1
|
Tshilate TS, Ishengoma E, Rhode C. Construction of a high-density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae). Anim Genet 2024; 55:744-760. [PMID: 38945682 DOI: 10.1111/age.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/23/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Haliotis midae is one of the most important molluscs in South African commercial aquaculture. In this study, a high-resolution integrated linkage map was constructed, and QTL identified using 2b-RADseq for genotyping SNPs in three families. The final integrated linkage map was composed by merging the individual family maps, resulting in 3290 informative SNPs mapping to 18 linkage groups, conforming to the known haploid chromosome number for H. midae. The total map spanned 1798.25 cM with an average marker interval of 0.55 cM, representing a genome coverage of 98.76%. QTL analysis, across all three families, resulted in a total of five QTL identified for growth-related traits, shell width, shell length, and total body weight. For shell width and total body weight, one QTL was identified for each trait respectively, whilst three QTL were identified for shell length. The identified QTL respectively explained between 7.20% and 11.40% of the observed phenotypic variance. All three traits were significantly correlated (r = 0.862-0.970; p < 0.01) and shared overlapping QTL. The QTL for growth traits were mapped back to the H. midae draft genome and BLAST searches revealed the identity of candidate genes, such as egf-1, megf10, megf6, tnx, sevp1, kcp, notch1, and scube2 with possible functional roles in H. midae growth. The constructed high-density linkage map and mapped QTL have given valuable insights regarding the genetic architecture of growth-related traits and will be important genetic resources for marker-assisted selection. It remains, however, important to validate causal variants through linkage disequilibrium fine mapping in future.
Collapse
Affiliation(s)
| | - Edson Ishengoma
- Department of Genetics, Stellenbosch University, Matieland, South Africa
- Mkwawa University College of Education, University of Dar es Salaam, Iringa, Tanzania
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
2
|
Sharma D, Kumari A, Sharma P, Singh A, Sharma A, Mir ZA, Kumar U, Jan S, Parthiban M, Mir RR, Bhati P, Pradhan AK, Yadav A, Mishra DC, Budhlakoti N, Yadav MC, Gaikwad KB, Singh AK, Singh GP, Kumar S. Meta-QTL analysis in wheat: progress, challenges and opportunities. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:247. [PMID: 37975911 DOI: 10.1007/s00122-023-04490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Wheat, an important cereal crop globally, faces major challenges due to increasing global population and changing climates. The production and productivity are challenged by several biotic and abiotic stresses. There is also a pressing demand to enhance grain yield and quality/nutrition to ensure global food and nutritional security. To address these multifaceted concerns, researchers have conducted numerous meta-QTL (MQTL) studies in wheat, resulting in the identification of candidate genes that govern these complex quantitative traits. MQTL analysis has successfully unraveled the complex genetic architecture of polygenic quantitative traits in wheat. Candidate genes associated with stress adaptation have been pinpointed for abiotic and biotic traits, facilitating targeted breeding efforts to enhance stress tolerance. Furthermore, high-confidence candidate genes (CGs) and flanking markers to MQTLs will help in marker-assisted breeding programs aimed at enhancing stress tolerance, yield, quality and nutrition. Functional analysis of these CGs can enhance our understanding of intricate trait-related genetics. The discovery of orthologous MQTLs shared between wheat and other crops sheds light on common evolutionary pathways governing these traits. Breeders can leverage the most promising MQTLs and CGs associated with multiple traits to develop superior next-generation wheat cultivars with improved trait performance. This review provides a comprehensive overview of MQTL analysis in wheat, highlighting progress, challenges, validation methods and future opportunities in wheat genetics and breeding, contributing to global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Divya Sharma
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Priya Sharma
- Department of Botany, University of Delhi, Delhi, India
| | - Anupma Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Anshu Sharma
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | - Sofora Jan
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - M Parthiban
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Reyazul Rouf Mir
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Pradeep Bhati
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | - Anjan Kumar Pradhan
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Aakash Yadav
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | | | - Neeraj Budhlakoti
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mahesh C Yadav
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Kiran B Gaikwad
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | | | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India.
| |
Collapse
|
3
|
de la Herrán R, Hermida M, Rubiolo JA, Gómez-Garrido J, Cruz F, Robles F, Navajas-Pérez R, Blanco A, Villamayor PR, Torres D, Sánchez-Quinteiro P, Ramirez D, Rodríguez ME, Arias-Pérez A, Cross I, Duncan N, Martínez-Peña T, Riaza A, Millán A, De Rosa MC, Pirolli D, Gut M, Bouza C, Robledo D, Rebordinos L, Alioto T, Ruíz-Rejón C, Martínez P. A chromosome-level genome assembly enables the identification of the follicule stimulating hormone receptor as the master sex-determining gene in the flatfish Solea senegalensis. Mol Ecol Resour 2023; 23:886-904. [PMID: 36587276 DOI: 10.1111/1755-0998.13750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 single nucleotide polymorphism variants in the follicle stimulating hormone receptor (fshr) consistent with an XX/XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. The fshr gene displayed differential expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 nonsynonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testis.
Collapse
Affiliation(s)
- Roberto de la Herrán
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel Hermida
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Juan Andres Rubiolo
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Jèssica Gómez-Garrido
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain
| | - Fernando Cruz
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain
| | - Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Rafael Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Andres Blanco
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paula Rodriguez Villamayor
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Dorinda Torres
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Sánchez-Quinteiro
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Daniel Ramirez
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Maria Esther Rodríguez
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Alberto Arias-Pérez
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Ismael Cross
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Neil Duncan
- IRTA Sant Carles de la Rapita, Tarragona, Spain
| | | | - Ana Riaza
- Stolt Sea Farm SA, Departamento I+D, A Coruña, Spain
| | | | - M Cristina De Rosa
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR c/o Catholic University of Rome, Rome, Italy
| | - Davide Pirolli
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR c/o Catholic University of Rome, Rome, Italy
| | - Marta Gut
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain
| | - Carmen Bouza
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Laureana Rebordinos
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Tyler Alioto
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmelo Ruíz-Rejón
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
4
|
Vervalle JA, Costantini L, Lorenzi S, Pindo M, Mora R, Bolognesi G, Marini M, Lashbrooke JG, Tobutt KR, Vivier MA, Roodt-Wilding R, Grando MS, Bellin D. A high-density integrated map for grapevine based on three mapping populations genotyped by the Vitis18K SNP chip. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4371-4390. [PMID: 36271055 PMCID: PMC9734222 DOI: 10.1007/s00122-022-04225-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We present a high-density integrated map for grapevine, allowing refinement and improved understanding of the grapevine genome, while demonstrating the applicability of the Vitis18K SNP chip for linkage mapping. The improvement of grapevine through biotechnology requires identification of the molecular bases of target traits by studying marker-trait associations. The Vitis18K SNP chip provides a useful genotyping tool for genome-wide marker analysis. Most linkage maps are based on single mapping populations, but an integrated map can increase marker density and show order conservation. Here we present an integrated map based on three mapping populations. The parents consist of the well-known wine cultivars 'Cabernet Sauvignon', 'Corvina' and 'Rhine Riesling', the lesser-known wine variety 'Deckrot', and a table grape selection, G1-7720. Three high-density population maps with an average inter-locus gap ranging from 0.74 to 0.99 cM were developed. These maps show high correlations (0.9965-0.9971) with the reference assembly, containing only 93 markers with large order discrepancies compared to expected physical positions, of which a third is consistent across multiple populations. Moreover, the genetic data aid the further refinement of the grapevine genome assembly, by anchoring 104 yet unanchored scaffolds. From these population maps, an integrated map was constructed which includes 6697 molecular markers and reduces the inter-locus gap distance to 0.60 cM, resulting in the densest integrated map for grapevine thus far. A small number of discrepancies, mainly of short distance, involve 88 markers that remain conflictual across maps. The integrated map shows similar collinearity to the reference assembly (0.9974) as the single maps. This high-density map increases our understanding of the grapevine genome and provides a useful tool for its further characterization and the dissection of complex traits.
Collapse
Affiliation(s)
- Jessica A Vervalle
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
- ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Laura Costantini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Riccardo Mora
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giada Bolognesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Martina Marini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Justin G Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Ken R Tobutt
- ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Melané A Vivier
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Rouvay Roodt-Wilding
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Maria Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
5
|
Hermida M, Robledo D, Díaz S, Costas D, Bruzos AL, Blanco A, Pardo BG, Martínez P. The first high-density genetic map of common cockle (Cerastoderma edule) reveals a major QTL controlling shell color variation. Sci Rep 2022; 12:16971. [PMID: 36216849 PMCID: PMC9551087 DOI: 10.1038/s41598-022-21214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022] Open
Abstract
Shell color shows broad variation within mollusc species and despite information on the genetic pathways involved in shell construction and color has recently increased, more studies are needed to understand its genetic architecture. The common cockle (Cerastoderma edule) is a valuable species from ecological and commercial perspectives which shows important variation in shell color across Northeast Atlantic. In this study, we constructed a high-density genetic map, as a tool for screening common cockle genome, which was applied to ascertain the genetic basis of color variation in the species. The consensus genetic map comprised 19 linkage groups (LGs) in accordance with the cockle karyotype (2n = 38) and spanned 1073 cM, including 730 markers per LG and an inter-marker distance of 0.13 cM. Five full-sib families showing segregation for several color-associated traits were used for a genome-wide association study and a major QTL on chromosome 13 associated to different color-traits was detected. Mining on this genomic region revealed several candidate genes related to shell construction and color. A genomic region previously reported associated with divergent selection in cockle distribution overlapped with this QTL suggesting its putative role on adaptation.
Collapse
Affiliation(s)
- Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Seila Díaz
- Genomes and Disease Group, Department of Zoology, Genetics and Physical Anthropology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, 36331, Vigo, Spain
| | - Alicia L Bruzos
- Genomes and Disease Group, Department of Zoology, Genetics and Physical Anthropology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Mosaicism and Precision Medicine Group, Department of Genetics and Genomic Medicine, The Francis Crick Institute, University College of London, London, UK
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Belén G Pardo
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain.
| |
Collapse
|
6
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
7
|
Chen B, Li Y, Tian M, Su H, Sun W, Li Y. Linkage mapping and QTL analysis of growth traits in Rhopilema esculentum. Sci Rep 2022; 12:471. [PMID: 35013486 PMCID: PMC8748825 DOI: 10.1038/s41598-021-04431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
R. esculentum is a popular seafood in Asian countries and an economic marine fishery resource in China. However, the genetic linkage map and growth-related molecular markers are still lacking, hindering marker assisted selection (MAS) for genetic improvement of R. esculentum. Therefore, we firstly used 2b-restriction site-associated DNA (2b-RAD) method to sequence 152 R. esculentum specimens and obtained 9100 single nucleotide polymorphism (SNP) markers. A 1456.34 cM linkage map was constructed using 2508 SNP markers with an average interval of 0.58 cM. Then, six quantitative trait loci (QTLs) for umbrella diameter and body weight were detected by QTL analysis based on the new linkage map. The six QTLs are located on four linkage groups (LGs), LG4, LG13, LG14 and LG15, explaining 9.4% to 13.4% of the phenotypic variation. Finally, 27 candidate genes in QTLs regions of LG 14 and 15 were found associated with growth and one gene named RE13670 (sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1-like) may play an important role in controlling the growth of R. esculentum. This study provides valuable information for investigating the growth mechanism and MAS breeding in R. esculentum.
Collapse
Affiliation(s)
- Bailing Chen
- Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao St., Dalian, 116023, Liaoning, China
| | - Yulong Li
- Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao St., Dalian, 116023, Liaoning, China
| | - Meilin Tian
- Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao St., Dalian, 116023, Liaoning, China
| | - Hao Su
- Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao St., Dalian, 116023, Liaoning, China
| | - Wei Sun
- Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao St., Dalian, 116023, Liaoning, China
| | - Yunfeng Li
- Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao St., Dalian, 116023, Liaoning, China.
| |
Collapse
|
8
|
Zhu X, Weng Q, Bush D, Zhou C, Zhao H, Wang P, Li F. High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus. FRONTIERS IN PLANT SCIENCE 2022; 13:1099705. [PMID: 37082511 PMCID: PMC10112524 DOI: 10.3389/fpls.2022.1099705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 05/03/2023]
Abstract
Introduction Eucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms. Method A high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis. Results Only ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4-23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation. Discussion While QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions.
