1
|
Shen Y, Zhang L, Zhang H, Li Y, Zhao J, Tian J, Yang G, Hui H. A greedy regularized block Kaczmarz method for accelerating reconstruction in magnetic particle imaging. Phys Med Biol 2024; 69:155004. [PMID: 38862003 DOI: 10.1088/1361-6560/ad56f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.Magnetic particle imaging (MPI) is an emerging medical tomographic imaging modality that enables real-time imaging with high sensitivity and high spatial and temporal resolution. For the system matrix reconstruction method, the MPI reconstruction problem is an ill-posed inverse problem that is commonly solved using the Kaczmarz algorithm. However, the high computation time of the Kaczmarz algorithm, which restricts MPI reconstruction speed, has limited the development of potential clinical applications for real-time MPI. In order to achieve fast reconstruction in real-time MPI, we propose a greedy regularized block Kaczmarz method (GRBK) which accelerates MPI reconstruction.Approach.GRBK is composed of a greedy partition strategy for the system matrix, which enables preprocessing of the system matrix into well-conditioned blocks to facilitate the convergence of the block Kaczmarz algorithm, and a regularized block Kaczmarz algorithm, which enables fast and accurate MPI image reconstruction at the same time.Main results.We quantitatively evaluated our GRBK using simulation data from three phantoms at 20 dB, 30 dB, and 40 dB noise levels. The results showed that GRBK can improve reconstruction speed by single orders of magnitude compared to the prevalent regularized Kaczmarz algorithm including Tikhonov regularization, the non-negative Fused Lasso, and wavelet-based sparse model. We also evaluated our method on OpenMPIData, which is real MPI data. The results showed that our GRBK is better suited for real-time MPI reconstruction than current state-of-the-art reconstruction algorithms in terms of reconstruction speed as well as image quality.Significance.Our proposed method is expected to be the preferred choice for potential applications of real-time MPI.
Collapse
Affiliation(s)
- Yusong Shen
- School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Liwen Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Hui Zhang
- School of Engineering Medicine, Beihang University, Beijing, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, People's Republic of China
| | - Yimeng Li
- School of Engineering Medicine, Beihang University, Beijing, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, People's Republic of China
| | - Jing Zhao
- School of Engineering Medicine, Beihang University, Beijing, People's Republic of China
| | - Jie Tian
- School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- School of Engineering Medicine, Beihang University, Beijing, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| | - Guanyu Yang
- School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100080, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| |
Collapse
|
2
|
He J, Li Y, Zhang P, Hui H, Tian J. A fused LASSO operator for fast 3D magnetic particle imaging reconstruction. Phys Med Biol 2024; 69:135002. [PMID: 38815602 DOI: 10.1088/1361-6560/ad524b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Objective.Magnetic particle imaging (MPI) is a promising imaging modality that leverages the nonlinear magnetization behavior of superparamagnetic iron oxide nanoparticles to determine their concentration distribution. Previous optimization models with multiple regularization terms have been proposed to achieve high-quality MPI reconstruction, but these models often result in increased computational burden, particularly for dense gridding 3D fields of view. In order to achieve faster reconstruction speeds without compromising reconstruction quality, we have developed a novel fused LASSO operator, total sum-difference (TSD), which effectively captures the sparse and smooth priors of MPI images.Methods.Through an analysis-synthesis equivalence strategy and a constraint smoothing strategy, the TSD regularized model was solved using the fast iterative soft-thresholding algorithm (FISTA). The resulting reconstruction method, TSD-FISTA, boasts low computational complexity and quadratic convergence rate over iterations.Results.Experimental results demonstrated that TSD-FISTA required only 10% and 37% of the time to achieve comparable or superior reconstruction quality compared to commonly used fused LASSO-based alternating direction method of multipliers and Tikhonov-based algebraic reconstruction techniques, respectively.Significance.TSD-FISTA shows promise for enabling real-time 3D MPI reconstruction at high frame rates for large fields of view.
Collapse
Affiliation(s)
- Jie He
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing 100191, People's Republic of China
| | - Yimeng Li
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing 100191, People's Republic of China
| | - Peng Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| | - Jie Tian
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing 100191, People's Republic of China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| |
Collapse
|
3
|
Tay Z, Kim HJ, Ho JS, Olivo M. A Magnetic Particle Imaging Approach for Minimally Invasive Imaging and Sensing With Implantable Bioelectronic Circuits. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1740-1752. [PMID: 38157469 DOI: 10.1109/tmi.2023.3348149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Minimally-invasive and biocompatible implantable bioelectronic circuits are used for long-term monitoring of physiological processes in the body. However, there is a lack of methods that can cheaply and conveniently image the device within the body while simultaneously extracting sensor information. Magnetic Particle Imaging (MPI) with zero background signal, high contrast, and high sensitivity with quantitative images is ideal for this challenge because the magnetic signal is not absorbed with increasing tissue depth and incurs no radiation dose. We show how to easily modify common implantable devices to be imaged by MPI by encapsulating and magnetically-coupling magnetic nanoparticles (SPIOs) to the device circuit. These modified implantable devices not only provide spatial information via MPI, but also couple to our handheld MPI reader to transmit sensor information by modulating harmonic signals from magnetic nanoparticles via switching or frequency-shifting with resistive or capacitive sensors. This paper provides proof-of-concept of an optimized MPI imaging technique for implantable devices to extract spatial information as well as other information transmitted by the implanted circuit (such as biosensing) via encoding in the magnetic particle spectrum. The 4D images present 3D position and a changing color tone in response to a variable biometric. Biophysical sensing via bioelectronic circuits that take advantage of the unique imaging properties of MPI may enable a wide range of minimally invasive applications in biomedicine and diagnosis.
Collapse
|
4
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Nguyen KT, Bui MP, Le TA, Kim SJ, Kim HY, Yoon J, Park JO, Kim J. Magnetic particle image scanner based on asymmetric core-filled electromagnetic actuator. Comput Biol Med 2024; 169:107864. [PMID: 38171260 DOI: 10.1016/j.compbiomed.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Monitoring the distribution of magnetic nanoparticles (MNPs) in the vascular system is an important task for the advancement of precision therapeutics and drug delivery. Despite active targeting using active motilities, it is required to visualize the position and concentration of carriers that reach the target, to promote the development of this technology. In this work, a feasibility study is presented on a tomographic scanner that allows monitoring of the injected carriers quantitatively in a relatively short interval. The device is based on a small-animal-scale asymmetric magnetic platform integrated with magnetic particle imaging technology. An optimized isotropic field-free region (FFR) generation method using a magnetic manipulation system (MMS) is derived and numerically investigated. The in-vitro and in-vivo tracking performances are demonstrated with a high position accuracy of approximately 1 mm. A newly proposed tracking method was developed, specialized in vascular system, with quick scanning time (about 1s). In this paper, the primary function of the proposed system is to track magnetic particles using a magnetic manipulation system. Through this, proposed method enables the conventional magnetic actuation systems to upgrade the functionalities of both manipulation and localization of magnetic objects.
