1
|
Du L, Luo Y, Zhang J, Shen Y, Zhang J, Tian R, Shao W, Xu Z. Reduction in precipitation amount, precipitation events, and nitrogen addition change ecosystem carbon fluxes differently in a semi-arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172276. [PMID: 38583634 DOI: 10.1016/j.scitotenv.2024.172276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The increases in extent and frequency of extreme drought events and increased nitrogen (N) deposition due to global change are expected to have profound impacts on carbon cycling in semi-arid grasslands. However, how ecosystem CO2 exchange processes respond to different drought scenarios individually and interactively with N addition remains uncertain. In this study, we experimentally explored the effects of different drought scenarios (early season extreme drought, 50 % reduction in precipitation amount, and 50 % reduction in precipitation events) and N addition on net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) over three growing seasons (2019-2021) in a semi-arid grassland in northern China. The growing-season ecosystem carbon fluxes in response to drought and N addition were influenced by inter-annual precipitation changes, with 2019 as a normal precipitation year, and 2020 and 2021 as wet years. Early season extreme drought stimulated NEE by reducing ER. 50 % reduction in precipitation amount decreased ER and GEP consistently in three years, but only significantly suppressed NEE in 2019. 50 % reduction in precipitation events stimulated NEE. Nitrogen addition stimulated NEE, ER, and GEP, but only significantly in wet years. The structural equation models showed that changes in carbon fluxes were regulated by soil moisture, soil temperature, microbial biomass nitrogen (MBN), and the key plant functional traits. Decreased community-weighted means of specific leaf area (CWMSLA) was closely related to the reduced ER and GEP under early season extreme drought and 50 % reduction in precipitation amount. While increased community-weighted means of plant height (CWMPH) largely accounted for the stimulated ER and GEP under 50 % reduction in precipitation events. Our study stresses the distinct effects of different drought scenarios and N enrichment on carbon fluxes, and highlights the importance of soil traits and the key plant traits in determining carbon exchange in this water-limited ecosystem.
Collapse
Affiliation(s)
- Lan Du
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yonghong Luo
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jiatao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yan Shen
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jinbao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ru Tian
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenqian Shao
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhuwen Xu
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
2
|
Sang J, Zhao Y, Shen Y, Shurpali NJ, Li Y. Optimizing irrigation and nitrogen addition to balance grassland biomass production with greenhouse gas emissions: A mesocosm study. ENVIRONMENTAL RESEARCH 2024; 249:118387. [PMID: 38336162 DOI: 10.1016/j.envres.2024.118387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Achieving a balance between greenhouse gas mitigation and biomass production in grasslands necessitates optimizing irrigation frequency and nitrogen addition, which significantly influence grassland productivity and soil nitrous oxide emissions, and consequently impact the ecosystem carbon dioxide exchange. This study aimed to elucidate these influences using a controlled mesocosm experiment where bermudagrass (Cynodon dactylon L.) was cultivated under varied irrigation frequencies (daily and every 6 days) with (100 kg ha-1) or without nitrogen addition; measurements of net ecosystem carbon dioxide exchange, ecosystem respiration, soil respiration, and nitrous oxide emissions across two cutting events were performed as well. The findings revealed a critical interaction between water-filled pore space, regulated by irrigation, and nitrogen availability, with the latter exerting a more substantial influence on aboveground biomass growth and ecosystem carbon dioxide exchange than water availability. Moreover, the total dry matter was significantly higher with nitrogen addition compared to without nitrogen addition, irrespective of the irrigation frequency. In contrast, soil nitrous oxide emissions were observed to be significantly higher with increased irrigation frequency and nitrogen addition. The effects of nitrogen addition on soil respiration components appeared to depend on water availability, with autotrophic respiration seeing a significant rise with nitrogen addition under limited irrigation (5.4 ± 0.6 μmol m-2 s-1). Interestingly, the lower irrigation frequency did not result in water stress, suggesting resilience in bermudagrass. These findings highlight the importance of considering interactions between irrigation and nitrogen addition to optimize water and nitrogen input in grasslands for a synergistic balance between grassland biomass production and greenhouse gas emission mitigation.