Collapse
Affiliation(s)
- Xianliang Zhu
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Qijie Weng
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - David Bush
- Commonwealth Scientific and Industrial Research Organisation (CRISO) Australian Tree Seed Centre, Canberra, ACT, Australia
| | - Changpin Zhou
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Haiwen Zhao
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Ping Wang
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Fagen Li
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- *Correspondence: Fagen Li,
| |
Collapse
|
9
|
Qu P, Wang J, Wen W, Gao F, Liu J, Xia X, Peng H, Zhang L. Construction of Consensus Genetic Map With Applications in Gene Mapping of Wheat ( Triticum aestivum L.) Using 90K SNP Array. FRONTIERS IN PLANT SCIENCE 2021; 12:727077. [PMID: 34512703 PMCID: PMC8424075 DOI: 10.3389/fpls.2021.727077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/28/2021] [Indexed: 06/02/2023]
Abstract
Wheat is one of the most important cereal crops worldwide. A consensus map combines genetic information from multiple populations, providing an effective alternative to improve the genome coverage and marker density. In this study, we constructed a consensus map from three populations of recombinant inbred lines (RILs) of wheat using a 90K single nucleotide polymorphism (SNP) array. Phenotypic data on plant height (PH), spike length (SL), and thousand-kernel weight (TKW) was collected in six, four, and four environments in the three populations, and then used for quantitative trait locus (QTL) mapping. The mapping results obtained using the constructed consensus map were compared with previous results obtained using individual maps and previous studies on other populations. A simulation experiment was also conducted to assess the performance of QTL mapping with the consensus map. The constructed consensus map from the three populations spanned 4558.55 cM in length, with 25,667 SNPs, having high collinearity with physical map and individual maps. Based on the consensus map, 21, 27, and 19 stable QTLs were identified for PH, SL, and TKW, much more than those detected with individual maps. Four PH QTLs and six SL QTLs were likely to be novel. A putative gene called TraesCS4D02G076400 encoding gibberellin-regulated protein was identified to be the candidate gene for one major PH QTL located on 4DS, which may enrich genetic resources in wheat semi-dwarfing breeding. The simulation results indicated that the length of the confidence interval and standard errors of the QTLs detected using the consensus map were much smaller than those detected using individual maps. The consensus map constructed in this study provides the underlying genetic information for systematic mapping, comparison, and clustering of QTL, and gene discovery in wheat genetic study. The QTLs detected in this study had stable effects across environments and can be used to improve the wide adaptation of wheat cultivars through marker-assisted breeding.
Collapse
Affiliation(s)
- Pingping Qu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiankang Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Fengmei Gao
- Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jindong Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchun Xia
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiru Peng
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Luyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Genome survey and high-resolution genetic map provide valuable genetic resources for Fenneropenaeus chinensis. Sci Rep 2021; 11:7533. [PMID: 33824386 PMCID: PMC8024304 DOI: 10.1038/s41598-021-87237-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
Fenneropenaeus chinensis is one of the most important aquaculture species in China. Research on its genomic and genetic structure not only helps us comprehend the genetic basis of complex economic traits, but also offers theoretical guidance in selective breeding. In the present study, a genome survey sequencing was performed to generate a rough reference genome utilized for groping preliminary genome characteristics and facilitate linkage and quantitative trait locus (QTL) mapping. Linkage mapping was conducted using a reduced-representation sequencing method 2b-RAD. In total, 36,762 SNPs were genotyped from 273 progenies in a mapping family, and a high-resolution linkage map was constructed. The consensus map contained 12,884 markers and spanned 5257.81 cM with an average marker interval of 0.41 cM, which was the first high-resolution genetic map in F. chinensis to our knowledge. QTL mapping and association analysis were carried out in 29 characters including body size, sex and disease resistance. 87 significant QTLs were detected in several traits and they were also evaluated by association analysis. Results of this study provide us valuable suggestions in genetic improvement and breeding of new varieties and also lay a basic foundation for further application of cloning of economic genes in selective breeding program and marker-assisted selection.
Collapse
|
11
|
Quezada M, Amadeu RR, Vignale B, Cabrera D, Pritsch C, Garcia AAF. Construction of a High-Density Genetic Map of Acca sellowiana (Berg.) Burret, an Outcrossing Species, Based on Two Connected Mapping Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:626811. [PMID: 33708232 PMCID: PMC7940835 DOI: 10.3389/fpls.2021.626811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Acca sellowiana, known as feijoa or pineapple guava, is a diploid, (2n = 2x = 22) outcrossing fruit tree species native to Uruguay and Brazil. The species stands out for its highly aromatic fruits, with nutraceutical and therapeutic value. Despite its promising agronomical value, genetic studies on this species are limited. Linkage genetic maps are valuable tools for genetic and genomic studies, and constitute essential tools in breeding programs to support the development of molecular breeding strategies. A high-density composite genetic linkage map of A. sellowiana was constructed using two genetically connected populations: H5 (TCO × BR, N = 160) and H6 (TCO × DP, N = 184). Genotyping by sequencing (GBS) approach was successfully applied for developing single nucleotide polymorphism (SNP) markers. A total of 4,921 SNP markers were identified using the reference genome of the closely related species Eucalyptus grandis, whereas other 4,656 SNPs were discovered using a de novo pipeline. The individual H5 and H6 maps comprised 1,236 and 1,302 markers distributed over the expected 11 linkage groups, respectively. These two maps spanned a map length of 1,593 and 1,572 cM, with an average inter-marker distance of 1.29 and 1.21 cM, respectively. A large proportion of markers were common to both maps and showed a high degree of collinearity. The composite map consisted of 1,897 SNPs markers with a total map length of 1,314 cM and an average inter-marker distance of 0.69. A novel approach for the construction of composite maps where the meiosis information of individuals of two connected populations is captured in a single estimator is described. A high-density, accurate composite map based on a consensus ordering of markers provides a valuable contribution for future genetic research and breeding efforts in A. sellowiana. A novel mapping approach based on an estimation of multipopulation recombination fraction described here may be applied in the construction of dense composite genetic maps for any other outcrossing diploid species.
Collapse
Affiliation(s)
- Marianella Quezada
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Rodrigo Rampazo Amadeu
- Laboratório de Genética Estatística, Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| | - Beatriz Vignale
- Mejoramiento Genético, Departamento de Producción Vegetal, Estación Experimental de la Facultad de Agronomía, Universidad de la República, Salto, Uruguay
| | - Danilo Cabrera
- Programa de Investigación en Producción Fruticola, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental “Wilson Ferreira Aldunate”, Canelones, Uruguay
| | - Clara Pritsch
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Antonio Augusto Franco Garcia
- Laboratório de Genética Estatística, Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
12
|
Sallam AH, Manan F, Bajgain P, Martin M, Szinyei T, Conley E, Brown-Guedira G, Muehlbauer GJ, Anderson JA, Steffenson BJ. Genetic architecture of agronomic and quality traits in a nested association mapping population of spring wheat. THE PLANT GENOME 2020; 13:e20051. [PMID: 33217209 DOI: 10.1002/tpg2.20051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Germplasm collections are rich sources of genetic variation to improve crops for many valuable traits. Nested association mapping (NAM) populations can overcome the limitations of genome-wide association studies (GWAS) in germplasm collections by reducing the effect of population structure. We exploited the genetic diversity of the USDA-ARS wheat (Triticum aestivum L.) core collection by developing the Spring Wheat Multiparent Introgression Population (SWMIP). To develop this population, twenty-five core parents were crossed and backcrossed to the Minnesota spring wheat cultivar RB07. The NAM population and 26 founder parents were genotyped using genotyping-by-sequencing and phenotyped for heading date, height, test weight, and grain protein content. After quality control, 20,312 markers with physical map positions were generated for 2,038 recombinant inbred lines (RILs). The number of RILs in each family varied between 58 and 96. Three GWAS models were utilized for quantitative trait loci (QTL) detection and accounted for known family stratification, genetic kinship, and both covariates. GWAS was performed on the whole population and also by bootstrap sampling of an equal number of RILs from each family. Greater power of QTL detection was achieved by treating families equally through bootstrapping. In total 16, 15, 12, and 13 marker-trait associations (MTAs) were identified for heading date, height, test weight, and grain protein content, respectively. Some of these MTAs were coincident with major genes known to control the traits, but others were novel and contributed by the wheat core parents. The SWMIP will be a valuable source of genetic variation for spring wheat breeding.
Collapse
Affiliation(s)
- Ahmad H Sallam
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Fazal Manan
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Prabin Bajgain
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Matthew Martin
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Tamas Szinyei
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Emily Conley
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
13
|
Liu JJ, Sniezko RA, Sissons R, Krakowski J, Alger G, Schoettle AW, Williams H, Zamany A, Zitomer RA, Kegley A. Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations. FRONTIERS IN PLANT SCIENCE 2020; 11:557672. [PMID: 33042181 PMCID: PMC7522202 DOI: 10.3389/fpls.2020.557672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Since its introduction to North America in the early 1900s, white pine blister rust (WPBR) caused by the fungal pathogen Cronartium ribicola has resulted in substantial economic losses and ecological damage to native North American five-needle pine species. The high susceptibility and mortality of these species, including limber pine (Pinus flexilis), creates an urgent need for the development and deployment of resistant germplasm to support recovery of impacted populations. Extensive screening for genetic resistance to WPBR has been underway for decades in some species but has only started recently in limber pine using seed families collected from wild parental trees in the USA and Canada. This study was conducted to characterize Alberta limber pine seed families for WPBR resistance and to develop reliable molecular tools for marker-assisted selection (MAS). Open-pollinated seed families were evaluated for host reaction following controlled infection using C. ribicola basidiospores. Phenotypic segregation for presence/absence of stem symptoms was observed in four seed families. The segregation ratios of these families were consistent with expression of major gene resistance (MGR) controlled by a dominant R locus. Based on linkage disequilibrium (LD)-based association mapping used to detect single nucleotide polymorphism (SNP) markers associated with MGR against C. ribicola, MGR in these seed families appears to be controlled by Cr4 or other R genes in very close proximity to Cr4. These associated SNPs were located in genes involved in multiple molecular mechanisms potentially underlying limber pine MGR to C. ribicola, including NBS-LRR genes for recognition of C. ribicola effectors, signaling components, and a large set of defense-responsive genes with potential functions in plant effector-triggered immunity (ETI). Interactions of associated loci were identified for MGR selection in trees with complex genetic backgrounds. SNPs with tight Cr4-linkage were further converted to TaqMan assays to confirm their effectiveness as MAS tools. This work demonstrates the successful translation and deployment of molecular genetic knowledge into specific MAS tools that can be easily applied in a selection or breeding program to efficiently screen MGR against WPBR in Alberta limber pine populations.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Robert Sissons
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | | | - Genoa Alger
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | - Anna W. Schoettle
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, United States
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Rachel A. Zitomer
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| |
Collapse
|
14
|
Huang X, Jiang Y, Zhang W, Cheng Y, Wang Y, Ma X, Duan Y, Xia L, Chen Y, Wu N, Shi M, Xia XQ. Construction of a high-density genetic map and mapping of growth related QTLs in the grass carp (Ctenopharyngodon idellus). BMC Genomics 2020; 21:313. [PMID: 32306899 PMCID: PMC7168995 DOI: 10.1186/s12864-020-6730-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Grass carp (Ctenopharyngodon idellus) are important species in Asian aquaculture. A draft genome for grass carp has already been published in 2015. However, there is still a requirement for a suitable genetic linkage map to arrange scaffolds on chromosomal frameworks. QTL analysis is a powerful tool to detect key locations for quantitative traits, especially in aquaculture. There no growth related QTLs of grass carp have been published yet. Even the growth trait is one of the focuses in grass carp culture. RESULTS In this study, a pair of distantly related parent grass carps and their 100 six-month-old full-sib offspring were used to construct a high-density genetic map with 6429 single nucleotide polymorphisms (SNPs) by 2b-RAD technology. The total length of the consensus map is 5553.43 cM with the average marker interval of 1.92 cM. The map has a good collinearity with both the grass carp draft genome and the zebrafish genome, and it assembled 89.91% of the draft genome to a chromosomal level. Additionally, according to the growth-related traits of progenies, 30 quantitative trait loci (QTLs), including 7 for body weight, 9 for body length, 5 for body height and 9 for total length, were identified in 16 locations on 5 linkage groups. The phenotypic variance explained for these QTLs varies from 13.4 to 21.6%. Finally, 17 genes located in these regions were considered to be growth-related because they either had functional mutations predicted from the resequencing data of the parents. CONCLUSION A high density genetic linkage map of grass carp was built and it assembled the draft genome to a chromosomal level. Thirty growth related QTLs were detected. After the cross analysis of Parents resequencing data, 17 candidate genes were obtained for further researches.
