deep Magnetic resonance Priors for Image reconstruction), an untrained deep Neural Network for MRI reconstruction without previous training on datasets. It expands the Deep Image Prior approach with a multidomain, sparsity-enforcing loss function to achieve higher image quality at a faster convergence speed than previously reported methods. METHODS Two-dimensional MRI data from the FastMRI dataset with Cartesian undersampling in phase-encoding direction were reconstructed for different acceleration rates for single coil and multicoil data. RESULTS The performance of our architecture was compared to state-of-the-art Compressed Sensing methods and ConvDecoder, another untrained Neural Network for two-dimensional MRI reconstruction. SCAMPI outperforms these by better reducing undersampling artifacts and yielding lower error metrics in multicoil imaging. In comparison to ConvDecoder, the U-Net architecture combined with an elaborated loss-function allows for much faster convergence at higher image quality. SCAMPI can reconstruct multicoil data without explicit knowledge of coil sensitivity profiles. Moreover, it is a novel tool for reconstructing undersampled single coil k-space data. CONCLUSION Our approach avoids overfitting to dataset features, that can occur in Neural Networks trained on databases, because the network parameters are tuned only on the reconstruction data. It allows better results and faster reconstruction than the baseline untrained Neural Network approach.
Collapse
Affiliation(s)
- Thomas M Siedler
- Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Peter M Jakob
- Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Volker Herold
- Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Wang S, Wu R, Jia S, Diakite A, Li C, Liu Q, Zheng H, Ying L. Knowledge-driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un-supervised learning. Magn Reson Med 2024; 92:496-518. [PMID: 38624162 DOI: 10.1002/mrm.30105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Deep learning (DL) has emerged as a leading approach in accelerating MRI. It employs deep neural networks to extract knowledge from available datasets and then applies the trained networks to reconstruct accurate images from limited measurements. Unlike natural image restoration problems, MRI involves physics-based imaging processes, unique data properties, and diverse imaging tasks. This domain knowledge needs to be integrated with data-driven approaches. Our review will introduce the significant challenges faced by such knowledge-driven DL approaches in the context of fast MRI along with several notable solutions, which include learning neural networks and addressing different imaging application scenarios. The traits and trends of these techniques have also been given which have shifted from supervised learning to semi-supervised learning, and finally, to unsupervised learning methods. In addition, MR vendors' choices of DL reconstruction have been provided along with some discussions on open questions and future directions, which are critical for the reliable imaging systems.
Collapse
Affiliation(s)
- Shanshan Wang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ruoyou Wu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sen Jia
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Alou Diakite
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiegen Liu
- Department of Electronic Information Engineering, Nanchang University, Nanchang, China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Leslie Ying
- Department of Biomedical Engineering and Department of Electrical Engineering, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
14
|
Heckel R, Jacob M, Chaudhari A, Perlman O, Shimron E. Deep learning for accelerated and robust MRI reconstruction. MAGMA (NEW YORK, N.Y.) 2024; 37:335-368. [PMID: 39042206 DOI: 10.1007/s10334-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024]
Abstract
Deep learning (DL) has recently emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI), a critical tool in diagnostic radiology. This review paper provides a comprehensive overview of recent advances in DL for MRI reconstruction, and focuses on various DL approaches and architectures designed to improve image quality, accelerate scans, and address data-related challenges. It explores end-to-end neural networks, pre-trained and generative models, and self-supervised methods, and highlights their contributions to overcoming traditional MRI limitations. It also discusses the role of DL in optimizing acquisition protocols, enhancing robustness against distribution shifts, and tackling biases. Drawing on the extensive literature and practical insights, it outlines current successes, limitations, and future directions for leveraging DL in MRI reconstruction, while emphasizing the potential of DL to significantly impact clinical imaging practices.
Collapse
Affiliation(s)
- Reinhard Heckel
- Department of computer engineering, Technical University of Munich, Munich, Germany
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa, 52242, IA, USA
| | - Akshay Chaudhari
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, CA, USA
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shimron
- Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa, 3200004, Israel.
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200004, Israel.
| |
Collapse
|
15
|
Zhang C, Piccini D, Demirel OB, Bonanno G, Roy CW, Yaman B, Moeller S, Shenoy C, Stuber M, Akçakaya M. Large-scale 3D non-Cartesian coronary MRI reconstruction using distributed memory-efficient physics-guided deep learning with limited training data. MAGMA (NEW YORK, N.Y.) 2024; 37:429-438. [PMID: 38743377 DOI: 10.1007/s10334-024-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 05/16/2024]
Abstract
OBJECT To enable high-quality physics-guided deep learning (PG-DL) reconstruction of large-scale 3D non-Cartesian coronary MRI by overcoming challenges of hardware limitations and limited training data availability. MATERIALS AND METHODS While PG-DL has emerged as a powerful image reconstruction method, its application to large-scale 3D non-Cartesian MRI is hindered by hardware limitations and limited availability of training data. We combine several recent advances in deep learning and MRI reconstruction to tackle the former challenge, and we further propose a 2.5D reconstruction using 2D convolutional neural networks, which treat 3D volumes as batches of 2D images to train the network with a limited amount of training data. Both 3D and 2.5D variants of the PG-DL networks were compared to conventional methods for high-resolution 3D kooshball coronary MRI. RESULTS Proposed PG-DL reconstructions of 3D non-Cartesian coronary MRI with 3D and 2.5D processing outperformed all conventional methods both quantitatively and qualitatively in terms of image assessment by an experienced cardiologist. The 2.5D variant further improved vessel sharpness compared to 3D processing, and scored higher in terms of qualitative image quality. DISCUSSION PG-DL reconstruction of large-scale 3D non-Cartesian MRI without compromising image size or network complexity is achieved, and the proposed 2.5D processing enables high-quality reconstruction with limited training data.
Collapse
Affiliation(s)
- Chi Zhang
- Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN, 55455, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International, Lausanne, Switzerland
| | - Omer Burak Demirel
- Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN, 55455, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Gabriele Bonanno
- Advanced Clinical Imaging Technology, Siemens Healthineers International, Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Burhaneddin Yaman
- Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN, 55455, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Chetan Shenoy
- Department of Medicine (Cardiology), University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging, Lausanne, Switzerland
| | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN, 55455, USA.
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Bian W, Jang A, Liu F. Improving quantitative MRI using self-supervised deep learning with model reinforcement: Demonstration for rapid T1 mapping. Magn Reson Med 2024; 92:98-111. [PMID: 38342980 PMCID: PMC11055673 DOI: 10.1002/mrm.30045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE This paper proposes a novel self-supervised learning framework that uses model reinforcement, REference-free LAtent map eXtraction with MOdel REinforcement (RELAX-MORE), for accelerated quantitative MRI (qMRI) reconstruction. The proposed method uses an optimization algorithm to unroll an iterative model-based qMRI reconstruction into a deep learning framework, enabling accelerated MR parameter maps that are highly accurate and robust. METHODS Unlike conventional deep learning methods which require large amounts of training data, RELAX-MORE is a subject-specific method that can be trained on single-subject data through self-supervised learning, making it accessible and practically applicable to many qMRI studies. Using quantitativeT 1 $$ {\mathrm{T}}_1 $$ mapping as an example, the proposed method was applied to the brain, knee and phantom data. RESULTS The proposed method generates high-quality MR parameter maps that correct for image artifacts, removes noise, and recovers image features in regions of imperfect image conditions. Compared with other state-of-the-art conventional and deep learning methods, RELAX-MORE significantly improves efficiency, accuracy, robustness, and generalizability for rapid MR parameter mapping. CONCLUSION This work demonstrates the feasibility of a new self-supervised learning method for rapid MR parameter mapping, that is readily adaptable to the clinical translation of qMRI.
Collapse
Affiliation(s)
- Wanyu Bian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Villegas-Martinez M, de Villedon de Naide V, Muthurangu V, Bustin A. The beating heart: artificial intelligence for cardiovascular application in the clinic. MAGMA (NEW YORK, N.Y.) 2024; 37:369-382. [PMID: 38907767 DOI: 10.1007/s10334-024-01180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Artificial intelligence (AI) integration in cardiac magnetic resonance imaging presents new and exciting avenues for advancing patient care, automating post-processing tasks, and enhancing diagnostic precision and outcomes. The use of AI significantly streamlines the examination workflow through the reduction of acquisition and postprocessing durations, coupled with the automation of scan planning and acquisition parameters selection. This has led to a notable improvement in examination workflow efficiency, a reduction in operator variability, and an enhancement in overall image quality. Importantly, AI unlocks new possibilities to achieve spatial resolutions that were previously unattainable in patients. Furthermore, the potential for low-dose and contrast-agent-free imaging represents a stride toward safer and more patient-friendly diagnostic procedures. Beyond these benefits, AI facilitates precise risk stratification and prognosis evaluation by adeptly analysing extensive datasets. This comprehensive review article explores recent applications of AI in the realm of cardiac magnetic resonance imaging, offering insights into its transformative potential in the field.
Collapse
Affiliation(s)
- Manuel Villegas-Martinez
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Hôpital Xavier Arnozan, Université de Bordeaux-INSERM U1045, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Victor de Villedon de Naide
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Hôpital Xavier Arnozan, Université de Bordeaux-INSERM U1045, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Vivek Muthurangu
- Center for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, University College London, London, WC1N 1EH, UK
| | - Aurélien Bustin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Hôpital Xavier Arnozan, Université de Bordeaux-INSERM U1045, Avenue du Haut Lévêque, 33604, Pessac, France.