Collapse
Affiliation(s)
- Jianhui Sang
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yixuan Zhao
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuying Shen
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Narasinha J Shurpali
- Grasslands and Sustainable Farming, Production Systems Unit, Natural Resources Institute Finland, Halolantie 31A, Kuopio, FI-71750, Finland
| | - Yuan Li
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
3
|
Zhuang W, Li Y, Kang X, Yan L, Zhang X, Yan Z, Zhang K, Yang A, Niu Y, Yu X, Wang H, An M, Che R. Changes in soil oxidase activity induced by microbial life history strategies mediate the soil heterotrophic respiration response to drought and nitrogen enrichment. Front Microbiol 2024; 15:1375300. [PMID: 38559350 PMCID: PMC10978626 DOI: 10.3389/fmicb.2024.1375300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Drought and nitrogen deposition are two major climate challenges, which can change the soil microbial community composition and ecological strategy and affect soil heterotrophic respiration (Rh). However, the combined effects of microbial community composition, microbial life strategies, and extracellular enzymes on the dynamics of Rh under drought and nitrogen deposition conditions remain unclear. Here, we experimented with an alpine swamp meadow to simulate drought (50% reduction in precipitation) and multilevel addition of nitrogen to determine the interactive effects of microbial community composition, microbial life strategy, and extracellular enzymes on Rh. The results showed that drought significantly reduced the seasonal mean Rh by 40.07%, and increased the Rh to soil respiration ratio by 22.04%. Drought significantly altered microbial community composition. The ratio of K- to r-selected bacteria (BK:r) and fungi (FK:r) increased by 20 and 91.43%, respectively. Drought increased hydrolase activities but decreased oxidase activities. However, adding N had no significant effect on microbial community composition, BK:r, FK:r, extracellular enzymes, or Rh. A structural equation model showed that the effects of drought and adding nitrogen via microbial community composition, microbial life strategy, and extracellular enzymes explained 84% of the variation in Rh. Oxidase activities decreased with BK:r, but increased with FK:r. Our findings show that drought decreased Rh primarily by inhibiting oxidase activities, which is induced by bacterial shifts from the r-strategy to the K-strategy. Our results highlight that the indirect regulation of drought on the carbon cycle through the dynamic of bacterial and fungal life history strategy should be considered for a better understanding of how terrestrial ecosystems respond to future climate change.
Collapse
Affiliation(s)
- Weirong Zhuang
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming, China
- Ministry of Education Key Laboratory for Ecosecurity of Southwest China, Yunnan University, Kunming, China
| | - Yong Li
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Xiaoming Kang
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Liang Yan
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Xiaodong Zhang
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Zhongqing Yan
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Kerou Zhang
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Ao Yang
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Yuechuan Niu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoshun Yu
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Huan Wang
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Miaomiao An
- Beijing Key Laboratory of Wetland Services and Restoration, Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Beijing, Sichuan, China
| | - Rongxiao Che
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming, China
- Ministry of Education Key Laboratory for Ecosecurity of Southwest China, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Li C, Li X, Yang Y, Shi Y, Zhang J. Comparative responses of carbon flux components in recovering bare patches of degraded alpine meadow in the Source Zone of the Yellow River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168343. [PMID: 37931819 DOI: 10.1016/j.scitotenv.2023.168343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The patchy degradation of alpine grasslands is a common phenomenon on the Qinghai-Tibetan Plateau, and the presence of bare patches (BP) in degraded grasslands significantly affects the functioning of the alpine meadow ecosystem. The succession of vegetation-recovered BP may lead to significant changes in ecosystem carbon (C) cycling. To date, it is unclear whether different components of net ecosystem carbon exchange (NEE) respond similarly or differently to the succession of recovering BP. Here, we conducted a field monitoring experiment in a degraded alpine meadow, and selected three successional stages for recovering BP to study the response of NEE and its components. We found that the succession of recoevering BP increased ecosystem respiration (ER) during the growing season and decreased ER during the off-growing season, with the differences in annual carbon output between different successional stages being insignificant. However, gross primary productivity increased with the successional gradient, and carbon input at the later stage of succession was significantly greater than that at the middle stage of succession. The succession of recovering BP promoted the carbon sequestration function of the alpine grassland, with the grassland acting as a carbon sink when it reached the state of healthy alpine meadow, while it acted as a carbon source during the middle stage of succession. Compared with BP, the amount of carbon sequested by healthy alpine meadows increased significantly by 219 g·C·m-2·yr-1. We also found that the responses of other components to the succession of recovering BP were inconsistent. In addition, the effects of succession of recovering BP on carbon flux were related to field-monitored variables (soil temperature and water content) and other considered variables (biomass, organic carbon, and microbial biomass carbon). These research findings highlight the importance of restoring vegetation in BPs, and are crucial for predicting the carbon balance in the future and formulating sustainable grassland management strategies.
