1
|
Li Y. A voltage mode grounded capacitance multiplier with widely tunable gain for ultra-low cutoff frequency filter. Sci Prog 2024; 107:368504241276765. [PMID: 39351651 PMCID: PMC11450714 DOI: 10.1177/00368504241276765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
A voltage mode capacitance multiplier for ultra-low frequency physiological signal processing is designed with a circuit model. With the proposed multiplier, a filter can achieve a cutoff frequency of 12 mHz with a 1 pF basic capacitance and a 10 kΩ resistor. The corresponding multiplication factor will be 1.35 × 109. By changing the controlling terminal, the multiplication factor can be widely tuned from 1950 to 1.35 × 109 and the corresponding filter cutoff frequency will be from 12 mHz to 8.15 kHz. According to the circuit model, to further increase the multiplication factor to decrease the chip area, more multiplication stages can be added to the feedback loop.
Collapse
Affiliation(s)
- Yan Li
- School of Applied Science, Beijing Information Science and Technology University, Beijing, P.R. China
| |
Collapse
|
2
|
Broomfield J, Kalofonou M, Bevan CL, Georgiou P. Recent Electrochemical Advancements for Liquid-Biopsy Nucleic Acid Detection for Point-of-Care Prostate Cancer Diagnostics and Prognostics. BIOSENSORS 2024; 14:443. [PMID: 39329818 PMCID: PMC11430765 DOI: 10.3390/bios14090443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Current diagnostic and prognostic tests for prostate cancer require specialised laboratories and have low specificity for prostate cancer detection. As such, recent advancements in electrochemical devices for point of care (PoC) prostate cancer detection have seen significant interest. Liquid-biopsy detection of relevant circulating and exosomal nucleic acid markers presents the potential for minimally invasive testing. In combination, electrochemical devices and circulating DNA and RNA detection present an innovative approach for novel prostate cancer diagnostics, potentially directly within the clinic. Recent research in electrochemical impedance spectroscopy, voltammetry, chronoamperometry and potentiometric sensing using field-effect transistors will be discussed. Evaluation of the PoC relevance of these techniques and their fulfilment of the WHO's REASSURED criteria for medical diagnostics is described. Further areas for exploration within electrochemical PoC testing and progression to clinical implementation for prostate cancer are assessed.
Collapse
Affiliation(s)
- Joseph Broomfield
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Melpomeni Kalofonou
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Charlotte L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Pantelis Georgiou
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
3
|
Alexandrou G, Mantikas KT, Allsopp R, Yapeter CA, Jahin M, Melnick T, Ali S, Coombes RC, Toumazou C, Shaw JA, Kalofonou M. The Evolution of Affordable Technologies in Liquid Biopsy Diagnostics: The Key to Clinical Implementation. Cancers (Basel) 2023; 15:5434. [PMID: 38001698 PMCID: PMC10670715 DOI: 10.3390/cancers15225434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a leading cause of death worldwide, despite many advances in diagnosis and treatment. Precision medicine has been a key area of focus, with research providing insights and progress in helping to lower cancer mortality through better patient stratification for therapies and more precise diagnostic techniques. However, unequal access to cancer care is still a global concern, with many patients having limited access to diagnostic tests and treatment regimens. Noninvasive liquid biopsy (LB) technology can determine tumour-specific molecular alterations in peripheral samples. This allows clinicians to infer knowledge at a DNA or cellular level, which can be used to screen individuals with high cancer risk, personalize treatments, monitor treatment response, and detect metastasis early. As scientific understanding of cancer pathology increases, LB technologies that utilize circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) have evolved over the course of research. These technologies incorporate tumour-specific markers into molecular testing platforms. For clinical translation and maximum patient benefit at a wider scale, the accuracy, accessibility, and affordability of LB tests need to be prioritized and compared with gold standard methodologies in current use. In this review, we highlight the range of technologies in LB diagnostics and discuss the future prospects of LB through the anticipated evolution of current technologies and the integration of emerging and novel ones. This could potentially allow a more cost-effective model of cancer care to be widely adopted.
Collapse
Affiliation(s)
- George Alexandrou
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Katerina-Theresa Mantikas
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Rebecca Allsopp
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE2 7LX, UK; (R.A.); (J.A.S.)
| | - Calista Adele Yapeter
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Myesha Jahin
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Taryn Melnick
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; (S.A.); (R.C.C.)
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; (S.A.); (R.C.C.)
| | - Christofer Toumazou
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Jacqueline A. Shaw
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE2 7LX, UK; (R.A.); (J.A.S.)
| | - Melpomeni Kalofonou
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| |
Collapse
|
4
|
Panahi A, Ghafar-Zadeh E. Emerging Field-Effect Transistor Biosensors for Life Science Applications. Bioengineering (Basel) 2023; 10:793. [PMID: 37508820 PMCID: PMC10375956 DOI: 10.3390/bioengineering10070793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Field-effect transistors (FETs) have gained significant interest and hold great potential as groundbreaking sensing technology in the fields of biosensing and life science research [...].
