1
|
Ganeva V, Kranz A. Selective extraction of recombinant membrane proteins from Hansenula polymorpha by pulsed electric field and lytic enzyme pretreatment. Microb Cell Fact 2023; 22:251. [PMID: 38066481 PMCID: PMC10704748 DOI: 10.1186/s12934-023-02259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In yeast, recombinant membrane proteins including viral scaffold proteins used for the formation of enveloped Virus-like particles (eVLPs) typically accumulate intracellularly. Their recovery is carried out by mechanical disruption of the cells, often in combination with detergent treatment. Cell permeabilization is an attractive alternative to mechanical lysis because it allows for milder and more selective recovery of different intracellular products. RESULTS Here, we present a novel approach for extraction of integral membrane proteins from yeast based on cell envelope permeabilization through a combination of pulsed electric field and lytic enzyme pretreatment of the cells. Our primary experiments focused on Hansenula polymorpha strain #25-5 co-expressing the integral membrane small surface protein (dS) of the duck hepatitis B virus and a fusion protein of dS with a trimer of a Human papillomavirus (HPV) L2-peptide (3xL2-dS). Irreversible plasma membrane permeabilization was induced by treating the cell suspension with monopolar rectangular pulses using a continuous flow system. The permeabilized cells were incubated with lyticase and dithiothreitol. This treatment increased the cell wall permeability, resulting in the release of over 50% of the soluble host proteins without causing significant cell lysis. The subsequent incubation with Triton X-100 resulted in the solubilization and release of a significant portion of 3xL2-dS and dS from the cells. By applying two steps: (i) brief heating of the cells before detergent treatment, and (ii) incubation of the extracts with KSCN, an 80% purity on the protein level has been achieved. Experiments performed with H. polymorpha strain T#3-3, co-expressing dS and the fusion protein EDIIIWNV-dS consisting of dS and the antigen from the West Nile virus (WSV), confirmed the applicability of this approach for recovering dS. The treatment, optimal for solubilization of 3xL2-dS and a significant part of dS, was not effective in isolating the fused protein EDIIIWNV-dS from the membranes, resulting in its retention within the cells. CONCLUSIONS This study presents an alternative approach for the recovery and partial purification of viral membrane proteins expressed in H. polymorpha. The factors influencing the effectiveness of this procedure and its potential use for the recovery of other integral membrane proteins are discussed.
Collapse
Affiliation(s)
- Valentina Ganeva
- Biological Faculty, Department of Biophysics & Radiobiology, Sofia University, 8 Dragan Tzankov blvd, Sofia, 1164, Bulgaria.
| | - Andreas Kranz
- ARTES Biotechnology GmbH, Elizabeth Selbert str. 9, 40764, Langenfeld, Germany
| |
Collapse
|
2
|
Heterologous (Over) Expression of Human SoLute Carrier (SLC) in Yeast: A Well-Recognized Tool for Human Transporter Function/Structure Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081206. [PMID: 36013385 PMCID: PMC9410066 DOI: 10.3390/life12081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SLC superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets. Despite their critical role in human health, a large part of SLCs' is 'orphans' for substrate specificity or function. Moreover, very few data are available concerning their 3D structure. On the basis of the human health benefits of filling these knowledge gaps, an understanding of protein expression in systems that allow functional production of these proteins is essential. Among the 500 known yeast species, S. cerevisiae and P. pastoris represent those most employed for this purpose. This review aims to provide a comprehensive state-of-the-art on the attempts of human SLC expression performed by exploiting yeast. The collected data will hopefully be useful for guiding new attempts in SLCs expression with the aim to reveal new fundamental data that could lead to potential effects on human health.
Collapse
|
3
|
Cartwright SP, Darby RAJ, Sarkar D, Bonander N, Gross SR, Ashe MP, Bill RM. Constitutively-stressed yeast strains are high-yielding for recombinant Fps1: implications for the translational regulation of an aquaporin. Microb Cell Fact 2017; 16:41. [PMID: 28279185 PMCID: PMC5345182 DOI: 10.1186/s12934-017-0656-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously selected four strains of Saccharomyces cerevisiae for their ability to produce the aquaporin Fps1 in sufficient yield for further study. Yields from the yeast strains spt3Δ, srb5Δ, gcn5Δ and yTHCBMS1 (supplemented with 0.5 μg/mL doxycycline) that had been transformed with an expression plasmid containing 249 base pairs of 5' untranslated region (UTR) in addition to the primary FPS1 open reading frame (ORF) were 10-80 times higher than yields from wild-type cells expressing the same plasmid. One of the strains increased recombinant yields of the G protein-coupled receptor adenosine receptor 2a (A2aR) and soluble green fluorescent protein (GFP). The specific molecular mechanisms underpinning a high-yielding Fps1 phenotype remained incompletely described. RESULTS Polysome profiling experiments were used to analyze the translational state of spt3Δ, srb5Δ, gcn5Δ and yTHCBMS1 (supplemented with 0.5 μg/mL doxycycline); all but gcn5Δ were found to exhibit a clear block in translation initiation. Four additional strains with known initiation blocks (rpl31aΔ, rpl22aΔ, ssf1Δ and nop1Δ) also improved the yield of recombinant Fps1 compared to wild-type. Expression of the eukaryotic transcriptional activator GCN4 was increased in spt3Δ, srb5Δ, gcn5Δ and yTHCBMS1 (supplemented with 0.5 μg/mL doxycycline); these four strains also exhibited constitutive phosphorylation of the eukaryotic initiation factor, eIF2α. Both responses are indicative of a constitutively-stressed phenotype. Investigation of the 5'UTR of FPS1 in the expression construct revealed two untranslated ORFs (uORF1 and uORF2) upstream of the primary ORF. Deletion of either uORF1 or uORF1 and uORF2 further improved recombinant yields in our four strains; the highest yields of the uORF deletions were obtained from wild-type cells. Frame-shifting the stop codon of the native uORF (uORF2) so that it extended into the FPS1 ORF did not substantially alter Fps1 yields in spt3Δ or wild-type cells, suggesting that high-yielding strains are able to bypass 5'uORFs in the FPS1 gene via leaky scanning, which is a known stress-response mechanism. Yields of recombinant A2aR, GFP and horseradish peroxidase could be improved in one or more of the yeast strains suggesting that a stressed phenotype may also be important in high-yielding cell factories. CONCLUSIONS Regulation of Fps1 levels in yeast by translational control may be functionally important; the presence of a native uORF (uORF2) may be required to maintain low levels of Fps1 under normal conditions, but higher levels as part of a stress response. Constitutively-stressed yeast strains may be useful high-yielding microbial cell factories for recombinant protein production.