Collapse
Affiliation(s)
- Kim Tien Nguyen
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea
| | - Minh Phu Bui
- School of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Tuan-Anh Le
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Seok Jae Kim
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea
| | - Ho Young Kim
- Department of Nanobiomedical Science, Dankook University, Chungnam, 31116, South Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea.
| | - Jayoung Kim
- Korea Institute of Medical Microrobotics, Gwangju, 61011, South Korea.
| |
Collapse
|
6
|
Li T, Zheng C, Xu H, Ning Q, Sun Q, Yu R, Cui D, Wang K. Development and optimization of a frequency mixing sensor for adjacent samples quantitative detection on a lateral flow assay. Biotechnol J 2024; 19:e2300190. [PMID: 37985409 DOI: 10.1002/biot.202300190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Frequency-mixing technology has been widely used to precisely identify magnetic nanoparticles in applications of quantitative biomedical detection in recent years. Examples include immune adsorption, lateral flow assays (LFAs), and biomagnetic imaging. However, the signals of magnetic response generated by adjacent magnetic samples interfere with each other owing to the small spacing between them in applications involving multi-sample detection (such as the LFA and multiplexing detection). Such signal interference prevents the biosensor from obtaining characteristic peaks related to the concentration of adjacent biomarkers from the magnetic response signals. Mathematical and physical models of the structure of sensors based on frequency-mixing techniques were developed. The theoretical model was verified and its key parameters were optimized by using simulations. A new frequency-mixing magnetic sensor structure was then designed and developed based on the model, and the key technical problem of signal crosstalk between adjacent samples was structurally solved. Finally, standard cards with stable magnetic properties were used to evaluate the performance of the sensor, and strips of the gastrin-17 (G-17) LFA were used to evaluate its potential for use in clinical applications. The results show that the minimum spacing between samples required by the optimized sensor to accurately identify them was only about 4-5 mm, and the minimum detectable concentration of G-17 was 11 pg mL-1 . This is a significant reduction in the required spacing between samples for multiplexing detection. The optimized sensor also has the potential for use in multi-channel synchronous signal acquisition, and can be used to detect synchronous magnetic signals in vivo.
Collapse
Affiliation(s)
- Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Chujun Zheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Ruoyao Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| |
Collapse
|
7
|
Shen Y, Zhang L, Shang Y, Jia G, Yin L, Zhang H, Tian J, Yang G, Hui H. An adaptive multi-frame parallel iterative method for accelerating real-time magnetic particle imaging reconstruction. Phys Med Biol 2023; 68:245016. [PMID: 37890461 DOI: 10.1088/1361-6560/ad078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Objective. Real-time reconstruction of magnetic particle imaging (MPI) shows promising clinical applications. However, prevalent reconstruction methods are mainly based on serial iteration, which causes large delay in real-time reconstruction. In order to achieve lower latency in real-time MPI reconstruction, we propose a parallel method for accelerating the speed of reconstruction methods.Approach. The proposed method, named adaptive multi-frame parallel iterative method (AMPIM), enables the processing of multi-frame signals to multi-frame MPI images in parallel. To facilitate parallel computing, we further propose an acceleration strategy for parallel computation to improve the computational efficiency of our AMPIM.Main results. OpenMPIData was used to evaluate our AMPIM, and the results show that our AMPIM improves the reconstruction frame rate per second of real-time MPI reconstruction by two orders of magnitude compared to prevalent iterative algorithms including the Kaczmarz algorithm, the conjugate gradient normal residual algorithm, and the alternating direction method of multipliers algorithm. The reconstructed image using AMPIM has high contrast-to-noise with reducing artifacts.Significance. The AMPIM can parallelly optimize least squares problems with multiple right-hand sides by exploiting the dimension of the right-hand side. AMPIM has great potential for application in real-time MPI imaging with high imaging frame rate.
Collapse
Affiliation(s)
- Yusong Shen
- School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Liwen Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
| | - Yaxin Shang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Guang Jia
- School of Computer Science and Technology, Xidian University, Xi'an Shaanxi, People's Republic of China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
| | - Hui Zhang
- School of Engineering Medicine, Beihang University, Beijing, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, People's Republic of China
| | - Jie Tian
- School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, People's Republic of China
- School of Engineering Medicine, Beihang University, Beijing, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, People's Republic of China
| | - Guanyu Yang
- School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
| |
Collapse
|
8
|
Arslan MT, Ozaslan AA, Kurt S, Muslu Y, Saritas EU. Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3774-3786. [PMID: 35921341 DOI: 10.1109/tmi.2022.3195694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic particle imaging (MPI) is a rapidly developing medical imaging modality that exploits the non-linear response of magnetic nanoparticles (MNPs). Color MPI widens the functionality of MPI, empowering it with the capability to distinguish different MNPs and/or MNP environments. The system function approach for color MPI relies on extensive calibrations that capture the differences in the harmonic responses of the MNPs. An alternative calibration-free x-space-based method called TAURUS estimates a map of the relaxation time constant, τ , by recovering the underlying mirror symmetry in the MPI signal. However, TAURUS requires a back and forth scanning of a given region, restricting its usage to slow trajectories with constant or piecewise constant focus fields (FFs). In this work, we propose a novel technique to increase the performance of TAURUS and enable τ map estimation for rapid and multi-dimensional trajectories. The proposed technique is based on correcting the distortions on mirror symmetry induced by time-varying FFs. We demonstrate via simulations and experiments in our in-house MPI scanner that the proposed method successfully estimates high-fidelity τ maps for rapid trajectories that provide orders of magnitude reduction in scanning time (over 300 fold for simulations and over 8 fold for experiments) while preserving the calibration-free property of TAURUS.
Collapse
|
9
|
Pantke D, Mueller F, Reinartz S, Philipps J, Mohammadali Dadfar S, Peters M, Franke J, Schrank F, Kiessling F, Schulz V. Frequency-selective signal enhancement by a passive dual coil resonator for magnetic particle imaging. Phys Med Biol 2022; 67. [PMID: 35472698 DOI: 10.1088/1361-6560/ac6a9f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Abstract
Objective.Magnetic particle imaging (MPI) visualizes the spatial distribution of magnetic nanoparticles. MPI already provides excellent temporal and good spatial resolution, however, to achieve translation into clinics, further advances in the fields of sensitivity, image reconstruction and tracer performance are needed. In this work, we propose a novel concept to enhance the MPI signal and image resolution by a purely passive receive coil insert for a preclinical MPI system.Approach.The passive dual coil resonator (pDCR) provides frequency-selective signal enhancement. This is enabled by the adaptable resonance frequency of the pDCR network, which is galvanically isolated from the MPI system and composed of two coaxial solenoids connected via a capacitor. The pDCR aims to enhance frequency components related to high mixing orders, which are crucial to achieve high spatial resolution.Main Results.In this study, system matrix measurements and image acquisitions of a resolution phantom are carried out to evaluate the performance of the pDCR compared to the integrated receive unit of the preclinical MPI and a dedicated rat-sized receive coil. Frequency-selective signal increase and spatial resolution enhancement are demonstrated.Significance.Common dedicated receive coils come along with noise-matched receive networks, which makes them costly and difficult to reproduce. The presented pDCR is a purely passive coil insert that gets along without any additional receive electronics. Therefore, it is cost-efficient, easy-to-handle and adaptable to other MPI scanners and potentially other applications providing the basis for a new breed of passive MPI receiver systems.