Collapse
Affiliation(s)
- Abbas Panahi
- Biologically Inspired Sensors and Actuators, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
5
|
Tripathi P, Gulli C, Broomfield J, Alexandrou G, Kalofonou M, Bevan C, Moser N, Georgiou P. Classification of nucleic acid amplification on ISFET arrays using spectrogram-based neural networks. Comput Biol Med 2023; 161:107027. [PMID: 37211003 DOI: 10.1016/j.compbiomed.2023.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The COVID-19 pandemic has highlighted a significant research gap in the field of molecular diagnostics. This has brought forth the need for AI-based edge solutions that can provide quick diagnostic results whilst maintaining data privacy, security and high standards of sensitivity and specificity. This paper presents a novel proof-of-concept method to detect nucleic acid amplification using ISFET sensors and deep learning. This enables the detection of DNA and RNA on a low-cost and portable lab-on-chip platform for identifying infectious diseases and cancer biomarkers. We show that by using spectrograms to transform the signal to the time-frequency domain, image processing techniques can be applied to achieve the reliable classification of the detected chemical signals. Transformation to spectrograms is beneficial as it makes the data compatible with 2D convolutional neural networks and helps gain significant performance improvement over neural networks trained on the time domain data. The trained network achieves an accuracy of 84% with a size of 30kB making it suitable for deployment on edge devices. This facilitates a new wave of intelligent lab-on-chip platforms that combine microfluidics, CMOS-based chemical sensing arrays and AI-based edge solutions for more intelligent and rapid molecular diagnostics.
Collapse
Affiliation(s)
- Prateek Tripathi
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, SW7 2AZ, London, UK.
| | - Costanza Gulli
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, SW7 2AZ, London, UK
| | - Joseph Broomfield
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, SW7 2AZ, London, UK; Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, London, UK
| | - George Alexandrou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, SW7 2AZ, London, UK
| | - Melpomeni Kalofonou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, SW7 2AZ, London, UK
| | - Charlotte Bevan
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, London, UK
| | - Nicolas Moser
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, SW7 2AZ, London, UK
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
6
|
Lab-on-a-chip systems for cancer biomarker diagnosis. J Pharm Biomed Anal 2023; 226:115266. [PMID: 36706542 DOI: 10.1016/j.jpba.2023.115266] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Lab-on-a-chip (LOC) or micro total analysis system is one of the microfluidic technologies defined as the adaptation, miniaturization, integration, and automation of analytical laboratory procedures into a single instrument or "chip". In this article, we review developments over the past five years in the application of LOC biosensors for the detection of different types of cancer. Microfluidics encompasses chemistry and biotechnology skills and has revolutionized healthcare diagnosis. Superior to traditional cell culture or animal models, microfluidic technology has made it possible to reconstruct functional units of organs on chips to study human diseases such as cancer. LOCs have found numerous biomedical applications over the past five years, including integrated bioassays, cell analysis, metabolomics, drug discovery and delivery systems, tissue and organ physiology and disease modeling, and personalized medicine. This review provides an overview of the latest developments in microfluidic-based cancer research, with pros, cons, and prospects.
Collapse
|
7
|
Xu J, Zhang B, Zhang Y, Mai L, Hu W, Chen CJ, Liu JT, Zhu G. Recent advances in disease diagnosis based on electrochemical-optical dual-mode detection method. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Zeng J, Kuang L, Cicatiello C, Sinha A, Moser N, Boutelle M, Georgiou P. A LoC Ion Imaging Platform for Spatio-Temporal Characterisation of Ion-Selective Membranes. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:545-556. [PMID: 35763475 DOI: 10.1109/tbcas.2022.3186742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, a complete Lab-on-Chip (LoC) ion imaging platform for analysing Ion-Selective Membranes (ISM) using CMOS ISFET arrays is presented. An array of 128 × 128 ISFET pixels is employed with each pixel featuring 4 transistors to bias the ISFET to a common drain amplifier. Column-level 2-step readout circuits are designed to compensate for array offset variations in a range of up to ±1 V. The chemical signal associated with a change in ionic concentration is stored and fed back to a programmable gain instrumentation amplifier for compensation and signal amplification through a global system feedback loop. This column-parallel signal pipeline also integrates an 8-bit single slope ADC and an 8-bit R-2R DAC to quantise the processed pixel output. Designed and fabricated in the TSMC 180 nm BCD process, the System-on-Chip (SoC) operates in real time with a maximum frame rate of 1000 fps, whilst occupying a silicon area of 2.3 mm × 4.5 mm. The readout platform features a high-speed digital system to perform system-level feedback compensation with a USB 3.0 interface for data streaming. With this platform we show the first reported analysis and characterisation of ISMs using an ISFETs array through capturing real-time high-speed spatio-temporal information at a resolution of 16 μm in 1000 fps, extracting time-response and sensitivity. This work paves the way of understanding the electrochemical response of ISMs, which are widely used in various biomedical applications.