Collapse
Affiliation(s)
- Stephanie P Cartwright
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Richard A J Darby
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.,Thistle Scientific Ltd, Glasgow, G71 6NZ, UK
| | - Debasmita Sarkar
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Nicklas Bonander
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Stephane R Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Mark P Ashe
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
4
|
Schütz M, Schöppe J, Sedlák E, Hillenbrand M, Nagy-Davidescu G, Ehrenmann J, Klenk C, Egloff P, Kummer L, Plückthun A. Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts. Sci Rep 2016; 6:21508. [PMID: 26911446 PMCID: PMC4766470 DOI: 10.1038/srep21508] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/26/2016] [Indexed: 11/09/2022] Open
Abstract
Despite recent successes, many G protein-coupled receptors (GPCRs) remained refractory to detailed molecular studies due to insufficient production yields, even in the most sophisticated eukaryotic expression systems. Here we introduce a robust method employing directed evolution of GPCRs in yeast that allows fast and efficient generation of receptor variants which show strongly increased functional production levels in eukaryotic expression hosts. Shown by evolving three different receptors in this study, the method is widely applicable, even for GPCRs which are very difficult to express. The evolved variants showed up to a 26-fold increase of functional production in insect cells compared to the wild-type receptors. Next to the increased production, the obtained variants exhibited improved biophysical properties, while functional properties remained largely unaffected. Thus, the presented method broadens the portfolio of GPCRs accessible for detailed investigations. Interestingly, the functional production of GPCRs in yeast can be further increased by induced host adaptation.
Collapse
Affiliation(s)
- Marco Schütz
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jendrik Schöppe
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Erik Sedlák
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matthias Hillenbrand
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Gabriela Nagy-Davidescu
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Janosch Ehrenmann
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Christoph Klenk
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Pascal Egloff
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lutz Kummer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
5
|
Abstract
The first crystal structures of recombinant mammalian membrane proteins were solved in 2005 using protein that had been produced in yeast cells. One of these, the rabbit Ca(2+)-ATPase SERCA1a, was synthesized in Saccharomyces cerevisiae. All host systems have their specific advantages and disadvantages, but yeast has remained a consistently popular choice in the eukaryotic membrane protein field because it is quick, easy and cheap to culture, whilst being able to post-translationally process eukaryotic membrane proteins. Very recent structures of recombinant membrane proteins produced in S. cerevisiae include those of the Arabidopsis thaliana NRT1.1 nitrate transporter and the fungal plant pathogen lipid scramblase, TMEM16. This chapter provides an overview of the methodological approaches underpinning these successes.
Collapse
Affiliation(s)
| | - Lina Mikaliunaite
- School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
6
|
Zinkevičiūtė R, Bakūnaitė E, Čiplys E, Ražanskas R, Raškevičiūtė J, Slibinskas R. Heat shock at higher cell densities improves measles hemagglutinin translocation and human GRP78/BiP secretion in Saccharomyces cerevisiae. N Biotechnol 2015; 32:690-700. [PMID: 25907596 DOI: 10.1016/j.nbt.2015.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
Abstract
The yield of heterologous proteins is often limited by several bottlenecks in the secretory pathway of yeast Saccharomyces cerevisiae. It was shown earlier that synthesis of measles virus hemagglutinin (MeH) is inefficient mostly due to a bottleneck in the translocation of viral protein precursors into the endoplasmic reticulum (ER) of yeast cells. Here we report that heat shock with subsequent induction of MeH expression at 37°C improved translocation of MeH precursors when applied at higher cell densities. The amount of MeH glycoprotein increased by about 3-fold after heat shock in the late-log phases of both glucose and ethanol growth. The same temperature conditions increased both secretion titer and yield of another heterologous protein human GRP78/BiP by about 50%. Furthermore, heat shock at the late-log glucose growth phase also improved endogenous invertase yield by approximately 2.7-fold. In contrast, a transfer of yeast culture to lower temperature at diauxic shift followed by protein expression at 20°C almost totally inhibited translocation of MeH precursors. The difference in amounts of MeH glycoprotein under expression at 37°C and 20°C was about 80-fold, while amounts of unglycosylated MeH polypeptides were similar under both conditions. Comparative proteomic analysis revealed that besides over-expressed ER-resident chaperone Kar2, an increased expression of several cytosolic proteins (such as Hsp104, Hsp90 and eEF1A) may contribute to improved translocation of MeH.
Collapse
Affiliation(s)
- Rūta Zinkevičiūtė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, V.Graiciuno 8, Vilnius, LT-02241, Lithuania
| | - Edita Bakūnaitė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, V.Graiciuno 8, Vilnius, LT-02241, Lithuania
| | - Evaldas Čiplys
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, V.Graiciuno 8, Vilnius, LT-02241, Lithuania
| | - Raimundas Ražanskas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, V.Graiciuno 8, Vilnius, LT-02241, Lithuania
| | - Jurgita Raškevičiūtė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, V.Graiciuno 8, Vilnius, LT-02241, Lithuania
| | - Rimantas Slibinskas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, V.Graiciuno 8, Vilnius, LT-02241, Lithuania.
| |
Collapse
|
7
|
Routledge SJ, Mikaliunaite L, Patel A, Clare M, Cartwright SP, Bawa Z, Wilks MDB, Low F, Hardy D, Rothnie AJ, Bill RM. The synthesis of recombinant membrane proteins in yeast for structural studies. Methods 2015; 95:26-37. [PMID: 26431670 DOI: 10.1016/j.ymeth.2015.09.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/22/2022] Open
Abstract
Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies.
Collapse
Affiliation(s)
- Sarah J Routledge
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK; School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Lina Mikaliunaite
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Anjana Patel
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Michelle Clare
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Stephanie P Cartwright
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Zharain Bawa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Martin D B Wilks
- Smallpeice Enterprises Ltd, 27 Newbold Terrace East, Leamington Spa, Warwickshire CV32 4ES, UK
| | - Floren Low
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - David Hardy
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alice J Rothnie
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
8
|
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 2015; 866:1-9. [PMID: 25130199 DOI: 10.1007/978-1-61779-770-5_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
9
|
Bill RM. Recombinant protein subunit vaccine synthesis in microbes: a role for yeast? J Pharm Pharmacol 2014; 67:319-28. [DOI: 10.1111/jphp.12353] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/18/2014] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Recombinant protein subunit vaccines are formulated using protein antigens that have been synthesized in heterologous host cells. Several host cells are available for this purpose, ranging from Escherichia coli to mammalian cell lines. This article highlights the benefits of using yeast as the recombinant host.
Key findings
The yeast species, Saccharomyces cerevisiae and Pichia pastoris, have been used to optimize the functional yields of potential antigens for the development of subunit vaccines against a wide range of diseases caused by bacteria and viruses. Saccharomyces cerevisiae has also been used in the manufacture of 11 approved vaccines against hepatitis B virus and one against human papillomavirus; in both cases, the recombinant protein forms highly immunogenic virus-like particles.