Collapse
Affiliation(s)
- Chengyi Li
- College of Agriculture and Animal Husbandry, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Xilai Li
- College of Agriculture and Animal Husbandry, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| | - Yuanwu Yang
- College of Agriculture and Animal Husbandry, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yan Shi
- School of Environment, the University of Auckland, Auckland 1010, New Zealand
| | - Jing Zhang
- College of Agriculture and Animal Husbandry, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
5
|
Li T, Tian D, He Y, Zhang R, Wang J, Wang F, Niu S. Threshold response of ecosystem water use efficiency to soil water in an alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168345. [PMID: 37935265 DOI: 10.1016/j.scitotenv.2023.168345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Ecosystem water use efficiency (WUE) is a coupled index of carbon (gross ecosystem productivity, GEP) and water fluxes (transpiration, Tr or evapotranspiration, ET), reflecting how ecosystem uses water efficiently to increase its carbon uptake. Though ecosystem WUE is generally considered to decrease with increasing precipitation levels, it remains elusive whether and how it nonlinearly responds to extreme water changes. Here, we performed a 5-year precipitation halving experiment in an alpine meadow, combined with extremely interannual precipitation fluctuations, to create a large range of soil water variations. Our results showed that WUETr and WUEET consistently showed a quadratic pattern in response to soil water. Such quadratic patterns were steadily held at different stages of growing seasons, with minor changes in the optimal water thresholds (25.0-28.4 %). Below the water threshold, more soil water stimulated GEP but reduced Tr and ET by lowering soil temperature, resulting in a positive response of ecosystem WUE to soil water. Above the threshold, soil water stimulated GEP less than Tr (ET), leading to a negative response of ecosystem WUE to soil water. However, biological processes, including plant cover and belowground biomass as well as vertical root biomass distribution, had less effect on ecosystem WUE. Overall, this work is among the first to reveal the nonlinearity and optimal water thresholds of ecosystem WUE across a broad range of soil water, suggesting that future extreme precipitation events will more frequently surpass the water threshold and differently change the coupling relationships of carbon and water fluxes in alpine grasslands.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yicheng He
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Furong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zhang MY, Ma YJ, Chen P, Shi FZ, Wei JQ. Growing-season carbon budget of alpine meadow ecosystem in the Qinghai Lake Basin: a continued carbon sink through this century according to the Biome-BGC model. CARBON BALANCE AND MANAGEMENT 2023; 18:25. [PMID: 38112828 PMCID: PMC10729358 DOI: 10.1186/s13021-023-00244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND The alpine meadow is one of the most important ecosystems in the Qinghai-Tibet Plateau (QTP), and critically sensitive to climate change and human activities. Thus, it is crucial to precisely reveal the current state and predict future trends in the carbon budget of the alpine meadow ecosystem. The objective of this study was to explore the applicability of the Biome-BGC model (BBGC) in the Qinghai Lake Basin (QLB), identify the key parameters affecting the variation of net ecosystem exchange (NEE), and further predict the future trends in carbon budget in the QLB. RESULTS The alpine meadow mainly acted as carbon sink during the growing season. For the eco-physiological factors, the YEL (Yearday to end litterfall), YSNG (Yearday to start new growth), CLEC (Canopy light extinction coefficient), FRC:LC (New fine root C: new leaf C), SLA (Canopy average specific leaf area), C:Nleaf (C:N of leaves), and FLNR (Fraction of leaf N in Rubisco) were confirmed to be the top seven parameters affecting carbon budget of the alpine meadow. For the meteorological factors, the sensitivity of NEE to precipitation was greater than that to vapor pressure deficit (VPD), and it was greater to radiation than to air temperature. Moreover, the combined effect of two different meteorological factors on NEE was higher than the individual effect of each one. In the future, warming and wetting would enhance the carbon sink capacity of the alpine meadow during the growing season, but extreme warming (over 3.84 ℃) would reduce NEE (about 2.9%) in the SSP5-8.5 scenario. CONCLUSION Overall, the alpine meadow ecosystem in the QLB generally performs as a carbon sink at present and in the future. It is of great significance for the achievement of the goal of carbon neutrality and the management of alpine ecosystems.
