1
|
Han X, Sun B, Zhang Q, Teng L, Zhang F, Liu Z. Metabolic regulation reduces the oxidative damage of arid lizards in response to moderate heat events. Integr Zool 2024; 19:1034-1046. [PMID: 37897215 DOI: 10.1111/1749-4877.12784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Climate warming poses a significant threat to species worldwide, particularly those inhabiting arid and semi-arid regions where extreme temperatures are increasingly prevalent. However, empirical studies investigating how moderate heat events affect the physiological processes of arid and semi-arid animals are largely scarce. To address this knowledge gap, we used an arid and semi-arid lizard species (Phrynocephalus przewalskii) as a study system. We manipulated thermal environments to simulate moderate heat events (43.5 ± 0.3°C during the heating period) for lizards and examined physiological and biochemical traits related to survival, metabolism, locomotion, oxidative stress, and telomere length. We found that the body condition and survival of the lizards were not significantly affected by moderate heat events, despite an increase in body temperature and a decrease in locomotion at high test temperatures were detected. Mechanistically, we found that the lizards exhibited down-regulated metabolic rates and enhanced activities of antioxidative enzymes, resulting in reduced oxidative damage and stable telomere length under moderate heat events. Based on these findings, which indicated a beneficial regulation of fitness by physiological and biochemical processes, we inferred that moderate heat events did not have a detrimental effect on the toad-headed agama, P. przewalskii. Overall, our research contributes to understanding the impacts of moderate heat events on arid and semi-arid species and highlights the adaptive responses and resilience exhibited by the toad-headed agama in the face of climate warming.
Collapse
Affiliation(s)
- Xingzhi Han
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liwei Teng
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| | - Fushun Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| | - Zhensheng Liu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| |
Collapse
|
2
|
Hall JM, Tiatragul S, Turner MK, Warner DA. Within the optimal thermal range, temperature fluctuations with similar means have little effect on offspring phenotypes: A comparison of two approaches that simulate natural nest conditions. J Therm Biol 2024; 125:103949. [PMID: 39306971 DOI: 10.1016/j.jtherbio.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/28/2024] [Indexed: 11/25/2024]
Abstract
Temperature influences nearly every aspect of organismal function. Because aspects of global change such as urbanization and climate change influence temperature, researchers must consider how altering thermal regimes will impact biodiversity across the planet. To do so, they often measure temperature in natural and/or human-modified habitats, replicate those temperatures in laboratory experiments to understand organismal responses, and make predictions under models of future change. Consequently, accurately representing temperature in the laboratory is an important concern, yet few studies have assessed the consequences of simulating thermal conditions in different ways. We used nest temperatures for two urban-dwelling, invasive lizards (Anolis sagrei and A. cristatellus) to create two egg incubation treatments in the laboratory. Like most studies of thermal developmental plasticity, we created daily repeating thermal fluctuations; however, we used different methods to create temperature treatments that differed in the magnitude and breadth of thermal cycles, and then evaluated the effects of these different approaches on embryo development and hatchling phenotypes. Additionally, we measured embryo heart rate, a proxy for metabolism, across temperature to understand the immediate effects of treatments. We found that treatments had minimal effect on phenotypes likely because temperatures were within the optimal thermal range for each species and were similar in mean temperature. We conclude that slight differences in thermal treatments may be unimportant so long as temperatures are within a range appropriate for development, and we make several recommendations for future studies of developmental plasticity.
Collapse
Affiliation(s)
- Joshua M Hall
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Biology, Tennessee Tech University, Cookeville, TN, 38505, USA.
| | - Sarin Tiatragul
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA; Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mallory K Turner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
3
|
Bodineau T, de Villemereuil P, Agostini S, Decencière B, Le Galliard JF, Meylan S. Breeding phenology drives variation in reproductive output, reproductive costs, and offspring fitness in a viviparous ectotherm. J Evol Biol 2024; 37:1023-1034. [PMID: 38989795 DOI: 10.1093/jeb/voae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Phenological advances are a widespread response to global warming and can contribute to determine the climate vulnerability of organisms, particularly in ectothermic species, which are highly dependent on ambient temperatures to complete their life cycle. Yet, the relative contribution of breeding dates and temperature conditions during gestation on fitness of females and their offspring is poorly documented in reptiles. Here, we exposed females of the common lizard Zootoca vivipara to contrasting thermal scenarios (cold vs. hot treatment) during gestation and quantified effects of parturition dates and thermal treatment on life-history traits of females and their offspring for 1 year. Overall, our results suggest that parturition date has a greater impact than thermal conditions during gestation on life history strategies. In particular, we found positive effects of an earlier parturition date on juvenile survival, growth, and recruitment suggesting that environmental-dependent selection and/or differences in parental quality between early and late breeders underlie seasonal changes in offspring fitness. Yet, an earlier parturition date compromised the energetic condition of gravid females, which suggests the existence of a mother-offspring conflict regarding the optimization of parturition dates. While numerous studies focused on the direct effects of alterations in incubation temperatures on reptile life-history traits, our results highlight the importance of considering the role of breeding phenology in assessing the short- and long-term effects of thermal developmental plasticity.