Collapse
Affiliation(s)
- Xiaoli Huang
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxin Jiang
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanting Zhang
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
| | - Yingyin Cheng
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
| | - Yaping Wang
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Ma
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - You Duan
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Xia
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaxin Chen
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wu
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
| | - Mijuan Shi
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Tello J, Roux C, Chouiki H, Laucou V, Sarah G, Weber A, Santoni S, Flutre T, Pons T, This P, Péros JP, Doligez A. A novel high-density grapevine (Vitis vinifera L.) integrated linkage map using GBS in a half-diallel population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2237-2252. [PMID: 31049634 DOI: 10.1007/s00122-019-03351-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/20/2019] [Indexed: 05/21/2023]
Abstract
A half-diallel population involving five elite grapevine cultivars was generated and genotyped by GBS, and highly-informative segregation data was used to construct a high-density genetic map for Vitis vinifera L. Grapevine is one of the most relevant fruit crops in the world. Deeper genetic knowledge could assist modern grapevine breeding programs to develop new wine grape varieties able to face climate change effects. To assist in the rapid identification of markers for crop yield components, grape quality traits and adaptation potential, we generated a large Vitis vinifera L. population (N = 624) by crossing five red wine cultivars in a half-diallel scheme, which was subsequently sequenced by an efficient GBS procedure. A high number of fully informative genetic variants was detected using a novel mapping approach capable of reconstructing local haplotypes from adjacent biallelic SNPs, which were subsequently used to construct the densest consensus genetic map available for the cultivated grapevine to date. This 1378.3-cM map integrates 10 bi-parental consensus maps and orders 4437 markers in 3353 unique positions on 19 chromosomes. Markers are well distributed all along the grapevine reference genome, covering up to 98.8% of its genomic sequence. Additionally, a good agreement was observed between genetic and physical orders, adding confidence in the quality of this map. Collectively, our results pave the way for future genetic studies (such as fine QTL mapping) aimed to understand the complex relationship between genotypic and phenotypic variation in the cultivated grapevine. In addition, the method used (which efficiently delivers a high number of fully informative markers) could be of interest to other outbred organisms, notably perennial fruit crops.
Collapse
Affiliation(s)
- Javier Tello
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Catherine Roux
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Hajar Chouiki
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Valérie Laucou
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Gautier Sarah
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Audrey Weber
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Sylvain Santoni
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Timothée Flutre
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Thierry Pons
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Patrice This
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Jean-Pierre Péros
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Agnès Doligez
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France.
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
16
|
Soriano JM, Alvaro F. Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep 2019; 9:10537. [PMID: 31332216 PMCID: PMC6646344 DOI: 10.1038/s41598-019-47038-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/09/2019] [Indexed: 11/25/2022] Open
Abstract
Root system architecture is crucial for wheat adaptation to drought stress, but phenotyping for root traits in breeding programmes is difficult and time-consuming owing to the belowground characteristics of the system. Identifying quantitative trait loci (QTLs) and linked molecular markers and using marker-assisted selection is an efficient way to increase selection efficiency and boost genetic gains in breeding programmes. Hundreds of QTLs have been identified for different root traits in the last few years. In the current study, consensus QTL regions were identified through QTL meta-analysis. First, a consensus map comprising 7352 markers was constructed. For the meta-analysis, 754 QTLs were retrieved from the literature and 634 of them were projected onto the consensus map. Meta-analysis grouped 557 QTLs in 94 consensus QTL regions, or meta-QTLs (MQTLs), and 18 QTLs remained as singletons. The recently published genome sequence of wheat was used to search for gene models within the MQTL peaks. As a result, gene models for 68 of the 94 Root_MQTLs were found, 35 of them related to root architecture and/or drought stress response. This work will facilitate QTL cloning and pyramiding to develop new cultivars with specific root architecture for coping with environmental constraints.
Collapse
Affiliation(s)
- Jose Miguel Soriano
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain.
| | - Fanny Alvaro
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain
| |
Collapse
|
17
|
Yan M, Byrne D, Klein P, van de Weg W, Yang J, Cai L. Black spot partial resistance in diploid roses:
QTL discovery and linkage map creation. ACTA ACUST UNITED AC 2019. [DOI: 10.17660/actahortic.2019.1232.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Laverty KU, Stout JM, Sullivan MJ, Shah H, Gill N, Holbrook L, Deikus G, Sebra R, Hughes TR, Page JE, van Bakel H. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res 2019. [PMID: 30409771 DOI: 10.1101/gr.242594.118.freely] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Cannabis sativa is widely cultivated for medicinal, food, industrial, and recreational use, but much remains unknown regarding its genetics, including the molecular determinants of cannabinoid content. Here, we describe a combined physical and genetic map derived from a cross between the drug-type strain Purple Kush and the hemp variety "Finola." The map reveals that cannabinoid biosynthesis genes are generally unlinked but that aromatic prenyltransferase (AP), which produces the substrate for THCA and CBDA synthases (THCAS and CBDAS), is tightly linked to a known marker for total cannabinoid content. We further identify the gene encoding CBCA synthase (CBCAS) and characterize its catalytic activity, providing insight into how cannabinoid diversity arises in cannabis. THCAS and CBDAS (which determine the drug vs. hemp chemotype) are contained within large (>250 kb) retrotransposon-rich regions that are highly nonhomologous between drug- and hemp-type alleles and are furthermore embedded within ∼40 Mb of minimally recombining repetitive DNA. The chromosome structures are similar to those in grains such as wheat, with recombination focused in gene-rich, repeat-depleted regions near chromosome ends. The physical and genetic map should facilitate further dissection of genetic and molecular mechanisms in this commercially and medically important plant.
Collapse
Affiliation(s)
- Kaitlin U Laverty
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jake M Stout
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mitchell J Sullivan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Navdeep Gill
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Larry Holbrook
- CanniMed Therapeutics Incorporated, Saskatoon, Saskatchewan S7K 3J8, Canada
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada
| | - Jonathan E Page
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Anandia Labs, Vancouver, British Columbia V6T 1Z4, Canada
| | - Harm van Bakel
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
19
|
De Mattéo L, Holtz Y, Ranwez V, Bérard S. Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up pairwise genetic map comparison. PLoS One 2018; 13:e0208838. [PMID: 30589848 PMCID: PMC6320017 DOI: 10.1371/journal.pone.0208838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022] Open
Abstract
Genetic maps order genetic markers along chromosomes. They are, for instance, extensively used in marker-assisted selection to accelerate breeding programs. Even for the same species, people often have to deal with several alternative maps obtained using different ordering methods or different datasets, e.g. resulting from different segregating populations. Having efficient tools to identify the consistency and discrepancy of alternative maps is thus essential to facilitate genetic map comparisons. We propose to encode genetic maps by bucket order, a kind of order, which takes into account the blurred parts of the marker order while being an efficient data structure to achieve low complexity algorithms. The main result of this paper is an O(n log(n)) procedure to identify the largest agreements between two bucket orders of n elements, their Longest Common Subsequence (LCS), providing an efficient solution to highlight discrepancies between two genetic maps. The LCS of two maps, being the largest set of their collinear markers, is used as a building block to compute pairwise map congruence, to visually emphasize maker collinearity and in some scaffolding methods relying on genetic maps to improve genome assembly. As the LCS computation is a key subroutine of all these genetic map related tools, replacing the current LCS subroutine of those methods by ours -to do the exact same work but faster- could significantly speed up those methods without changing their accuracy. To ease such transition we provide all required algorithmic details in this self contained paper as well as an R package implementing them, named LCSLCIS, which is freely available at: https://github.com/holtzy/LCSLCIS.
Collapse
Affiliation(s)
- Lisa De Mattéo
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Yan Holtz
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Vincent Ranwez
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Sèverine Bérard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
20
|
Xu LY, Wang LY, Wei K, Tan LQ, Su JJ, Cheng H. High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing. BMC Genomics 2018; 19:955. [PMID: 30577813 PMCID: PMC6304016 DOI: 10.1186/s12864-018-5291-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Flavonoids are important components that confer upon tea plants a unique flavour and health functions. However, the traditional breeding method for selecting a cultivar with a high or unique flavonoid content is time consuming and labour intensive. High-density genetic map construction associated with quantitative trait locus (QTL) mapping provides an effective way to facilitate trait improvement in plant breeding. In this study, an F1 population (LJ43×BHZ) was genotyped using 2b-restriction site-associated DNA (2b-RAD) sequencing to obtain massive single nucleotide polymorphism (SNP) markers to construct a high-density genetic map for a tea plant. Furthermore, QTLs related to flavonoids were identified using our new genetic map. RESULTS A total of 13,446 polymorphic SNP markers were developed using 2b-RAD sequencing, and 4,463 of these markers were available for constructing the genetic linkage map. A 1,678.52-cM high-density map at an average interval of 0.40 cM with 4,217 markers, including 427 frameset simple sequence repeats (SSRs) and 3,800 novel SNPs, mapped into 15 linkage groups was successfully constructed. After QTL analysis, a total of 27 QTLs related to flavonoids or caffeine content (CAF) were mapped to 8 different linkage groups, LG01, LG03, LG06, LG08, LG10, LG11, LG12, and LG13, with an LOD from 3.14 to 39.54, constituting 7.5% to 42.8% of the phenotypic variation. CONCLUSIONS To our knowledge, the highest density genetic map ever reported was constructed since the largest mapping population of tea plants was adopted in present study. Moreover, novel QTLs related to flavonoids and CAF were identified based on the new high-density genetic map. In addition, two markers were located in candidate genes that may be involved in flavonoid metabolism. The present study provides valuable information for gene discovery, marker-assisted selection breeding and map-based cloning for functional genes that are related to flavonoid content in tea plants.