Collapse
Affiliation(s)
- Meng-Ya Zhang
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu-Jun Ma
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Peng Chen
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fang-Zhong Shi
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jun-Qi Wei
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Legesse TG, Dong G, Dong X, Qu L, Chen B, Daba NA, Sorecha EM, Zhu W, Lei T, Shao C. The extreme wet and large precipitation size increase carbon uptake in Eurasian meadow steppes: Evidence from natural and manipulated precipitation experiments. ENVIRONMENTAL RESEARCH 2023; 237:117029. [PMID: 37659645 DOI: 10.1016/j.envres.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The distribution of seasonal precipitation would profoundly affect the dynamics of carbon fluxes in terrestrial ecosystems. However, little is known about the impacts of extreme precipitation and size events on ecosystem carbon cycle when compared to the effects of average precipitation amount. The study involved an analysis of carbon fluxes and water exchange using the eddy covariance and chamber based techniques during the growing seasons of 2015-2017 in Bayan, Mongolia and 2019-2021 in Hulunbuir, Inner Mongolia, respectively. The components of carbon fluxes and water exchange at each site were normalized to evaluate of relative response among carbon fluxes and water exchange. The investigation delved into the relationship between carbon fluxes and extreme precipitation over five gradients (control, dry spring, dry summer, wet spring and wet summer) in Hulunbuir meadow steppe and distinct four precipitation sizes (0.1-2, 2-5, 5-10, and 10-25 mm d-1) in Bayan meadow steppe. The wet spring and summer showed the greatest ecosystem respiration (ER) relative response values, 76.2% and 73.5%, respectively, while the dry spring (-16.7%) and dry summer (14.2%) showed the lowest values. Gross primary production (GPP) relative response improved with wet precipitation gradients, and declined with dry precipitation gradients in Hulunbuir meadow steppe. The least value in net ecosystem CO2 exchange (NEE) was found at 10-25 mm d-1 precipitation size in Bayan meadow steppe. Similarly, the ER and GPP increased with size of precipitation events. The structural equation models (SEM) satisfactorily fitted the data (χ2 = 43.03, d.f. = 11, p = 0.215), with interactive linkages among soil microclimate, water exchange and carbon fluxes components regulating NEE. Overall, this study highlighted the importance of extreme precipitation and event size in influencing ecosystem carbon exchange, which is decisive to further understand the carbon cycle in meadow steppes.
Collapse
Affiliation(s)
- Tsegaye Gemechu Legesse
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang Dong
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaobing Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Luping Qu
- Forest Ecology Stable Isotope Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baorui Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nano Alemu Daba
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Eba Muluneh Sorecha
- State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Zhu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tinajie Lei
- State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Changliang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Diao H, Yang J, Hao J, Yan X, Dong K, Wang C. Seasonal precipitation regulates magnitude and direction of the effect of nitrogen addition on net ecosystem CO 2 exchange in saline-alkaline grassland of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162907. [PMID: 36934924 DOI: 10.1016/j.scitotenv.2023.162907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Increased nitrogen (N) deposition and altered precipitation regimes have profound effects on carbon (C) flux in semi-arid grasslands. However, the interactive effects between N enrichment and precipitation alterations (both increasing and decreasing) on ecosystem CO2 fluxes and ecosystem resource use efficiency (water use efficiency (WUE) and carbon use efficiency (CUE)) remain unclear, particularly in saline-alkaline grasslands. A four-year (2018-2021) field manipulation experiment was conducted to investigate N enrichment and precipitation alterations (decreased and increased by 50 % of ambient precipitation) and their interactions on ecosystem CO2 fluxes (gross- ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem CO2 exchange (NEE)), as well as their underlying regulatory mechanisms under severe salinity stress in northern China. Our results showed that N addition and precipitation alteration alone did not significantly affect the GEP, ER and NEE. While the interaction of N addition and increased precipitation over the four years significantly improved the mean GEP and NEE by 24.9 % and 15.9 %, respectively. The interactive effects of N addition and increased precipitation treatment significantly stimulated the mean value of WUE by 39.1 % compared with control, but had no significant effects on CUE over the four years. Based on the four-year experiment, the magnitude and direction of the effects of N addition on the NEE were related to seasonal precipitation. Nitrogen addition increased the NEE under increased precipitation and decreased it during extreme drought. Soil salinization (pH and base cations) could directly or indirectly affect GEP and NEE via plants productivity, plant communities, as well as ecosystem resource use efficiency (WUE and CUE) based on structural equation model. Our results address lacking investigations of ecosystem C flux in saline-alkaline grasslands, and highlight that precipitation regulates the magnitude and direction of N addition on NEE in saline-alkaline grasslands.