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France.
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
18
|
Vashistha R, Almuqbel MM, Palmer NJ, Keenan RJ, Gilbert K, Wells S, Lynch A, Li A, Kingston-Smith S, Melzer TR, Koerzdoerfer G, O'Brien K. Evaluation of deep-learning TSE images in clinical musculoskeletal imaging. J Med Imaging Radiat Oncol 2024. [PMID: 38837669 DOI: 10.1111/1754-9485.13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
In this study, we compared the fat-saturated (FS) and non-FS turbo spin echo (TSE) magnetic resonance imaging knee sequences reconstructed conventionally (conventional-TSE) against a deep learning-based reconstruction of accelerated TSE (DL-TSE) scans. A total of 232 conventional-TSE and DL-TSE image pairs were acquired for comparison. For each consenting patient, one of the clinically acquired conventional-TSE proton density-weighted sequences in the sagittal or coronal planes (FS and non-FS), or in the axial plane (non-FS), was repeated using a research DL-TSE sequence. The DL-TSE reconstruction resulted in an image resolution that increased by at least 45% and scan times that were up to 52% faster compared to the conventional TSE. All images were acquired on a MAGNETOM Vida 3T scanner (Siemens Healthineers AG, Erlangen, Germany). The reporting radiologists, blinded to the acquisition time, were requested to qualitatively compare the DL-TSE against the conventional-TSE reconstructions. Despite having a faster acquisition time, the DL-TSE was rated to depict smaller structures better for 139/232 (60%) cases, equivalent for 72/232 (31%) cases and worse for 21/232 (9%) cases compared to the conventional-TSE. Overall, the radiologists preferred the DL-TSE reconstruction in 124/232 (53%) cases and stated no preference, implying equivalence, for 65/232 (28%) cases. DL-TSE reconstructions enabled faster acquisition times while enhancing spatial resolution and preserving the image contrast. From these results, the DL-TSE provided added or comparable clinical value and utility in less time. DL-TSE offers the opportunity to further reduce the overall examination time and improve patient comfort with no loss in diagnostic accuracy.
Collapse
Affiliation(s)
- Rajat Vashistha
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Mustafa M Almuqbel
- Pacific Radiology Group, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Ross J Keenan
- Pacific Radiology Group, Christchurch, New Zealand
- Department of Radiology, Christchurch Hospital, Christchurch, New Zealand
| | | | - Scott Wells
- Pacific Radiology Group, Christchurch, New Zealand
| | - Andrew Lynch
- Pacific Radiology Group, Christchurch, New Zealand
| | - Andrew Li
- Pacific Radiology Group, Christchurch, New Zealand
| | | | - Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | | | - Kieran O'Brien
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Morrell GR. Editorial for "Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI". J Magn Reson Imaging 2024; 59:2250-2251. [PMID: 37855435 DOI: 10.1002/jmri.29065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Affiliation(s)
- Glen R Morrell
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Lee S, Jung JY, Chung H, Lee HS, Nickel D, Lee J, Lee SY. Comparative analysis of image quality and interchangeability between standard and deep learning-reconstructed T2-weighted spine MRI. Magn Reson Imaging 2024; 109:211-220. [PMID: 38513791 DOI: 10.1016/j.mri.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
RATIONALE AND OBJECTIVES MRI reconstruction of undersampled data using a deep learning (DL) network has been recently performed as part of accelerated imaging. Herein, we compared DL-reconstructed T2-weighted image (T2-WI) to conventional T2-WI regarding image quality and degenerative lesion detection. MATERIALS AND METHODS Sixty-two patients underwent C-spine (n = 27) or L-spine (n = 35) MRIs, including conventional and DL-reconstructed T2-WI. Image quality was assessed with non-uniformity measurement and 4-scale grading of structural visibility. Three readers (R1, R2, R3) independently assessed the presence and types of degenerative lesions. Student t-test was used to compare non-uniformity measurements. Interprotocol and interobserver agreement of structural visibility was analyzed with Wilcoxon signed-rank test and weighted-κ values, respectively. The diagnostic equivalence of degenerative lesion detection between two protocols was assessed with interchangeability test. RESULTS The acquisition time of DL-reconstructed images was reduced to about 21-58% compared to conventional images. Non-uniformity measurement was insignificantly different between the two images (p-value = 0.17). All readers rated DL-reconstructed images as showing the same or superior structural visibility compared to conventional images. Significantly improved visibility was observed at disk margin of C-spine (R1, p < 0.001; R2, p = 0.04) and dorsal root ganglia (R1, p = 0.03; R3, p = 0.02) and facet joint (R1, p = 0.04; R2, p < 0.001; R3, p = 0.03) of L-spine. Interobserver agreements of image quality were variable in each structure. Clinical interchangeability between two protocols for degenerative lesion detection was verified showing <5% in the upper bounds of 95% confidence intervals of agreement rate differences. CONCLUSIONS DL-reconstructed T2-WI demonstrates comparable image quality and diagnostic performance with conventional T2-WI in spine imaging, with reduced acquisition time.
Collapse
Affiliation(s)
- Seungeun Lee
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joon-Yong Jung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| | - Heeyoung Chung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyun-Soo Lee
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Siemens Healthineers, Seoul 06620, Republic of Korea.
| | - Dominik Nickel
- Siemens Healthcare GmbH, Allee am Roethelheimpark, Erlangen 91052, Germany.
| | - Jooyeon Lee
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX 77030, USA.
| | - So-Yeon Lee
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
21
|
Leynes AP, Deveshwar N, Nagarajan SS, Larson PEZ. Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion for Undersampled MRI Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2358-2369. [PMID: 38335079 PMCID: PMC11197470 DOI: 10.1109/tmi.2024.3364911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Magnetic resonance imaging is subject to slow acquisition times due to the inherent limitations in data sampling. Recently, supervised deep learning has emerged as a promising technique for reconstructing sub-sampled MRI. However, supervised deep learning requires a large dataset of fully-sampled data. Although unsupervised or self-supervised deep learning methods have emerged to address the limitations of supervised deep learning approaches, they still require a database of images. In contrast, scan-specific deep learning methods learn and reconstruct using only the sub-sampled data from a single scan. Here, we introduce Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion (DNLINV) that does not require an auto calibration scan region. DNLINV utilizes a Deep Image Prior-type generative modeling approach and relies on approximate Bayesian inference to regularize the deep convolutional neural network. We demonstrate our approach on several anatomies, contrasts, and sampling patterns and show improved performance over existing approaches in scan-specific calibrationless parallel imaging and compressed sensing.
Collapse
|
22
|
Jun Y, Arefeen Y, Cho J, Fujita S, Wang X, Ellen Grant P, Gagoski B, Jaimes C, Gee MS, Bilgic B. Zero-DeepSub: Zero-shot deep subspace reconstruction for rapid multiparametric quantitative MRI using 3D-QALAS. Magn Reson Med 2024; 91:2459-2482. [PMID: 38282270 PMCID: PMC11005062 DOI: 10.1002/mrm.30018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE To develop and evaluate methods for (1) reconstructing 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) time-series images using a low-rank subspace method, which enables accurate and rapid T1 and T2 mapping, and (2) improving the fidelity of subspace QALAS by combining scan-specific deep-learning-based reconstruction and subspace modeling. THEORY AND METHODS A low-rank subspace method for 3D-QALAS (i.e., subspace QALAS) and zero-shot deep-learning subspace method (i.e., Zero-DeepSub) were proposed for rapid and high fidelity T1 and T2 mapping and time-resolved imaging using 3D-QALAS. Using an ISMRM/NIST system phantom, the accuracy and reproducibility of the T1 and T2 maps estimated using the proposed methods were evaluated by comparing them with reference techniques. The reconstruction performance of the proposed subspace QALAS using Zero-DeepSub was evaluated in vivo and compared with conventional QALAS at high reduction factors of up to nine-fold. RESULTS Phantom experiments showed that subspace QALAS had good linearity with respect to the reference methods while reducing biases and improving precision compared to conventional QALAS, especially for T2 maps. Moreover, in vivo results demonstrated that subspace QALAS had better g-factor maps and could reduce voxel blurring, noise, and artifacts compared to conventional QALAS and showed robust performance at up to nine-fold acceleration with Zero-DeepSub, which enabled whole-brain T1, T2, and PD mapping at 1 mm isotropic resolution within 2 min of scan time. CONCLUSION The proposed subspace QALAS along with Zero-DeepSub enabled high fidelity and rapid whole-brain multiparametric quantification and time-resolved imaging.