Summary
Advances in our understanding of how a yeast cell responds to the metabolic load of producing recombinant proteins will allow us to identify host strains that have improved yield properties and enable the synthesis of more challenging antigens that cannot be produced in other systems. Yeasts therefore have the potential to become important host organisms for the production of recombinant antigens that can be used in the manufacture of subunit vaccines or in new vaccine development.
Collapse
Affiliation(s)
- Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
10
|
Improving the Secretory Production of the Heterologous Protein in Pichia pastoris by Focusing on Protein Folding. Appl Biochem Biotechnol 2014; 175:535-48. [DOI: 10.1007/s12010-014-1292-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/09/2014] [Indexed: 01/07/2023]
|
11
|
Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 2014; 98:7671-98. [PMID: 25070595 DOI: 10.1007/s00253-014-5948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 02/08/2023]
Abstract
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.
Collapse
Affiliation(s)
- Anita Emmerstorfer
- ACIB-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | | | | | | |
Collapse
|
12
|
Bill RM. Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments. Front Microbiol 2014; 5:85. [PMID: 24634668 PMCID: PMC3942658 DOI: 10.3389/fmicb.2014.00085] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 11/13/2022] Open
Abstract
Several host systems are available for the production of recombinant proteins, ranging from Escherichia coli to mammalian cell-lines. This article highlights the benefits of using yeast, especially for more challenging targets such as membrane proteins. On account of the wide range of molecular, genetic, and microbiological tools available, use of the well-studied model organism, Saccharomyces cerevisiae, provides many opportunities to optimize the functional yields of a target protein. Despite this wealth of resources, it is surprisingly under-used. In contrast, Pichia pastoris, a relative new-comer as a host organism, is already becoming a popular choice, particularly because of the ease with which high biomass (and hence recombinant protein) yields can be achieved. In the last few years, advances have been made in understanding how a yeast cell responds to the stress of producing a recombinant protein and how this information can be used to identify improved host strains in order to increase functional yields. Given these advantages, and their industrial importance in the production of biopharmaceuticals, I argue that S. cerevisiae and P. pastoris should be considered at an early stage in any serious strategy to produce proteins.
Collapse
Affiliation(s)
- Roslyn M Bill
- School of Life and Health Sciences, Aston University Birmingham, UK
| |
Collapse
|
13
|
Vogl T, Thallinger GG, Zellnig G, Drew D, Cregg JM, Glieder A, Freigassner M. Towards improved membrane protein production in Pichia pastoris: general and specific transcriptional response to membrane protein overexpression. N Biotechnol 2014; 31:538-52. [PMID: 24594271 DOI: 10.1016/j.nbt.2014.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 01/13/2023]
Abstract
Membrane proteins are the largest group of human drug targets and are also used as biocatalysts. However, due to their complexity, efficient expression remains a bottleneck for high level production. In recent years, the methylotrophic yeast Pichia pastoris has emerged as one of the most commonly used expression systems for membrane protein production. Here, we have analysed the transcriptomes of P. pastoris strains producing different classes of membrane proteins (mitochondrial, ER/Golgi and plasma membrane localized) to understand the cellular response and to identify targets to engineer P. pastoris towards an improved chassis for membrane protein production. Microarray experiments revealed varying transcriptional responses depending on the enzymatic activity, subcellular localization and physiological role of the membrane proteins. While an alternative oxidase evoked primarily a response within the mitochondria, the overexpression of transporters entering the secretory pathway had a wide effect on lipid metabolism and induced the upregulation of the UPR (unfolded protein response) transcription factor Hac1p. Coexpression of P. pastoris endogenous HAC1 increased the levels of ER-resident membrane proteins 1.5- to 2.1-fold. Subsequent transcriptome analysis of HAC1 coexpression revealed an upregulation of the folding machinery correlating with an expansion of the ER membrane capacity, thus boosting membrane protein production. Hence, our study has helped to elucidate the cellular response of P. pastoris to the expression of different classes of membrane proteins and led specifically to new insights into the effect of PpHac1p on membrane proteins entering the secretory pathway.
Collapse
Affiliation(s)
- Thomas Vogl
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14/5, 8010 Graz, Austria; Omics Center Graz, Stiftingtalstrasse 24, 8036 Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14/5, 8010 Graz, Austria
| | - Guenther Zellnig
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - David Drew
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James M Cregg
- Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, CA 91711, USA
| | - Anton Glieder
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14/5, 8010 Graz, Austria
| | - Maria Freigassner
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria.
| |
Collapse
|
14
|
Liguori L, Marques B, Villegas-Méndez A, Rothe R, Lenormand JL. Production of membrane proteins using cell–free expression systems. Expert Rev Proteomics 2014; 4:79-90. [PMID: 17288517 DOI: 10.1586/14789450.4.1.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.
Collapse
Affiliation(s)
- Lavinia Liguori
- University Joseph Fourier, HumProTher Laboratory, GREPI, CHU-Grenoble, 38043 Grenoble, France.
| | | | | | | | | |
Collapse
|
15
|
Bonander N, Bill RM. Relieving the first bottleneck in the drug discovery pipeline: using array technologies to rationalize membrane protein production. Expert Rev Proteomics 2014; 6:501-5. [DOI: 10.1586/epr.09.65] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Abstract
Membrane proteins have essential cellular functions and are therefore of high interest in both academia and industry. Many efforts have been made on producing those targets in yields allowing crystallization experiments aiming for high resolution structures and mechanistic understanding. The first step of production provides a crucial barrier to overcome, but what we now see, is great progress in membrane protein structural determination in a relatively short time. Achievements on recombinant protein production have been essential for this development and the yeast Pichia pastoris is the most commonly used host for eukaryotic membrane proteins. High-resolution structures nicely illustrate the successes in protein production, and this is the measure used by Ramón and Marin in their review "Advances in the production of membrane proteins in Pichia pastoris" from 2011. Here, additional advances on production and crystallization of eukaryotic membrane proteins are described and reflected on.
Collapse
Affiliation(s)
- Kristina Hedfalk
- Department of Chemistry and Molecular Biology; University of Gothenburg; Göteborg, Sweden
| |
Collapse
|
17
|
Öberg F, Hedfalk K. Recombinant production of the human aquaporins in the yeastPichia pastoris(Invited Review). Mol Membr Biol 2012; 30:15-31. [DOI: 10.3109/09687688.2012.665503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Darby RAJ, Cartwright SP, Dilworth MV, Bill RM. Which yeast species shall I choose? Saccharomyces cerevisiae versus Pichia pastoris (review). Methods Mol Biol 2012; 866:11-23. [PMID: 22454110 DOI: 10.1007/978-1-61779-770-5_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Having decided on yeast as a production host, the choice of species is often the first question any researcher new to the field will ask. With over 500 known species of yeast to date, this could pose a significant challenge. However, in reality, only very few species of yeast have been employed as host organisms for the production of recombinant proteins. The two most widely used, Saccharomyces cerevisiae and Pichia pastoris, are compared and contrasted here.