Collapse
Affiliation(s)
- Dennis Pantke
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Florian Mueller
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Sebastian Reinartz
- Department of Diagnostic and Interventional Radiology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Jonas Philipps
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Seyed Mohammadali Dadfar
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Maximilian Peters
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Jochen Franke
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Bruker BioSpin MRI GmbH, Preclinical Imaging Division, Ettlingen, Germany
| | - Franziska Schrank
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,III. Physikalisches Institut B, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
11
|
Tay ZW, Savliwala S, Hensley DW, Fung KLB, Colson C, Fellows BD, Zhou X, Huynh Q, Lu Y, Zheng B, Chandrasekharan P, Rivera-Jimenez SM, Rinaldi-Ramos CM, Conolly SM. Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging. SMALL METHODS 2021; 5:e2100796. [PMID: 34927972 PMCID: PMC8837195 DOI: 10.1002/smtd.202100796] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 05/02/2023]
Abstract
Magnetic nanoparticles have many advantages in medicine such as their use in non-invasive imaging as a Magnetic Particle Imaging (MPI) tracer or Magnetic Resonance Imaging contrast agent, the ability to be externally shifted or actuated and externally excited to generate heat or release drugs for therapy. Existing nanoparticles have a gentle sigmoidal magnetization response that limits resolution and sensitivity. Here it is shown that superferromagnetic iron oxide nanoparticle chains (SFMIOs) achieve an ideal step-like magnetization response to improve both image resolution & SNR by more than tenfold over conventional MPI. The underlying mechanism relies on dynamic magnetization with square-like hysteresis loops in response to 20 kHz, 15 kAm-1 MPI excitation, with nanoparticles assembling into a chain under an applied magnetic field. Experimental data shows a "1D avalanche" dipole reversal of every nanoparticle in the chain when the applied field overcomes the dynamic coercive threshold of dipole-dipole fields from adjacent nanoparticles in the chain. Intense inductive signal is produced from this event resulting in a sharp signal peak. Novel MPI imaging strategies are demonstrated to harness this behavior towards order-of-magnitude medical image improvements. SFMIOs can provide a breakthrough in noninvasive imaging of cancer, pulmonary embolism, gastrointestinal bleeds, stroke, and inflammation imaging.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), #02-02 Helios Building, Singapore, 138667, Singapore
| | - Shehaab Savliwala
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611-6005, USA
| | - Daniel W Hensley
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - K L Barry Fung
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Caylin Colson
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Benjamin D Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Xinyi Zhou
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Quincy Huynh
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Yao Lu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Bo Zheng
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | | | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611-6005, USA
| | - Steven M Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| |
Collapse
|
12
|
Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021; 13:5285. [PMID: 34771448 PMCID: PMC8582440 DOI: 10.3390/cancers13215285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION's MPS spectral changes within the nanocarrier. CONCLUSION MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Benjamin D. Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Irati Rodrigo Arrizabalaga
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Elaine Yu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Malini Olivo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Steven M. Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| |
Collapse
|
13
|
Makela AV, Gaudet JM, Murrell DH, Mansfield JR, Wintermark M, Contag CH. Mind Over Magnets - How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience. Neuroscience 2021; 474:100-109. [PMID: 33197498 DOI: 10.1016/j.neuroscience.2020.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022]
Abstract
Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation.
Collapse
Affiliation(s)
- Ashley V Makela
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jeffrey M Gaudet
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Magnetic Insight Inc, Alameda, CA, USA
| | - Donna H Murrell
- London Regional Cancer Program, Western University, London, ON, Canada
| | | | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Ludewig P, Graeser M, Forkert ND, Thieben F, Rández-Garbayo J, Rieckhoff J, Lessmann K, Förger F, Szwargulski P, Magnus T, Knopp T. Magnetic particle imaging for assessment of cerebral perfusion and ischemia. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1757. [PMID: 34617413 DOI: 10.1002/wnan.1757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023]
Abstract
Stroke is one of the leading worldwide causes of death and sustained disability. Rapid and accurate assessment of cerebral perfusion is essential to diagnose and successfully treat stroke patients. Magnetic particle imaging (MPI) is a new technology with the potential to overcome some limitations of established imaging modalities. It is an innovative and radiation-free imaging technique with high sensitivity, specificity, and superior temporal resolution. MPI enables imaging and diagnosis of stroke and other neurological pathologies such as hemorrhage, tumors, and inflammatory processes. MPI scanners also offer the potential for targeted therapies of these diseases. Due to lower field requirements, MPI scanners can be designed as resistive magnets and employed as mobile devices for bedside imaging. With these advantages, MPI could accelerate and improve the diagnosis and treatment of neurological disorders. This review provides a basic introduction to MPI, discusses its current use for stroke imaging, and addresses future applications, including the potential for clinical implementation. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Graeser
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany.,Fraunhofer Research Institute for Individualized and Cell-based Medicine, Lübeck, Germany.,Institute for Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Nils D Forkert
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Florian Thieben
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Javier Rández-Garbayo
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Rieckhoff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fynn Förger
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Patryk Szwargulski
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Knopp
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
15
|
Luengo Morato Y, Ovejero Paredes K, Lozano Chamizo L, Marciello M, Filice M. Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles. Polymers (Basel) 2021; 13:2989. [PMID: 34503029 PMCID: PMC8434540 DOI: 10.3390/polym13172989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death in the world, which is why it is so important to make an early and very precise diagnosis to obtain a good prognosis. Thanks to the combination of several imaging modalities in the form of the multimodal molecular imaging (MI) strategy, a great advance has been made in early diagnosis, in more targeted and personalized therapy, and in the prediction of the results that will be obtained once the anticancer treatment is applied. In this context, magnetic nanoparticles have been positioned as strong candidates for diagnostic agents as they provide very good imaging performance. Furthermore, thanks to their high versatility, when combined with other molecular agents (for example, fluorescent molecules or radioisotopes), they highlight the advantages of several imaging techniques at the same time. These hybrid nanosystems can be also used as multifunctional and/or theranostic systems as they can provide images of the tumor area while they administer drugs and act as therapeutic agents. Therefore, in this review, we selected and identified more than 160 recent articles and reviews and offer a broad overview of the most important concepts that support the synthesis and application of multifunctional magnetic nanoparticles as molecular agents in advanced cancer detection based on the multimodal molecular imaging approach.
Collapse
Affiliation(s)
- Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Karina Ovejero Paredes
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Laura Lozano Chamizo
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Marco Filice
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
16
|
Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev 2021; 50:8102-8146. [PMID: 34047311 DOI: 10.1039/d0cs00260g] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique because of its signal linearly propotional to the tracer mass, ability to generate positive contrast, low tissue background, unlimited tissue penetration depth, and lack of ionizing radiation. The sensitivity and resolution of MPI are highly dependent on the properties of magnetic nanoparticles (MNPs), and extensive research efforts have been focused on the design and synthesis of tracers. This review examines parameters that dictate the performance of MNPs, including size, shape, composition, surface property, crystallinity, the surrounding environment, and aggregation state to provide guidance for engineering MPI tracers with better performance. Finally, we discuss applications of MPI imaging and its challenges and perspectives in clinical translation.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Joanna Wang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| | - Jiacheng Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| |
Collapse
|
17
|
Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging. Sci Rep 2021; 11:14082. [PMID: 34234207 PMCID: PMC8263782 DOI: 10.1038/s41598-021-93323-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebral aneurysms are potentially life threatening and nowadays treated by a catheter-guided coiling or by a neurosurgical clipping intervention. Here, we propose a helically shaped magnetic micro-robot, which can be steered by magnetic fields in an untethered manner and could be applied for a novel coiling procedure. This is shown by navigating the micro-robot through an additively manufactured phantom of a human cerebral aneurysm. The magnetic fields are applied with a magnetic particle imaging (MPI) scanner, which allows for the navigation and tomographic visualization by the same machine. With MPI the actuation process can be visualized with a localization accuracy of 0.68 mm and an angiogram can be acquired both without any radiation exposure. First in-vitro phantom experiments are presented, showing an idea of a robot conducted treatment of cerebral aneurysms.