Collapse
Affiliation(s)
- Yohan Jun
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Yamin Arefeen
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas, Austin, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Shohei Fujita
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Xiaoqing Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - P. Ellen Grant
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
| | - Camilo Jaimes
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Michael S. Gee
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
23
|
Giannakopoulos II, Muckley MJ, Kim J, Breen M, Johnson PM, Lui YW, Lattanzi R. Accelerated MRI reconstructions via variational network and feature domain learning. Sci Rep 2024; 14:10991. [PMID: 38744904 PMCID: PMC11094153 DOI: 10.1038/s41598-024-59705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
We introduce three architecture modifications to enhance the performance of the end-to-end (E2E) variational network (VarNet) for undersampled MRI reconstructions. We first implemented the Feature VarNet, which propagates information throughout the cascades of the network in an N-channel feature-space instead of a 2-channel feature-space. Then, we add an attention layer that utilizes the spatial locations of Cartesian undersampling artifacts to further improve performance. Lastly, we combined the Feature and E2E VarNets into the Feature-Image (FI) VarNet, to facilitate cross-domain learning and boost accuracy. Reconstructions were evaluated on the fastMRI dataset using standard metrics and clinical scoring by three neuroradiologists. Feature and FI VarNets outperformed the E2E VarNet for 4 × , 5 × and 8 × Cartesian undersampling in all studied metrics. FI VarNet secured second place in the public fastMRI leaderboard for 4 × Cartesian undersampling, outperforming all open-source models in the leaderboard. Radiologists rated FI VarNet brain reconstructions with higher quality and sharpness than the E2E VarNet reconstructions. FI VarNet excelled in preserving anatomical details, including blood vessels, whereas E2E VarNet discarded or blurred them in some cases. The proposed FI VarNet enhances the reconstruction quality of undersampled MRI and could enable clinically acceptable reconstructions at higher acceleration factors than currently possible.
Collapse
Affiliation(s)
- Ilias I Giannakopoulos
- Department of Radiology, The Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | | | - Jesi Kim
- Department of Radiology, The Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Matthew Breen
- Department of Radiology, The Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Patricia M Johnson
- Department of Radiology, The Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yvonne W Lui
- Department of Radiology, The Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Riccardo Lattanzi
- Department of Radiology, The Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
24
|
Gohla G, Hauser TK, Bombach P, Feucht D, Estler A, Bornemann A, Zerweck L, Weinbrenner E, Ernemann U, Ruff C. Speeding Up and Improving Image Quality in Glioblastoma MRI Protocol by Deep Learning Image Reconstruction. Cancers (Basel) 2024; 16:1827. [PMID: 38791906 PMCID: PMC11119715 DOI: 10.3390/cancers16101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
A fully diagnostic MRI glioma protocol is key to monitoring therapy assessment but is time-consuming and especially challenging in critically ill and uncooperative patients. Artificial intelligence demonstrated promise in reducing scan time and improving image quality simultaneously. The purpose of this study was to investigate the diagnostic performance, the impact on acquisition acceleration, and the image quality of a deep learning optimized glioma protocol of the brain. Thirty-three patients with histologically confirmed glioblastoma underwent standardized brain tumor imaging according to the glioma consensus recommendations on a 3-Tesla MRI scanner. Conventional and deep learning-reconstructed (DLR) fluid-attenuated inversion recovery, and T2- and T1-weighted contrast-enhanced Turbo spin echo images with an improved in-plane resolution, i.e., super-resolution, were acquired. Two experienced neuroradiologists independently evaluated the image datasets for subjective image quality, diagnostic confidence, tumor conspicuity, noise levels, artifacts, and sharpness. In addition, the tumor volume was measured in the image datasets according to Response Assessment in Neuro-Oncology (RANO) 2.0, as well as compared between both imaging techniques, and various clinical-pathological parameters were determined. The average time saving of DLR sequences was 30% per MRI sequence. Simultaneously, DLR sequences showed superior overall image quality (all p < 0.001), improved tumor conspicuity and image sharpness (all p < 0.001, respectively), and less image noise (all p < 0.001), while maintaining diagnostic confidence (all p > 0.05), compared to conventional images. Regarding RANO 2.0, the volume of non-enhancing non-target lesions (p = 0.963), enhancing target lesions (p = 0.993), and enhancing non-target lesions (p = 0.951) did not differ between reconstruction types. The feasibility of the deep learning-optimized glioma protocol was demonstrated with a 30% reduction in acquisition time on average and an increased in-plane resolution. The evaluated DLR sequences improved subjective image quality and maintained diagnostic accuracy in tumor detection and tumor classification according to RANO 2.0.
Collapse
Affiliation(s)
- Georg Gohla
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tübingen, 72076 Tübingen, Germany; (T.-K.H.); (A.E.); (L.Z.); (E.W.); (U.E.); (C.R.)
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tübingen, 72076 Tübingen, Germany; (T.-K.H.); (A.E.); (L.Z.); (E.W.); (U.E.); (C.R.)
| | - Paula Bombach
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany;
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen Center of Neuro-Oncology, Ottfried-Müller-Straße 27, 72076 Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tübingen, Herrenberger Straße 23, 72070 Tübingen, Germany
| | - Daniel Feucht
- Department of Neurosurgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany;
| | - Arne Estler
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tübingen, 72076 Tübingen, Germany; (T.-K.H.); (A.E.); (L.Z.); (E.W.); (U.E.); (C.R.)
| | - Antje Bornemann
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital Tübingen, Calwerstraße 3, 72076 Tübingen, Germany;
| | - Leonie Zerweck
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tübingen, 72076 Tübingen, Germany; (T.-K.H.); (A.E.); (L.Z.); (E.W.); (U.E.); (C.R.)
| | - Eliane Weinbrenner
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tübingen, 72076 Tübingen, Germany; (T.-K.H.); (A.E.); (L.Z.); (E.W.); (U.E.); (C.R.)
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tübingen, 72076 Tübingen, Germany; (T.-K.H.); (A.E.); (L.Z.); (E.W.); (U.E.); (C.R.)
| | - Christer Ruff
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tübingen, 72076 Tübingen, Germany; (T.-K.H.); (A.E.); (L.Z.); (E.W.); (U.E.); (C.R.)
| |
Collapse
|
25
|
Donners R, Vosshenrich J, Gutzeit A, Bach M, Schlicht F, Obmann MM, Harder D, Breit HC. New-Generation 0.55 T MRI of the Knee-Initial Clinical Experience and Comparison With 3 T MRI. Invest Radiol 2024; 59:298-305. [PMID: 37747455 DOI: 10.1097/rli.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
OBJECTIVES The aim of this study was to compare the detection rate of and reader confidence in 0.55 T knee magnetic resonance imaging (MRI) findings with 3 T knee MRI in patients with acute trauma and knee pain. MATERIALS AND METHODS In this prospective study, 0.55 T and 3 T knee MRI of 25 symptomatic patients (11 women; median age, 38 years) with suspected internal derangement of the knee was obtained in 1 setting. On the 0.55 T system, a commercially available deep learning image reconstruction algorithm was used (Deep Resolve Gain and Deep Resolve Sharp; Siemens Healthineers), which was not available on the 3 T system. Two board-certified radiologists reviewed all images independently and graded image quality parameters, noted MRI findings and their respective reporting confidence level for the presence or absence, as well as graded the bone, cartilage, meniscus, ligament, and tendon lesions. Image quality and reader confidence levels were compared ( P < 0.05 = significant), and clinical findings were correlated between 0.55 T and 3 T MRI by calculation of the intraclass correlation coefficient (ICC). RESULTS Image quality was rated higher at 3 T compared with 0.55 T studies (each P ≤ 0.017). Agreement between 0.55 T and 3 T MRI for the detection and grading of bone marrow edema and fractures, ligament and tendon lesions, high-grade meniscus and cartilage lesions, Baker cysts, and joint effusions was perfect for both readers. Overall identification and grading of cartilage and meniscal lesions showed good agreement between high- and low-field MRI (each ICC > 0.76), with lower agreement for low-grade cartilage (ICC = 0.77) and meniscus lesions (ICC = 0.49). There was no difference in readers' confidence levels for reporting lesions of bone, ligaments, tendons, Baker cysts, and joint effusions between 0.55 T and 3 T (each P > 0.157). Reader reporting confidence was higher for cartilage and meniscal lesions at 3 T (each P < 0.041). CONCLUSIONS New-generation 0.55 T knee MRI, with deep learning-aided image reconstruction, allows for reliable detection and grading of joint lesions in symptomatic patients, but it showed limited accuracy and reader confidence for low-grade cartilage and meniscal lesions in comparison with 3 T MRI.