Collapse
Affiliation(s)
- Li-Yi Xu
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li-Yuan Wang
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Kang Wei
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Li-Qiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jing-Jing Su
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Hao Cheng
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| |
Collapse
|
21
|
da Silva Linge C, Antanaviciute L, Abdelghafar A, Arús P, Bassi D, Rossini L, Ficklin S, Gasic K. High-density multi-population consensus genetic linkage map for peach. PLoS One 2018; 13:e0207724. [PMID: 30462743 PMCID: PMC6248993 DOI: 10.1371/journal.pone.0207724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/04/2018] [Indexed: 11/19/2022] Open
Abstract
Highly saturated genetic linkage maps are extremely helpful to breeders and are an essential prerequisite for many biological applications such as the identification of marker-trait associations, mapping quantitative trait loci (QTL), candidate gene identification, development of molecular markers for marker-assisted selection (MAS) and comparative genetic studies. Several high-density genetic maps, constructed using the 9K SNP peach array, are available for peach. However, each of these maps is based on a single mapping population and has limited use for QTL discovery and comparative studies. A consensus genetic linkage map developed from multiple populations provides not only a higher marker density and a greater genome coverage when compared to the individual maps, but also serves as a valuable tool for estimating genetic positions of unmapped markers. In this study, a previously developed linkage map from the cross between two peach cultivars 'Zin Dai' and 'Crimson Lady' (ZC2) was improved by genotyping additional progenies. In addition, a peach consensus map was developed based on the combination of the improved ZC2 genetic linkage map with three existing high-density genetic maps of peach and a reference map of Prunus. A total of 1,476 SNPs representing 351 unique marker positions were mapped across eight linkage groups on the ZC2 genetic map. The ZC2 linkage map spans 483.3 cM with an average distance between markers of 1.38 cM/marker. The MergeMap and LPmerge tools were used for the construction of a consensus map based on markers shared across five genetic linkage maps. The consensus linkage map contains a total of 3,092 molecular markers, consisting of 2,975 SNPs, 116 SSRs and 1 morphological marker associated with slow ripening in peach (SR). The consensus map provides valuable information on marker order and genetic position for QTL identification in peach and other genetic studies within Prunus and Rosaceae.
Collapse
Affiliation(s)
- Cassia da Silva Linge
- Clemson University, Department of Plant and Environmental Sciences, Clemson, SC, United States of America
| | - Laima Antanaviciute
- Clemson University, Department of Plant and Environmental Sciences, Clemson, SC, United States of America
| | - Asma Abdelghafar
- Clemson University, Department of Plant and Environmental Sciences, Clemson, SC, United States of America
| | - Pere Arús
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica Consejo Superior de Investigaciones Científicas (CSIC)-IRTA–Universitat Autònoma de Barcelona (UAB)–University of Barcelona (UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Daniele Bassi
- Università degli Studi di Milano, Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Milan, Italy
| | - Laura Rossini
- Università degli Studi di Milano, Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Milan, Italy
| | - Stephen Ficklin
- Washington State University, Department of Horticulture, Pullman, WA, United States of America
| | - Ksenija Gasic
- Clemson University, Department of Plant and Environmental Sciences, Clemson, SC, United States of America
- * E-mail:
| |
Collapse
|
22
|
Laverty KU, Stout JM, Sullivan MJ, Shah H, Gill N, Holbrook L, Deikus G, Sebra R, Hughes TR, Page JE, van Bakel H. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res 2018; 29:146-156. [PMID: 30409771 PMCID: PMC6314170 DOI: 10.1101/gr.242594.118] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023]
Abstract
Cannabis sativa is widely cultivated for medicinal, food, industrial, and recreational use, but much remains unknown regarding its genetics, including the molecular determinants of cannabinoid content. Here, we describe a combined physical and genetic map derived from a cross between the drug-type strain Purple Kush and the hemp variety “Finola.” The map reveals that cannabinoid biosynthesis genes are generally unlinked but that aromatic prenyltransferase (AP), which produces the substrate for THCA and CBDA synthases (THCAS and CBDAS), is tightly linked to a known marker for total cannabinoid content. We further identify the gene encoding CBCA synthase (CBCAS) and characterize its catalytic activity, providing insight into how cannabinoid diversity arises in cannabis. THCAS and CBDAS (which determine the drug vs. hemp chemotype) are contained within large (>250 kb) retrotransposon-rich regions that are highly nonhomologous between drug- and hemp-type alleles and are furthermore embedded within ∼40 Mb of minimally recombining repetitive DNA. The chromosome structures are similar to those in grains such as wheat, with recombination focused in gene-rich, repeat-depleted regions near chromosome ends. The physical and genetic map should facilitate further dissection of genetic and molecular mechanisms in this commercially and medically important plant.
Collapse
Affiliation(s)
- Kaitlin U Laverty
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jake M Stout
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mitchell J Sullivan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Navdeep Gill
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Larry Holbrook
- CanniMed Therapeutics Incorporated, Saskatoon, Saskatchewan S7K 3J8, Canada
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada
| | - Jonathan E Page
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Anandia Labs, Vancouver, British Columbia V6T 1Z4, Canada
| | - Harm van Bakel
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
23
|
Maroso F, Hermida M, Millán A, Blanco A, Saura M, Fernández A, Dalla Rovere G, Bargelloni L, Cabaleiro S, Villanueva B, Bouza C, Martínez P. Highly dense linkage maps from 31 full-sibling families of turbot (Scophthalmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly. DNA Res 2018; 25:439-450. [PMID: 29897548 PMCID: PMC6105115 DOI: 10.1093/dnares/dsy015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/05/2018] [Indexed: 12/26/2022] Open
Abstract
Highly dense linkage maps enable positioning thousands of landmarks useful for anchoring the whole genome and for analysing genome properties. Turbot is the most important cultured flatfish worldwide and breeding programs in the fifth generation of selection are targeted to improve growth rate, obtain disease resistant broodstock and understand sex determination to control sex ratio. Using a Restriction-site Associated DNA approach, we genotyped 18,214 single nucleotide polymorphism in 1,268 turbot individuals from 31 full-sibling families. Individual linkage maps were combined to obtain a male, female and species consensus maps. The turbot consensus map contained 11,845 markers distributed across 22 linkage groups representing a total normalised length of 3,753.9 cM. The turbot genome was anchored to this map, and scaffolds representing 96% of the assembly were ordered and oriented to obtain the expected 22 megascaffolds according to its karyotype. Recombination rate was lower in males, especially around centromeres, and pairwise comparison of 44 individual maps suggested chromosome polymorphism at specific genomic regions. Genome comparison across flatfish provided new evidence on karyotype reorganisations occurring across the evolution of this fish group.
Collapse
Affiliation(s)
| | - M Hermida
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - A Blanco
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - M Saura
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - A Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - G Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - S Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira, Spain
| | - B Villanueva
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - C Bouza
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - P Martínez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
24
|
Khajuria C, Ivashuta S, Wiggins E, Flagel L, Moar W, Pleau M, Miller K, Zhang Y, Ramaseshadri P, Jiang C, Hodge T, Jensen P, Chen M, Gowda A, McNulty B, Vazquez C, Bolognesi R, Haas J, Head G, Clark T. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One 2018; 13:e0197059. [PMID: 29758046 PMCID: PMC5951553 DOI: 10.1371/journal.pone.0197059] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/25/2018] [Indexed: 01/10/2023] Open
Abstract
The use of dsRNA to control insect pests via the RNA interference (RNAi) pathway is being explored by researchers globally. However, with every new class of insect control compounds, the evolution of insect resistance needs to be considered, and understanding resistance mechanisms is essential in designing durable technologies and effective resistance management strategies. To gain insight into insect resistance to dsRNA, a field screen with subsequent laboratory selection was used to establish a population of DvSnf7 dsRNA-resistant western corn rootworm, Diabrotica virgifera virgifera, a major maize insect pest. WCR resistant to ingested DvSnf7 dsRNA had impaired luminal uptake and resistance was not DvSnf7 dsRNA-specific, as indicated by cross resistance to all other dsRNAs tested. No resistance to the Bacillus thuringiensis Cry3Bb1 protein was observed. DvSnf7 dsRNA resistance was inherited recessively, located on a single locus, and autosomal. Together these findings will provide insights for dsRNA deployment for insect pest control.
Collapse
Affiliation(s)
- Chitvan Khajuria
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
- * E-mail:
| | - Sergey Ivashuta
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Elizabeth Wiggins
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Lex Flagel
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - William Moar
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Michael Pleau
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Kaylee Miller
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Yuanji Zhang
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | | | - Changjian Jiang
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Tracey Hodge
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Peter Jensen
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Mao Chen
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Anilkumar Gowda
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Brian McNulty
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Cara Vazquez
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Renata Bolognesi
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Jeffrey Haas
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Graham Head
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Thomas Clark
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| |
Collapse
|
25
|
Tyrka M, Oleszczuk S, Rabiza-Swider J, Wos H, Wedzony M, Zimny J, Ponitka A, Ślusarkiewicz-Jarzina A, Metzger RJ, Baenziger PS, Lukaszewski AJ. Populations of doubled haploids for genetic mapping in hexaploid winter triticale. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2018; 38:46. [PMID: 29623004 PMCID: PMC5878199 DOI: 10.1007/s11032-018-0804-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
To create a framework for genetic dissection of hexaploid triticale, six populations of doubled haploid (DH) lines were developed from pairwise hybrids of high-yielding winter triticale cultivars. The six populations comprise between 97 and 231 genotyped DH lines each, totaling 957 DH lines. A consensus genetic map spans 4593.9 cM is composed of 1576 unique DArT markers. The maps reveal several structural rearrangements in triticale genomes. In preliminary tests of the populations and maps, markers specific to wheat segments of the engineered rye chromosome 1R (RM1B) were identified. Example QTL mapping of days to heading in cv. Krakowiak revealed loci on chromosomes 2BL and 2R responsible for extended vernalization requirement, and candidate genes were identified. The material is available to all parties interested in triticale genetics.
Collapse
Affiliation(s)
- M. Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Rzeszow, Poland
| | - S. Oleszczuk
- Institute of Plant Breeding and Acclimatization, National Research Institute, Radzikow, Poland
| | - J. Rabiza-Swider
- Department of Ornamental Plants, Warsaw University of Life Sciences, Warsaw, Poland
| | - H. Wos
- Plant Breeding Strzelce Ltd., Co. - IHAR-PIB Group, Strzelce, Poland
| | - M. Wedzony
- Department of Cell Biology and Genetics, Pedagogical University of Cracow, Kraków, Poland
| | - J. Zimny
- Institute of Plant Breeding and Acclimatization, National Research Institute, Radzikow, Poland
| | - A. Ponitka
- Institute of Plant Genetics, Poznan, Poland
| | | | - R. J. Metzger
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331-3002 USA
| | - P. S. Baenziger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE USA
| | - A. J. Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| |
Collapse
|
26
|
O'Leary SJ, Hollenbeck CM, Vega RR, Gold JR, Portnoy DS. Genetic mapping and comparative genomics to inform restoration enhancement and culture of southern flounder, Paralichthys lethostigma. BMC Genomics 2018; 19:163. [PMID: 29471804 PMCID: PMC5824557 DOI: 10.1186/s12864-018-4541-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Southern flounder, Paralichthys lethostigma, historically support a substantial fishery along the Atlantic and Gulf coasts of the southern United States. Low year-class strengths over the past few years in the western Gulf of Mexico have raised concern that spawning stocks may be overfished. Current management of the resource includes releasing hatchery-raised juveniles to restock bays and estuaries; additionally, there is a growing interest in the potential for commercial aquaculture of the species. Currently, genomic resources for southern flounder do not exist. Here, we used two hatchery-reared families and double-digest, restriction-site-associated DNA (ddRAD) sequencing to create a reduced-representation genomic library consisting of several thousand single nucleotide polymorphisms (SNPs) located throughout the genome. RESULTS The relative position of each SNP-containing locus was determined to create a high-density genetic map spanning the 24 linkage groups of the southern flounder genome. The consensus map was used to identify regions of shared synteny between southern flounder and seven other fish species for which genome assemblies are available. Finally, syntenic blocks were used to localize genes identified from transcripts in European flounder as potentially being involved in ecotoxicological and osmoregulatory responses, as well as QTLs associated with growth and disease resistance in Japanese flounder, on the southern flounder linkage map. CONCLUSIONS The information provided by the linkage map will enrich restoration efforts by providing a foundation for interpreting spatial genetic variation within the species, ultimately furthering an understanding of the adaptive potential and resilience of southern flounder to future changes in local environmental conditions. Further, the map will facilitate the use of genetic markers to enhance restoration and commercial aquaculture.