Collapse
Affiliation(s)
- Richard A J Darby
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
19
|
Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P, Joyard J, Pignol D, Sabaty M, Desnos T, Pebay-Peyroula E, Darrouzet E, Vernet T, Rolland N. Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 2011; 6:e29191. [PMID: 22216205 PMCID: PMC3244453 DOI: 10.1371/journal.pone.0029191] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022] Open
Abstract
Background Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. Methodology/Principal Findings The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Conclusions/Significance Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.
Collapse
Affiliation(s)
- Florent Bernaudat
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baumann K, Adelantado N, Lang C, Mattanovich D, Ferrer P. Protein trafficking, ergosterol biosynthesis and membrane physics impact recombinant protein secretion in Pichia pastoris. Microb Cell Fact 2011; 10:93. [PMID: 22050768 PMCID: PMC3219557 DOI: 10.1186/1475-2859-10-93] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/03/2011] [Indexed: 12/27/2022] Open
Abstract
Background The increasing availability of 'omics' databases provide important platforms for yeast engineering strategies since they offer a lot of information on the physiology of the cells under diverse growth conditions, including environmental stresses. Notably, only a few of these approaches have considered a performance under recombinant protein production conditions. Recently, we have identified a beneficial effect of low oxygen availability on the expression of a human Fab fragment in Pichia pastoris. Transcriptional analysis and data mining allowed for the selection of potential targets for strain improvement. A first selection of these candidates has been evaluated as recombinant protein secretion enhancers. Results Based on previous transcriptomics analyses, we selected 8 genes for co-expression in the P. pastoris strain already secreting a recombinant Fab fragment. Notably, WSC4 (which is involved in trafficking through the ER) has been identified as a novel potential target gene for strain improvement, with up to a 1.2-fold increase of product yield in shake flask cultures. A further transcriptomics-based strategy to modify the yeast secretion system was focused on the ergosterol pathway, an aerobic process strongly affected by oxygen depletion. By specifically partially inhibiting ergosterol synthesis with the antifungal agent fluconazole (inhibiting Erg11p), we tried to mimic the hypoxic conditions, in which the cellular ergosterol content was significantly decreased. This strategy led to an improved Fab yield (2-fold) without impairing cellular growth. Since ergosterol shortage provokes alterations in the plasma membrane composition, an important role of this cellular structure in protein secretion is suggested. This hypothesis was additionally supported by the fact that the addition of non-ionic surfactants also enhanced Fab secretion. Conclusions The current study presents a systems biotechnology-based strategy for the engineering of the industrially important yeast P. pastoris combining the use of host specific DNA microarray technologies and physiological studies under well defined environmental conditions. Such studies allowed for the identification of novel targets related with protein trafficking and ergosterol biosynthesis for improved recombinant protein production. Nevertheless, further studies will be required to elucidate the precise mechanisms whereby membrane biogenesis and composition impact on protein secretion in P. pastoris.
Collapse
Affiliation(s)
- Kristin Baumann
- Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | | | | | | | | |
Collapse
|
21
|
Marreddy RKR, Pinto JPC, Wolters JC, Geertsma ER, Fusetti F, Permentier HP, Kuipers OP, Kok J, Poolman B. The response of Lactococcus lactis to membrane protein production. PLoS One 2011; 6:e24060. [PMID: 21904605 PMCID: PMC3164122 DOI: 10.1371/journal.pone.0024060] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/02/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The biogenesis of membrane proteins is more complex than that of water-soluble proteins, and recombinant expression of membrane proteins in functional form and in amounts high enough for structural and functional studies is often problematic. To better engineer cells towards efficient protein production, we set out to understand and compare the cellular consequences of the overproduction of both classes of proteins in Lactococcus lactis, employing a combined proteomics and transcriptomics approach. METHODOLOGY AND FINDINGS Highly overproduced and poorly expressed membrane proteins both resulted in severe growth defects, whereas amplified levels of a soluble substrate receptor had no effect. In addition, membrane protein overproduction evoked a general stress response (upregulation of various chaperones and proteases), which is probably due to accumulation of misfolded protein. Notably, upon the expression of membrane proteins a cell envelope stress response, controlled by the two-component regulatory CesSR system, was observed. CONCLUSIONS The physiological response of L. lactis to the overproduction of several membrane proteins was determined and compared to that of a soluble protein, thus offering better understanding of the bottlenecks related to membrane protein production and valuable knowledge for subsequent strain engineering.
Collapse
Affiliation(s)
- Ravi K. R. Marreddy
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre & Zernike Institute for Advanced Materials University of Groningen, Groningen, The Netherlands
| | - Joao P. C. Pinto
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Justina C. Wolters
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre & Zernike Institute for Advanced Materials University of Groningen, Groningen, The Netherlands
| | - Eric R. Geertsma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre & Zernike Institute for Advanced Materials University of Groningen, Groningen, The Netherlands
| | - Fabrizia Fusetti
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre & Zernike Institute for Advanced Materials University of Groningen, Groningen, The Netherlands
| | - Hjalmar P. Permentier
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre & Zernike Institute for Advanced Materials University of Groningen, Groningen, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre & Zernike Institute for Advanced Materials University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
Öberg F, Sjöhamn J, Conner MT, Bill RM, Hedfalk K. Improving recombinant eukaryotic membrane protein yields inPichia pastoris: The importance of codon optimization and clone selection. Mol Membr Biol 2011; 28:398-411. [DOI: 10.3109/09687688.2011.602219] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Understanding the yeast host cell response to recombinant membrane protein production. Biochem Soc Trans 2011; 39:719-23. [DOI: 10.1042/bst0390719] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Membrane proteins are drug targets for a wide range of diseases. Having access to appropriate samples for further research underpins the pharmaceutical industry's strategy for developing new drugs. This is typically achieved by synthesizing a protein of interest in host cells that can be cultured on a large scale, allowing the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to that of the native human source cells of many proteins of interest, while also being quick, easy and cheap to grow and process. Even in these cells, the production of human membrane proteins can be plagued by low functional yields; we wish to understand why. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast host strains. By relieving the bottlenecks to recombinant membrane protein production in yeast, we aim to contribute to the drug discovery pipeline, while providing insight into translational processes.
Collapse
|
24
|
Bill RM, Henderson PJF, Iwata S, Kunji ERS, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H. Overcoming barriers to membrane protein structure determination. Nat Biotechnol 2011; 29:335-40. [PMID: 21478852 DOI: 10.1038/nbt.1833] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.
Collapse
Affiliation(s)
- Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ashe MP, Bill RM. Mapping the yeast host cell response to recombinant membrane protein production: Relieving the biological bottlenecks. Biotechnol J 2011; 6:707-14. [DOI: 10.1002/biot.201000333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 11/12/2022]
|
26
|
Altamura N, Calamita G. Systems for Production of Proteins for Biomimetic Membrane Devices. BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING 2011. [DOI: 10.1007/978-94-007-2184-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
27
|
Ferndahl C, Bonander N, Logez C, Wagner R, Gustafsson L, Larsson C, Hedfalk K, Darby RAJ, Bill RM. Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory. Microb Cell Fact 2010; 9:47. [PMID: 20565740 PMCID: PMC2901257 DOI: 10.1186/1475-2859-9-47] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. RESULTS Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. CONCLUSIONS The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to resort to complex control or cultivation schemes. This is anticipated to be of particular value in the production of challenging targets such as membrane proteins.