Collapse
Affiliation(s)
- Ricardo Donners
- From the Department of Radiology, University Hospital Basel (R.D., J.V., M.B., F.S., M.O., D.H., H.-C.B.), Basel, Switzerland; and Institute of Radiology and Nuclear Medicine and Breast Center St. Anna (A.G.), Lucerne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kopp M, Wiesmueller M, Buchbender M, Kesting M, Nagel AM, May MS, Uder M, Roemer FW, Heiss R. MRI of Temporomandibular Joint Disorders: A Comparative Study of 0.55 T and 1.5 T MRI. Invest Radiol 2024; 59:223-229. [PMID: 37493286 PMCID: PMC11446537 DOI: 10.1097/rli.0000000000001008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES Temporomandibular disorders (TMDs) are common and may cause persistent functional limitations and pain. Magnetic resonance imaging (MRI) at 1.5 and 3 T is commonly applied for the evaluation of the temporomandibular joint (TMJ). No evidence is available regarding the feasibility of modern low-field MRI for the assessment of TMDs. The objective of this prospective study was to evaluate the image quality (IQ) of 0.55 T MRI in direct comparison with 1.5 T MRI. MATERIALS AND METHODS Seventeen patients (34 TMJs) with suspected intraarticular TMDs were enrolled, and both 0.55 and 1.5 T MRI were performed on the same day. Two senior readers independently evaluated the IQ focusing on the conspicuity of disc morphology (DM), disc position (DP), and osseous joint morphology (OJM) for each joint. We analyzed the IQ and degree of artifacts using a 4-point Likert scale (LS) at both field strengths. A fully sufficient IQ was defined as an LS score of ≥3. Nonparametric Wilcoxon test for related samples was used for statistical comparison. RESULTS The median IQ for the DM and OJM at 0.55 T was inferior to that at 1.5 T (DM: 3 [interquartile range {IQR}, 3-4] vs 4 [IQR, 4-4]; OJM: 3 [IQR, 3-4] vs 4 [IQR 4-4]; each P < 0.001). For DP, the IQ was comparable (4 [IQR 3-4] vs 4 [IQR 4-4]; P > 0.05). A sufficient diagnostic IQ was maintained for the DM, DP, and OJM in 92% of the cases at 0.55 T and 100% at 1.5 T. Minor image artifacts (LS score of ≥3) were more prevalent at 0.55 T (29%) than at 1.5 T (12%). CONCLUSIONS Magnetic resonance imaging of the TMJ at 0.55 T yields a lower IQ than does MRI at 1.5 T but maintains sufficient diagnostic confidence in the majority of patients. Further improvements are needed for reliable clinical application.
Collapse
|
27
|
Nigam S, Gjelaj E, Wang R, Wei GW, Wang P. Machine Learning and Deep Learning Applications in Magnetic Particle Imaging. J Magn Reson Imaging 2024:10.1002/jmri.29294. [PMID: 38358090 PMCID: PMC11324856 DOI: 10.1002/jmri.29294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, magnetic particle imaging (MPI) has emerged as a promising imaging technique depicting high sensitivity and spatial resolution. It originated in the early 2000s where it proposed a new approach to challenge the low spatial resolution achieved by using relaxometry in order to measure the magnetic fields. MPI presents 2D and 3D images with high temporal resolution, non-ionizing radiation, and optimal visual contrast due to its lack of background tissue signal. Traditionally, the images were reconstructed by the conversion of signal from the induced voltage by generating system matrix and X-space based methods. Because image reconstruction and analyses play an integral role in obtaining precise information from MPI signals, newer artificial intelligence-based methods are continuously being researched and developed upon. In this work, we summarize and review the significance and employment of machine learning and deep learning models for applications with MPI and the potential they hold for the future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Saumya Nigam
- Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824, United States
| | - Elvira Gjelaj
- Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
- Lyman Briggs College, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department of Mathematics, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Guo-Wei Wei
- Department of Mathematics, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, United States
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, Michigan, 48824, United States
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
28
|
Dong Z, Wald LL, Polimeni JR, Wang F. Single-shot Echo Planar Time-resolved Imaging for multi-echo functional MRI and distortion-free diffusion imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577002. [PMID: 38328081 PMCID: PMC10849706 DOI: 10.1101/2024.01.24.577002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Purpose To develop EPTI, a multi-shot distortion-free multi-echo imaging technique, into a single-shot acquisition to achieve improved robustness to motion and physiological noise, increased temporal resolution, and high SNR efficiency for dynamic imaging applications. Methods A new spatiotemporal encoding was developed to achieve single-shot EPTI by enhancing spatiotemporal correlation in k-t space. The proposed single-shot encoding improves reconstruction conditioning and sampling efficiency, with additional optimization under various accelerations to achieve optimized performance. To achieve high SNR efficiency, continuous readout with minimized deadtime was employed that begins immediately after excitation and extends for an SNR-optimized length. Moreover, k-t partial Fourier and simultaneous multi-slice acquisition were integrated to further accelerate the acquisition and achieve high spatial and temporal resolution. Results We demonstrated that ss-EPTI achieves higher tSNR efficiency than multi-shot EPTI, and provides distortion-free imaging with densely-sampled multi-echo images at resolutions ~1.25-3 mm at 3T and 7T-with high SNR efficiency and with comparable temporal resolutions to ss-EPI. The ability of ss-EPTI to eliminate dynamic distortions common in EPI also further improves temporal stability. For fMRI, ss-EPTI also provides early-TE images (e.g., 2.9ms) to recover signal-intensity and functional-sensitivity dropout in challenging regions. The multi-echo images provide TE-dependent information about functional fluctuations, successfully distinguishing noise-components from BOLD signals and further improving tSNR. For diffusion MRI, ss-EPTI provides high-quality distortion-free diffusion images and multi-echo diffusion metrics. Conclusion ss-EPTI provides distortion-free imaging with high image quality, rich multi-echo information, and enhanced efficiency within comparable temporal resolution to ss-EPI, offering a robust and efficient acquisition for dynamic imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Hossain MB, Shinde RK, Oh S, Kwon KC, Kim N. A Systematic Review and Identification of the Challenges of Deep Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction. SENSORS (BASEL, SWITZERLAND) 2024; 24:753. [PMID: 38339469 PMCID: PMC10856856 DOI: 10.3390/s24030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Deep learning (DL) in magnetic resonance imaging (MRI) shows excellent performance in image reconstruction from undersampled k-space data. Artifact-free and high-quality MRI reconstruction is essential for ensuring accurate diagnosis, supporting clinical decision-making, enhancing patient safety, facilitating efficient workflows, and contributing to the validity of research studies and clinical trials. Recently, deep learning has demonstrated several advantages over conventional MRI reconstruction methods. Conventional methods rely on manual feature engineering to capture complex patterns and are usually computationally demanding due to their iterative nature. Conversely, DL methods use neural networks with hundreds of thousands of parameters and automatically learn relevant features and representations directly from the data. Nevertheless, there are some limitations to DL-based techniques concerning MRI reconstruction tasks, such as the need for large, labeled datasets, the possibility of overfitting, and the complexity of model training. Researchers are striving to develop DL models that are more efficient, adaptable, and capable of providing valuable information for medical practitioners. We provide a comprehensive overview of the current developments and clinical uses by focusing on state-of-the-art DL architectures and tools used in MRI reconstruction. This study has three objectives. Our main objective is to describe how various DL designs have changed over time and talk about cutting-edge tactics, including their advantages and disadvantages. Hence, data pre- and post-processing approaches are assessed using publicly available MRI datasets and source codes. Secondly, this work aims to provide an extensive overview of the ongoing research on transformers and deep convolutional neural networks for rapid MRI reconstruction. Thirdly, we discuss several network training strategies, like supervised, unsupervised, transfer learning, and federated learning for rapid and efficient MRI reconstruction. Consequently, this article provides significant resources for future improvement of MRI data pre-processing and fast image reconstruction.
Collapse
Affiliation(s)
- Md. Biddut Hossain
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Rupali Kiran Shinde
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Sukhoon Oh
- Research Equipment Operation Department, Korea Basic Science Institute, Cheongju-si 28119, Chungcheongbuk-do, Republic of Korea;
| | - Ki-Chul Kwon
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Nam Kim
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| |
Collapse
|
30
|
Ekanayake M, Pawar K, Harandi M, Egan G, Chen Z. McSTRA: A multi-branch cascaded swin transformer for point spread function-guided robust MRI reconstruction. Comput Biol Med 2024; 168:107775. [PMID: 38061154 DOI: 10.1016/j.compbiomed.2023.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Deep learning MRI reconstruction methods are often based on Convolutional neural network (CNN) models; however, they are limited in capturing global correlations among image features due to the intrinsic locality of the convolution operation. Conversely, the recent vision transformer models (ViT) are capable of capturing global correlations by applying self-attention operations on image patches. Nevertheless, the existing transformer models for MRI reconstruction rarely leverage the physics of MRI. In this paper, we propose a novel physics-based transformer model titled, the Multi-branch Cascaded Swin Transformers (McSTRA) for robust MRI reconstruction. McSTRA combines several interconnected MRI physics-related concepts with the Swin transformers: it exploits global MRI features via the shifted window self-attention mechanism; it extracts MRI features belonging to different spectral components via a multi-branch setup; it iterates between intermediate de-aliasing and data consistency via a cascaded network with intermediate loss computations; furthermore, we propose a point spread function-guided positional embedding generation mechanism for the Swin transformers which exploit the spread of the aliasing artifacts for effective reconstruction. With the combination of all these components, McSTRA outperforms the state-of-the-art methods while demonstrating robustness in adversarial conditions such as higher accelerations, noisy data, different undersampling protocols, out-of-distribution data, and abnormalities in anatomy.