Collapse
Affiliation(s)
- Théo Bodineau
- Sorbonne Université, UPEC, UPCité, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES Paris - UMR 7618), Paris, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études - PSL, MNHN, CNRS, SU, UA, Paris, France
- Institut Universitaire de France (IUF), France
| | - Simon Agostini
- École normale supérieure, PSL Research University, Département de biologie, CNRS, UAR 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France
| | - Beatriz Decencière
- École normale supérieure, PSL Research University, Département de biologie, CNRS, UAR 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France
| | - Jean-François Le Galliard
- Sorbonne Université, UPEC, UPCité, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES Paris - UMR 7618), Paris, France
- École normale supérieure, PSL Research University, Département de biologie, CNRS, UAR 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France
| | - Sandrine Meylan
- Sorbonne Université, UPEC, UPCité, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES Paris - UMR 7618), Paris, France
| |
Collapse
|
4
|
Ma L, Wu DY, Wang Y, Hall JM, Mi CR, Xie HX, Tao WJ, Hou C, Cheng KM, Zhang YP, Wang JC, Lu HL, Du WG, Sun BJ. Collective effects of rising average temperatures and heat events on oviparous embryos. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14266. [PMID: 38578127 DOI: 10.1111/cobi.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 04/06/2024]
Abstract
Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dan-Yang Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Wang
- School of Biological Sciences, Hebei Normal University, Shijiazhuang, China
| | - Joshua M Hall
- Department of Biology, Tennessee Technological University, Cookeville, Tennessee, USA
| | - Chun-Rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Jie Tao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chao Hou
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kun-Ming Cheng
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
| | - Yong-Pu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ji-Chao Wang
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
| | - Hong-Liang Lu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zhang X, Su R, Qin Y, Shen Y, Jia L, Zhang W. Benefits and costs: Understanding the influence of heavy metal pollution on environmental adaptability in Strauchbufo raddei tadpoles through an energy budget perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124388. [PMID: 38897281 DOI: 10.1016/j.envpol.2024.124388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Understanding the impact of environmental pollution on organismal energy budgets is crucial for predicting adaptive responses and potential maladaptation to stressors. However, the regulatory mechanism governing the trade-off between energy intake and consumption remains largely unknown, particularly considering the diverse adaptations influenced by exposure history in realistic field conditions. In the present study, we conducted a simulated field reciprocal transplant experiment to compare the energy budget strategies of Strauchbufo raddei tadpoles exposed to heavy metal. The simulated heavy metal concentrations (0.29 mg/L Cu, 1.17 mg/L Zn, 0.47 mg/L Pb, 0.16 mg/L Cd) mirrored the actual environmental exposure concentrations observed in the field habitat. This allowed for a comparison between tadpoles with parental chronic exposure to heavy metal pollutants in their habitat and those without such exposure. Results revealed that under heavy metal exposure, tadpoles originating from unpolluted areas exhibited heightened vulnerability, characterized by reduced food intake, diminished nutrient absorption, increased metabolism cost, reduced energy reserves, and increased mortality rates. In contrast, tadpoles originating from areas with long-term heavy metal pollution demonstrated adaptive strategies, manifested through adjustments in liver and small intestine phenotypes, optimizing energy allocation, and reducing energy consumption to preserve energy, thus sustaining survival. However, tadpoles from polluted areas exhibited certain maladaptive such as growth inhibition, metabolic suppression, and immune compromise due to heavy metal exposure. In conclusion, while conserving energy consumption has proven to be an effective way to deal with long-term heavy metal stress, it poses a threat to individual survival and population development in the long run.