Collapse
Affiliation(s)
- Cecilia Ferndahl
- Chemical and Biological Engineering/Molecular Biotechnology, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Nicklas Bonander
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Christel Logez
- UMR 7175 - LC1, Dpt Récepteurs et Protéines Membranaires, ESBS, Blvd Sébastien Brant, BP 10413, 67412 Illkirch Cedex, France
| | - Renaud Wagner
- UMR 7175 - LC1, Dpt Récepteurs et Protéines Membranaires, ESBS, Blvd Sébastien Brant, BP 10413, 67412 Illkirch Cedex, France
| | - Lena Gustafsson
- Chemical and Biological Engineering/Molecular Biotechnology, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Christer Larsson
- Chemical and Biological Engineering/Molecular Biotechnology, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Kristina Hedfalk
- Department of Chemistry/Biochemistry, Göteborg University, Box 462, 405 30 Göteborg, Sweden
| | - Richard AJ Darby
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
28
|
Hays FA, Roe-Zurz Z, Stroud RM. Overexpression and purification of integral membrane proteins in yeast. Methods Enzymol 2010; 470:695-707. [PMID: 20946832 DOI: 10.1016/s0076-6879(10)70029-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The budding yeast Saccharomyces cerevisiae is a viable system for the overexpression and functional analysis of eukaryotic integral membrane proteins (IMPs). In this chapter we describe a general protocol for the initial cloning, transformation, overexpression, and subsequent purification of a putative IMP and discuss critical optimization steps and approaches. Since expression and purification are often the two predominant hurdles one will face in studying this difficult class of biological macromolecules the intent is to outline the general workflow while providing insights based upon our collective experience. These insights should facilitate tailoring of the outlined protocol to individual IMPs and expression or purification routines.
Collapse
Affiliation(s)
- Franklin A Hays
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
29
|
Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 2010; 86:403-17. [DOI: 10.1007/s00253-010-2447-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/08/2023]
|
30
|
Ma QH, Tian B, Li YL. Overexpression of a wheat jasmonate-regulated lectin increases pathogen resistance. Biochimie 2010; 92:187-93. [PMID: 19958808 PMCID: PMC7117000 DOI: 10.1016/j.biochi.2009.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/24/2009] [Indexed: 01/22/2023]
Abstract
Jasmonates are known to induce the transcriptional activation of plant defense genes, which leads to the production of jasmonate-regulated proteins (JRP). We previously cloned and characterized a novel jacalin-like lectin gene (Ta-JA1) from wheat (Triticum aestivum L.), which codes a modular JRP with disease response and jacalin-related lectin (JRL) domains and is present only in the Gramineae family. The function of this protein is still unclear. Phylogenetic analysis indicated that Ta-JA1 and related proteins from cereals grouped together, which diverged from JRL with an additional N-terminal disease response domain. The recombinant Ta-JA1 proteins agglutinated rabbit erythrocytes, and this hemagglutination activity was preferentially inhibited by mannose. The Ta-JA1 protein was able to inhibit E. coli cell growth. Overexpression of Ta-JA1 in transgenic tobacco plants increased their resistance to infection by tobacco bacterial, fungal and viral pathogens. Our results suggest that Ta-JA1 belongs to a mannose-specific lectin, which may confer a basal but broad-spectrum resistance to plant pathogens. Ta-JA1 and its homologues in maize, rice, sorghum and creeping bentgrass may represent a new type of monocot lectin with a modular structure and diversity of physiological functions in biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Qing-Hu Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
31
|
Geertsma ER, Poolman B. Production of membrane proteins in Escherichia coli and Lactococcus lactis. Methods Mol Biol 2010; 601:17-38. [PMID: 20099137 DOI: 10.1007/978-1-60761-344-2_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the equivalent to gatekeepers of the cell, membrane transport proteins perform a variety of critical functions. Progress on the functional and structural characterization of membrane proteins is slowed due to problems associated with their (heterologous) overexpression. Often, overexpression fails or leads to aggregated material from which the production of functionally refolded protein is challenging. It is still difficult to predict whether a given membrane protein can be overproduced in a functional competent state. As a result, the most straightforward strategy to set up an overexpression system is to screen a multitude of conditions, including the comparison of homologues, type and location of (affinity) tags, and distinct expression hosts. Here, we detail methodology to rapidly establish and optimize (membrane) protein expression in Escherichia coli and Lactococcus lactis.
Collapse
Affiliation(s)
- Eric R Geertsma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, University of Groningen, The Netherlands
| | | |
Collapse
|
32
|
Freigassner M, Pichler H, Glieder A. Tuning microbial hosts for membrane protein production. Microb Cell Fact 2009; 8:69. [PMID: 20040113 PMCID: PMC2807855 DOI: 10.1186/1475-2859-8-69] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/29/2009] [Indexed: 12/22/2022] Open
Abstract
The last four years have brought exciting progress in membrane protein research. Finally those many efforts that have been put into expression of eukaryotic membrane proteins are coming to fruition and enable to solve an ever-growing number of high resolution structures. In the past, many skilful optimization steps were required to achieve sufficient expression of functional membrane proteins. Optimization was performed individually for every membrane protein, but provided insight about commonly encountered bottlenecks and, more importantly, general guidelines how to alleviate cellular limitations during microbial membrane protein expression. Lately, system-wide analyses are emerging as powerful means to decipher cellular bottlenecks during heterologous protein production and their use in microbial membrane protein expression has grown in popularity during the past months. This review covers the most prominent solutions and pitfalls in expression of eukaryotic membrane proteins using microbial hosts (prokaryotes, yeasts), highlights skilful applications of our basic understanding to improve membrane protein production. Omics technologies provide new concepts to engineer microbial hosts for membrane protein production.