Collapse
Affiliation(s)
- Shannon J O'Leary
- Department of Life Sciences, Marine Genomics Laboratory, Texas A&M University Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX, 78412, USA.
| | - Christopher M Hollenbeck
- Scottish Oceans Institute, University of St. Andrews, East Sands, St. Andrews, Fife, KY16 8LB, UK
| | - Robert R Vega
- Texas Parks and Wildlife Department, CCA Marine Development Center, 4300 Waldron Road, Corpus Christi, TX, 78418, USA
| | - John R Gold
- Department of Life Sciences, Marine Genomics Laboratory, Texas A&M University Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX, 78412, USA
| | - David S Portnoy
- Department of Life Sciences, Marine Genomics Laboratory, Texas A&M University Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX, 78412, USA
| |
Collapse
|
27
|
Zhou G, Jian J, Wang P, Li C, Tao Y, Li X, Renshaw D, Clements J, Sweetingham M, Yang H. Construction of an ultra-high density consensus genetic map, and enhancement of the physical map from genome sequencing in Lupinus angustifolius. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:209-223. [PMID: 29051970 DOI: 10.1007/s00122-017-2997-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/01/2017] [Indexed: 05/04/2023]
Abstract
An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
Collapse
Affiliation(s)
- Gaofeng Zhou
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia
| | - Jianbo Jian
- Beijing Genome Institute-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Penghao Wang
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia
| | - Chengdao Li
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia
| | - Ye Tao
- BIOZERON Biotechnology Co., Ltd.-Shanghai, Xingxian Road, 1180-7, Shanghai, 210880, China
| | - Xuan Li
- Beijing Genome Institute-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Daniel Renshaw
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Jonathan Clements
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Mark Sweetingham
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Huaan Yang
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia.
| |
Collapse
|
28
|
Norman A, Taylor J, Tanaka E, Telfer P, Edwards J, Martinant JP, Kuchel H. Increased genomic prediction accuracy in wheat breeding using a large Australian panel. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2543-2555. [PMID: 28887586 PMCID: PMC5668360 DOI: 10.1007/s00122-017-2975-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/19/2017] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE Genomic prediction accuracy within a large panel was found to be substantially higher than that previously observed in smaller populations, and also higher than QTL-based prediction. In recent years, genomic selection for wheat breeding has been widely studied, but this has typically been restricted to population sizes under 1000 individuals. To assess its efficacy in germplasm representative of commercial breeding programmes, we used a panel of 10,375 Australian wheat breeding lines to investigate the accuracy of genomic prediction for grain yield, physical grain quality and other physiological traits. To achieve this, the complete panel was phenotyped in a dedicated field trial and genotyped using a custom AxiomTM Affymetrix SNP array. A high-quality consensus map was also constructed, allowing the linkage disequilibrium present in the germplasm to be investigated. Using the complete SNP array, genomic prediction accuracies were found to be substantially higher than those previously observed in smaller populations and also more accurate compared to prediction approaches using a finite number of selected quantitative trait loci. Multi-trait genetic correlations were also assessed at an additive and residual genetic level, identifying a negative genetic correlation between grain yield and protein as well as a positive genetic correlation between grain size and test weight.
Collapse
Affiliation(s)
- Adam Norman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.
- Australian Grain Technologies Pty Ltd, Perkins Building, Roseworthy Campus, Roseworthy, SA, Australia.
| | - Julian Taylor
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
| | - Emi Tanaka
- National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW, Australia
| | - Paul Telfer
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
- Australian Grain Technologies Pty Ltd, Perkins Building, Roseworthy Campus, Roseworthy, SA, Australia
| | - James Edwards
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
- Australian Grain Technologies Pty Ltd, Perkins Building, Roseworthy Campus, Roseworthy, SA, Australia
| | | | - Haydn Kuchel
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
- Australian Grain Technologies Pty Ltd, Perkins Building, Roseworthy Campus, Roseworthy, SA, Australia
| |
Collapse
|
29
|
Li L, Deng CH, Knäbel M, Chagné D, Kumar S, Sun J, Zhang S, Wu J. Integrated high-density consensus genetic map of Pyrus and anchoring of the 'Bartlett' v1.0 (Pyrus communis) genome. DNA Res 2017; 24:289-301. [PMID: 28130382 PMCID: PMC5499846 DOI: 10.1093/dnares/dsw063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/16/2016] [Indexed: 01/14/2023] Open
Abstract
Genetic maps are essential tools for pear genetics and genomics research. In this study, we first constructed an integrated simple sequence repeat (SSR) and single nucleotide polymorphism (SNP)-based consensus genetic map for pear based on common SSR markers between nine published maps. A total of 5,085 markers, including 1,232 SSRs and 3,853 SNPs, were localized on a consensus map spanning 3,266.0 cM in total, with an average marker interval of 0.64 cM, which represents the highest density consensus map of pear to date. Using three sets of high-density SNP-based genetic maps with European pear genetic backgrounds, we anchored a total of 291.5 Mb of the ‘Bartlett’ v1.0 (Pyrus communis L.) genome scaffolds into 17 pseudo-chromosomes. This accounted for 50.5% of the genome assembly, which was a great improvement on the 29.7% achieved originally. Intra-genome and inter-genome synteny analyses of the new ‘Bartlett’ v1.1 genome assembly with the Asian pear ‘Dangshansuli’ (Pyrus bretschneideri Rehd.) and apple (Malus × domestica Borkh.) genomes uncovered four new segmental duplication regions. The integrated high-density SSR and SNP-based consensus genetic map provided new insights into the genetic structure patterns of pear and assisted in the genome assembly of ‘Bartlett’ through further exploration of different pear genetic maps.
Collapse
Affiliation(s)
- Leiting Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), New Zealand
| | - Mareike Knäbel
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), New Zealand
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), New Zealand
| | - Satish Kumar
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), New Zealand
| | - Jiangmei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Linkage Map of Lissotriton Newts Provides Insight into the Genetic Basis of Reproductive Isolation. G3-GENES GENOMES GENETICS 2017; 7:2115-2124. [PMID: 28500054 PMCID: PMC5499121 DOI: 10.1534/g3.117.041178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Linkage maps are widely used to investigate structure, function, and evolution of genomes. In speciation research, maps facilitate the study of the genetic architecture of reproductive isolation by allowing identification of genomic regions underlying reduced fitness of hybrids. Here we present a linkage map for European newts of the Lissotriton vulgaris species complex, constructed using two families of F2 L. montandoni × L. vulgaris hybrids. The map consists of 1146 protein-coding genes on 12 linkage groups, equal to the haploid chromosome number, with a total length of 1484 cM (1.29 cM per marker). It is notably shorter than two other maps available for salamanders, but the differences in map length are consistent with cytogenetic estimates of the number of chiasmata per chromosomal arm. Thus, large salamander genomes do not necessarily translate into long linkage maps, as previously suggested. Consequently, salamanders are an excellent model to study evolutionary consequences of recombination rate variation in taxa with large genomes and a similar number of chromosomes. A complex pattern of transmission ratio distortion (TRD) was detected: TRD occurred mostly in one family, in one breeding season, and was clustered in two genomic segments. This is consistent with environment-dependent mortality of individuals carrying L. montandoni alleles in these two segments and suggests a role of TRD blocks in reproductive isolation. The reported linkage map will empower studies on the genomic architecture of divergence and interactions between the genomes of hybridizing newts.
Collapse
|
31
|
Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, Guo X, Huan P, Dong B, Zhang L, Hu X, Sun X, Wang J, Zhao C, Wang Y, Wang D, Huang X, Wang R, Lv J, Li Y, Zhang Z, Liu B, Lu W, Hui Y, Liang J, Zhou Z, Hou R, Li X, Liu Y, Li H, Ning X, Lin Y, Zhao L, Xing Q, Dou J, Li Y, Mao J, Guo H, Dou H, Li T, Mu C, Jiang W, Fu Q, Fu X, Miao Y, Liu J, Yu Q, Li R, Liao H, Li X, Kong Y, Jiang Z, Chourrout D, Li R, Bao Z. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat Ecol Evol 2017; 1:120. [PMID: 28812685 PMCID: PMC10970998 DOI: 10.1038/s41559-017-0120] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is critical. Here we report a high-quality, chromosome-anchored reference genome for the scallop Patinopecten yessoensis, a bivalve mollusc that has a slow-evolving genome with many ancestral features. Chromosome-based macrosynteny analysis reveals a striking correspondence between the 19 scallop chromosomes and the 17 presumed ancestral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scallop may have a karyotype close to that of the bilaterian ancestor. Scallop Hox gene expression follows a new mode of subcluster temporal co-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plans. Transcriptome analysis of scallop mantle eyes finds unexpected diversity in phototransduction cascades and a potentially ancient Pax2/5/8-dependent pathway for noncephalic eyes. The outstanding preservation of ancestral karyotype and developmental control makes the scallop genome a valuable resource for understanding early bilaterian evolution and biology.
Collapse
Affiliation(s)
- Shi Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinbo Zhang
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Wenqian Jiao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Ji Li
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Xiaogang Xun
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yan Sun
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Ximing Guo
- Department of Marine and Coastal Sciences, Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, 08349 New Jersey USA
| | - Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Bo Dong
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Lingling Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Xiaoqing Sun
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Jing Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yangfan Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Dawei Wang
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Xiaoting Huang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Ruijia Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Jia Lv
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yuli Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Zhifeng Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yuanyuan Hui
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Jun Liang
- Dalian Zhangzidao Group Co. Ltd, Dalian, 116001 China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023 China
| | - Rui Hou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Xue Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yunchao Liu
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Hengde Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xianhui Ning
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yu Lin
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Liang Zhao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Qiang Xing
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Jinzhuang Dou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yangping Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Junxia Mao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Haobing Guo
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Huaiqian Dou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Tianqi Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Chuang Mu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Qiang Fu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Xiaoteng Fu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yan Miao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Jian Liu
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Qian Yu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Ruojiao Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Huan Liao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Xuan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Yifan Kong
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008 Norway
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
32
|
Khanal S, Kim C, Auckland SA, Rainville LK, Adhikari J, Schwartz BM, Paterson AH. SSR-enriched genetic linkage maps of bermudagrass (Cynodon dactylon × transvaalensis), and their comparison with allied plant genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:819-839. [PMID: 28168408 DOI: 10.1007/s00122-017-2854-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/04/2017] [Indexed: 05/20/2023]
Abstract
We report SSR-enriched genetic maps of bermudagrass that: (1) reveal partial residual polysomic inheritance in the tetraploid species, and (2) provide insights into the evolution of chloridoid genomes. This study describes genetic linkage maps of two bermudagrass species, Cynodon dactylon (T89) and Cynodon transvaalensis (T574), that integrate heterologous microsatellite markers from sugarcane into frameworks built with single-dose restriction fragments (SDRFs). A maximum likelihood approach was used to construct two separate parental maps from a population of 110 F1 progeny of a cross between the two parents. The T89 map is based on 291 loci on 34 cosegregating groups (CGs), with an average marker spacing of 12.5 cM. The T574 map is based on 125 loci on 14 CGs, with an average marker spacing of 10.7 cM. Six T89 and one T574 CG(s) deviated from disomic inheritance. Furthermore, marker segregation data and linkage phase analysis revealed partial residual polysomic inheritance in T89, suggesting that common bermudagrass is undergoing diploidization following whole genome duplication (WGD). Twenty-six T89 CGs were coalesced into 9 homo(eo)logous linkage groups (LGs), while 12 T574 CGs were assembled into 9 LGs, both putatively representing the basic chromosome complement (x = 9) of the species. Eight T89 and two T574 CGs remain unassigned. The marker composition of bermudagrass ancestral chromosomes was inferred by aligning T89 and T574 homologs, and used in comparisons to sorghum and rice genome sequences based on 108 and 91 significant blast hits, respectively. Two nested chromosome fusions (NCFs) shared by two other chloridoids (i.e., zoysiagrass and finger millet) and at least three independent translocation events were evident during chromosome number reduction from 14 in the polyploid common ancestor of Poaceae to 9 in Cynodon.