Collapse
|
9
|
Wormald BW, Moser N, deSouza NM, Mantikas KT, Malpartida-Cardenas K, Pennisi I, Ind TEJ, Vroobel K, Kalofonou M, Rodriguez-Manzano J, Georgiou P. Lab-on-chip assay of tumour markers and human papilloma virus for cervical cancer detection at the point-of-care. Sci Rep 2022; 12:8750. [PMID: 35610285 PMCID: PMC9128326 DOI: 10.1038/s41598-022-12557-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Cervical cancer affects over half a million people worldwide each year, the majority of whom are in resource-limited settings where cytology screening is not available. As persistent human papilloma virus (HPV) infections are a key causative factor, detection of HPV strains now complements cytology where screening services exist. This work demonstrates the efficacy of a handheld Lab-on-Chip (LoC) device, with an external sample extraction process, in detecting cervical cancer from biopsy samples. The device is based on Ion-Sensitive Field-Effect Transistor (ISFET) sensors used in combination with loop-mediated isothermal amplification (LAMP) assays, to amplify HPV DNA and human telomerase reverse transcriptase (hTERT) mRNA. These markers were selected because of their high levels of expression in cervical cancer cells, but low to nil expression in normal cervical tissue. The achieved analytical sensitivity for the molecular targets resolved down to a single copy per reaction for the mRNA markers, achieving a limit of detection of 102 for hTERT. In the tissue samples, HPV-16 DNA was present in 4/5 malignant and 2/5 benign tissues, with HPV-18 DNA being present in 1/5 malignant and 1/5 benign tissues. hTERT mRNA was detected in all malignant and no benign tissues, with the demonstrated pilot data to indicate the potential for using the LoC in cervical cancer screening in resource-limited settings on a large scale.
Collapse
Affiliation(s)
- Benjamin W Wormald
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, London, SW7 3RP, UK
| | - Nicolas Moser
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2BT, UK
| | - Nandita M deSouza
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, London, SW7 3RP, UK
| | - Katerina-Theresa Mantikas
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2BT, UK
| | - Kenny Malpartida-Cardenas
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2BT, UK
| | - Ivana Pennisi
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, London, W2 1NY, UK
| | - Thomas E J Ind
- Department of Surgical Oncology, Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Katherine Vroobel
- Department of Pathology, Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Melpomeni Kalofonou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2BT, UK
| | - Jesus Rodriguez-Manzano
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, London, W2 1NY, UK
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2BT, UK.
| |
Collapse
|
10
|
|
11
|
Recent advances in ion‐sensitive field‐effect transistors for biosensing applications. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
12
|
Jahin M, Fenech-Salerno B, Moser N, Georgiou P, Flanagan J, Toumazou C, Mateo SD, Kalofonou M. Detection of MGMT methylation status using a Lab-on-Chip compatible isothermal amplification method. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7385-7389. [PMID: 34892804 DOI: 10.1109/embc46164.2021.9630776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The growing cancer burden necessitates the development of cost-effective solutions that provide rapid, precise and personalised information to improve patient outcome. The aim of this study was to develop a novel, Lab-on-Chip compatible method for the detection and quantification of DNA methylation for MGMT, a well-established molecular biomarker for glioblastoma, with direct clinical translation as a predictive target. A Lab-on-Chip compatible isothermal amplification method (LAMP) was used to test its efficacy for detection of sequence-specific methylated regions of MGMT, with the method's specificity and sensitivity to have been compared against gold-standards (MethyLight, JumpStart). Our LAMP primer combinations were shown to be specific to the MGMT methylated region, while sensitivity assays determined that the amplification methods were capable of running at clinically relevant DNA concentrations of 0.2 - 20 ng/µL. For the first time, the ability to detect the presence of DNA methylation on bisulfite converted DNA was demonstrated on a Lab-on-Chip setup, laying the foundation for future applications of this platform to other epigenetic biomarkers in a point-of-care setting.