Collapse
Affiliation(s)
- Maria Freigassner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| | | | | |
Collapse
|
33
|
Xu L, Vagner J, Josan J, Lynch RM, Morse DL, Baggett B, Han H, Mash EA, Hruby VJ, Gillies RJ. Enhanced targeting with heterobivalent ligands. Mol Cancer Ther 2009; 8:2356-65. [PMID: 19671749 DOI: 10.1158/1535-7163.mct-08-1183] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel approach to specifically target tumor cells for detection and treatment is the proposed use of heteromultivalent ligands, which are designed to interact with, and noncovalently crosslink, multiple different cell surface receptors. Although enhanced binding has been shown for synthetic homomultivalent ligands, proof of cross-linking requires the use of ligands with two or more different binding moieties. As proof-of-concept, we have examined the binding of synthetic heterobivalent ligands to cell lines that were engineered to coexpress two different G-protein-coupled human receptors, i.e., the human melanocortin 4 receptor (MC4R) expressed in combination with either the human delta-opioid receptor (deltaOR) or the human cholecystokinin-2 receptor (CCK2R). Expression levels of these receptors were characterized by time-resolved fluorescence saturation binding assays using Europium-labeled ligands; Eu-DPLCE, Eu-NDP-alpha-MSH, and Eu-CCK8 for the deltaOR, MC4R, and CCK2R, respectively. Heterobivalent ligands were synthesized to contain a MC4R agonist connected via chemical linkers to either a deltaOR or a CCK2R agonist. In both cell systems, the heterobivalent constructs bound with much higher affinity to cells expressing both receptors, compared with cells with single receptors or to cells where one of the receptors was competitively blocked. These results indicate that synthetic heterobivalent ligands can noncovalently crosslink two unrelated cell surface receptors, making feasible the targeting of receptor combinations. The in vitro cell models described herein will lead to the development of multivalent ligands for target combinations identified in human cancers.
Collapse
Affiliation(s)
- Liping Xu
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Holmes WJ, Darby RA, Wilks MD, Smith R, Bill RM. Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime. Microb Cell Fact 2009; 8:35. [PMID: 19570229 PMCID: PMC2717918 DOI: 10.1186/1475-2859-8-35] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 07/01/2009] [Indexed: 11/21/2022] Open
Abstract
Background The optimisation and scale-up of process conditions leading to high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences. Typical experiments rely on varying selected parameters through repeated rounds of trial-and-error optimisation. To rationalise this, several groups have recently adopted the 'design of experiments' (DoE) approach frequently used in industry. Studies have focused on parameters such as medium composition, nutrient feed rates and induction of expression in shake flasks or bioreactors, as well as oxygen transfer rates in micro-well plates. In this study we wanted to generate a predictive model that described small-scale screens and to test its scalability to bioreactors. Results Here we demonstrate how the use of a DoE approach in a multi-well mini-bioreactor permitted the rapid establishment of high yielding production phase conditions that could be transferred to a 7 L bioreactor. Using green fluorescent protein secreted from Pichia pastoris, we derived a predictive model of protein yield as a function of the three most commonly-varied process parameters: temperature, pH and the percentage of dissolved oxygen in the culture medium. Importantly, when yield was normalised to culture volume and density, the model was scalable from mL to L working volumes. By increasing pre-induction biomass accumulation, model-predicted yields were further improved. Yield improvement was most significant, however, on varying the fed-batch induction regime to minimise methanol accumulation so that the productivity of the culture increased throughout the whole induction period. These findings suggest the importance of matching the rate of protein production with the host metabolism. Conclusion We demonstrate how a rational, stepwise approach to recombinant protein production screens can reduce process development time.
Collapse
Affiliation(s)
- William J Holmes
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | | | | | | | | |
Collapse
|
35
|
Oberg F, Ekvall M, Nyblom M, Backmark A, Neutze R, Hedfalk K. Insight into factors directing high production of eukaryotic membrane proteins; production of 13 human AQPs in Pichia pastoris. Mol Membr Biol 2009; 26:215-27. [PMID: 19384754 DOI: 10.1080/09687680902862085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Membrane proteins are key players in all living cells. To achieve a better understanding of membrane protein function, significant amounts of purified protein are required for functional and structural analyses. Overproduction of eukaryotic membrane proteins, in particular, is thus an essential yet non-trivial task. Hence, improved understanding of factors which direct a high production of eukaryotic membrane proteins is desirable. In this study we have compared the overproduction of all human aquaporins in the eukaryotic host Pichia pastoris. We report quantitated production levels of each homologue and the extent of their membrane localization. Our results show that the protein production levels vary substantially, even between highly homologous aquaporins. A correlation between the extents of membrane insertion with protein function also emerged, with a higher extent of membrane insertion for pure water transporters compared to aquaporin family members with other substrate specificity. Nevertheless, the nucleic acid sequence of the second codon appears to play an important role in overproduction. Constructs containing guanine at the first position of this codon (being part of the mammalian Kozak sequence) are generally produced at a higher level, which is confirmed for hAQP8. In addition, mimicking the yeast consensus sequence (ATGTCT) apparently has a negative influence on the production level, as shown for hAQP1. Moreover, by mutational analysis we show that the yield of hAQP4 can be heavily improved by directing the protein folding pathway as well as stabilizing the aquaporin tetramer.
Collapse
Affiliation(s)
- Fredrik Oberg
- Department of Chemistry/Biochemistry, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Eriksson HM, Persson K, Zhang S, Wieslander K. High-yield expression and purification of a monotopic membrane glycosyltransferase. Protein Expr Purif 2009; 66:143-8. [PMID: 19332126 DOI: 10.1016/j.pep.2009.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 11/24/2022]
Abstract
Membrane proteins are essential to many cellular processes. However, the systematic study of membrane protein structure has been hindered by the difficulty in obtaining large quantities of these proteins. Protein overexpression using Escherichia coli is commonly used to produce large quantities of protein, but usually yields very little membrane protein. Furthermore, optimization of the expressing conditions, as well as the choice of detergent and other buffer components, is thought to be crucial for increasing the yield of stable and homogeneous protein. Herein we report high-yield expression and purification of a membrane-associated monotopic protein, the glycosyltransferase monoglucosyldiacylglycerol synthase (alMGS), in E. coli. Systematic optimization of protein expression was achieved through controlling a few basic expression parameters, including temperature and growth media, and the purifications were monitored using a fast and efficient size-exclusion chromatography (SEC) screening method. The latter method was shown to be a powerful tool for fast screening and for finding the optimal protein-stabilizing conditions. For alMGS it was found that the concentration of detergent was just as important as the type of detergent, and a low concentration of n-dodecyl-beta-D-maltoside (DDM) (approximately 1x critical micelle concentration) was the best for keeping the protein stable and homogeneous. By using these simply methods to optimize the conditions for alMGS expression and purification, the final expression level increase by two orders of magnitude, reaching 170 mg of pure protein per litre culture.