Collapse
Affiliation(s)
- Xueying Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Yuting Qin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Yue Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Lun Jia
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China.
| |
Collapse
|
6
|
Oborová V, Šugerková M, Gvoždík L. Sensitivity of amphibian embryos to timing and magnitude of present and future thermal extremes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:377-388. [PMID: 38327237 DOI: 10.1002/jez.2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Ongoing climate change is increasing the frequency and intensity of extreme temperature events. Unlike the gradual increase on average environmental temperatures, these short-term and unpredictable temperature extremes impact population dynamics of ectotherms through their effect on individual survival. While previous research has predominantly focused on the survival rate of terrestrial embryos under acute heat stress, less attention has been dedicated to the nonlethal effects of ecologically realistic timing and magnitude of temperature extremes on aquatic embryos. In this study, we investigated the influence of the timing and magnitude of current and projected temperature extremes on embryonic life history traits and hatchling behavior in the alpine newt, Ichthyosaura alpestris. Using a factorial experiment under controlled laboratory conditions, we exposed 3- or 10-day-old embryos to different regimes of extreme temperatures for 3 days. Our results show that exposure to different extreme temperature regimes led to a shortened embryonic development time and an increase in hatchling length, while not significantly affecting embryonic survival. The duration of development was sensitive to the timing of temperature extremes, as early exposure accelerated embryo development. Exposure to temperature extremes during embryonic development heightened the exploratory activity of hatched larvae. We conclude that the timing and magnitude of ecologically realistic temperature extremes during embryogenesis have nonlethal effects on life history and behavioral traits. This suggests that species' vulnerability to climate change might be determined by other ecophysiological traits beyond embryonic thermal tolerance in temperate pond-breeding amphibians.
Collapse
Affiliation(s)
- Valentína Oborová
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Monika Šugerková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
7
|
Sun BJ, Li WM, Lv P, Wen GN, Wu DY, Tao SA, Liao ML, Yu CQ, Jiang ZW, Wang Y, Xie HX, Wang XF, Chen ZQ, Liu F, Du WG. Genetically Encoded Lizard Color Divergence for Camouflage and Thermoregulation. Mol Biol Evol 2024; 41:msae009. [PMID: 38243850 PMCID: PMC10835340 DOI: 10.1093/molbev/msae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.
Collapse
Affiliation(s)
- Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan-Nan Wen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan-Yang Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Ang Tao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Chang-Qing Yu
- Ecology Laboratory, Beijing Ecotech Science and Technology Ltd, Beijing 100190, China
| | - Zhong-Wen Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi-Feng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Souchet J, Josserand A, Darnet E, Le Chevalier H, Trochet A, Bertrand R, Calvez O, Martinez-Silvestre A, Guillaume O, Mossoll-Torres M, Pottier G, Philippe H, Aubret F, Gangloff EJ. Embryonic and juvenile snakes (Natrix maura, Linnaeus 1758) compensate for high elevation hypoxia via shifts in cardiovascular physiology and metabolism. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1102-1115. [PMID: 37723946 DOI: 10.1002/jez.2756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
The colonization of novel environments requires a favorable response to conditions never, or rarely, encountered in recent evolutionary history. For example, populations colonizing upslope habitats must cope with lower atmospheric pressure at elevation, and thus reduced oxygen availability. The embryo stage in oviparous organisms is particularly susceptible, given its lack of mobility and limited gas exchange via diffusion through the eggshell and membranes. Especially little is known about responses of Lepidosaurian reptiles to reduced oxygen availability. To test the role of physiological plasticity during early development in response to high elevation hypoxia, we performed a transplant experiment with the viperine snake (Natrix maura, Linnaeus 1758). We maintained gravid females originating from low elevation populations (432 m above sea level [ASL]-normoxia) at both the elevation of origin and high elevation (2877 m ASL-extreme high elevation hypoxia; approximately 72% oxygen availability relative to sea level), then incubated egg clutches at both low and high elevation. Regardless of maternal exposure to hypoxia during gestation, embryos incubated at extreme high elevation exhibited altered developmental trajectories of cardiovascular function and metabolism across the incubation period, including a reduction in late-development egg mass. This physiological response may have contributed to the maintenance of similar incubation duration, hatching success, and hatchling body size compared to embryos incubated at low elevation. Nevertheless, after being maintained in hypoxia, juveniles exhibit reduced carbon dioxide production relative to oxygen consumption, suggesting altered energy pathways compared to juveniles maintained in normoxia. These findings highlight the role of physiological plasticity in maintaining rates of survival and fitness-relevant phenotypes in novel environments.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Alicia Josserand