Collapse
|
18
|
Choi J, Hwang J, Kim J, Choi H. Recent Progress in Magnetically Actuated Microrobots for Targeted Delivery of Therapeutic Agents. Adv Healthc Mater 2021; 10:e2001596. [PMID: 33331143 DOI: 10.1002/adhm.202001596] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Therapeutic agents, such as drugs and cells, play an essential role in virtually every treatment of injury, illness, or disease. However, the conventional practices of drug delivery often result in undesirable side effects caused by drug overdose and off-target delivery. In the case of cell delivery, the survival rate of the transplanted cells is extremely low and difficulties with the administration route of cells remain a problem. Recently, magnetically actuated microrobots have started offering unique opportunities in targeted therapeutic delivery due to their tiny size and ability to access hard-to-reach lesions in a minimally invasive manner; considerable advances in this regard have been made over the past decade. Here, recent progress in magnetically actuated microrobots, developed for targeted drug/cell delivery, is presented, with a focus on their design features and mechanisms for controlled therapeutic release. Additionally, the practical challenges faced by the microrobots, and future research directions toward the swift bench-to-bedside translation of the microrobots are addressed.
Collapse
Affiliation(s)
- Junhee Choi
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Junsun Hwang
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Jin‐young Kim
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| |
Collapse
|
19
|
Lu Y, Rivera-Rodriguez A, Tay ZW, Hensley D, Fung KLB, Colson C, Saayujya C, Huynh Q, Kabuli L, Fellows B, Chandrasekharan P, Rinaldi C, Conolly S. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment. Int J Hyperthermia 2021; 37:141-154. [PMID: 33426994 DOI: 10.1080/02656736.2020.1853252] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Magnetic fluid hyperthermia (MFH) has been widely investigated as a treatment tool for cancer and other diseases. However, focusing traditional MFH to a tumor deep in the body is not feasible because the in vivo wavelength of 300 kHz very low frequency (VLF) excitation fields is longer than 100 m. Recently we demonstrated that millimeter-precision localized heating can be achieved by combining magnetic particle imaging (MPI) with MFH. In principle, real-time MPI imaging can also guide the location and dosing of MFH treatments. Hence, the combination of MPI imaging plus real time localized MPI-MFH could soon permit closed-loop high-resolution hyperthermia treatment. In this review, we will discuss the fundamentals of localized MFH (e.g. physics and biosafety limitations), hardware implementation, MPI real-time guidance, and new research directions on MPI-MFH. We will also discuss how the scale up to human-sized MPI-MFH scanners could proceed.
Collapse
Affiliation(s)
- Yao Lu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Zhi Wei Tay
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - K L Barry Fung
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Caylin Colson
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Leyla Kabuli
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Benjamin Fellows
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Steven Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
20
|
Chandrasekharan P, Tay ZW, Zhou XY, Yu EY, Fung BK, Colson C, Fellows BD, Lu Y, Huynh Q, Saayujya C, Keselman P, Hensley D, Lu K, Orendorff R, Konkle J, Saritas EU, Zheng B, Goodwill P, Conolly S. Magnetic Particle Imaging for Vascular, Cellular and Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
21
|
Graeser M, Ludewig P, Szwargulski P, Foerger F, Liebing T, Forkert ND, Thieben F, Magnus T, Knopp T. Design of a head coil for high resolution mouse brain perfusion imaging using magnetic particle imaging. Phys Med Biol 2020; 65:235007. [PMID: 33049723 DOI: 10.1088/1361-6560/abc09e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Magnetic particle imaging (MPI) is a novel and versatile imaging modality developing toward human application. When up-scaling to human size, the sensitivity of the systems naturally drops as the coil sensitivity depends on the bore diameter. Thus, new methods to push the sensitivity limit further have to be investigated to cope for this loss. In this paper a dedicated surface coil for mice is developed, improving the sensitivity in cerebral imaging applications. Similar to magnetic resonance imaging the developed surface coil improves the sensitivity due to the closer vicinity to the region of interest. With the developed surface coil presented in this work, it is possible to image tracer samples containing only 896 pg[Formula: see text] and detect even small vessels and anatomical structures within a wild type mouse model. As current sensitivity measures require a tracer system a new method for determining a sensitivity measure without this requirement is presented and verified to enable comparison between MPI receiver systems.
Collapse
Affiliation(s)
- Matthias Graeser
- Section for Biomedical Imaging, Department of Diagnostic and Interventional Radiology and Nuclear Medicine at the University Medical Center Hamburg- Eppendorf, Hamburg, Germany. Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Top CB, Gungor A. Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4164-4173. [PMID: 32746156 DOI: 10.1109/tmi.2020.3014197] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have a high potential for use in clinical diagnostic and therapeutic applications. In vivo distribution of SPIONs can be imaged with the Magnetic Particle Imaging (MPI) method, which uses an inhomogeneous magnetic field with a field free region (FFR). The spatial distribution of the SPIONs are obtained by scanning the FFR inside the field of view (FOV) and sensing SPION related magnetic field disturbance. MPI magnets can be configured to generate a field free point (FFP), or a field free line (FFL) to scan the FOV. FFL scanners provide more sensitivity, and are also more suitable for scanning large regions compared to FFP scanners. Interventional procedures will benefit greatly from FFL based open magnet configurations. Here, we present the first open-sided MPI system that can electronically scan the FOV with an FFL to generate tomographic MPI images. Magnetic field measurements show that FFL can be rotated electronically in the horizontal plane and translated in three dimensions to generate 3D MPI images. Using the developed scanner, we obtained 2D images of dot and cylinder phantoms with varying iron concentrations between 11 [Formula: see text]/ml and 770 [Formula: see text]/ml. We used a measurement based system matrix image reconstruction method that minimizes l1 -norm and total variation in the images. Furthermore, we present 2D imaging results of two 4 mm-diameter vessel phantoms with 0% and 75% stenosis. The experiments show high quality imaging results with a resolution down to 2.5 mm for a relatively low gradient field of 0.6 T/m.
Collapse
|
23
|
Theek B, Nolte T, Pantke D, Schrank F, Gremse F, Schulz V, Kiessling F. Emerging methods in radiology. Radiologe 2020; 60:41-53. [PMID: 32430576 DOI: 10.1007/s00117-020-00696-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Imaging modalities have developed rapidly in recent decades. In addition to improved resolution as well as whole-body and faster image acquisition, the possibilities of functional and molecular examination of tissue pathophysiology have had a decisive influence on imaging diagnostics and provided ground-breaking knowledge. Many promising approaches are currently being pursued to increase the application area of devices and contrast media and to improve their sensitivity and quantitative informative value. These are complemented by new methods of data processing, multiparametric data analysis, and integrated diagnostics. The aim of this article is to provide an overview of technological innovations that will enrich clinical imaging in the future, and to highlight the resultant diagnostic options. These relate to the established imaging methods such as CT, MRI, ultrasound, PET, and SPECT but also to new methods such as magnetic particle imaging (MPI), optical imaging, and photoacoustics. In addition, approaches to radiomic image evaluation are explained and the chances and difficulties for their broad clinical introduction are discussed. The potential of imaging to describe pathophysiological relationships in ever increasing detail, both at whole-body and tissue level, can in future be used to better understand the mechanistic effect of drugs, to preselect patients to therapies, and to improve monitoring of therapy success. Consequently, the use of interdisciplinary integrated diagnostics will greatly change and enrich the profession of radiologists.