Collapse
Affiliation(s)
- Hanna M Eriksson
- Center for Biomembrane Research, Department of Biochemistry & Biophysics, Stockholm University, SE-10691 Stockholm, Sweden.
| | | | | | | |
Collapse
|
37
|
Bonander N, Darby RA, Grgic L, Bora N, Wen J, Brogna S, Poyner DR, O'Neill MA, Bill RM. Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield. Microb Cell Fact 2009; 8:10. [PMID: 19178690 PMCID: PMC2654770 DOI: 10.1186/1475-2859-8-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 01/29/2009] [Indexed: 11/10/2022] Open
Abstract
Background The production of high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences that has yet to be addressed in a truly rational manner. Typically eukaryotic protein production experiments have relied on varying expression construct cassettes such as promoters and tags, or culture process parameters such as pH, temperature and aeration to enhance yields. These approaches require repeated rounds of trial-and-error optimization and cannot provide a mechanistic insight into the biology of recombinant protein production. We published an early transcriptome analysis that identified genes implicated in successful membrane protein production experiments in yeast. While there has been a subsequent explosion in such analyses in a range of production organisms, no one has yet exploited the genes identified. The aim of this study was to use the results of our previous comparative transcriptome analysis to engineer improved yeast strains and thereby gain an understanding of the mechanisms involved in high-yielding protein production hosts. Results We show that tuning BMS1 transcript levels in a doxycycline-dependent manner resulted in optimized yields of functional membrane and soluble protein targets. Online flow microcalorimetry demonstrated that there had been a substantial metabolic change to cells cultured under high-yielding conditions, and in particular that high yielding cells were more metabolically efficient. Polysome profiling showed that the key molecular event contributing to this metabolically efficient, high-yielding phenotype is a perturbation of the ratio of 60S to 40S ribosomal subunits from approximately 1:1 to 2:1, and correspondingly of 25S:18S ratios from 2:1 to 3:1. This result is consistent with the role of the gene product of BMS1 in ribosome biogenesis. Conclusion This work demonstrates the power of a rational approach to recombinant protein production by using the results of transcriptome analysis to engineer improved strains, thereby revealing the underlying biological events involved.
Collapse
Affiliation(s)
- Nicklas Bonander
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Structural and functional analysis of most G-protein-coupled receptors (GPCRs) requires their expression and purification in functional form. The produced amount of recombinant membrane-inserted receptors depends on the optimal combination of a particular GPCR and production host; optimization of expression is still a matter of trial-and-error. Prior to purification, receptors must be extracted from the membranes by use of detergent(s). The choice of an appropriate detergent for solubilization and purification is crucial to maintain receptors in their functional state. The initial enrichment can be carried out by affinity chromatography using a general affinity tag (e.g., poly-histidine tag). If the first purification step does not yield pure receptor protein, purification to homogeneity can often be achieved by use of a subsequent receptor-specific ligand column. If suitable immobilized ligands are not available, size exclusion chromatography or other techniques need to be applied. Many GPCRs become unstable upon detergent extraction from lipid membranes, and measures for stabilization are discussed. As an example, the purification of a functional neurotensin receptor to homogeneity in milligram quantities is given below.
Collapse
Affiliation(s)
- Reinhard Grisshammer
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20852, USA, telephone +1 301-594-9223, fax +1 301-480-3934,
| |
Collapse
|
39
|
White JF, Grisshammer R. Automated large-scale purification of a recombinant g-protein-coupled neurotensin receptor. ACTA ACUST UNITED AC 2008; Chapter 6:Unit 6.8. [PMID: 18429328 DOI: 10.1002/0471140864.ps0608s47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Structure determination of G-protein-coupled receptors and other applications, such as nuclear magnetic resonance (NMR) studies, require milligram quantities of purified, functional receptor protein on a regular basis. This unit presents a step-by-step procedure for the automated two-column purification at the 10-milligram scale of a G protein-coupled receptor for neurotensin, expressed in functional form in Escherichia coli.
Collapse
|
40
|
Bonander N, Ferndahl C, Mostad P, Wilks MDB, Chang C, Showe L, Gustafsson L, Larsson C, Bill RM. Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1. BMC Genomics 2008; 9:365. [PMID: 18671860 PMCID: PMC2536679 DOI: 10.1186/1471-2164-9-365] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 07/31/2008] [Indexed: 01/01/2023] Open
Abstract
Background We previously described the first respiratory Saccharomyces cerevisiae strain, KOY.TM6*P, by integrating the gene encoding a chimeric hexose transporter, Tm6*, into the genome of an hxt null yeast. Subsequently we transferred this respiratory phenotype in the presence of up to 50 g/L glucose to a yeast strain, V5 hxt1-7Δ, in which only HXT1-7 had been deleted. In this study, we compared the transcriptome of the resultant strain, V5.TM6*P, with that of its wild-type parent, V5, at different glucose concentrations. Results cDNA array analyses revealed that alterations in gene expression that occur when transitioning from a respiro-fermentative (V5) to a respiratory (V5.TM6*P) strain, are very similar to those in cells undergoing a diauxic shift. We also undertook an analysis of transcription factor binding sites in our dataset by examining previously-published biological data for Hap4 (in complex with Hap2, 3, 5), Cat8 and Mig1, and used this in combination with verified binding consensus sequences to identify genes likely to be regulated by one or more of these. Of the induced genes in our dataset, 77% had binding sites for the Hap complex, with 72% having at least two. In addition, 13% were found to have a binding site for Cat8 and 21% had a binding site for Mig1. Unexpectedly, both the up- and down-regulation of many of the genes in our dataset had a clear glucose dependence in the parent V5 strain that was not present in V5.TM6*P. This indicates that the relief of glucose repression is already operable at much higher glucose concentrations than is widely accepted and suggests that glucose sensing might occur inside the cell. Conclusion Our dataset gives a remarkably complete view of the involvement of genes in the TCA cycle, glyoxylate cycle and respiratory chain in the expression of the phenotype of V5.TM6*P. Furthermore, 88% of the transcriptional response of the induced genes in our dataset can be related to the potential activities of just three proteins: Hap4, Cat8 and Mig1. Overall, our data support genetic remodelling in V5.TM6*P consistent with a respiratory metabolism which is insensitive to external glucose concentrations.
Collapse
Affiliation(s)
- Nicklas Bonander
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Midgett CR, Madden DR. Breaking the bottleneck: Eukaryotic membrane protein expression for high-resolution structural studies. J Struct Biol 2007; 160:265-74. [PMID: 17702603 DOI: 10.1016/j.jsb.2007.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/26/2007] [Accepted: 07/06/2007] [Indexed: 10/23/2022]
Abstract
The recombinant expression of eukaryotic membrane proteins has been a major stumbling block in efforts to determine their structures. In the last two years, however, five such proteins have yielded high-resolution X-ray or electron diffraction data, opening the prospect of increased throughput for eukaryotic membrane protein structure determination. Here, we summarize the major expression systems available, and highlight technical advances that should facilitate more systematic screening of expression conditions for this physiologically important class of targets.
Collapse
Affiliation(s)
- Charles R Midgett
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755, USA
| | | |
Collapse
|
42
|
Nyblom M, Oberg F, Lindkvist-Petersson K, Hallgren K, Findlay H, Wikström J, Karlsson A, Hansson O, Booth PJ, Bill RM, Neutze R, Hedfalk K. Exceptional overproduction of a functional human membrane protein. Protein Expr Purif 2007; 56:110-20. [PMID: 17869538 DOI: 10.1016/j.pep.2007.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/02/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Eukaryotic--especially human--membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization.