Collapse
Affiliation(s)
- Huajie Diao
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Jianqiang Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Jie Hao
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Xuedong Yan
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Kuanhu Dong
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China.
| | - Changhui Wang
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
9
|
Lei L, Li Y, Zhou Z, Li N, Zhao C, Li Q. Cropland abandonment alleviates soil carbon emissions in the North China Plain. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:679. [PMID: 37191764 DOI: 10.1007/s10661-023-11324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Land use change could profoundly influence the terrestrial ecosystem carbon (C) cycle. However, the effects of agricultural expansion and cropland abandonment on soil microbial respiration remain controversial, and the underlying mechanisms of the land use change effect are lacking. In this study, we conducted a comprehensive survey in four land use types (grassland, cropland, orchard, and old-field grassland) of North China Plain with eight replicates to explore the responses of soil microbial respiration to agricultural expansion and cropland abandonment. We collected surface soil (0-10 cm in depth) in each land use type to measure soil physicochemical property and microbial analysis. Our results showed that soil microbial respiration was significantly increased by 15.10 mg CO2 kg-1 day-1 and 20.06 mg CO2 kg-1 day-1 due to the conversion of grassland to cropland and orchard, respectively. It confirmed that agricultural expansion might exacerbate soil C emissions. On the contrary, the returning of cropland and orchard to old-field grassland significantly decreased soil microbial respiration by 16.51 mg CO2 kg-1 day-1 and 21.47 mg CO2 kg-1 day-1, respectively. Effects of land use change on soil microbial respiration were predominately determined by soil organic and inorganic nitrogen contents, implying that nitrogen fertilizer plays an essential role in soil C loss. These findings highlight that cropland abandonment can effectively mitigate soil CO2 emissions, which should be implemented in agricultural lands with low grain production and high C emissions. Our results improve mechanistic understanding on the response of soil C emission to land use changes.
Collapse
Affiliation(s)
- Lingjie Lei
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Landscape Engineering Office, College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, Jiangsu, China
| | - Ying Li
- Department of Natural Resource of Henan Province, Institute of Territorial Space Survey and Planning, Zhengzhou, 450000, Henan, China.
| | - Zhenxing Zhou
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Na Li
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, 100083, China
- Chinese Academy of Natural Resources Economics, Beijing, 101149, China
| | - Cancan Zhao
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qiang Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| |
Collapse
|
10
|
Wan Q, Li L, Liu B, Zhang Z, Liu Y, Xie M. Different and unified responses of soil bacterial and fungal community composition and predicted functional potential to 3 years’ drought stress in a semiarid alpine grassland. Front Microbiol 2023; 14:1104944. [PMID: 37082184 PMCID: PMC10112540 DOI: 10.3389/fmicb.2023.1104944] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionSoil microbial communities are key to functional processes in terrestrial ecosystems, and they serve as an important indicator of grasslands status. However, the responses of soil microbial communities and functional potential to drought stress in semiarid alpine grasslands remain unclear.MethodsHere, a field experiment was conducted under ambient precipitation as a control, −20% and −40% of precipitation to explore the responses of soil microbial diversity, community composition, and predicted functional potential to drought stress in a semiarid alpine grassland located in the northwest of China. Moreover, 16S rRNA gene and ITS sequencing were used to detect bacterial and fungal communities, and the PICRUST and FUNGuild databases were used to predict bacterial and fungal functional groups.ResultsResults showed drought stress substantially changes the community diversity of bacteria and fungi, among which the bacteria community is more sensitive to drought stress than fungi, indicating that the diversity or structure of soil bacteria community could serve as an indicator of alpine grasslands status. However, the fungal community still has difficulty maintaining resistance under excessive drought stress. Our paper also highlighted that soil moisture content, plant diversity (Shannon Wiener, Pieiou, and Simpson), and soil organic matter are the main drivers affecting soil bacterial and fungal community composition and predicted functional potential. Notably, the soil microbial functional potential could be predictable through taxonomic community profiles.ConclusionOur research provides insight for exploring the mechanisms of microbial community composition and functional response to climate change (longer drought) in a semiarid alpine grassland.