Collapse
Affiliation(s)
- Mevan Ekanayake
- Monash Biomedical Imaging, Monash University, Australia; Department of Electrical and Computer Systems Engineering, Monash University, Australia.
| | - Kamlesh Pawar
- Monash Biomedical Imaging, Monash University, Australia
| | - Mehrtash Harandi
- Department of Electrical and Computer Systems Engineering, Monash University, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Australia; School of Psychological Sciences, Monash University, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Australia; Department of Data Science and AI, Monash University, Australia
| |
Collapse
|
31
|
Elliott ML, Nielsen JA, Hanford LC, Hamadeh A, Hilbert T, Kober T, Dickerson BC, Hyman BT, Mair RW, Eldaief MC, Buckner RL. Precision Brain Morphometry Using Cluster Scanning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.23.23300492. [PMID: 38234845 PMCID: PMC10793507 DOI: 10.1101/2023.12.23.23300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Measurement error limits the statistical power to detect group differences and longitudinal change in structural MRI morphometric measures (e.g., hippocampal volume, prefrontal thickness). Recent advances in scan acceleration enable extremely fast T1-weighted scans (~1 minute) to achieve morphometric errors that are close to the errors in longer traditional scans. As acceleration allows multiple scans to be acquired in rapid succession, it becomes possible to pool estimates to increase measurement precision, a strategy known as "cluster scanning." Here we explored brain morphometry using cluster scanning in a test-retest study of 40 individuals (12 younger adults, 18 cognitively unimpaired older adults, and 10 adults diagnosed with mild cognitive impairment or Alzheimer's Dementia). Morphometric errors from a single compressed sensing (CS) 1.0mm scan with 6x acceleration (CSx6) were, on average, 12% larger than a traditional scan using the Alzheimer's Disease Neuroimaging Initiative (ADNI) protocol. Pooled estimates from four clustered CSx6 acquisitions led to errors that were 34% smaller than ADNI despite having a shorter total acquisition time. Given a fixed amount of time, a gain in measurement precision can thus be achieved by acquiring multiple rapid scans instead of a single traditional scan. Errors were further reduced when estimates were pooled from eight CSx6 scans (51% smaller than ADNI). Neither pooling across a break nor pooling across multiple scan resolutions boosted this benefit. We discuss the potential of cluster scanning to improve morphometric precision, boost statistical power, and produce more sensitive disease progression biomarkers.
Collapse
Affiliation(s)
- Maxwell L Elliott
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jared A Nielsen
- Department of Psychology, Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA
| | - Lindsay C Hanford
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Aya Hamadeh
- Baylor College of Medicine, Houston, TX 77030
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit
- Alzheimer's Disease Research Center
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradley T Hyman
- Alzheimer's Disease Research Center
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
| | - Ross W Mair
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Athinoula A. Martinos Center for Biomedical Imaging
| | - Mark C Eldaief
- Frontotemporal Disorders Unit
- Alzheimer's Disease Research Center
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Alzheimer's Disease Research Center
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
32
|
Ohashi K, Nagatani Y, Yoshigoe M, Iwai K, Tsuchiya K, Hino A, Kida Y, Yamazaki A, Ishida T. Applicability Evaluation of Full-Reference Image Quality Assessment Methods for Computed Tomography Images. J Digit Imaging 2023; 36:2623-2634. [PMID: 37550519 PMCID: PMC10584745 DOI: 10.1007/s10278-023-00875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/09/2023] Open
Abstract
Image quality assessments (IQA) are an important task for providing appropriate medical care. Full-reference IQA (FR-IQA) methods, such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), are often used to evaluate imaging conditions, reconstruction conditions, and image processing algorithms, including noise reduction and super-resolution technology. However, these IQA methods may be inapplicable for medical images because they were designed for natural images. Therefore, this study aimed to investigate the correlation between objective assessment by some FR-IQA methods and human subjective assessment for computed tomography (CT) images. For evaluation, 210 distorted images were created from six original images using two types of degradation: noise and blur. We employed nine widely used FR-IQA methods for natural images: PSNR, SSIM, feature similarity (FSIM), information fidelity criterion (IFC), visual information fidelity (VIF), noise quality measure (NQM), visual signal-to-noise ratio (VSNR), multi-scale SSIM (MSSSIM), and information content-weighted SSIM (IWSSIM). Six observers performed subjective assessments using the double stimulus continuous quality scale (DSCQS) method. The performance of IQA methods was quantified using Pearson's linear correlation coefficient (PLCC), Spearman rank order correlation coefficient (SROCC), and root-mean-square error (RMSE). Nine FR-IQA methods developed for natural images were all strongly correlated with the subjective assessment (PLCC and SROCC > 0.8), indicating that these methods can apply to CT images. Particularly, VIF had the best values for all three items, PLCC, SROCC, and RMSE. These results suggest that VIF provides the most accurate alternative measure to subjective assessments for CT images.
Collapse
Affiliation(s)
- Kohei Ohashi
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan.
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Japan.
| | - Yukihiro Nagatani
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Makoto Yoshigoe
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Kyohei Iwai
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Keiko Tsuchiya
- Department of Radiology, Omihachiman Community Medical Center, Omihachiman, Japan
| | - Atsunobu Hino
- Department of Radiology, Nagahama Red Cross Hospital, Nagahama, Japan
| | - Yukako Kida
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Asumi Yamazaki
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Ishida
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
33
|
Sihag S, Mateos G, McMillan C, Ribeiro A. Explainable Brain Age Prediction using coVariance Neural Networks. ARXIV 2023:arXiv:2305.18370v3. [PMID: 37808092 PMCID: PMC10557794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In computational neuroscience, there has been an increased interest in developing machine learning algorithms that leverage brain imaging data to provide estimates of "brain age" for an individual. Importantly, the discordance between brain age and chronological age (referred to as "brain age gap") can capture accelerated aging due to adverse health conditions and therefore, can reflect increased vulnerability towards neurological disease or cognitive impairments. However, widespread adoption of brain age for clinical decision support has been hindered due to lack of transparency and methodological justifications in most existing brain age prediction algorithms. In this paper, we leverage coVariance neural networks (VNN) to propose an explanation-driven and anatomically interpretable framework for brain age prediction using cortical thickness features. Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD) and we make two important observations: (i) VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions, (ii) the interpretability offered by VNNs is contingent on their ability to exploit specific eigenvectors of the anatomical covariance matrix. Together, these observations facilitate an explainable and anatomically interpretable perspective to the task of brain age prediction.
Collapse
|
34
|
Farris S, Clapp R, Araya-Polo M. Learning-Based Seismic Velocity Inversion with Synthetic and Field Data. SENSORS (BASEL, SWITZERLAND) 2023; 23:8277. [PMID: 37837108 PMCID: PMC10574958 DOI: 10.3390/s23198277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Building accurate acoustic subsurface velocity models is essential for successful industrial exploration projects. Traditional inversion methods from field-recorded seismograms struggle in regions with complex geology. While deep learning (DL) presents a promising alternative, its robustness using field data in these complicated regions has not been sufficiently explored. In this study, we present a thorough analysis of DL's capability to harness labeled seismograms, whether field-recorded or synthetically generated, for accurate velocity model recovery in a challenging region of the Gulf of Mexico. Our evaluation centers on the impact of training data selection and data augmentation techniques on the DL model's ability to recover velocity profiles. Models trained on field data produced superior results to data obtained using quantitative metrics like Mean Squared Error (MSE), Structural Similarity Index Measure (SSIM), and R2 (R-squared). They also yielded more geologically plausible predictions and sharper geophysical migration images. Conversely, models trained on synthetic data, while less precise, highlighted the potential utility of synthetic training data, especially when labeled field data are scarce. Our work shows that the efficacy of synthetic data-driven models largely depends on bridging the domain gap between training and test data through the use of advanced wave equation solvers and geologic priors. Our results underscore DL's potential to advance velocity model-building workflows in industrial settings using previously labeled field-recorded seismograms. They also highlight the indispensable role of earth scientists' domain expertise in curating synthetic data when field data are lacking.
Collapse
Affiliation(s)
- Stuart Farris
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA;
| | - Robert Clapp
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA;
| | | |
Collapse
|
35
|
Zibetti MVW, De Moura HL, Keerthivasan MB, Regatte RR. Optimizing variable flip angles in magnetization-prepared gradient-echo sequences for efficient 3D-T1ρ mapping. Magn Reson Med 2023; 90:1465-1483. [PMID: 37288538 PMCID: PMC10524308 DOI: 10.1002/mrm.29740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE To optimize the choice of the flip angles of magnetization-prepared gradient-echo sequences for improved accuracy, precision, and speed of 3D-T1ρ mapping. METHODS We propose a new optimization approach for finding variable flip-angle values that improve magnetization-prepared gradient-echo sequences used for 3D-T1ρ mapping. This new approach can improve the accuracy and SNR, while reducing filtering effects. We demonstrate the concept in the three different versions of the magnetization-prepared gradient-echo sequences that are typically used for 3D-T1ρ mapping and evaluate their performance in model agarose phantoms (n = 4) and healthy volunteers (n = 5) for knee joint imaging. We also tested the optimization with sequence parameters targeting faster acquisitions. RESULTS Our results show that optimized variable flip angle can improve the accuracy and the precision of the sequences, seen as a reduction of the mean of normalized absolute difference from about 5%-6% to 3%-4% in model phantoms and from 15%-16% to 11%-13% in the knee joint, and improving SNR from about 12-28 to 22-32 in agarose phantoms and about 7-14 to 13-17 in healthy volunteers. The optimization can also compensate for the loss in quality caused by making the sequence faster. This results in sequence configurations that acquire more data per unit of time with SNR and mean of normalized absolute difference measurements close to its slower versions. CONCLUSION The optimization of the variable flip angle can be used to increase accuracy and precision, and to improve the speed of the typical imaging sequences used for quantitative 3D-T1ρ mapping of the knee joint.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hector L. De Moura
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Ravinder R. Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
36
|
Man C, Lau V, Su S, Zhao Y, Xiao L, Ding Y, Leung GK, Leong AT, Wu EX. Deep learning enabled fast 3D brain MRI at 0.055 tesla. SCIENCE ADVANCES 2023; 9:eadi9327. [PMID: 37738341 PMCID: PMC10516503 DOI: 10.1126/sciadv.adi9327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
In recent years, there has been an intensive development of portable ultralow-field magnetic resonance imaging (MRI) for low-cost, shielding-free, and point-of-care applications. However, its quality is poor and scan time is long. We propose a fast acquisition and deep learning reconstruction framework to accelerate brain MRI at 0.055 tesla. The acquisition consists of a single average three-dimensional (3D) encoding with 2D partial Fourier sampling, reducing the scan time of T1- and T2-weighted imaging protocols to 2.5 and 3.2 minutes, respectively. The 3D deep learning leverages the homogeneous brain anatomy available in high-field human brain data to enhance image quality, reduce artifacts and noise, and improve spatial resolution to synthetic 1.5-mm isotropic resolution. Our method successfully overcomes low-signal barrier, reconstructing fine anatomical structures that are reproducible within subjects and consistent across two protocols. It enables fast and quality whole-brain MRI at 0.055 tesla, with potential for widespread biomedical applications.