Collapse
Affiliation(s)
- Sameer Khanal
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Susan A Auckland
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Lisa K Rainville
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Jeevan Adhikari
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Brian M Schwartz
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31793, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
33
|
Linkage Mapping and Comparative Genomics of Red Drum ( Sciaenops ocellatus) Using Next-Generation Sequencing. G3-GENES GENOMES GENETICS 2017; 7:843-850. [PMID: 28122951 PMCID: PMC5345714 DOI: 10.1534/g3.116.036350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Developments in next-generation sequencing allow genotyping of thousands of genetic markers across hundreds of individuals in a cost-effective manner. Because of this, it is now possible to rapidly produce dense genetic linkage maps for nonmodel species. Here, we report a dense genetic linkage map for red drum, a marine fish species of considerable economic importance in the southeastern United States and elsewhere. We used a prior microsatellite-based linkage map as a framework and incorporated 1794 haplotyped contigs derived from high-throughput, reduced representation DNA sequencing to produce a linkage map containing 1794 haplotyped restriction-site associated DNA (RAD) contigs, 437 anonymous microsatellites, and 44 expressed sequence-tag-linked microsatellites (EST-SSRs). A total of 274 candidate genes, identified from transcripts from a preliminary hydrocarbon exposure study, were localized to specific chromosomes, using a shared synteny approach. The linkage map will be a useful resource for red drum commercial and restoration aquaculture, and for better understanding and managing populations of red drum in the wild.
Collapse
|
34
|
Muñoz-Amatriaín M, Mirebrahim H, Xu P, Wanamaker SI, Luo M, Alhakami H, Alpert M, Atokple I, Batieno BJ, Boukar O, Bozdag S, Cisse N, Drabo I, Ehlers JD, Farmer A, Fatokun C, Gu YQ, Guo YN, Huynh BL, Jackson SA, Kusi F, Lawley CT, Lucas MR, Ma Y, Timko MP, Wu J, You F, Barkley NA, Roberts PA, Lonardi S, Close TJ. Genome resources for climate-resilient cowpea, an essential crop for food security. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1042-1054. [PMID: 27775877 DOI: 10.1111/tpj.13404] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 05/20/2023]
Abstract
Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress.
Collapse
Affiliation(s)
- María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Hamid Mirebrahim
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences (ZAAS), Hangzhou, 310021, China
| | - Steve I Wanamaker
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - MingCheng Luo
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Hind Alhakami
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Matthew Alpert
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Ibrahim Atokple
- Council for Scientific and Industrial Research, Savanna Agricultural Research Institute, Tamale, Ghana
| | - Benoit J Batieno
- Institut de l'Environnement et de Recherches Agricoles, Saria, Burkina Faso
| | - Ousmane Boukar
- International Institute of Tropical Agriculture, Kano, Nigeria
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, USA
| | - Ndiaga Cisse
- Institut Sénégalais de Recherches Agricoles, Thiès, Senegal
| | - Issa Drabo
- Institut de l'Environnement et de Recherches Agricoles, Saria, Burkina Faso
| | - Jeffrey D Ehlers
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
- The Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | | | - Yong Q Gu
- USDA-ARS Western Regional Research Center, Albany, CA, USA
| | - Yi-Ning Guo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Bao-Lam Huynh
- Department of Nematology, University of California, Riverside, CA, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Francis Kusi
- Council for Scientific and Industrial Research, Savanna Agricultural Research Institute, Tamale, Ghana
| | | | - Mitchell R Lucas
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Yaqin Ma
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Jiajie Wu
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Frank You
- Department of Plant Sciences, University of California, Davis, CA, USA
- Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Noelle A Barkley
- USDA-ARS Plant Genetic Resources Conservation Unit, Griffin, GA, USA
| | - Philip A Roberts
- Department of Nematology, University of California, Riverside, CA, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Timothy J Close
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
35
|
Abstract
Understanding the genomic complexity of bread wheat is important for unraveling domestication processes, environmental adaptation, and for future of... Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe. Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focusing on the adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating biparental populations was developed, mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity. A modern spring elite variety, “Paragon,” was used as common reference parent. Genetic maps were constructed following identical rules to make them comparable. In total, 1611 linkage groups were identified, based on recombination from an estimated 126,300 crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC), was constructed and contained 2498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g., by comparing marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker distances were also found. Segregation distortion was detected for many markers, sometimes as hot spots present in different populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the well-known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified by QTL analyses using the crossover counts as a trait. In total, 114 significant QTL were detected, nearly half of them with increasing effect from the nonreference parents.
Collapse
|
36
|
Emebiri LC, Tan MK, El-Bouhssini M, Wildman O, Jighly A, Tadesse W, Ogbonnaya FC. QTL mapping identifies a major locus for resistance in wheat to Sunn pest (Eurygaster integriceps) feeding at the vegetative growth stage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:309-318. [PMID: 27744491 DOI: 10.1007/s00122-016-2812-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
This research provides the first report of a major locus controlling wheat resistance to Sunn pest. It developed and validated SNP markers that will be useful for marker-assisted selection. Sunn pest (Eurygaster integriceps Puton) is the most destructive insect pest of bread wheat and durum wheat in West and Central Asia and East Europe. Breeding for resistance at the vegetative stage of growth is vital in reducing the damage caused by overwintered adult populations that feed on shoot and leaves of seedlings, and in reducing the next generation of pest populations (nymphs and adults), which can cause damage to grain quality by feeding on spikes. In the present study, two doubled haploid (DH) populations involving resistant landraces from Afghanistan were genotyped with the 90k SNP iSelect assay and candidate gene-based KASP markers. The DH lines and parents were phenotyped for resistance to Sunn pest feeding, using artificial infestation cages at Terbol station, in Lebanon, over three years. Quantitative trait locus (QTL) analysis identified a single major locus on chromosome 4BS in the two populations, with the resistance allele derived from the landrace accessions, IG139431 and IG139883. The QTL explained a maximum of 42 % of the phenotypic variation in the Cham6 × IG139431 and 56 % in the Cham6 × IG139883 populations. SNP markers closest to the QTL showed high similarity to rice genes that putatively encode proteins for defense response to herbivory and wounding. The markers were validated in a large, unrelated population of parental wheat genotypes. All wheat lines carrying the 'C-G' haplotype at the identified SNPs were resistant, suggesting that selection based on a haplotype of favourable alleles would be effective in predicting resistance status of unknown genotypes.
Collapse
Affiliation(s)
- L C Emebiri
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, 2650, Australia.
| | - M-K Tan
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW, Menangle, NSW, 2568, Australia
| | - M El-Bouhssini
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Instituts, P. O. Box 6299, Rabat, Morocco
| | - O Wildman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW, Menangle, NSW, 2568, Australia
| | - A Jighly
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Instituts, P. O. Box 6299, Rabat, Morocco
| | - W Tadesse
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Instituts, P. O. Box 6299, Rabat, Morocco
| | - F C Ogbonnaya
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Instituts, P. O. Box 6299, Rabat, Morocco
- Grains Research and Development Corporation, P. O. Box 5367, Kingston, ACT, 2604, Australia
| |
Collapse
|
37
|
Wang L, Bai B, Liu P, Huang SQ, Wan ZY, Chua E, Ye B, Yue GH. Construction of high-resolution recombination maps in Asian seabass. BMC Genomics 2017; 18:63. [PMID: 28068919 PMCID: PMC5223582 DOI: 10.1186/s12864-016-3462-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/22/2016] [Indexed: 11/17/2022] Open
Abstract
Background A high-density genetic map is essential for de novo genome assembly, fine mapping QTL for important complex traits, comparative genomic studies and understanding the mechanisms of genome evolution. Although a number of genomic resources are available in Asian seabass (Lates calcarifer), a high-density linkage map is still lacking. To facilitate QTL mapping for marker-assisted selection and genome assembly, and to understand the genome-wide recombination rates, we constructed high density linkage maps using three families and genotyping by sequencing. Results A high-density consensus linkage map consisting of 8, 274 markers was constructed based on sex-averaged genetic maps. The genetic maps were then aligned and integrated with the current genome assembly of Asian seabass. More than 90% of the genome contig sequences were anchored onto the consensus genetic map. Evidence of assembly errors in the current genome assembly was identified. A fragment of up to 2.5 Mb belonging to LG14 was assembled into Chr15. The length of family-specific sex-averaged maps ranged from 1348.96 to 1624.65 cM. Female maps were slightly longer than male maps using common markers. Female-to-male ratios were highly variable both across chromosomes within each family and throughout three families for each chromosome. However, the distribution patterns of recombination along chromosomes were similar between sexes across the whole genome. The overall recombination rates were significantly correlated with genome-wide GC content and the correlations were revealed to be stronger in females than in males. Conclusions These high-density genetic maps provide not only essential tools for facilitating de novo genome assembly and comparative genomic studies in teleosts, but also critical resources for fine mapping QTL and genome-wide association mapping for economically important traits in Asian seabass. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3462-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Bin Bai
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Peng Liu
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Shu Qing Huang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Elaine Chua
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Baoqing Ye
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
38
|
Sudheesh S, Rodda MS, Davidson J, Javid M, Stephens A, Slater AT, Cogan NOI, Forster JW, Kaur S. SNP-Based Linkage Mapping for Validation of QTLs for Resistance to Ascochyta Blight in Lentil. FRONTIERS IN PLANT SCIENCE 2016; 7:1604. [PMID: 27853461 PMCID: PMC5091049 DOI: 10.3389/fpls.2016.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/12/2016] [Indexed: 05/23/2023]
Abstract
Lentil (Lens culinaris Medik.) is a self-pollinating, diploid, annual, cool-season, food legume crop that is cultivated throughout the world. Ascochyta blight (AB), caused by Ascochyta lentis Vassilievsky, is an economically important and widespread disease of lentil. Development of cultivars with high levels of durable resistance provides an environmentally acceptable and economically feasible method for AB control. A detailed understanding of the genetic basis of AB resistance is hence highly desirable, in order to obtain insight into the number and influence of resistance genes. Genetic linkage maps based on single nucleotide polymorphisms (SNP) and simple sequence repeat (SSR) markers have been developed from three recombinant inbred line (RIL) populations. The IH × NF map contained 460 loci across 1461.6 cM, while the IH × DIG map contained 329 loci across 1302.5 cM and the third map, NF × DIG contained 330 loci across 1914.1 cM. Data from these maps were combined with a map from a previously published study through use of bridging markers to generate a consensus linkage map containing 689 loci distributed across seven linkage groups (LGs), with a cumulative length of 2429.61 cM at an average density of one marker per 3.5 cM. Trait dissection of AB resistance was performed for the RIL populations, identifying totals of two and three quantitative trait loci (QTLs) explaining 52 and 69% of phenotypic variation for resistance to infection in the IH × DIG and IH × NF populations, respectively. Presence of common markers in the vicinity of the AB_IH1- and AB_IH2.1/AB_IH2.2-containing regions on both maps supports the inference that a common genomic region is responsible for conferring resistance and is associated with the resistant parent, Indianhead. The third QTL was derived from Northfield. Evaluation of markers associated with AB resistance across a diverse lentil germplasm panel revealed that the identity of alleles associated with AB_IH1 predicted the phenotypic responses with high levels of accuracy (~86%), and therefore have the potential to be widely adopted in lentil breeding programs. The availability of RIL-based maps, a consensus map, and validated markers linked to AB resistance provide important resources for lentil improvement.