Collapse
Affiliation(s)
- Qian Wan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lei Li,
| | - Bo Liu
- Shandong Provincial Key Laboratory of Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Zhihao Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yalan Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyu Xie
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Drought Timing Modulates Soil Moisture Thresholds for CO2 Fluxes and Vegetation Responses in an Experimental Alpine Grassland. Ecosystems 2023. [DOI: 10.1007/s10021-023-00831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
AbstractDrought timing determines the degree to which dry events impact ecosystems, with the ability of key processes to withstand change differing between drought periods. Findings indicate that drought timing effects vary across ecosystems, with few studies focusing on alpine grasslands. We conducted a mesocosm experiment using small grassland monoliths collected in September from the high Alps and left to overwinter at 0 °C until the experiment began in lowland Italy under late-winter outdoor conditions. Together with watered controls, we imposed three different drought treatments (zero precipitation): (1) one-month early-drought immediately after simulated snowmelt; (2) one-month mid-drought a month after melt-out; and (3) continuous two-month drought across the entire experimental period. Ecosystem responses were assessed by measuring CO2 fluxes, while vegetation responses were investigated by measuring aboveground net primary production (ANPP) of graminoids and forbs and post-harvest resprouting after one-month rehydration. We found that ecosystem respiration and gross ecosystem production (GEP) during the day were more negatively affected by mid-season drought compared to drought starting early in the season. By the end of treatments, GEP reduction under mid-season drought was similar to that of a continuous two-month drought. ANPP reduction was similar in early- and mid-drought treatments, showing a greater decrease under an enforced two-month period without precipitation. Plant resprouting, however, was only reduced in full- and mid-season drought pots, with forbs more negatively affected than graminoids. Seasonal soil moisture variation can account for these patterns: remaining winter moisture allowed almost full canopy development during the first month of the season, despite precipitation being withheld, while soil moisture depletion in the second month, resulting from higher temperatures and greater biomass, caused a collapse of gas exchange and diminished plant resprouting. Our data illustrates the importance of the timing of zero-precipitation periods for both plant and ecosystem responses in alpine grasslands.
Collapse
|
12
|
Xu X, Wu B, Bao F, Gao Y, Li X, Cao Y, Lu Q, Gao J, Xin Z, Liu M. Different Responses of Growing Season Ecosystem CO 2 Fluxes to Rain Addition in a Desert Ecosystem. PLANTS (BASEL, SWITZERLAND) 2023; 12:1158. [PMID: 36904018 PMCID: PMC10005604 DOI: 10.3390/plants12051158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Desert ecosystem CO2 exchange may play an important role in global carbon cycling. However, it is still not clear how the CO2 fluxes of shrub-dominated desert ecosystems respond to precipitation changes. We performed a 10-year long-term rain addition experiment in a Nitraria tangutorum desert ecosystem in northwestern China. In the growing seasons of 2016 and 2017, with three rain addition treatments (natural precipitation +0%, +50%, and +100% of annual average precipitation), gross ecosystem photosynthesis (GEP), ecosystem respiration (ER), and net ecosystem CO2 exchange (NEE) were measured. The GEP responded nonlinearly and the ER linearly to rain addition. The NEE presented a nonlinear response along the rain addition gradient, with a saturation threshold by rain addition between +50% and +100%. The growing season mean NEE ranged from -2.25 to -5.38 μmol CO2 m-2 s-1, showing net CO2 uptake effect, with significant enhancement (more negative) under the rain addition treatments. Although natural rainfall fluctuated greatly in the growing seasons of 2016 and 2017, reaching 134.8% and 44.0% of the historical average, the NEE values remained stable. Our findings highlight that growing season CO2 sequestration in desert ecosystems will increase against the background of increasing precipitation levels. The different responses of GEP and ER of desert ecosystems under changing precipitation regimes should be considered in global change models.