Collapse
Affiliation(s)
- Christopher Man
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Vick Lau
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Shi Su
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Yujiao Zhao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Linfang Xiao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Ye Ding
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Gilberto K. K. Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Alex T. L. Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
37
|
Wang S, Wu R, Li C, Zou J, Zhang Z, Liu Q, Xi Y, Zheng H. PARCEL: Physics-Based Unsupervised Contrastive Representation Learning for Multi-Coil MR Imaging. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2659-2670. [PMID: 36219669 DOI: 10.1109/tcbb.2022.3213669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the successful application of deep learning to magnetic resonance (MR) imaging, parallel imaging techniques based on neural networks have attracted wide attention. However, in the absence of high-quality, fully sampled datasets for training, the performance of these methods is limited. And the interpretability of models is not strong enough. To tackle this issue, this paper proposes a Physics-bAsed unsupeRvised Contrastive rEpresentation Learning (PARCEL) method to speed up parallel MR imaging. Specifically, PARCEL has a parallel framework to contrastively learn two branches of model-based unrolling networks from augmented undersampled multi-coil k-space data. A sophisticated co-training loss with three essential components has been designed to guide the two networks in capturing the inherent features and representations for MR images. And the final MR image is reconstructed with the trained contrastive networks. PARCEL was evaluated on two vivo datasets and compared to five state-of-the-art methods. The results show that PARCEL is able to learn essential representations for accurate MR reconstruction without relying on fully sampled datasets. The code will be made available at https://github.com/ternencewu123/PARCEL.
Collapse
|
38
|
Singh D, Monga A, de Moura HL, Zhang X, Zibetti MVW, Regatte RR. Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review. Bioengineering (Basel) 2023; 10:1012. [PMID: 37760114 PMCID: PMC10525988 DOI: 10.3390/bioengineering10091012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) is an essential medical imaging modality that provides excellent soft-tissue contrast and high-resolution images of the human body, allowing us to understand detailed information on morphology, structural integrity, and physiologic processes. However, MRI exams usually require lengthy acquisition times. Methods such as parallel MRI and Compressive Sensing (CS) have significantly reduced the MRI acquisition time by acquiring less data through undersampling k-space. The state-of-the-art of fast MRI has recently been redefined by integrating Deep Learning (DL) models with these undersampled approaches. This Systematic Literature Review (SLR) comprehensively analyzes deep MRI reconstruction models, emphasizing the key elements of recently proposed methods and highlighting their strengths and weaknesses. This SLR involves searching and selecting relevant studies from various databases, including Web of Science and Scopus, followed by a rigorous screening and data extraction process using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. It focuses on various techniques, such as residual learning, image representation using encoders and decoders, data-consistency layers, unrolled networks, learned activations, attention modules, plug-and-play priors, diffusion models, and Bayesian methods. This SLR also discusses the use of loss functions and training with adversarial networks to enhance deep MRI reconstruction methods. Moreover, we explore various MRI reconstruction applications, including non-Cartesian reconstruction, super-resolution, dynamic MRI, joint learning of reconstruction with coil sensitivity and sampling, quantitative mapping, and MR fingerprinting. This paper also addresses research questions, provides insights for future directions, and emphasizes robust generalization and artifact handling. Therefore, this SLR serves as a valuable resource for advancing fast MRI, guiding research and development efforts of MRI reconstruction for better image quality and faster data acquisition.
Collapse
Affiliation(s)
- Dilbag Singh
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (A.M.); (H.L.d.M.); (X.Z.); (M.V.W.Z.)
| | | | | | | | | | - Ravinder R. Regatte
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (A.M.); (H.L.d.M.); (X.Z.); (M.V.W.Z.)
| |
Collapse
|
39
|
Herrmann J, Afat S, Gassenmaier S, Grunz JP, Koerzdoerfer G, Lingg A, Almansour H, Nickel D, Patzer TS, Werner S. Faster Elbow MRI with Deep Learning Reconstruction-Assessment of Image Quality, Diagnostic Confidence, and Anatomy Visualization Compared to Standard Imaging. Diagnostics (Basel) 2023; 13:2747. [PMID: 37685285 PMCID: PMC10486923 DOI: 10.3390/diagnostics13172747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVE The objective of this study was to evaluate a deep learning (DL) reconstruction for turbo spin echo (TSE) sequences of the elbow regarding image quality and visualization of anatomy. MATERIALS AND METHODS Between October 2020 and June 2021, seventeen participants (eight patients, nine healthy subjects; mean age: 43 ± 16 (20-70) years, eight men) were prospectively included in this study. Each patient underwent two examinations: standard MRI, including TSE sequences reconstructed with a generalized autocalibrating partial parallel acquisition reconstruction (TSESTD), and prospectively undersampled TSE sequences reconstructed with a DL reconstruction (TSEDL). Two radiologists evaluated the images concerning image quality, noise, edge sharpness, artifacts, diagnostic confidence, and delineation of anatomical structures using a 5-point Likert scale, and rated the images concerning the detection of common pathologies. RESULTS Image quality was significantly improved in TSEDL (mean 4.35, IQR 4-5) compared to TSESTD (mean 3.76, IQR 3-4, p = 0.008). Moreover, TSEDL showed decreased noise (mean 4.29, IQR 3.5-5) compared to TSESTD (mean 3.35, IQR 3-4, p = 0.004). Ratings for delineation of anatomical structures, artifacts, edge sharpness, and diagnostic confidence did not differ significantly between TSEDL and TSESTD (p > 0.05). Inter-reader agreement was substantial to almost perfect (κ = 0.628-0.904). No difference was found concerning the detection of pathologies between the readers and between TSEDL and TSESTD. Using DL, the acquisition time could be reduced by more than 35% compared to TSESTD. CONCLUSION TSEDL provided improved image quality and decreased noise while receiving equal ratings for edge sharpness, artifacts, delineation of anatomical structures, diagnostic confidence, and detection of pathologies compared to TSESTD. Providing more than a 35% reduction of acquisition time, TSEDL may be clinically relevant for elbow imaging due to increased patient comfort and higher patient throughput.
Collapse
Affiliation(s)
- Judith Herrmann
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany; (J.-P.G.); (T.S.P.)
| | - Gregor Koerzdoerfer
- MR Application Predevelopment, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (G.K.); (D.N.)
| | - Andreas Lingg
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (G.K.); (D.N.)
| | - Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany; (J.-P.G.); (T.S.P.)
| | - Sebastian Werner
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| |
Collapse
|
40
|
刘 羽, 楚 智, 张 煜. [Physical model-based cascaded generative adversarial networks for accelerating quantitative multi-parametric magnetic resonance imaging]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1402-1409. [PMID: 37712278 PMCID: PMC10505569 DOI: 10.12122/j.issn.1673-4254.2023.08.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To explore the feasibility and interpretation of physical model- based cascaded generative adversarial networks for accelerating quantitative multi-echo multi-parametric magnetic resonance imaging using raw multi-echo multicoil k-space data. METHODS A physical model-based cascaded generative adversarial network is proposed to enhance image feature information to obtain high-quality reconstructed images using joint training of multi-domain information and learning of key parameters required for image reconstruction through a system matrix and adaptively optimizing the k-space generator and image generator structures. Raw multi-echo multi-coil k-space data are used to accelerate multi-contrast multi-parametric magnetic resonance imaging. A physically driven deep learning reconstruction method is used to increase the generalization capability and improve the model performance by building a system matrix function instead of direct end-to-end training of the model. RESULTS In terms of overall image quality, the proposed model achieved significant improvements compared to other methods. On an 80- case test set, the average PSNR value of the reconstructed images was 34.13, SSIM was 0.965, and NRMSE was 0.114. In terms of multi-contrast multi-parametric image reconstruction, the model achieved PSNR values of 38.87 for PDW, 35.62 for T1W, and 34.38 for T2* Map, which were significantly better than those of other methods for quantitative evaluation. The model also produced clearer features of the brain gray matter, white matter, and cerebrospinal fluid. Furthermore, compared with the existing methods with a reconstruction time difference of less than 10%, the proposed method achieved the highest improvement of up to 20% in the metrics of PSNR, SSIM, and NRMSE. CONCLUSION Compared with other existing methods, the physical model-based cascaded generative adversarial networks can reconstruct more image details and features, thus improving the quality and accuracy of the reconstructed images.