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Elodie Darnet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Hugo Le Chevalier
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d'Histoire Naturelle, Paris, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique (UMR CNRS 5174), Université de Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | | | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| |
Collapse
|
9
|
Yu S, Nie Y, Wang Z, Zhang L, Liu R, Liu Y, Zhang H, Zhu W, Zheng M, Diao J. Glyphosate-based herbicide (GBH) challenged thermoregulation in lizards (Eremias argus), compensatory warming could mitigate this effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165287. [PMID: 37419359 DOI: 10.1016/j.scitotenv.2023.165287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Chemical pollution and global warming are two major threats to reptiles, and these two factors can interact with each other. Glyphosate have attracted worldwide attention due to their ubiquitous occurrence, yet their impact on reptiles remains unknown. We designed a crossover experiment with different external GBH exposures (control/GBH) x different environmental temperatures (current climate treatment/warmer climate treatment) over 60 days to simulate environmental exposure in the Mongolian Racerunner lizard (Eremias argus). Preferred body temperature and active body temperature data were collected to calculate the accuracy of thermoregulation, while liver detoxification metabolic enzymes, oxidative stress system function, and the non-targeted metabolome of the brain tissue were assessed. Warmer-treated lizards adjusted their physiological levels and behavioral strategies in response to increased ambient temperatures and maintained body temperature homeostasis at moderate thermal perturbations. GBH-treated lizards suffered from oxidative damage to the brain tissue and abnormal histidine metabolism, thus their thermoregulatory accuracy reduced. Interestingly, at elevated ambient temperatures, GBH treatment did not affect on their thermoregulatory, possibly through several temperature-dependent detoxification mechanisms. Importantly, this data suggested that the subtle toxicological effects of GBH may threaten increasingly thermoregulation behavior of E. argus with species-wide repercussions, as climate change and exposure time extension.
Collapse
Affiliation(s)
- Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs (ICAMA), Beijing 100125, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Mingqi Zheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
10
|
Ton R, Boner W, Raveh S, Monaghan P, Griffith SC. Effects of heat waves on telomere dynamics and parental brooding effort in nestlings of the zebra finch (Taeniopygia castanotis) transitioning from ectothermy to endothermy. Mol Ecol 2023; 32:4911-4920. [PMID: 37395529 DOI: 10.1111/mec.17064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Heat waves are predicted to be detrimental for organismal physiology with costs for survival that could be reflected in markers of biological state such as telomeres. Changes in early life telomere dynamics driven by thermal stress are of particular interest during the early post-natal stages of altricial birds because nestlings quickly shift from being ectothermic to endothermic after hatching. Telomeres of ectothermic and endothermic organisms respond differently to environmental temperature, but few investigations within species that transition from ectothermy to endothermy are available. Also, ambient temperature influences parental brooding behaviour, which will alter the temperature experienced by offspring and thereby, potentially, their telomeres. We exposed zebra finch nestlings to experimental heat waves and compared their telomere dynamics to that of a control group at 5, 12 and 80 days of age that encapsulate the transition from the ectothermic to the endothermic thermoregulatory stage; we also recorded parental brooding, offspring sex, mass, growth rates, brood size and hatch order. Nestling mass showed an inverse relationship with telomere length, and nestlings exposed to heat waves showed lower telomere attrition during their first 12 days of life (ectothermic stage) compared to controls. Additionally, parents of heated broods reduced the time they spent brooding offspring (at 5 days old) compared to controls. Our results indicate that the effect of heat waves on telomere dynamics likely varies depending on age and thermoregulatory stage of the offspring in combination with parental brooding behaviour during growth.