Collapse
Affiliation(s)
- Xiaotian Xu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Bo Wu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
| | - Fang Bao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
| | - Ying Gao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
| | - Xinle Li
- The Experimental Center of Desert Forestry of the Chinese Academy of Forestry, Bayannur 015200, China
- Dengkou Desert Ecosystem Research Station of Inner Mongolia, Bayannur 015200, China
| | - Yanli Cao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
| | - Qi Lu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
| | - Junliang Gao
- The Experimental Center of Desert Forestry of the Chinese Academy of Forestry, Bayannur 015200, China
- Dengkou Desert Ecosystem Research Station of Inner Mongolia, Bayannur 015200, China
| | - Zhiming Xin
- The Experimental Center of Desert Forestry of the Chinese Academy of Forestry, Bayannur 015200, China
- Dengkou Desert Ecosystem Research Station of Inner Mongolia, Bayannur 015200, China
| | - Minghu Liu
- The Experimental Center of Desert Forestry of the Chinese Academy of Forestry, Bayannur 015200, China
- Dengkou Desert Ecosystem Research Station of Inner Mongolia, Bayannur 015200, China
| |
Collapse
|
13
|
Effect of Precipitation Variation on Soil Respiration in Rain-Fed Winter Wheat Systems on the Loess Plateau, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116915. [PMID: 35682496 PMCID: PMC9180287 DOI: 10.3390/ijerph19116915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
Abstract
Global climate change has aggravated the hydrological cycle by changing both the amount and distribution of precipitation, and this is especially notable in the semiarid Loess Plateau. How these precipitation variations have affected soil carbon (C) emission by the agroecosystems is still unclear. Here, to evaluate the effects of precipitation variation on soil respiration (Rs), a field experiment (from 2019 to 2020) was conducted with 3 levels of manipulation, including ambient precipitation (CK), 30% decreased precipitation (P−30), and 30% increased precipitation (P+30) in rain-fed winter wheat (Triticum aestivum L.) agroecosystems on the Loess Plateau, China. The results showed that the average Rs in P−30 treatment was significantly higher than those in the CK and P+30 treatments (p < 0.05), and the cumulative CO2 emissions were 406.37, 372.58 and 383.59 g C m−2, respectively. Seasonal responses of Rs to the soil volumetric moisture content (VWC) were affected by the different precipitation treatments. Rs was quadratically correlated with the VWC in the CK and P+30 treatments, and the threshold of the optimal VWC for Rs was approximately 16.06−17.07%. However, Rs was a piecewise linear function of the VWC in the P−30 treatment. The synergism of soil temperature (Ts) and VWC can better explain the variation in soil respiration in the CK and P−30 treatments. However, an increase in precipitation led to the decoupling of the Rs responses to Ts. The temperature sensitivity of respiration (Q10) varied with precipitation variation. Q10 was positive correlated with seasonal Ts in the CK and P+30 treatments, but exhibited a negative polynomial correlation with seasonal Ts in the P−30 treatment. Rs also exhibited diurnal clockwise hysteresis loops with Ts in the three precipitation treatments, and the seasonal dynamics of the diurnal lag time were significantly negatively correlated with the VWC. Our study highlighted that understanding the synergistic and decoupled responses of Rs and Q10 to Ts and VWC and the threshold of the change in response to the VWC under precipitation variation scenarios can benefit the prediction of future C balances in agroecosystems in semiarid regions under climate change.
Collapse
|
14
|
Broderick CM, Wilkins K, Smith MD, Blair JM. Climate legacies determine grassland responses to future rainfall regimes. GLOBAL CHANGE BIOLOGY 2022; 28:2639-2656. [PMID: 35015919 DOI: 10.1111/gcb.16084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Climate variability and periodic droughts have complex effects on carbon (C) fluxes, with uncertain implications for ecosystem C balance under a changing climate. Responses to climate change can be modulated by persistent effects of climate history on plant communities, soil microbial activity, and nutrient cycling (i.e., legacies). To assess how legacies of past precipitation regimes influence tallgrass prairie C cycling under new precipitation regimes, we modified a long-term irrigation experiment that simulated a wetter climate for >25 years. We reversed irrigated and control (ambient precipitation) treatments in some plots and imposed an experimental drought in plots with a history of irrigation or ambient precipitation to assess how climate legacies affect aboveground net primary productivity (ANPP), soil respiration, and selected soil C pools. Legacy effects of elevated precipitation (irrigation) included higher C fluxes and altered labile soil C pools, and in some cases altered sensitivity to new climate treatments. Indeed, decades of irrigation reduced the sensitivity of both ANPP and soil respiration to drought compared with controls. Positive legacy effects of irrigation on ANPP persisted for at least 3 years following treatment reversal, were apparent in both wet and dry years, and were associated with altered plant functional composition. In contrast, legacy effects on soil respiration were comparatively short-lived and did not manifest under natural or experimentally-imposed "wet years," suggesting that legacy effects on CO2 efflux are contingent on current conditions. Although total soil C remained similar across treatments, long-term irrigation increased labile soil C and the sensitivity of microbial biomass C to drought. Importantly, the magnitude of legacy effects for all response variables varied with topography, suggesting that landscape can modulate the strength and direction of climate legacies. Our results demonstrate the role of climate history as an important determinant of terrestrial C cycling responses to future climate changes.