Collapse
Affiliation(s)
- B Theek
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - T Nolte
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - D Pantke
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - F Schrank
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - F Gremse
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - V Schulz
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen, Aachen, Germany
| | - F Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany. .,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany. .,Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
24
|
Salamon J, Dieckhoff J, Kaul MG, Jung C, Adam G, Möddel M, Knopp T, Draack S, Ludwig F, Ittrich H. Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy. Sci Rep 2020; 10:7480. [PMID: 32366912 PMCID: PMC7198551 DOI: 10.1038/s41598-020-64280-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/09/2020] [Indexed: 11/09/2022] Open
Abstract
Temperature-resolved magnetic particle imaging (MPI) represents a promising tool for medical imaging applications. In this study an approach based on a single calibration measurement was applied for highlighting the potential of MPI for monitoring of temperatures during thermal ablation of liver tumors. For this purpose, liver tissue and liver tumor phantoms embedding different superparamagnetic iron oxide nanoparticles (SPION) were prepared, locally heated up to 70 °C and recorded with MPI. Optimal temperature MPI SPIONs and a corresponding linear model for temperature calculation were determined. The temporal and spatial temperature distributions were compared with infrared (IR) camera results yielding quantitative agreements with a mean absolute deviation of 1 °C despite mismatches in boundary areas.
Collapse
Affiliation(s)
- J Salamon
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - J Dieckhoff
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - M G Kaul
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - C Jung
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - G Adam
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - M Möddel
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, 21073, Hamburg, Germany
| | - T Knopp
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, 21073, Hamburg, Germany
| | - S Draack
- Institute of Electrical Measurement Science and Fundamental Electrical Engineering, TU Braunschweig, 38106, Braunschweig, Germany
| | - F Ludwig
- Institute of Electrical Measurement Science and Fundamental Electrical Engineering, TU Braunschweig, 38106, Braunschweig, Germany
| | - H Ittrich
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
25
|
Tay ZW, Hensley DW, Chandrasekharan P, Zheng B, Conolly SM. Optimization of Drive Parameters for Resolution, Sensitivity and Safety in Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1724-1734. [PMID: 31796392 PMCID: PMC8034762 DOI: 10.1109/tmi.2019.2957041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetic Particle Imaging is an emerging tracer imaging modality with zero background signal and zero ionizing radiation, high contrast and high sensitivity with quantitative images. While there is recent work showing that the low amplitude or low frequency drive parameters can improve MPI's spatial resolution by mitigating relaxation losses, the concomitant decrease of the MPI's tracer sensitivity due to the lower drive slew rates was not fully addressed. There has yet to be a wide parameter space, multi-objective optimization of MPI drive parameters for high resolution, high sensitivity and safety. In a large-scale study, we experimentally test 5 different nanoparticles ranging from multi to single-core across 18.5 nm to 32.1 nm core sizes and across an expansive drive parameter range of 0.4 - 416 kHz and 0.5 - 40 mT/ μ0 to assess spatial resolution, SNR, and safety. In addition, we analyze how drive-parameter-dependent shifts in harmonic signal energy away and towards the discarded first harmonic affect effective SNR in this optimization study. The results show that when optimizing for all four factors of resolution, SNR, discarded-harmonic-energy and safety, the overall trends are no longer monotonic and clear optimal points emerge. We present drive parameters different from conventional preclinical MPI showing ~ 2-fold improvement in spatial resolution while remaining within safety limits and addressing sensitivity by minimizing the typical SNR loss involved. Finally, validation of the optimization results with 2D images of phantoms was performed.
Collapse
|
26
|
Griese F, Latus S, Schlüter M, Graeser M, Lutz M, Schlaefer A, Knopp T. In-Vitro MPI-guided IVOCT catheter tracking in real time for motion artifact compensation. PLoS One 2020; 15:e0230821. [PMID: 32231378 PMCID: PMC7108728 DOI: 10.1371/journal.pone.0230821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/09/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Using 4D magnetic particle imaging (MPI), intravascular optical coherence tomography (IVOCT) catheters are tracked in real time in order to compensate for image artifacts related to relative motion. Our approach demonstrates the feasibility for bimodal IVOCT and MPI in-vitro experiments. MATERIAL AND METHODS During IVOCT imaging of a stenosis phantom the catheter is tracked using MPI. A 4D trajectory of the catheter tip is determined from the MPI data using center of mass sub-voxel strategies. A custom built IVOCT imaging adapter is used to perform different catheter motion profiles: no motion artifacts, motion artifacts due to catheter bending, and heart beat motion artifacts. Two IVOCT volume reconstruction methods are compared qualitatively and quantitatively using the DICE metric and the known stenosis length. RESULTS The MPI-tracked trajectory of the IVOCT catheter is validated in multiple repeated measurements calculating the absolute mean error and standard deviation. Both volume reconstruction methods are compared and analyzed whether they are capable of compensating the motion artifacts. The novel approach of MPI-guided catheter tracking corrects motion artifacts leading to a DICE coefficient with a minimum of 86% in comparison to 58% for a standard reconstruction approach. CONCLUSIONS IVOCT catheter tracking with MPI in real time is an auspicious method for radiation free MPI-guided IVOCT interventions. The combination of MPI and IVOCT can help to reduce motion artifacts due to catheter bending and heart beat for optimized IVOCT volume reconstructions.
Collapse
Affiliation(s)
- Florian Griese
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Sarah Latus
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany
| | - Matthias Schlüter
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany
| | - Matthias Graeser
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Lutz
- Department of Internal Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Alexander Schlaefer
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany
| | - Tobias Knopp
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Chandrasekharan P, Tay ZW, Hensley D, Zhou XY, Fung BKL, Colson C, Lu Y, Fellows BD, Huynh Q, Saayujya C, Yu E, Orendorff R, Zheng B, Goodwill P, Rinaldi C, Conolly S. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Am J Cancer Res 2020; 10:2965-2981. [PMID: 32194849 PMCID: PMC7053197 DOI: 10.7150/thno.40858] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/27/2020] [Indexed: 01/07/2023] Open
Abstract
Magnetic fluid hyperthermia (MFH) treatment makes use of a suspension of superparamagnetic iron oxide nanoparticles, administered systemically or locally, in combination with an externally applied alternating magnetic field, to ablate target tissue by generating heat through a process called induction. The heat generated above the mammalian euthermic temperature of 37°C induces apoptotic cell death and/or enhances the susceptibility of the target tissue to other therapies such as radiation and chemotherapy. While most hyperthermia techniques currently in development are targeted towards cancer treatment, hyperthermia is also used to treat restenosis, to remove plaques, to ablate nerves and to alleviate pain by increasing regional blood flow. While RF hyperthermia can be directed invasively towards the site of treatment, non-invasive localization of heat through induction is challenging. In this review, we discuss recent progress in the field of RF magnetic fluid hyperthermia and introduce a new diagnostic imaging modality called magnetic particle imaging that allows for a focused theranostic approach encompassing treatment planning, treatment monitoring and spatially localized inductive heating.
Collapse
Affiliation(s)
- Prashant Chandrasekharan
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States,✉ Corresponding author: E-mail: ; Phone: +1 (510) 642 3420
| | - Zhi Wei Tay
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Daniel Hensley
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Xinyi Y Zhou
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Barry KL Fung
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Caylin Colson
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Yao Lu
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Benjamin D Fellows
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| | - Elaine Yu
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Ryan Orendorff
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Bo Zheng
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | | | - Carlos Rinaldi
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, FL, 32611 United States
| | - Steven Conolly
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
28
|
Gloag L, Mehdipour M, Ulanova M, Mariandry K, Nichol MA, Hernández-Castillo DJ, Gaudet J, Qiao R, Zhang J, Nelson M, Thierry B, Alvarez-Lemus MA, Tan TT, Gooding JJ, Braidy N, Sachdev PS, Tilley RD. Zero valent iron core–iron oxide shell nanoparticles as small magnetic particle imaging tracers. Chem Commun (Camb) 2020; 56:3504-3507. [DOI: 10.1039/c9cc08972a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zero valent iron core–iron oxide shell nanoparticles coated with a multi-phosphonate brush co-polymer are shown to be small and effective magnetic nanoparticle imaging tracers.