Collapse
Affiliation(s)
- Maria Nyblom
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 2007; 129:11791-801. [PMID: 17725352 DOI: 10.1021/ja073462m] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Remarkable progress in solid-state NMR has enabled complete structure determination of uniformly labeled proteins in the size range of 5-10 kDa. Expanding these applications to larger or mass-limited systems requires further improvements in spectral sensitivity, for which inverse detection of 13C and 15N signals with 1H is one promising approach. Proton detection has previously been demonstrated to offer sensitivity benefits in the limit of sparse protonation or with approximately 30 kHz magic-angle spinning (MAS). Here we focus on experimental schemes for proteins with approximately 100% protonation. Full protonation simplifies sample preparation and permits more complete chemical shift information to be obtained from a single sample. We demonstrate experimental schemes using the fully protonated, uniformly 13C,15N-labeled protein GB1 at 40 kHz MAS rate with 1.6-mm rotors. At 500 MHz proton frequency, 1-ppm proton line widths were observed (500 +/- 150 Hz), and the sensitivity was enhanced by 3 and 4 times, respectively, versus direct 13C and 15N detection. The enhanced sensitivity enabled a family of 3D experiments for spectral assignment to be performed in a time-efficient manner with less than a micromole of protein. CANH, CONH, and NCAH 3D spectra provided sufficient resolution and sensitivity to make full backbone and partial side-chain proton assignments. At 750 MHz proton frequency and 40 kHz MAS rate, proton line widths improve further in an absolute sense (360 +/- 115 Hz). Sensitivity and resolution increase in a better than linear manner with increasing magnetic field, resulting in 14 times greater sensitivity for 1H detection relative to that of 15N detection.
Collapse
Affiliation(s)
- Donghua H Zhou
- Department of Chemistry, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
44
|
Korepanova A, Moore JD, Nguyen HB, Hua Y, Cross TA, Gao F. Expression of membrane proteins from Mycobacterium tuberculosis in Escherichia coli as fusions with maltose binding protein. Protein Expr Purif 2006; 53:24-30. [PMID: 17275326 PMCID: PMC2684689 DOI: 10.1016/j.pep.2006.11.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/22/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Sixteen of 22 low molecular weight integral membrane proteins from Mycobacterium tuberculosis with previously poor or undetectable levels of expression were expressed in Escherichia coli as fusions with both the maltose binding protein (MBP) and a His(8)-tag. Sixty-eight percent of targeted proteins were expressed in high yield (>30 mg/L) in soluble and/or inclusion body form. Thrombin cleavage of the MBP fusion protein was successful for 10 of 13 proteins expressed as soluble proteins and for three proteins expressed only as inclusion bodies. The use of autoinduction growth media increased yields over Luria-Bertani (LB) growth media in 75% of the expressed proteins. Expressing integral membrane proteins with yields suitable for structural studies from a set of previously low and non-expressing proteins proved highly successful upon attachment of the maltose binding protein as a fusion tag.
Collapse
Affiliation(s)
- A Korepanova
- Abbott Laboratories, Dept. R46Y, Bldg. AP10-LL8, 100 Abbott Park Road, Abbott Park, IL 60064-6098, USA
| | | | | | | | | | | |
Collapse
|
45
|
Siddiqui AA, Jalah R, Sharma YD. Expression and purification of HtpX-like small heat shock integral membrane protease of an unknown organism related to Methylobacillus flagellatus. ACTA ACUST UNITED AC 2006; 70:539-46. [PMID: 17239953 DOI: 10.1016/j.jbbm.2006.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 12/08/2006] [Accepted: 12/13/2006] [Indexed: 11/19/2022]
Abstract
The M48 conserved family of peptidases contains a single catalytic zinc ion tetrahedrally co-ordinated by two histidines within an HEXXH motif. The proteases of this class are generally toxic to the cell and thus difficult to express and purify. Here, we report the expression and purification of the small HtpX-like heat shock metalloprotease from an unknown organism related to the obligate methylotrophic anaerobic bacterium, Methylobacillus flagellatus. The protease was expressed in the Escherichia coli vector - pT7. Optimization of expression was done to increase the yield and solubility of the expressed protein. Improved refolding procedures from inclusion bodies of pT7 E. coli system were devised to get the protease in an active and stable form. The protease was purified to near homogeneity in its active form from the refolded proteins of the inclusion bodies by a two-step (cation exchange followed by gel filtration) high performance liquid chromatography (HPLC). The purified protease was active on zymography and casein hydrolysis assays. The activity of the protease was found to be optimum at pH 7.4 and at a temperature of 37 degrees C but significant activity was also retained at higher temperatures of 45-50 degrees C. Centrifugal fractionation showed that it is a membrane localized endopeptidase. The methods described here can serve as guidelines to express and purify other homologues of M48 family of proteases for functional and structural studies.
Collapse
Affiliation(s)
- Asim A Siddiqui
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | | | | |
Collapse
|
46
|
Wagner S, Bader ML, Drew D, de Gier JW. Rationalizing membrane protein overexpression. Trends Biotechnol 2006; 24:364-71. [PMID: 16820235 DOI: 10.1016/j.tibtech.2006.06.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/20/2006] [Accepted: 06/16/2006] [Indexed: 11/27/2022]
Abstract
Functional and structural studies of membrane proteins usually require overexpression of the proteins in question. Often, however, the 'trial and error' approaches that are mainly used to produce membrane proteins are not successful. Our rapidly increasing understanding of membrane protein insertion, folding and degradation means that membrane protein overexpression can be more rationalized, both at the level of the overexpression host and the overexpressed membrane protein. This change of mindset is likely to have a significant impact on membrane protein research.
Collapse
Affiliation(s)
- Samuel Wagner
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
47
|
Grisshammer R. Understanding recombinant expression of membrane proteins. Curr Opin Biotechnol 2006; 17:337-40. [PMID: 16777403 DOI: 10.1016/j.copbio.2006.06.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 05/01/2006] [Accepted: 06/02/2006] [Indexed: 11/25/2022]
Abstract
Over the past 15 years, numerous reports have been published on the recombinant expression of integral membrane proteins. Some proteins accumulate in the membrane to high levels, whereas other often closely related proteins are barely detected. Understanding the underlying reasons for this variation has proven difficult. Recent studies in this area have provided new insight into the response of host cells to membrane protein expression and into the mechanism of membrane insertion. The successful overproduction of some membrane proteins was shown to be linked to the avoidance of stress responses in the host cell. Furthermore, the cell response to membrane protein production has been quantified and several genes that are either upregulated or downregulated when yields of a membrane-inserted protein are poor were identified. Progress has also been made in understanding how the translocon, which is the site of protein translocation and membrane insertion, decides whether a protein segment is integrated into the membrane or not. Building upon such experiments will lead to targeted approaches for recombinant membrane protein expression.
Collapse
Affiliation(s)
- Reinhard Grisshammer
- Laboratory of Molecular Biology of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|