Collapse
Affiliation(s)
| | - Kate Wilkins
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - John M Blair
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
15
|
Abstract
Forest research and professional workforces continue to be dominated by men, particularly at senior and management levels. In this review, we identify some of the historical and ongoing barriers to improved gender inclusion and suggest some solutions. We showcase a selection of women in forestry from different disciplines and parts of the globe to highlight a range of research being conducted by women in forests. Boosting gender equity in forest disciplines requires a variety of approaches across local, regional and global scales. It is also important to include intersectional analyses when identifying barriers for women in forestry, but enhanced equity, diversity and inclusion will improve outcomes for forest ecosystems and social values of forests, with potential additional economic benefits.
Collapse
|
16
|
Zhang K, Yan Z, Li M, Kang E, Li Y, Yan L, Zhang X, Wang J, Kang X. Divergent responses of CO 2 and CH 4 fluxes to changes in the precipitation regime on the Tibetan Plateau: Evidence from soil enzyme activities and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149604. [PMID: 34467923 DOI: 10.1016/j.scitotenv.2021.149604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Carbon fluxes (CO2 and CH4) are important indicators of the response of alpine meadow ecosystems to global climate change. Alpine meadows on the Qinghai-Tibet Plateau are sensitive to climate change. Although the temporal allocation of precipitation can vary, its intensity is expected to increase, and its frequency is expected to decrease in the future. In this study, a manipulative field experiment was conducted to investigate how carbon fluxes are altered in response to moderate and severe changes in the precipitation regime. Fluctuations in CH4 flux were large under a severely altered precipitation regime (range of -0.048-0.038 mg m-2 h-1). Severe changes in the precipitation regime significantly reduced soil CH4 uptake by approximately 54.3%. This was probably affected by the decrease in the dissolved organic carbon concentration and changes in the microbial community (mainly Gammaproteobacteria), which were induced by variation in soil water conditions under various precipitation regimes. Under moderate changes in the precipitation regime, the average value of CO2 fluxes (ecosystem respiration) was 698.21 ± 35.19 mg m-2 h-1, which was significantly decreased by 20.7% compared with the control. This likely stems from the suppression of enzyme activity (particularly α-1,4-glucosidase and β-1,4-glucosidase) and the alteration of microbial community structure in this treatment, which led to a decrease in organic matter breakdown and a reduction in the release of CO2 to the atmosphere. However, CO2 fluxes were slightly (i.e., not significantly) decreased under the severely altered precipitation regime. Such different responses of CO2 flux are probably driven by differences in microbial strategies. This study not only increases our understanding of the mechanisms underlying the adaptation of alpine meadow ecosystems to global climate change but also provides new insight into the carbon source/sink functions of alpine meadows.
Collapse
Affiliation(s)
- Kerou Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Zhongqing Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Meng Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Enze Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Yong Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Liang Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Xiaodong Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Jinzhi Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Xiaoming Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China.
| |
Collapse
|
17
|
Quan Q, Tian D, Luo Y, Zhang F, Crowther TW, Zhu K, Chen HYH, Zhou Q, Niu S. Water scaling of ecosystem carbon cycle feedback to climate warming. SCIENCE ADVANCES 2019; 5:eaav1131. [PMID: 31457076 PMCID: PMC6703863 DOI: 10.1126/sciadv.aav1131] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
It has been well established by field experiments that warming stimulates either net ecosystem carbon uptake or release, leading to negative or positive carbon cycle-climate change feedback, respectively. This variation in carbon-climate feedback has been partially attributed to water availability. However, it remains unclear under what conditions water availability enhances or weakens carbon-climate feedback or even changes its direction. Combining a field experiment with a global synthesis, we show that warming stimulates net carbon uptake (negative feedback) under wet conditions, but depresses it (positive feedback) under very dry conditions. This switch in carbon-climate feedback direction arises mainly from scaling effects of warming-induced decreases in soil water content on net ecosystem productivity. This water scaling of warming effects offers generalizable mechanisms not only to help explain varying magnitudes and directions of observed carbon-climate feedback but also to improve model prediction of ecosystem carbon dynamics in response to climate change.
Collapse
Affiliation(s)
- Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Fangyue Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Tom W. Crowther
- Institute of Integrative Biology, ETH-Zürich, Universitätstrasse 16, 8006 Zürich, Switzerland
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, CA 95060, USA
| | - Han Y. H. Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu 610041, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
- Corresponding author.
| |
Collapse
|