Collapse
|
29
|
Molwitz I, Ittrich H, Knopp T, Mummert T, Salamon J, Jung C, Adam G, Kaul MG. First magnetic particle imaging angiography in human-sized organs by employing a multimodal ex vivo pig kidney perfusion system. Physiol Meas 2019; 40:105002. [PMID: 31519009 DOI: 10.1088/1361-6579/ab4436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Magnetic particle imaging (MPI) is a new, fast 3D imaging technique, which is considered promising for angiographies. As available MPI scanners suffer from restricted spatial resolution and are mostly constructed for small animal imaging, no vessels within one organ have been depicted by MPI, yet. The purpose of this study was to develop an ex vivo organ perfusion system to display vessels within one organ of human size by MPI and to compare the results to an established 3D imaging technique. APPROACH An ex vivo porcine kidney perfusion system compatible with digital subtraction angiography (DSA), magnetic resonance tomography and MPI was developed. DSA was used to exemplarily prove intact vessel structures under ex vivo perfusion in two organs. Perfusion in nine organs was displayed by the 3D imaging techniques magnetic resonance angiography (MRA) and MPI angiography. All visible vessels in MRA and MPI were counted and their number compared between both techniques. MAIN RESULTS The ex vivo organ perfusion system allowed us to perform angiographies by DSA, MRA and MPI. With it, organs of human size could be imaged in small animal scanners, which permitted us to depict vessels within one organ by MPI for the first time. In comparison to MRA, 33% of all vessels were visible in MPI, a difference probably caused by restricted spatial resolution in MPI. SIGNIFICANCE The presented ex vivo organ perfusion system can serve to practically evaluate MPI's potential for angiography in human-sized organs. This is especially relevant as long as available, for angiography-suited MPI scanners still suffer from size and spatial resolution restrictions.
Collapse
Affiliation(s)
- I Molwitz
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Combining Direct 3D Volume Rendering and Magnetic Particle Imaging to Advance Radiation-Free Real-Time 3D Guidance of Vascular Interventions. Cardiovasc Intervent Radiol 2019; 43:322-330. [PMID: 31529176 DOI: 10.1007/s00270-019-02340-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Magnetic particle imaging (MPI) is a novel tomographic radiation-free imaging technique that combines high spatial resolution and real-time capabilities, making it a promising tool to guide vascular interventions. Immediate availability of 3D image data is a major advantage over the presently used digital subtraction angiography (DSA), but new methods for real-time image analysis and visualization are also required to take full advantage of the MPI properties. This laboratory study illustrates respective techniques by means of three different patient-specific 3D vascular flow models. MATERIAL AND METHODS The selected models corresponded to typical anatomical intervention sites. Routine patient cases and image data were selected, relevant vascular territories segmented, 3D models generated and then 3D-printed. Printed models were used to perform case-specific MPI imaging. The resulting MPI images, direct volume rendering (DVR)-based fast 3D visualization options, and their suitability to advance vascular interventions were evaluated and compared to conventional DSA. RESULTS The experiments illustrated the feasibility and potential to enhance image interpretation during interventions by using MPI real-time volumetric imaging and problem-tailored DVR-based fast (approximately 30 frames/s) 3D visualization options. These options included automated viewpoint selection and cutaway views. The image enhancement potential is especially relevant for complex geometries (e.g., in the presence of superposed vessels). CONCLUSION The unique features of the as-yet preclinical imaging modality MPI render it promising for guidance of vascular interventions. Advanced fast DVR could help to fulfill this promise by intuitive visualization of the 3D intervention scene in real time.
Collapse
|
31
|
Ozaslan AA, Alacaoglu A, Demirel OB, Çukur T, Saritas EU. Fully automated gridding reconstruction for non-Cartesian x-space magnetic particle imaging. Phys Med Biol 2019; 64:165018. [PMID: 31342922 DOI: 10.1088/1361-6560/ab3525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Magnetic particle imaging (MPI) is a fast emerging biomedical imaging modality that exploits the nonlinear response of superparamagnetic iron oxide (SPIO) nanoparticles to image their spatial distribution. Previously, various scanning trajectories were analyzed for the system function reconstruction (SFR) approach, providing important insight regarding their image quality performances. While Cartesian trajectories remain the most popular choice for x-space-based reconstruction, recent work suggests that non-Cartesian trajectories such as the Lissajous trajectory may prove beneficial for improving image quality. In this work, we propose a generalized reconstruction scheme for x-space MPI that can be used in conjunction with any scanning trajectory. The proposed technique automatically tunes the reconstruction parameters from the scanning trajectory, and does not induce any additional blurring. To demonstrate the proposed technique, we utilize five different trajectories with varying density levels. Comparison to alternative reconstruction methods show significant improvement in image quality achieved by the proposed technique. Among the tested trajectories, the Lissajous and bidirectional Cartesian trajectories prove more favorable for x-space MPI, and the resolution of the images from these two trajectories can further be improved via deblurring. The proposed fully automated gridding reconstruction can be utilized with these trajectories to improve the image quality in x-space MPI.
Collapse
Affiliation(s)
- A A Ozaslan
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey. National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
32
|
Du Y, Liu X, Liang Q, Liang XJ, Tian J. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy. NANO LETTERS 2019; 19:3618-3626. [PMID: 31074627 DOI: 10.1021/acs.nanolett.9b00630] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Two major technical challenges of magnetic hyperthermia are quantitative assessment of agent distribution during and following administration and achieving uniform heating of the tumor at the desired temperature without damaging the surrounding tissues. In this study, we developed a multimodal MRI/MPI theranostic agent with active biological targeting for improved magnetic hyperthermia therapy (MHT). First, by systematically elucidating the magnetic nanoparticle magnetic characteristics and the magnetic resonance imaging (MRI) and magnetic particle imaging (MPI) signal enhancement effects, which are based on the magnetic anisotropy, size, and type of nanoparticles, we found that 18 nm iron oxide NPs (IOs) could be used as superior nanocrystallines for high performance of MRI/MPI contrast agents in vitro. To improve the delivery uniformity, we then targeted tumors with the 18 nm IOs using a tumor targeting peptide, CREKA. Both MRI and MPI signals showed that the targeting agent improves the intratumoral delivery uniformity of nanoparticles in a 4T1 orthotopic mouse breast cancer model. Lastly, the in vivo antitumor MHT effect was evaluated, and the data showed that the improved targeting and delivery uniformity enables more effective magnetic hyperthermia cancer ablation than otherwise identical, nontargeting IOs. This preclinical study of image-guided MHT using cancer-targeting IOs and a novel MPI system paves the way for new MHT strategies.
Collapse
Affiliation(s)
- Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoli Liu
- University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road, Zhongguancun , Beijing 100190 , China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xing-Jie Liang
- University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road, Zhongguancun , Beijing 100190 , China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine , Beihang University , Beijing 100190 , China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710126 , China
| |
Collapse
|
33
|
Human-sized magnetic particle imaging for brain applications. Nat Commun 2019; 10:1936. [PMID: 31028253 PMCID: PMC6486595 DOI: 10.1038/s41467-019-09704-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Determining the brain perfusion is an important task for diagnosis of vascular diseases such as occlusions and intracerebral haemorrhage. Even after successful diagnosis, there is a high risk of restenosis or rebleeding such that patients need intense attention in the days after treatment. Within this work, we present a diagnostic tomographic imager that allows access to brain perfusion quantitatively in short intervals. The device is based on the magnetic particle imaging technology and is designed for human scale. It is highly sensitive and allows the detection of an iron concentration of 263 pmolFe ml-1, which is one of the lowest iron concentrations imaged by MPI so far. The imager is self-shielded and can be used in unshielded environments such as intensive care units. In combination with the low technical requirements this opens up a variety of medical applications and would allow monitoring of stroke on intensive care units.