Collapse
Affiliation(s)
- 羽轩 刘
- />南方医科大学生物医学工程学院//广东省医学图像处理重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University//Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou 510515, China
| | - 智钦 楚
- />南方医科大学生物医学工程学院//广东省医学图像处理重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University//Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou 510515, China
| | - 煜 张
- />南方医科大学生物医学工程学院//广东省医学图像处理重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University//Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou 510515, China
| |
Collapse
|
41
|
Ehmig J, Engel G, Lotz J, Lehmann W, Taheri S, Schilling AF, Seif Amir Hosseini A, Panahi B. MR-Imaging in Osteoarthritis: Current Standard of Practice and Future Outlook. Diagnostics (Basel) 2023; 13:2586. [PMID: 37568949 PMCID: PMC10417111 DOI: 10.3390/diagnostics13152586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that affects millions of people worldwide. Magnetic resonance imaging (MRI) has emerged as a powerful tool for the evaluation and monitoring of OA due to its ability to visualize soft tissues and bone with high resolution. This review aims to provide an overview of the current state of MRI in OA, with a special focus on the knee, including protocol recommendations for clinical and research settings. Furthermore, new developments in the field of musculoskeletal MRI are highlighted in this review. These include compositional MRI techniques, such as T2 mapping and T1rho imaging, which can provide additional important information about the biochemical composition of cartilage and other joint tissues. In addition, this review discusses semiquantitative joint assessment based on MRI findings, which is a widely used method for evaluating OA severity and progression in the knee. We analyze the most common scoring methods and discuss potential benefits. Techniques to reduce acquisition times and the potential impact of deep learning in MR imaging for OA are also discussed, as these technological advances may impact clinical routine in the future.
Collapse
Affiliation(s)
- Jonathan Ehmig
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Günther Engel
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Joachim Lotz
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Wolfgang Lehmann
- Clinic of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany
| | - Shahed Taheri
- Clinic of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany
| | - Arndt F. Schilling
- Clinic of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany
| | - Ali Seif Amir Hosseini
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Babak Panahi
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| |
Collapse
|
42
|
Arefeen Y, Xu J, Zhang M, Dong Z, Wang F, White J, Bilgic B, Adalsteinsson E. Latent signal models: Learning compact representations of signal evolution for improved time-resolved, multi-contrast MRI. Magn Reson Med 2023; 90:483-501. [PMID: 37093775 DOI: 10.1002/mrm.29657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE To improve time-resolved reconstructions by training auto-encoders to learn compact representations of Bloch-simulated signal evolution and inserting the decoder into the forward model. METHODS Building on model-based nonlinear and linear subspace techniques, we train auto-encoders on dictionaries of simulated signal evolution to learn compact, nonlinear, latent representations. The proposed latent signal model framework inserts the decoder portion of the auto-encoder into the forward model and directly reconstructs the latent representation. Latent signal models essentially serve as a proxy for fast and feasible differentiation through the Bloch equations used to simulate signal. This work performs experiments in the context of T2 -shuffling, gradient echo EPTI, and MPRAGE-shuffling. We compare how efficiently auto-encoders represent signal evolution in comparison to linear subspaces. Simulation and in vivo experiments then evaluate if reducing degrees of freedom by incorporating our proxy for the Bloch equations, the decoder portion of the auto-encoder, into the forward model improves reconstructions in comparison to subspace constraints. RESULTS An auto-encoder with 1 real latent variable represents single-tissue fast spin echo, EPTI, and MPRAGE signal evolution to within 0.15% normalized RMS error, enabling reconstruction problems with 3 degrees of freedom per voxel (real latent variable + complex scaling) in comparison to linear models with 4-8 degrees of freedom per voxel. In simulated/in vivo T2 -shuffling and in vivo EPTI experiments, the proposed framework achieves consistent quantitative normalized RMS error improvement over linear approaches. From qualitative evaluation, the proposed approach yields images with reduced blurring and noise amplification in MPRAGE-shuffling experiments. CONCLUSION Directly solving for nonlinear latent representations of signal evolution improves time-resolved MRI reconstructions.
Collapse
Affiliation(s)
- Yamin Arefeen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Junshen Xu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Molin Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Jacob White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Bian W, Jang A, Liu F. Magnetic Resonance Parameter Mapping using Self-supervised Deep Learning with Model Reinforcement. ARXIV 2023:arXiv:2307.13211v1. [PMID: 37547657 PMCID: PMC10402181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
This paper proposes a novel self-supervised learning method, RELAX-MORE, for quantitative MRI (qMRI) reconstruction. The proposed method uses an optimization algorithm to unroll a model-based qMRI reconstruction into a deep learning framework, enabling the generation of highly accurate and robust MR parameter maps at imaging acceleration. Unlike conventional deep learning methods requiring a large amount of training data, RELAX-MORE is a subject-specific method that can be trained on single-subject data through self-supervised learning, making it accessible and practically applicable to many qMRI studies. Using the quantitative T 1 mapping as an example at different brain, knee and phantom experiments, the proposed method demonstrates excellent performance in reconstructing MR parameters, correcting imaging artifacts, removing noises, and recovering image features at imperfect imaging conditions. Compared with other state-of-the-art conventional and deep learning methods, RELAX-MORE significantly improves efficiency, accuracy, robustness, and generalizability for rapid MR parameter mapping. This work demonstrates the feasibility of a new self-supervised learning method for rapid MR parameter mapping, with great potential to enhance the clinical translation of qMRI.
Collapse
Affiliation(s)
- Wanyu Bian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 USA
| | - Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 USA
| | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 USA
| |
Collapse
|
44
|
van de Sande DMJ, Merkofer JP, Amirrajab S, Veta M, van Sloun RJG, Versluis MJ, Jansen JFA, van den Brink JS, Breeuwer M. A review of machine learning applications for the proton MR spectroscopy workflow. Magn Reson Med 2023. [PMID: 37402235 DOI: 10.1002/mrm.29793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
This literature review presents a comprehensive overview of machine learning (ML) applications in proton MR spectroscopy (MRS). As the use of ML techniques in MRS continues to grow, this review aims to provide the MRS community with a structured overview of the state-of-the-art methods. Specifically, we examine and summarize studies published between 2017 and 2023 from major journals in the MR field. We categorize these studies based on a typical MRS workflow, including data acquisition, processing, analysis, and artificial data generation. Our review reveals that ML in MRS is still in its early stages, with a primary focus on processing and analysis techniques, and less attention given to data acquisition. We also found that many studies use similar model architectures, with little comparison to alternative architectures. Additionally, the generation of artificial data is a crucial topic, with no consistent method for its generation. Furthermore, many studies demonstrate that artificial data suffers from generalization issues when tested on in vivo data. We also conclude that risks related to ML models should be addressed, particularly for clinical applications. Therefore, output uncertainty measures and model biases are critical to investigate. Nonetheless, the rapid development of ML in MRS and the promising results from the reviewed studies justify further research in this field.
Collapse
Affiliation(s)
- Dennis M J van de Sande
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Julian P Merkofer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sina Amirrajab
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mitko Veta
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruud J G van Sloun
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Philips Research, Philips Research, Eindhoven, The Netherlands
| | | | - Jacobus F A Jansen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Marcel Breeuwer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- MR R&D - Clinical Science, Philips Healthcare, Best, The Netherlands
| |
Collapse
|
45
|
Kim D, Coll-Font J, Lobos RA, Stäb D, Pang J, Foster A, Garrett T, Bi X, Speier P, Haldar JP, Nguyen C. Single breath-hold CINE imaging with combined simultaneous multislice and region-optimized virtual coils. Magn Reson Med 2023; 90:222-230. [PMID: 36864561 PMCID: PMC10315014 DOI: 10.1002/mrm.29620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE To investigate the feasibility of combining simultaneous multislice (SMS) and region-optimized virtual coils (ROVir) for single breath-hold CINE imaging. METHOD ROVir is a recent virtual coil approach that allows reduced-field of view (FOV) imaging by localizing the signal from a region-of-interest (ROI) and/or suppressing the signal from unwanted spatial regions. In this work, ROVir is used for reduced-FOV SMS bSSFP CINE imaging, which enables whole heart CINE with a single breath-hold acquisition. RESULTS Reduced-FOV CINE with either SMS-only or ROVir-only resulted in significant aliasing, with severely reduced image quality when compared to the full FOV reference CINE, while the visual appearance of aliasing was substantially reduced with the proposed SMS+ROVir. The end diastolic volume, end systolic volume, and ejection fraction obtained using the proposed approach were similar to the clinical reference (correlations of 0.92, 0.94, and 0.88, respectively withp < 0 . 05 $$ p<0.05 $$ in each case, and biases of 0.1, 1.6 mL, and- 0 . 6 % $$ -0.6\% $$ , respectively). No statistically significant differences for these parameters were found with a Wilcoxon rank test (p = 0.96, 0.20, and 0.40, respectively). CONCLUSION We demonstrated that reduced-FOV CINE imaging with SMS+ROVir enables single breath-hold whole-heart imaging without compromising visual image quality or quantitative cardiac function parameters.