Collapse
Affiliation(s)
- Riccardo Ton
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Winnie Boner
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shirley Raveh
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Nie Y, Wang Z, Yu S, Zhang L, Liu R, Liu Y, Zhu W, Zhou Z, Diao J. The combined effects of atrazine and warming on environmental adaptability in lizards (Eremias argus) from the perspective of a life-history traits trade-off: Gender differences in trade-off strategies may reverse mortality risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163078. [PMID: 36972889 DOI: 10.1016/j.scitotenv.2023.163078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Life-history theory suggests that organisms must distribute a limited share of their energetic resources among competing life-history trait demands. Therefore, the trade-off strategies individuals develop for particular life-history traits in a given environment may profoundly impact their environmental adaptability. In this study, lizards (Eremias. argus) were exposed to single and combined atrazine (4.0 mg·kg-1 and 20.0 mg·kg-1) and different temperatures (25 °C and 30 °C) for 8 weeks during the breeding season. The effects of atrazine and warming on the adaptability of lizards were explored by examining changes in trade-offs via several key life history traits (i.e., reproduction, self-maintenance, energy reserves, and locomotion). The results show that after atrazine exposure at 25 °C, both female and male lizards tended to allocate energy to self-maintenance by reducing energy allocation to reproductive process. The lower energy reserves of males are considered a "risky" life-history strategy and the observed higher mortality may be related to atrazine-induced oxidative damage. The retention of energy reserves by females not only ensured their current survival but also facilitated survival and reproduction in subsequent stages, which can be regarded as a "conservative" strategy. However, under high temperature and/or combined atrazine exposure, the "risky" strategy of males caused them to consume more energy reserves to invest in self-maintenance, which ensured their immediate survival, and profited from more rapid degradation of atrazine. In contrast, the "conservative" strategy of females could not meet their higher reproductive and self-maintenance demands under high temperatures, and the elevated reproductive oxidative and metabolic costs led to individual mortality. Gender differences in life-history trade-off strategies can directly lead to "winners" and "losers" from environmental stress within a species.
Collapse
Affiliation(s)
- Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
12
|
Tao W, Ou J, Wu D, Zhang Q, Han X, Xie L, Li S, Zhang Y. Heat wave induces oxidative damage in the Chinese pond turtle (Mauremys reevesii) from low latitudes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1053260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
IntroductionGlobal warming has led to frequent heat waves, causing global organisms to face severe survival challenges. However, the way in which heat waves threaten the fitness and survival of animals remains largely unclear. Oxidative damage and immunity are widely considered the link between heat waves and threats to animals.MethodsTo evaluate the oxidative damage caused by heat waves and to reveal the physiological resistance to heat waves by the antioxidant defense of animals from different latitudes, we exposed both high-latitude (Zhejiang) and low-latitude (Hainan) populations of Chinese pond turtle (Mauremys reevesii) to simulate heat waves and a moderate thermal environment for 1 week, respectively. Next, we compared the oxidative damage by malondialdehyde (MDA) and antioxidant capacity by superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity (T-AOC) in the liver tissues and evaluated the innate immunity by serum complement protein levels (C3, C4) and lysozyme activity in plasma of turtles.Results and discussionWe found that heat waves significantly increased the content of MDA and the activity of CAT, whereas it decreased the activity of SOD, T-AOC, and GSH/GSSG in turtles from low latitudes. Furthermore, heat waves increased CAT activity but decreased GSH/GSSG in turtles from high latitudes. Although the turtles from high latitudes had higher levels of innate immunity, the heat waves did not affect the innate immunity of C3, C4, or lysozyme in either population. These results indicate that the low-latitude population suffered higher oxidative damage with lower antioxidant capacities. Therefore, we predict that Chinese pond turtles from low latitudes may be more vulnerable to heat waves caused by climate warming. This study reveals the physiological and biochemical resistance to heat waves in Chinese pond turtles from different latitudes and highlights the importance of integrative determination of fitness-related responses in evaluating the vulnerability of ectotherms from different latitudes to climate warming.
Collapse
|
13
|
Liu W, Yang J, Meng Y, Wu D, Cui L, Li T, Sun B, Liu P. The divergent effects of moderate climate warming on the gut microbiota and energetic state of cold-climate lizards from open and semi-closed microhabitats. Front Microbiol 2022; 13:1050750. [PMID: 36483215 PMCID: PMC9722725 DOI: 10.3389/fmicb.2022.1050750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
Introduction Understanding the physiological responses to warming temperatures is critical for evaluating the vulnerabilities of animals to climate warming. The physiological responses are increasingly affected by gut microbiota. However, the interactions between physiological responses and the gut microbiota of sympatric animals from various microhabitats in the face of climate change remain largely unknown. Methods To evaluate the effects of warming temperatures on animals from different microhabitats, we compared locomotor performance, metabolic rate, growth, survival, and gut microbiota of two sympatric ectothermic species (Eremias argus and Takydromus amurensis) from open and semi-closed microhabitats under present and moderate warming climate conditions, respectively. Results and discussion We found that locomotor performance and growth rates of snout-vent length (SVL) were enhanced in both lizard species by warming climate. Interestingly, warming temperatures enhanced resting metabolic rates (RMR) in the open-habitat lizard, E. argus, but depressed them in the semi-closed habitat lizard, T. amurensis. Reversely, the metabolism-related gut microbiota was not affected by warming in E. argus, whereas it was significantly enhanced by warming in T. amurensis, indicating a plausible compensatory effect of the gut microbiota on the metabolic regulation of T. amurensis. Furthermore, warming likely improved immunity in both lizard species by significantly reducing pathogenic bacteria while increasing probiotics. This study found that high-latitude sympatric lizards from both open and semi-closed habitats were beneficial to warming temperatures by physiological modification and regulation of the gut microbiota and highlighted the importance of integrating the physiology and gut microbiota in evaluating the vulnerability of animals to climate warming.