Collapse
|
34
|
Bulte J. Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications. Adv Drug Deliv Rev 2019; 138:293-301. [PMID: 30552918 PMCID: PMC6449195 DOI: 10.1016/j.addr.2018.12.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
Abstract
Magnetic particle imaging (MPI) has recently emerged as a non-invasive, whole body imaging technique that detects superparamagnetic iron oxide (SPIO) nanoparticles similar as those used in magnetic resonance imaging (MRI). Based on tracer "hot spot" detection instead of providing contrast on MRI scans, MPI has already proven to be truly quantitative. Without the presence of endogenous background signal, MPI can also be used in certain tissues where the endogenous MRI signal is too low to provide contrast. After an introduction to the history and simplified principles of MPI, this review focuses on early MPI applications including MPI cell tracking, multiplexed MPI, perfusion and tumor MPI, lung MPI, functional MPI, and MPI-guided hyperthermia. While it is too early to tell if MPI will become a mainstay imaging technique with the (theoretical) sensitivity that it promises, and if it can successfully compete with SPIO-based 1H MRI and perfluorocarbon-based 19F MRI, it provides unprecedented opportunities for exploring new nanoparticle-based imaging applications.
Collapse
Affiliation(s)
- J.W.M. Bulte
- Corresponding author at: Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 217 Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205
| |
Collapse
|
35
|
Bakenecker AC, Ahlborg M, Debbeler C, Kaethner C, Buzug TM, Lüdtke-Buzug K. Magnetic particle imaging in vascular medicine. Innov Surg Sci 2018; 3:179-192. [PMID: 31579782 PMCID: PMC6604583 DOI: 10.1515/iss-2018-2026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/14/2018] [Indexed: 01/31/2023] Open
Abstract
Magnetic particle imaging (MPI) is a new medical imaging technique that enables three-dimensional real-time imaging of a magnetic tracer material. Although it is not yet in clinical use, it is highly promising, especially for vascular and interventional imaging. The advantages of MPI are that no ionizing radiation is necessary, its high sensitivity enables the detection of very small amounts of the tracer material, and its high temporal resolution enables real-time imaging, which makes MPI suitable as an interventional imaging technique. As MPI is a tracer-based imaging technique, functional imaging is possible by attaching specific molecules to the tracer material. In the first part of this article, the basic principle of MPI will be explained and a short overview of the principles of the generation and spatial encoding of the tracer signal will be given. After this, the used tracer materials as well as their behavior in MPI will be introduced. A subsequent presentation of selected scanner topologies will show the current state of research and the limitations researchers are facing on the way from preclinical toward human-sized scanners. Furthermore, it will be briefly shown how to reconstruct an image from the tracer materials' signal. In the last part, a variety of possible future clinical applications will be presented with an emphasis on vascular imaging, such as the use of MPI during cardiovascular interventions by visualizing the instruments. Investigations will be discussed, which show the feasibility to quantify the degree of stenosis and diagnose strokes and traumatic brain injuries as well as cerebral or gastrointestinal bleeding with MPI. As MPI is not only suitable for vascular medicine but also offers a broad range of other possible applications, a selection of those will be briefly presented at the end of the article.
Collapse
Affiliation(s)
- Anna C. Bakenecker
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Mandy Ahlborg
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Christina Debbeler
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Christian Kaethner
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Thorsten M. Buzug
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | | |
Collapse
|
36
|
Zhou XY, Tay ZW, Chandrasekharan P, Yu EY, Hensley DW, Orendorff R, Jeffris KE, Mai D, Zheng B, Goodwill PW, Conolly SM. Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking. Curr Opin Chem Biol 2018; 45:131-138. [PMID: 29754007 PMCID: PMC6500458 DOI: 10.1016/j.cbpa.2018.04.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/04/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging ionizing radiation-free biomedical tracer imaging technique that directly images the intense magnetization of superparamagnetic iron oxide nanoparticles (SPIOs). MPI offers ideal image contrast because MPI shows zero signal from background tissues. Moreover, there is zero attenuation of the signal with depth in tissue, allowing for imaging deep inside the body quantitatively at any location. Recent work has demonstrated the potential of MPI for robust, sensitive vascular imaging and cell tracking with high contrast and dose-limited sensitivity comparable to nuclear medicine. To foster future applications in MPI, this new biomedical imaging field is welcoming researchers with expertise in imaging physics, magnetic nanoparticle synthesis and functionalization, nanoscale physics, and small animal imaging applications.
Collapse
Affiliation(s)
- Xinyi Y Zhou
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States.
| | - Zhi Wei Tay
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Elaine Y Yu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States
| | - Daniel W Hensley
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States
| | - Ryan Orendorff
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States
| | - Kenneth E Jeffris
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - David Mai
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Bo Zheng
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States
| | | | - Steven M Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
37
|
Muslu Y, Utkur M, Demirel OB, Saritas EU. Calibration-Free Relaxation-Based Multi-Color Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1920-1931. [PMID: 29993774 DOI: 10.1109/tmi.2018.2818261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetic particle imaging (MPI) is a novel imaging modality with important potential applications, such as angiography, stem cell tracking, and cancer imaging. Recently, there have been efforts to increase the functionality of MPI via multi-color imaging methods that can distinguish the responses of different nanoparticles, or nanoparticles in different environmental conditions. The proposed techniques typically rely on extensive calibrations that capture the differences in the harmonic responses of the nanoparticles. In this paper, we propose a method to directly estimate the relaxation time constant of the nanoparticles from the MPI signal, which is then used to generate a multi-color relaxation map. The technique is based on the underlying mirror symmetry of the adiabatic MPI signal when the same region is scanned back and forth. We validate the proposed method via simulations, and via experiments on our in-house magnetic particle spectrometer setup at 10.8 kHz and our in-house MPI scanner at 9.7 kHz. Our results show that nanoparticles can be successfully distinguished with the proposed technique, without any calibration or prior knowledge about the nanoparticles.
Collapse
|
38
|
Chandrasekharan P, Tay ZW, Zhou XY, Yu E, Orendorff R, Hensley D, Huynh Q, Fung KLB, VanHook CC, Goodwill P, Zheng B, Conolly S. A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation. Br J Radiol 2018; 91:20180326. [PMID: 29888968 DOI: 10.1259/bjr.20180326] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Magnetic particle imaging (MPI), introduced at the beginning of the twenty-first century, is emerging as a promising diagnostic tool in addition to the current repertoire of medical imaging modalities. Using superparamagnetic iron oxide nanoparticles (SPIOs), that are available for clinical use, MPI produces high contrast and highly sensitive tomographic images with absolute quantitation, no tissue attenuation at-depth, and there are no view limitations. The MPI signal is governed by the Brownian and Néel relaxation behavior of the particles. The relaxation time constants of these particles can be utilized to map information relating to the local microenvironment, such as viscosity and temperature. Proof-of-concept pre-clinical studies have shown favourable applications of MPI for better understanding the pathophysiology associated with vascular defects, tracking cell-based therapies and nanotheranostics. Functional imaging techniques using MPI will be useful for studying the pathology related to viscosity changes such as in vascular plaques and in determining cell viability of superparamagnetic iron oxide nanoparticle labeled cells. In this review article, an overview of MPI is provided with discussions mainly focusing on MPI tracers, applications of translational capabilities ranging from diagnostics to theranostics and finally outline a promising path towards clinical translation.