Collapse
|
13
|
Wormald B, Rodriguez-Manzano J, Moser N, Pennisi I, Ind TEJ, Vroobel K, Attygalle A, Georgiou P, deSouza NM. Loop-Mediated Isothermal Amplification Assay for Detecting Tumor Markers and Human Papillomavirus: Accuracy and Supplemental Diagnostic Value to Endovaginal MRI in Cervical Cancer. Front Oncol 2021; 11:747614. [PMID: 34790573 PMCID: PMC8591099 DOI: 10.3389/fonc.2021.747614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To establish the sensitivity and specificity of a human papillomavirus (HPV) and tumor marker DNA/mRNA assay for detecting cervical cancer that is transferrable to a Lab-on-a-chip platform and determine its diagnostic benefit in early stage disease when used in conjunction with high-resolution endovaginal magnetic resonance imaging (MRI). METHODS Forty-one patients (27 with Stage1 cervical cancer [Group1] and 14 non-cancer HPV negative controls [Group2]) had DNA and RNA extracted from cervical cytology swab samples. HPV16, HPV18, hTERT, TERC/GAPDH and MYC/GAPDH concentration was established using a loop mediated isothermal amplification (LAMP) assay. Thresholds for tumor marker detection for Group1 were set from Group2 analysis (any hTERT, TERC/GAPDH 3.12, MYC/GAPDH 0.155). Group 1 participants underwent endovaginal MRI. Sensitivity and specificity for cancer detection by LAMP and MRI individually and combined was documented by comparison to pathology. RESULTS Sensitivity and specificity for cancer detection was 68.8% and 77.8% if any tumor marker was positive regardless of HPV status (scenario1), and 93.8% and 55.8% if tumor marker or HPV were positive (scenario 2). Adding endovaginal MRI improved specificity to 88.9% in scenario 1 (sensitivity 68.8%) and to 77.8%% in scenario2 (sensitivity 93.8%). CONCLUSION Specificity for cervical cancer detection using a LAMP assay is superior with tumor markers; low sensitivity is improved by HPV detection. Accuracy for early stage cervical cancer detection is optimal using a spatially multiplexed tumor marker/HPV LAMP assay together with endovaginal MRI.
Collapse
Affiliation(s)
- Benjamin Wormald
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jesus Rodriguez-Manzano
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Nicolas Moser
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Ivana Pennisi
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Thomas E. J. Ind
- Departmentof Surgical Oncology, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Katherine Vroobel
- Department of Histopathology, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ayoma Attygalle
- Department of Histopathology, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Pantelis Georgiou
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Nandita M. deSouza
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- MRI Unit, Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| |
Collapse
|
14
|
Zhang J, Alexandrou G, Toumazou C, Kalofonou M. Automating the Design of Cancer Specific DNA Probes Using Computational Algorithms. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1852-1856. [PMID: 34891648 DOI: 10.1109/embc46164.2021.9630589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper introduces a novel Python script which automates the design process of cancer variant-specific DNA probes, based on the amplification method LAMP (Loop-Mediated Isothermal Amplification). With just an input of the DNA sequence and the mutation base location, the script outputs suggestions of two best fitting primer sets for a given target, together with an estimated working efficiency. The script also implements a feature of 'script training', using experimentally-validated primers as a benchmark for primer design optimisation. The proposed script has been tested using the gene sequences of ESR1 p.E380Q and ESR1 p.Y537S cancer specific mutations, with the results to closely resemble the experimentally validated primer sets. Creating a rapid LAMP primer design utility allows LAMP to be more easily used as a molecular method for assay development in Lab-on-Chip (LoC) systems to track mutational profiles of variant-specific assays.
Collapse
|
15
|
Zeng J, Kuang L, Cacho-Soblechero M, Georgiou P. An Ultra-High Frame Rate Ion Imaging Platform Using ISFET Arrays With Real-Time Compression. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:820-833. [PMID: 34406947 DOI: 10.1109/tbcas.2021.3105328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, a Lab-on-Chip platform with ultra-high throughput and real-time image compression for high speed ion imaging is presented. The sensing front-end comprises of a CMOS ISFET array with sensors biased in velocity saturation for a linear pH-to-current conversion and high spatial and temporal resolution. An array of 128 × 128 pixels is designed with a pixel size of 13.5 μm × 10.5 μm. In-pixel reset switches are applied for offset compensation, by asynchronously resetting the floating gate of the ISFET to a known fixed potential. Additionally, each row of pixels is processed by a current mode signal pipeline with auto zeroing functionality to remove fixed pattern noise, followed by an on-chip 1 MS/s 8-bit row-parallel single slope ADC. Fabricated in standard TSMC 180 nm BCD process, the entire system-on-chip occupies a silicon area of 2 mm × 2 mm, and achieves a frame rate of 6100 fps (7800 fps from simulation). A high speed 25 ms-latency readout platform based on a USB 3.0 interface and standard JPEG is presented for real-time ion imaging and image compression respectively, while an optimised JPEG algorithm is also designed and verified for a higher compression ratio without sacrificing image quality. We demonstrate real-time ion image visualisation by sensing high speed ion diffusion at 6100 fps, which is more than two times faster than the current state-of-the-art.
Collapse
|