Collapse
Affiliation(s)
- Shimna Sudheesh
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
| | - Matthew S. Rodda
- Biosciences Research, Agriculture VictoriaHorsham, VIC, Australia
| | - Jenny Davidson
- South Australia Research and Development Institute, Plant Research CentreUrrbrae, SA, Australia
| | - Muhammad Javid
- Biosciences Research, Agriculture VictoriaHorsham, VIC, Australia
| | - Amber Stephens
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
| | - Anthony T. Slater
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
| | - Noel O. I. Cogan
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityBundoora, VIC, Australia
| | - John W. Forster
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityBundoora, VIC, Australia
| | - Sukhjiwan Kaur
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
| |
Collapse
|
39
|
Liu JJ, Schoettle AW, Sniezko RA, Sturrock RN, Zamany A, Williams H, Ha A, Chan D, Danchok B, Savin DP, Kegley A. Genetic mapping of Pinus flexilis major gene (Cr4) for resistance to white pine blister rust using transcriptome-based SNP genotyping. BMC Genomics 2016; 17:753. [PMID: 27663193 PMCID: PMC5034428 DOI: 10.1186/s12864-016-3079-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022] Open
Abstract
Background Linkage of DNA markers with phenotypic traits provides essential information to dissect clustered genes with potential phenotypic contributions in a target genome region. Pinus flexilis E. James (limber pine) is a keystone five-needle pine species in mountain-top ecosystems of North America. White pine blister rust (WPBR), caused by a non-native fungal pathogen Cronartium ribicola (J.C. Fisch.), has resulted in mortality in this conifer species and is still spreading through the distribution. The objective of this research was to develop P. flexilis transcriptome-wide single nucleotide polymorphism (SNP) markers using RNA-seq analysis for genetic mapping of the major gene (Cr4) that confers complete resistance to C. ribicola. Results Needle tissues of one resistant and two susceptible seedling families were subjected to RNA-seq analysis. In silico SNP markers were uncovered by mapping the RNA-seq reads back to the de novo assembled transcriptomes. A total of 110,573 in silico SNPs and 2,870 indels were identified with an average of 3.7 SNPs per Kb. These SNPs were distributed in 17,041 unigenes. Of these polymorphic P. flexilis unigenes, 6,584 were highly conserved as compared to the genome sequence of P. taeda L (loblolly pine). High-throughput genotyping arrays were designed and were used to search for Cr4-linked genic SNPs in megagametophyte populations of four maternal trees by haploid-segregation analysis. A total of 32 SNP markers in 25 genes were localized on the Cr4 linkage group (LG). Syntenic relationships of this Cr4-LG map with the model conifer species P. taeda anchored Cr4 on Pinus consensus LG8, indicating that R genes against C. ribicola have evolved independently in different five-needle pines. Functional genes close to Cr4 were annotated and their potential roles in Cr4-mediated resistance were further discussed. Conclusions We demonstrated a very effective, low-cost strategy for developing a SNP genetic map of a phenotypic trait of interest. SNP discovery through transcriptome comparison was integrated with high-throughput genotyping of a small set of in silico SNPs. This strategy may be applied to mapping any trait in non-model plant species that have complex genomes. Whole transcriptome sequencing provides a powerful tool for SNP discovery in conifers and other species with complex genomes, for which sequencing and annotation of complex genomes is still challenging. The genic SNP map for the consensus Cr4-LG may help future molecular breeding efforts by enabling both Cr4 positional characterization and selection of this gene against WPBR. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3079-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1 M5, Canada.
| | - Anna W Schoettle
- USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO, 80526, USA
| | - Richard A Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR, 97424, USA
| | - Rona N Sturrock
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1 M5, Canada
| | - Arezoo Zamany
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1 M5, Canada
| | - Holly Williams
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1 M5, Canada
| | - Amanda Ha
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1 M5, Canada
| | - Danelle Chan
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1 M5, Canada
| | - Bob Danchok
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR, 97424, USA
| | - Douglas P Savin
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR, 97424, USA
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR, 97424, USA
| |
Collapse
|
40
|
Takahata S, Yago T, Iwabuchi K, Hirakawa H, Suzuki Y, Onodera Y. Comparison of Spinach Sex Chromosomes with Sugar Beet Autosomes Reveals Extensive Synteny and Low Recombination at the Male-Determining Locus. J Hered 2016; 107:679-685. [PMID: 27563071 DOI: 10.1093/jhered/esw055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/22/2016] [Indexed: 01/06/2023] Open
Abstract
Spinach (Spinacia oleracea, 2n = 12) and sugar beet (Beta vulgaris, 2n = 18) are important crop members of the family Chenopodiaceae ss Sugar beet has a basic chromosome number of 9 and a cosexual breeding system, as do most members of the Chenopodiaceae ss. family. By contrast, spinach has a basic chromosome number of 6 and, although certain cultivars and genotypes produce monoecious plants, is considered to be a dioecious species. The loci determining male and monoecious sexual expression were mapped to different loci on the spinach sex chromosomes. In this study, a linkage map with 46 mapped protein-coding sequences was constructed for the spinach sex chromosomes. Comparison of the linkage map with a reference genome sequence of sugar beet revealed that the spinach sex chromosomes exhibited extensive synteny with sugar beet chromosomes 4 and 9. Tightly linked protein-coding genes linked to the male-determining locus in spinach corresponded to genes located in or around the putative pericentromeric and centromeric regions of sugar beet chromosomes 4 and 9, supporting the observation that recombination rates were low in the vicinity of the male-determining locus. The locus for monoecism was confined to a chromosomal segment corresponding to a region of approximately 1.7Mb on sugar beet chromosome 9, which may facilitate future positional cloning of the locus.
Collapse
Affiliation(s)
- Satoshi Takahata
- From the Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Sapporo 060-8589, Japan (Takahata, Yago, Iwabuchi, and Onodera); the Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan (Hirakawa); and the Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan (Suzuki)
| | - Takumi Yago
- From the Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Sapporo 060-8589, Japan (Takahata, Yago, Iwabuchi, and Onodera); the Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan (Hirakawa); and the Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan (Suzuki)
| | - Keisuke Iwabuchi
- From the Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Sapporo 060-8589, Japan (Takahata, Yago, Iwabuchi, and Onodera); the Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan (Hirakawa); and the Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan (Suzuki)
| | - Hideki Hirakawa
- From the Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Sapporo 060-8589, Japan (Takahata, Yago, Iwabuchi, and Onodera); the Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan (Hirakawa); and the Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan (Suzuki)
| | - Yutaka Suzuki
- From the Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Sapporo 060-8589, Japan (Takahata, Yago, Iwabuchi, and Onodera); the Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan (Hirakawa); and the Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan (Suzuki)
| | - Yasuyuki Onodera
- From the Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Sapporo 060-8589, Japan (Takahata, Yago, Iwabuchi, and Onodera); the Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan (Hirakawa); and the Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan (Suzuki).
| |
Collapse
|
41
|
Fowler DB, N'Diaye A, Laudencia-Chingcuanco D, Pozniak CJ. Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.). PLoS One 2016; 11:e0152185. [PMID: 27019468 PMCID: PMC4809511 DOI: 10.1371/journal.pone.0152185] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/10/2016] [Indexed: 12/14/2022] Open
Abstract
Plants must respond to environmental cues and schedule their development in order to react to periods of abiotic stress and commit fully to growth and reproduction under favorable conditions. This study was initiated to identify SNP markers for characters expressed from the seedling stage to plant maturity in spring and winter wheat (Triticum aestivum L.) genotypes adapted to western Canada. Three doubled haploid populations with the winter cultivar ‘Norstar’ as a common parent were developed and genotyped with a 90K Illumina iSelect SNP assay and a 2,998.9 cM consensus map with 17,541 markers constructed. High heritability’s reflected large differences among the parents and relatively low genotype by environment interactions for all characters considered. Significant QTL were detected for the 15 traits examined. However, different QTL for days to heading in controlled environments and the field provided a strong reminder that growth and development are being orchestrated by environmental cues and caution should be exercised when extrapolating conclusions from different experiments. A QTL on chromosome 6A for minimum final leaf number, which determines the rate of phenological development in the seedling stage, was closely linked to QTL for low-temperature tolerance, grain quality, and agronomic characters expressed up to the time of maturity. This suggests phenological development plays a critical role in programming subsequent outcomes for many traits. Transgressive segregation was observed for the lines in each population and QTL with additive effects were identified suggesting that genes for desirable traits could be stacked using Marker Assisted Selection. QTL were identified for characters that could be transferred between the largely isolated western Canadian spring and winter wheat gene pools demonstrating the opportunities offered by Marker Assisted Selection to act as bridges in the identification and transfer of useful genes among related genetic islands while minimizing the drag created by less desirable genes.
Collapse
Affiliation(s)
- D B Fowler
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| | - A N'Diaye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| | - D Laudencia-Chingcuanco
- Crop Improvement and Genetics Research Unit, USDA-ARS WRRC, 800 Buchanan St. Albany, CA, United States of America, 94710
| | - C J Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| |
Collapse
|
42
|
Thapa R, Brown-Guedira G, Ohm HW, Mateos-Hernandez M, Wise KA, Goodwin SB. Determining the order of resistance genes against Stagonospora nodorum blotch, Fusarium head blight and stem rust on wheat chromosome arm 3BS. BMC Res Notes 2016; 9:58. [PMID: 26833226 PMCID: PMC4736272 DOI: 10.1186/s13104-016-1859-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/14/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Stagonospora nodorum blotch (SNB), Fusarium head blight (FHB) and stem rust (SR), caused by the fungi Parastagonospora (synonym Stagonospora) nodorum, Fusarium graminearum and Puccinia graminis, respectively, significantly reduce yield and quality of wheat. Three resistance factors, QSng.sfr-3BS, Fhb1 and Sr2, conferring resistance, respectively, to SNB, FHB and SR, each from a unique donor line, were mapped previously to the short arm of wheat chromosome 3B. Based on published reports, our hypothesis was that Sr2 is the most distal, Fhb1 the most proximal and QSng.sfr-3BS is in between Sr2 and Fhb1 on wheat chromosome arm 3BS. RESULTS To test this hypothesis, 1600 F2 plants from crosses between parental lines Arina, Alsen and Ocoroni86, conferring resistance genes QSng.sfr-3BS, Fhb1 and Sr2, respectively, were genotyped and phenotyped for SNB along with the parental lines. Five closely linked single-nucleotide polymorphism (SNP) markers were used to make the genetic map and determine the gene order. CONCLUSIONS The results indicate that QSng.sfr-3BS is located between the other two resistance genes on chromosome 3BS. Knowing the positional order of these resistance genes will aid in developing a wheat line with all three genes in coupling, which has the potential to provide broad-spectrum resistance preventing grain yield and quality losses.
Collapse
Affiliation(s)
- Rima Thapa
- Department of Agronomy, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA.
| | - Gina Brown-Guedira
- USDA-ARS Plant Science Research, North Carolina State University, Raleigh, NC, 27695-7620, USA.
| | - Herbert W Ohm
- Department of Agronomy, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA.
| | | | - Kiersten A Wise
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA.
| | - Stephen B Goodwin
- USDA-ARS, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA.
| |
Collapse
|
43
|
Jin H, Wen W, Liu J, Zhai S, Zhang Y, Yan J, Liu Z, Xia X, He Z. Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population. FRONTIERS IN PLANT SCIENCE 2016; 7:1032. [PMID: 27486464 PMCID: PMC4949415 DOI: 10.3389/fpls.2016.01032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/30/2016] [Indexed: 05/18/2023]
Abstract
Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat.
Collapse
Affiliation(s)
- Hui Jin
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Weie Wen
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shengnan Zhai
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yan Zhang
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jun Yan
- Wheat and Maize Research Center, Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Zhiyong Liu
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China officeBeijing, China
- *Correspondence: Zhonghu He
| |
Collapse
|
44
|
Di Pierro EA, Gianfranceschi L, Di Guardo M, Koehorst-van Putten HJJ, Kruisselbrink JW, Longhi S, Troggio M, Bianco L, Muranty H, Pagliarani G, Tartarini S, Letschka T, Lozano Luis L, Garkava-Gustavsson L, Micheletti D, Bink MCAM, Voorrips RE, Aziz E, Velasco R, Laurens F, van de Weg WE. A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. HORTICULTURE RESEARCH 2016; 3:16057. [PMID: 27917289 PMCID: PMC5120355 DOI: 10.1038/hortres.2016.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 05/18/2023]
Abstract
Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.