Collapse
Affiliation(s)
- Daeun Kim
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Jaume Coll-Font
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Rodrigo A. Lobos
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Limited, Melbourne, Australia
| | - Jianing Pang
- Siemens Medical Solutions USA Inc., Los Angeles, CA
| | - Anna Foster
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Thomas Garrett
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Xiaoming Bi
- Siemens Medical Solutions USA Inc., Los Angeles, CA
| | | | - Justin P. Haldar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Christopher Nguyen
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
46
|
Demirel OB, Zhang C, Yaman B, Gulle M, Shenoy C, Leiner T, Kellman P, Akcakaya M. High-fidelity Database-free Deep Learning Reconstruction for Real-time Cine Cardiac MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083374 PMCID: PMC10976294 DOI: 10.1109/embc40787.2023.10340709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Real-time cine cardiac MRI provides an ECG-free free-breathing alternative to clinical gold-standard ECG-gated breath-hold segmented cine MRI for evaluation of heart function. Real-time cine MRI data acquisition during free breathing snapshot imaging enables imaging of patient cohorts that cannot be imaged with segmented or breath-hold acquisitions, but requires rapid imaging to achieve sufficient spatial-temporal resolutions. However, at high acceleration rates, conventional reconstruction techniques suffer from residual aliasing and temporal blurring, including advanced methods such as compressed sensing with radial trajectories. Recently, deep learning (DL) reconstruction has emerged as a powerful tool in MRI. However, its utility for free-breathing real-time cine MRI has been limited, as database-learning of spatio-temporal correlations with varying breathing and cardiac motion patterns across subjects has been challenging. Zero-shot self-supervised physics-guided deep learning (PG-DL) reconstruction has been proposed to overcome such challenges of database training by enabling subject-specific training. In this work, we adapt zero-shot PG-DL for real-time cine MRI with a spatio-temporal regularization. We compare our method to TGRAPPA, locally low-rank (LLR) regularized reconstruction and database-trained PG-DL reconstruction, both for retrospectively and prospectively accelerated datasets. Results on highly accelerated real-time Cartesian cine MRI show that the proposed method outperforms other reconstruction methods, both visibly in terms of noise and aliasing, and quantitatively.
Collapse
|
47
|
Wang J, Qiao L, Lv H, Lv Z. Deep Transfer Learning-Based Multi-Modal Digital Twins for Enhancement and Diagnostic Analysis of Brain MRI Image. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2407-2419. [PMID: 35439137 DOI: 10.1109/tcbb.2022.3168189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE it aims to adopt deep transfer learning combined with Digital Twins (DTs) in Magnetic Resonance Imaging (MRI) medical image enhancement. METHODS MRI image enhancement method based on metamaterial composite technology is proposed by analyzing the application status of DTs in medical direction and the principle of MRI imaging. On the basis of deep transfer learning, MRI super-resolution deep neural network structure is established. To address the problem that different medical imaging methods have advantages and disadvantages, a multi-mode medical image fusion algorithm based on adaptive decomposition is proposed and verified by experiments. RESULTS the optimal Peak Signal to Noise Ratio (PSNR) of 34.11dB can be obtained by introducing modified linear element and loss function of deep transfer learning neural network structure. The Structural Similarity Coefficient (SSIM) is 85.24%. It indicates that the MRI truthfulness and sharpness obtained by adding composite metasurface are improved greatly. The proposed medical image fusion algorithm has the highest overall score in the subjective evaluation of the six groups of fusion image results. Group III had the highest score in Magnetic Resonance Imaging- Positron Emission Computed Tomography (MRI-PET) image fusion, with a score of 4.67, close to the full score of 5. As for the objective evaluation in group I of Magnetic Resonance Imaging- Single Photon Emission Computed Tomography (MRI-SPECT) images, the Root Mean Square Error (RMSE), Relative Average Spectral Error (RASE) and Spectral Angle Mapper (SAM) are the highest, which are 39.2075, 116.688, and 0.594, respectively. Mutual Information (MI) is 5.8822. CONCLUSION the proposed algorithm has better performance than other algorithms in preserving spatial details of MRI images and color information direction of SPECT images, and the other five groups have achieved similar results.
Collapse
|
48
|
Wen J, Ahmad R, Schniter P. A Conditional Normalizing Flow for Accelerated Multi-Coil MR Imaging. PROCEEDINGS OF MACHINE LEARNING RESEARCH 2023; 202:36926-36939. [PMID: 38084206 PMCID: PMC10712023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Accelerated magnetic resonance (MR) imaging attempts to reduce acquisition time by collecting data below the Nyquist rate. As an ill-posed inverse problem, many plausible solutions exist, yet the majority of deep learning approaches generate only a single solution. We instead focus on sampling from the posterior distribution, which provides more comprehensive information for downstream inference tasks. To do this, we design a novel conditional normalizing flow (CNF) that infers the signal component in the measurement operator's nullspace, which is later combined with measured data to form complete images. Using fastMRI brain and knee data, we demonstrate fast inference and accuracy that surpasses recent posterior sampling techniques for MRI. Code is available at https://github.com/jwen307/mri_cnf.
Collapse
Affiliation(s)
- Jeffrey Wen
- Dept. of ECE, The Ohio State University, Columbus, OH 43210, USA
| | - Rizwan Ahmad
- Dept. of BME, The Ohio State University, Columbus, OH 43210, USA
| | - Philip Schniter
- Dept. of ECE, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Lyu M, Mei L, Huang S, Liu S, Li Y, Yang K, Liu Y, Dong Y, Dong L, Wu EX. M4Raw: A multi-contrast, multi-repetition, multi-channel MRI k-space dataset for low-field MRI research. Sci Data 2023; 10:264. [PMID: 37164976 PMCID: PMC10172399 DOI: 10.1038/s41597-023-02181-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Recently, low-field magnetic resonance imaging (MRI) has gained renewed interest to promote MRI accessibility and affordability worldwide. The presented M4Raw dataset aims to facilitate methodology development and reproducible research in this field. The dataset comprises multi-channel brain k-space data collected from 183 healthy volunteers using a 0.3 Tesla whole-body MRI system, and includes T1-weighted, T2-weighted, and fluid attenuated inversion recovery (FLAIR) images with in-plane resolution of ~1.2 mm and through-plane resolution of 5 mm. Importantly, each contrast contains multiple repetitions, which can be used individually or to form multi-repetition averaged images. After excluding motion-corrupted data, the partitioned training and validation subsets contain 1024 and 240 volumes, respectively. To demonstrate the potential utility of this dataset, we trained deep learning models for image denoising and parallel imaging tasks and compared their performance with traditional reconstruction methods. This M4Raw dataset will be valuable for the development of advanced data-driven methods specifically for low-field MRI. It can also serve as a benchmark dataset for general MRI reconstruction algorithms.
Collapse
Affiliation(s)
- Mengye Lyu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.
| | - Lifeng Mei
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Shoujin Huang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Sixing Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Yi Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Kexin Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Yilong Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, China
| | - Yu Dong
- Department of Neurosurgery, Shenzhen Samii Medical Center, Shenzhen, China
| | - Linzheng Dong
- Department of Neurosurgery, Shenzhen Samii Medical Center, Shenzhen, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Wu Z, Liao W, Yan C, Zhao M, Liu G, Ma N, Li X. Deep learning based MRI reconstruction with transformer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 233:107452. [PMID: 36924533 DOI: 10.1016/j.cmpb.2023.107452] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Magnetic resonance imaging (MRI) has become one of the most powerful imaging techniques in medical diagnosis, yet the prolonged scanning time becomes a bottleneck for application. Reconstruction methods based on compress sensing (CS) have made progress in reducing this cost by acquiring fewer points in the k-space. Traditional CS methods impose restrictions from different sparse domains to regularize the optimization that always requires balancing time with accuracy. Neural network techniques enable learning a better prior from sample pairs and generating the results in an analytic way. In this paper, we propose a deep learning based reconstruction method to restore high-quality MRI images from undersampled k-space data in an end-to-end style. Unlike prior literature adopting convolutional neural networks (CNN), advanced Swin Transformer is used as the backbone of our work, which proved to be powerful in extracting deep features of the image. In addition, we combined the k-space consistency in the output and further improved the quality. We compared our models with several reconstruction methods and variants, and the experiment results proved that our model achieves the best results in samples at low sampling rates. The source code of KTMR could be acquired at https://github.com/BITwzl/KTMR.
Collapse
Affiliation(s)
- Zhengliang Wu
- School of Computer Science & Technology, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing, 100081, China.
| | - Weibin Liao
- School of Computer Science & Technology, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing, 100081, China
| | - Chao Yan
- School of Computer Science & Technology, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing, 100081, China
| | - Mangsuo Zhao
- Department of Neurology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100039, China
| | - Guowen Liu
- Big Data and Engineering Research Center, Beijing Children's Hospital, Capital Medical University, Department of Echocardiography, Beijing, 100045, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China
| | - Ning Ma
- Big Data and Engineering Research Center, Beijing Children's Hospital, Capital Medical University, Department of Echocardiography, Beijing, 100045, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China.
| | - Xuesong Li
- School of Computer Science & Technology, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing, 100081, China.
| |
Collapse
|