Collapse
Affiliation(s)
- Wanli Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu Meng
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| | - Danyang Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Luoxin Cui
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| | - Teng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peng Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Mi C, Ma L, Wang Y, Wu D, Du W, Sun B. Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress. Proc Biol Sci 2022; 289:20221074. [PMID: 35946157 PMCID: PMC9363995 DOI: 10.1098/rspb.2022.1074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Climate warming has imposed profound impacts on species globally. Understanding the vulnerabilities of species from different latitudinal regions to warming climates is critical for biological conservation. Using five species of Takydromus lizards as a study system, we quantified physiological and life-history responses and geography range change across latitudes under climate warming. Using integrated biophysical models and hybrid species distribution models, we found: (i) thermal safety margin is larger at high latitudes and is predicted to decrease under climate warming for lizards at all latitudes; (ii) climate warming will speed up embryonic development and increase annual activity time of adult lizards, but will exacerbate water loss of adults across all latitudes; and (iii) species across latitudes are predicted to experience habitat contraction under climate warming due to different limitations-tropical and subtropical species are vulnerable due to increased extremely high temperatures, whereas temperate species are vulnerable due to both extremely high temperatures and increased water loss. This study provides a comprehensive understanding of the vulnerability of species from different latitudinal regions to climate warming in ectotherms, and also highlights the importance of integrating environmental factors, behaviour, physiology and life-history responses in predicting the risk of species to climate warming.
Collapse
Affiliation(s)
- Chunrong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Liang Ma
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA
| | - Yang Wang
- School of Biological Sciences, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Danyang Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
15
|
Zhang L, Dayananda B, Xia JG, Sun BJ. Editorial: Ecophysiological analysis of vulnerability to climate warming in ectotherms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.946836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Cui L, Yang C, Zhang D, Lin S, Zhao W, Liu P. Beneficial Effects of Warming Temperatures on Embryonic and Hatchling Development in a Low-Latitude Margin Population of the High-Latitude Lizard Lacerta agilis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.845309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of warming temperatures on embryonic and hatchling development are critical for determining the vulnerability of species to climate warming. However, these effects have rarely been investigated in high-latitude oviparous species, particularly in their low-latitude margin populations. This study investigated the embryonic and hatchling development and fitness-related traits of a low-latitude margin population of a high-latitude lizard (Lacerta agilis). These traits were examined under present (24°C), moderate warming (27 and 30°C), and severe warming scenarios (33°C). Based on embryonic and hatchling responses to thermal variation, this study aimed to predict the vulnerability of the early life stages of low-latitude margin population of Lacerta agilis to climate warming. The incubation period of the low-latitude margin population of Lacerta agilis decreased as the temperature increased from 24 to 33°C. Hatching success was similar at 24, 27, and 30°C but decreased significantly at 33°C. No differences with temperature were observed for hatchling snout-vent length and hatchling body mass. The sprint speed was higher for hatchlings from temperatures of 24 and 33°C. The growth rate of hatchlings was highest at 30°C; however, the survival rate of hatchlings was not affected by the thermal environment. This study demonstrated that even for a low-latitude margin population of the high-latitude lizard, Lacerta agilis, moderate warming (i.e., 27 and 30°C) would benefit embryonic and hatchling development. This was indicated by the results showing higher hatching success, growth rate, and survival rate. However, if temperatures increase above 33°C, development and survival would be depressed significantly. Thus, low-latitude margin population of high-latitude species Lacerta agilis would benefit from climate warming in the near future but would be under stress if the nest temperature exceeded 30°C.
Collapse
|