Collapse
Affiliation(s)
| | - Zhi Wei Tay
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA
| | - Xinyi Yedda Zhou
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA
| | - Elaine Yu
- 2 Magnetic Insight Inc , Alameda, CA , USA
| | | | | | - Quincy Huynh
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA
| | - K L Barry Fung
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA
| | | | | | - Bo Zheng
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA
| | - Steven Conolly
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA.,3 Department of Electrical Engineering and Computer Sciences, University of California , Berkeley, CA , USA
| |
Collapse
|
39
|
Tay ZW, Chandrasekharan P, Zhou XY, Yu E, Zheng B, Conolly S. In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring. Theranostics 2018; 8:3676-3687. [PMID: 30026874 PMCID: PMC6037024 DOI: 10.7150/thno.26608] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Pulmonary delivery of therapeutics is attractive due to rapid absorption and non-invasiveness but it is challenging to monitor and quantify the delivered aerosol or powder. Currently, single-photon emission computed tomography (SPECT) is used but requires inhalation of radioactive labels that typically have to be synthesized and attached by hot chemistry techniques just prior to every scan. Methods: In this work, we demonstrate that superparamagnetic iron oxide nanoparticles (SPIONs) can be used to label and track aerosols in vivo with high sensitivity using an emerging medical imaging technique known as magnetic particle imaging (MPI). We perform proof-of-concept experiments with SPIONs for various lung applications such as evaluation of efficiency and uniformity of aerosol delivery, tracking of the initial aerosolized therapeutic deposition in vivo, and finally, sensitive visualization of the entire mucociliary clearance pathway from the lung up to the epiglottis and down the gastrointestinal tract to be excreted. Results: Imaging of SPIONs in the lung has previously been limited by difficulty of lung imaging with magnetic resonance imaging (MRI). In our results, MPI enabled SPION lung imaging with high sensitivity, and a key implication is the potential combination with magnetic actuation or hyperthermia for MPI-guided therapy in the lung with SPIONs. Conclusion: This work shows how magnetic particle imaging can be enabling for new imaging and therapeutic applications of SPIONs in the lung.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | | | - Xinyi Yedda Zhou
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Elaine Yu
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Bo Zheng
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Steven Conolly
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
40
|
Straub M, Schulz V. Joint Reconstruction of Tracer Distribution and Background in Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1192-1203. [PMID: 29727282 DOI: 10.1109/tmi.2017.2777878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic particle imaging (MPI) is a novel tomographic imaging technique, which visualizes the distribution of a magnetic nanoparticle-based tracer material. However, reconstructed MPI images often suffer from an insufficiently compensated image background caused by rapid non-deterministic changes in the background signal of the imaging device. In particular, the signal-to-background ratio (SBR) of the images is reduced for lower tracer concentrations or longer acquisitions. The state-of-the-art procedure in MPI is to frequently measure the background signal during the sample measurement. Unfortunately, this requires a removal of the entire object from the scanner's field of view (FOV), which introduces dead time and repositioning artifacts. To overcome these considerable restrictions, we propose a novel method that uses two consecutive image acquisitions as input parameters for a simultaneous reconstruction of the tracer distribution, as well as the background signal. The two acquisitions differ by just a small spatial shift, while keeping the object always within the focus of a slightly reduced FOV. A linearly interpolated background between the initial and final background measurement is used to seed the iterative reconstruction. The method has been tested with simulations and phantom measurements. Overall, a substantial reduction of the image background was observed, and the image SBR is increased by a factor of 2(7) for the measurement (simulation) data.
Collapse
|
41
|
Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhavalikar R, Zhou XY, Yu EY, Goodwill PW, Zheng B, Rinaldi C, Conolly SM. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. ACS NANO 2018; 12:3699-3713. [PMID: 29570277 PMCID: PMC6007035 DOI: 10.1021/acsnano.8b00893] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Image-guided treatment of cancer enables physicians to localize and treat tumors with great precision. Here, we present in vivo results showing that an emerging imaging modality, magnetic particle imaging (MPI), can be combined with magnetic hyperthermia into an image-guided theranostic platform. MPI is a noninvasive 3D tomographic imaging method with high sensitivity and contrast, zero ionizing radiation, and is linearly quantitative at any depth with no view limitations. The same superparamagnetic iron oxide nanoparticle (SPIONs) tracers imaged in MPI can also be excited to generate heat for magnetic hyperthermia. In this study, we demonstrate a theranostic platform, with quantitative MPI image guidance for treatment planning and use of the MPI gradients for spatial localization of magnetic hyperthermia to arbitrarily selected regions. This addresses a key challenge of conventional magnetic hyperthermia-SPIONs delivered systemically accumulate in off-target organs ( e.g., liver and spleen), and difficulty in localizing hyperthermia results in collateral heat damage to these organs. Using a MPI magnetic hyperthermia workflow, we demonstrate image-guided spatial localization of hyperthermia to the tumor while minimizing collateral damage to the nearby liver (1-2 cm distance). Localization of thermal damage and therapy was validated with luciferase activity and histological assessment. Apart from localizing thermal therapy, the technique presented here can also be extended to localize actuation of drug release and other biomechanical-based therapies. With high contrast and high sensitivity imaging combined with precise control and localization of the actuated therapy, MPI is a powerful platform for magnetic-based theranostics.
Collapse
Affiliation(s)
| | | | - Andreina Chiu-Lam
- Department of Chemical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Daniel W Hensley
- Magnetic Insight, Inc. , Alameda , California 94501 , United States
| | - Rohan Dhavalikar
- Department of Chemical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | | | - Elaine Y Yu
- Magnetic Insight, Inc. , Alameda , California 94501 , United States
| | | | | | - Carlos Rinaldi
- Department of Chemical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | | |
Collapse
|
42
|
Rahmer J, Stehning C, Gleich B. Remote magnetic actuation using a clinical scale system. PLoS One 2018; 13:e0193546. [PMID: 29494647 PMCID: PMC5832300 DOI: 10.1371/journal.pone.0193546] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 02/13/2018] [Indexed: 11/19/2022] Open
Abstract
Remote magnetic manipulation is a powerful technique for controlling devices inside the human body. It enables actuation and locomotion of tethered and untethered objects without the need for a local power supply. In clinical applications, it is used for active steering of catheters in medical interventions such as cardiac ablation for arrhythmia treatment and for steering of camera pills in the gastro-intestinal tract for diagnostic video acquisition. For these applications, specialized clinical-scale field applicators have been developed, which are rather limited in terms of field strength and flexibility of field application. For a general-purpose field applicator, flexible field generation is required at high field strengths as well as high field gradients to enable the generation of both torques and forces on magnetic devices. To date, this requirement has only been met by small-scale experimental systems. We have built a highly versatile clinical-scale field applicator that enables the generation of strong magnetic fields as well as strong field gradients over a large workspace. We demonstrate the capabilities of this coil-based system by remote steering of magnetic drills through gel and tissue samples with high torques on well-defined curved trajectories. We also give initial proof that, when equipped with high frequency transmit-receive coils, the machine is capable of real-time magnetic particle imaging while retaining a clinical-scale bore size. Our findings open the door for image-guided radiation-free remote magnetic control of devices at the clinical scale, which may be useful in minimally invasive diagnostic and therapeutic medical interventions.
Collapse
Affiliation(s)
- Jürgen Rahmer
- Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | | | - Bernhard Gleich
- Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| |
Collapse
|
43
|
Top CB, Ilbey S, Güven HE. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging. Med Phys 2017. [PMID: 28972267 DOI: 10.1002/mp.12604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). METHODS We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. RESULTS Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. CONCLUSIONS The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design.
Collapse
|