Collapse
Affiliation(s)
| | | | - Mario Di Guardo
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | | | | | - Sara Longhi
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Michela Troggio
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Luca Bianco
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Hélène Muranty
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, Beaucouzé 49071, France
| | - Giulia Pagliarani
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - Thomas Letschka
- Department of Molecular Biology, Laimburg Research Centre for Agriculture and Forestry, Ora 39040, Italy
| | - Lidia Lozano Luis
- Department of Molecular Biology, Laimburg Research Centre for Agriculture and Forestry, Ora 39040, Italy
| | | | - Diego Micheletti
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Marco CAM Bink
- Biometris, Wageningen University and Research, Wageningen 6700AA, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Ebrahimi Aziz
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Riccardo Velasco
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - François Laurens
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, Beaucouzé 49071, France
| | - W Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
- ()
| |
Collapse
|
45
|
Webb A, Cottage A, Wood T, Khamassi K, Hobbs D, Gostkiewicz K, White M, Khazaei H, Ali M, Street D, Duc G, Stoddard FL, Maalouf F, Ogbonnaya FC, Link W, Thomas J, O'Sullivan DM. A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:177-85. [PMID: 25865502 PMCID: PMC4973813 DOI: 10.1111/pbi.12371] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/12/2015] [Accepted: 03/03/2015] [Indexed: 05/20/2023]
Abstract
Faba bean (Vicia faba L.) is a globally important nitrogen-fixing legume, which is widely grown in a diverse range of environments. In this work, we mine and validate a set of 845 SNPs from the aligned transcriptomes of two contrasting inbred lines. Each V. faba SNP is assigned by BLAST analysis to a single Medicago orthologue. This set of syntenically anchored polymorphisms were then validated as individual KASP assays, classified according to their informativeness and performance on a panel of 37 inbred lines, and the best performing 757 markers used to genotype six mapping populations. The six resulting linkage maps were merged into a single consensus map on which 687 SNPs were placed on six linkage groups, each presumed to correspond to one of the six V. faba chromosomes. This sequence-based consensus map was used to explore synteny with the most closely related crop species, lentil and the most closely related fully sequenced genome, Medicago. Large tracts of uninterrupted colinearity were found between faba bean and Medicago, making it relatively straightforward to predict gene content and order in mapped genetic interval. As a demonstration of this, we mapped a flower colour gene to a 2-cM interval of Vf chromosome 2 which was highly colinear with Mt3. The obvious candidate gene from 78 gene models in the collinear Medicago chromosome segment was the previously characterized MtWD40-1 gene controlling anthocyanin production in Medicago and resequencing of the Vf orthologue showed a putative causative deletion of the entire 5' end of the gene.
Collapse
Affiliation(s)
- Anne Webb
- National Institute of Agricultural Botany, Cambridge, UK
| | - Amanda Cottage
- National Institute of Agricultural Botany, Cambridge, UK
| | - Thomas Wood
- National Institute of Agricultural Botany, Cambridge, UK
| | | | - Douglas Hobbs
- National Institute of Agricultural Botany, Cambridge, UK
| | | | | | - Hamid Khazaei
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Mohamed Ali
- Department of Crop Sciences, Georg-August-Universität, Göttingen, Germany
| | | | - Gérard Duc
- INRA, UMR1347 Agroécologie, Dijon, France
| | - Fred L Stoddard
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | | | - Wolfgang Link
- Department of Crop Sciences, Georg-August-Universität, Göttingen, Germany
| | - Jane Thomas
- National Institute of Agricultural Botany, Cambridge, UK
| | - Donal M O'Sullivan
- National Institute of Agricultural Botany, Cambridge, UK
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, UK
| |
Collapse
|
46
|
McKinney GJ, Seeb LW, Larson WA, Gomez‐Uchida D, Limborg MT, Brieuc MSO, Everett MV, Naish KA, Waples RK, Seeb JE. An integrated linkage map reveals candidate genes underlying adaptive variation in Chinook salmon (
Oncorhynchus tshawytscha
). Mol Ecol Resour 2015; 16:769-83. [DOI: 10.1111/1755-0998.12479] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022]
Affiliation(s)
- G. J. McKinney
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - L. W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - W. A. Larson
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - D. Gomez‐Uchida
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - M. T. Limborg
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - M. S. O. Brieuc
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - M. V. Everett
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - K. A. Naish
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - R. K. Waples
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - J. E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| |
Collapse
|
47
|
Liu S, Li Y, Qin Z, Geng X, Bao L, Kaltenboeck L, Kucuktas H, Dunham R, Liu Z. High-density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish. Anim Genet 2015; 47:81-90. [PMID: 26537786 DOI: 10.1111/age.12372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2015] [Indexed: 02/01/2023]
Abstract
Catfish is the leading aquaculture species in the United States. The interspecific hybrid catfish produced by mating female channel catfish with male blue catfish outperform both of their parent species in a number of traits. However, mass production of the hybrids has been difficult because of reproductive isolation. Investigations of genome structure and organization of the hybrids provide insights into the genetic basis for maintenance of species divergence in the face of gene flow, thereby helping develop strategies for introgression and efficient production of the hybrids for aquaculture. In this study, we constructed a high-density genetic linkage map using the hybrid catfish system with the catfish 250K SNP array. A total of 26,238 SNPs were mapped to 29 linkage groups, with 12,776 unique marker positions. The linkage map spans approximately 3240 cM with an average intermarker distance of 0.25 cM. A fraction of markers (986 of 12,776) exhibited significant deviation from the expected Mendelian ratio of segregation, and they were clustered in major genomic blocks across 15 LGs, most notably LG9 and LG15. The distorted markers exhibited significant bias for maternal alleles among the backcross progenies, suggesting strong selection against the blue catfish alleles. The clustering of distorted markers within genomic blocks should lend insights into speciation as marked by incompatibilities between the two species. Such findings should also have profound implications for understanding the genomic evolution of closely related species as well as the introgression of hybrid production programs in aquaculture.
Collapse
Affiliation(s)
- S Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Y Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Z Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - X Geng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - L Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - L Kaltenboeck
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - H Kucuktas
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - R Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Z Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
48
|
Hedgecock D, Shin G, Gracey AY, Den Berg DV, Samanta MP. Second-Generation Linkage Maps for the Pacific Oyster Crassostrea gigas Reveal Errors in Assembly of Genome Scaffolds. G3 (BETHESDA, MD.) 2015; 5:2007-19. [PMID: 26248981 PMCID: PMC4592983 DOI: 10.1534/g3.115.019570] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/25/2015] [Indexed: 01/14/2023]
Abstract
The Pacific oyster Crassostrea gigas, a widely cultivated marine bivalve mollusc, is becoming a genetically and genomically enabled model for highly fecund marine metazoans with complex life-histories. A genome sequence is available for the Pacific oyster, as are first-generation, low-density, linkage and gene-centromere maps mostly constructed from microsatellite DNA makers. Here, higher density, second-generation, linkage maps are constructed from more than 1100 coding (exonic) single-nucleotide polymorphisms (SNPs), as well as 66 previously mapped microsatellite DNA markers, all typed in five families of Pacific oysters (nearly 172,000 genotypes). The map comprises 10 linkage groups, as expected, has an average total length of 588 cM, an average marker-spacing of 1.0 cM, and covers 86% of a genome estimated to be 616 cM. All but seven of the mapped SNPs map to 618 genome scaffolds; 260 scaffolds contain two or more mapped SNPs, but for 100 of these scaffolds (38.5%), the contained SNPs map to different linkage groups, suggesting widespread errors in scaffold assemblies. The 100 misassembled scaffolds are significantly longer than those that map to a single linkage group. On the genetic maps, marker orders and intermarker distances vary across families and mapping methods, owing to an abundance of markers segregating from only one parent, to widespread distortions of segregation ratios caused by early mortality, as previously observed for oysters, and to genotyping errors. Maps made from framework markers provide stronger support for marker orders and reasonable map lengths and are used to produce a consensus high-density linkage map containing 656 markers.
Collapse
Affiliation(s)
- Dennis Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371
| | - Grace Shin
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371
| | - Andrew Y Gracey
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371
| | - David Van Den Berg
- Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9601
| | | |
Collapse
|
49
|
A Consensus Genetic Map for Pinus taeda and Pinus elliottii and Extent of Linkage Disequilibrium in Two Genotype-Phenotype Discovery Populations of Pinus taeda. G3-GENES GENOMES GENETICS 2015; 5:1685-94. [PMID: 26068575 PMCID: PMC4528325 DOI: 10.1534/g3.115.019588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A consensus genetic map for Pinus taeda (loblolly pine) and Pinus elliottii (slash pine) was constructed by merging three previously published P. taeda maps with a map from a pseudo-backcross between P. elliottii and P. taeda. The consensus map positioned 3856 markers via genotyping of 1251 individuals from four pedigrees. It is the densest linkage map for a conifer to date. Average marker spacing was 0.6 cM and total map length was 2305 cM. Functional predictions of mapped genes were improved by aligning expressed sequence tags used for marker discovery to full-length P. taeda transcripts. Alignments to the P. taeda genome mapped 3305 scaffold sequences onto 12 linkage groups. The consensus genetic map was used to compare the genome-wide linkage disequilibrium in a population of distantly related P. taeda individuals (ADEPT2) used for association genetic studies and a multiple-family pedigree used for genomic selection (CCLONES). The prevalence and extent of LD was greater in CCLONES as compared to ADEPT2; however, extended LD with LGs or between LGs was rare in both populations. The average squared correlations, r2, between SNP alleles less than 1 cM apart were less than 0.05 in both populations and r2 did not decay substantially with genetic distance. The consensus map and analysis of linkage disequilibrium establish a foundation for comparative association mapping and genomic selection in P. taeda and P. elliottii.
Collapse
|
50
|
Bartholomé J, Mabiala A, Savelli B, Bert D, Brendel O, Plomion C, Gion JM. Genetic architecture of carbon isotope composition and growth in Eucalyptus across multiple environments. THE NEW PHYTOLOGIST 2015; 206:1437-1449. [PMID: 25643911 DOI: 10.1111/nph.13301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/19/2014] [Indexed: 06/04/2023]
Abstract
In the context of climate change, the water-use efficiency (WUE) of highly productive tree varieties, such as eucalypts, has become a major issue for breeding programmes. This study set out to dissect the genetic architecture of carbon isotope composition (δ(13) C), a proxy of WUE, across several environments. A family of Eucalyptus urophylla × E. grandis was planted in three trials and phenotyped for δ(13) C and growth traits. High-resolution genetic maps enabled us to target genomic regions underlying δ(13) C quantitative trait loci (QTLs) on the E. grandis genome. Of the 15 QTLs identified for δ(13) C, nine were stable across the environments and three displayed significant QTL-by-environment interaction, suggesting medium to high genetic determinism for this trait. Only one colocalization was found between growth and δ(13) C. Gene ontology (GO) term enrichment analysis suggested candidate genes related to foliar δ(13) C, including two involved in the regulation of stomatal movements. This study provides the first report of the genetic architecture of δ(13) C and its relation to growth in Eucalyptus. The low correlations found between the two traits at phenotypic and genetic levels suggest the possibility of improving the WUE of Eucalyptus varieties without having an impact on breeding for growth.
Collapse
Affiliation(s)
- Jérôme Bartholomé
- CIRAD, UMR AGAP, F-33612, Cestas, France
- INRA, UMR BIOGECO, F-33612, Cestas, France
- University of Bordeaux, UMR BIOGECO, F-33170, Cestas, France
| | | | - Bruno Savelli
- CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Didier Bert
- INRA, UMR BIOGECO, F-33612, Cestas, France
- University of Bordeaux, UMR BIOGECO, F-33170, Cestas, France
| | - Oliver Brendel
- INRA, UMR 1137, F-54280, Champenoux, France
- Université de Lorraine, UMR 1137, F-54506, Vandoeuvre-les-Nancy, France
| | - Christophe Plomion
- INRA, UMR BIOGECO, F-33612, Cestas, France
- University of Bordeaux, UMR BIOGECO, F-33170, Cestas, France
| | - Jean-Marc Gion
- CIRAD, UMR AGAP, F-33612, Cestas, France
- INRA, UMR BIOGECO, F-33612, Cestas, France
- University of Bordeaux, UMR BIOGECO, F-33170, Cestas, France
| |
Collapse
|