1
|
Goldenberg J, Bisschop K, Bruni G, Di Nicola MR, Banfi F, Faraone FP. Melanin-based color variation in response to changing climates in snakes. Ecol Evol 2024; 14:e11627. [PMID: 38952653 PMCID: PMC11213819 DOI: 10.1002/ece3.11627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
Melanism, the process of heavier melanin deposition, can interact with climate variation at both micro and macro scales, ultimately influencing color evolution in organisms. While the ecological processes regulating melanin production in relation to climate have been extensively studied, intraspecific variations of melanism are seldom considered. Such scientific gap hampers our understanding of how species adapt to rapidly changing climates. For example, dark coloration may lead to higher heat absorption and be advantageous in cool climates, but also in hot environments as a UV or antimicrobial protection mechanism. To disentangle such opposing predictions, here we examined the effect of climate on shaping melanism variation in 150 barred grass snakes (Natrix helvetica) and 383 green whip snakes (Hierophis viridiflavus) across Italy. By utilizing melanistic morphs (charcoal and picturata in N. helvetica, charcoal and abundistic in H. viridiflavus) and compiling observations from 2002 to 2021, we predicted that charcoal morphs in H. viridiflavus would optimize heat absorption in cold environments, while offering protection from excessive UV radiation in N. helvetica within warm habitats; whereas picturata and abundistic morphs would thrive in humid environments, which naturally have a denser vegetation and wetter substrates producing darker ambient light, thus providing concealment advantages. While picturata and abundistic morphs did not align with our initial humidity expectations, the charcoal morph in N. helvetica is associated with UV environments, suggesting protection mechanisms against damaging solar radiation. H. viridiflavus is associated with high precipitations, which might offer antimicrobial protection. Overall, our results provide insights into the correlations between melanin-based color morphs and climate variables in snake populations. While suggestive of potential adaptive responses, future research should delve deeper into the underlying mechanisms regulating this relationship.
Collapse
Affiliation(s)
- J. Goldenberg
- Division of Biodiversity and Evolution, Department of BiologyLund UniversityLundSweden
- Evolution and Optics of Nanostructures Group, Department of BiologyGhent UniversityGhentBelgium
| | - K. Bisschop
- Division of Biodiversity and Evolution, Department of BiologyLund UniversityLundSweden
- Laboratory of Aquatic BiologyKU Leuven KulakKortrijkBelgium
- Terrestrial Ecology Unit, Department of BiologyGhent UniversityGhentBelgium
| | - G. Bruni
- Independent Researcher, Viale Palmiro TogliattiSesto FiorentinoFlorenceItaly
| | - M. R. Di Nicola
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Wildlife Health GhentGhent UniversityMerelbekeBelgium
- Unit of Dermatology and CosmetologyIRCCS San Raffaele HospitalMilanItaly
| | - F. Banfi
- Laboratory of Functional Morphology, Department of BiologyUniversity of AntwerpWilrijkBelgium
| | - F. P. Faraone
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversity of PalermoPalermoItaly
| |
Collapse
|
2
|
Youngsteadt E, Prado SG, Keleher KJ, Kirchner M. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants. J Anim Ecol 2023; 92:568-579. [PMID: 36642830 DOI: 10.1111/1365-2656.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/21/2022] [Indexed: 01/17/2023]
Abstract
Global climate change is expected to have pervasive effects on the diversity and distribution of species, particularly ectotherms whose body temperatures depend on environmental temperatures. However, these impacts remain difficult to predict, in part because ectotherms may adapt or acclimate to novel conditions or may use behavioural thermoregulation to reduce their exposure to stressful microclimates. Here we examine the potential for physiological and behavioural changes to mitigate effects of environmental warming on five species of ants in a temperate forest habitat subject to urban warming. We worked in eight urban and eight non-urban forest sites in North Carolina, USA; sites experienced a 1.1°C range of mean summer air temperatures. At each site, we documented species-specific microclimates (ant operative temperatures, Te ) and ant activity on a transect of 14 bait stations at three times of day. In the laboratory, we measured upper thermal tolerance (CTmax ) and thermal preference (Tpref ) for each focal species. We then asked whether thermal traits shifted at hotter sites, and whether ants avoided non-preferred microclimates in the field. CTmax and Tpref did not increase at warmer sites, indicating that these populations did not adapt or acclimate to urban warming. Consistent with behavioural thermoregulation, four of the five species were less likely to occupy baits where Te departed from Tpref . Apparent thermoregulation resulted from fixed diel activity patterns that helped ants avoid the most inappropriate temperatures but did not compensate for daily or spatial temperature variation: Hotter sites had hotter ants. This study uses a novel approach to detect behavioural thermoregulation and sublethal warming in foraging insects. The results suggest that adaptation and behaviour may not protect common temperate forest ants from a warming climate, and highlight the need to evaluate effects of chronic, sublethal warming on small ectotherms.
Collapse
Affiliation(s)
- Elsa Youngsteadt
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Sara Guiti Prado
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kirsten Joanna Keleher
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Michelle Kirchner
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Youngblood JP, Cease AJ, Talal S, Copa F, Medina HE, Rojas JE, Trumper EV, Angilletta MJ, Harrison JF. Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Arianne J. Cease
- School of Life Sciences Arizona State University Tempe AZ USA
- School of Sustainability Arizona State University Tempe AZ USA
| | - Stav Talal
- School of Life Sciences Arizona State University Tempe AZ USA
| | - Fernando Copa
- Universidad Autónoma Gabriel René Moreno Santa Cruz Bolivia
| | | | - Julio E. Rojas
- Departamento de Campañas Fitosanitarios Dirección de Protección Vegetal, SENAVE Paraguay
| | | | | | - Jon F. Harrison
- School of Life Sciences Arizona State University Tempe AZ USA
| |
Collapse
|
4
|
Du WG, Shine R. The behavioural and physiological ecology of embryos: responding to the challenges of life inside an egg. Biol Rev Camb Philos Soc 2022; 97:1272-1286. [PMID: 35166012 DOI: 10.1111/brv.12841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Adaptations of post-hatching animals have attracted far more study than have embryonic responses to environmental challenges, but recent research suggests that we have underestimated the complexity and flexibility of embryos. We advocate a dynamic view of embryos as organisms capable of responding - on both ecological and evolutionary timescales - to their developmental environments. By viewing embryos in this way, rather than assuming an inability of pre-hatching stages to adapt and respond, we can broaden the ontogenetic breadth of evolutionary and ecological research. Both biotic and abiotic factors affect embryogenesis, and embryos exhibit a broad range of behavioural and physiological responses that enable them to deal with changes in their developmental environments in the course of interactions with their parents, with other embryos, with predators, and with the physical environment. Such plasticity may profoundly affect offspring phenotypes and fitness, and in turn influence the temporal and spatial dynamics of populations and communities. Future research in this field could benefit from an integrated framework that combines multiple approaches (field investigations, manipulative experiments, ecological modelling) to clarify the mechanisms and consequences of embryonic adaptations and plasticity.
Collapse
Affiliation(s)
- Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
5
|
Muñoz D, Miller D, Schilder R, Campbell Grant EH. Geographic variation and thermal plasticity shape salamander metabolic rates under current and future climates. Ecol Evol 2022; 12:e8433. [PMID: 35136543 PMCID: PMC8809431 DOI: 10.1002/ece3.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Predicted changes in global temperature are expected to increase extinction risk for ectotherms, primarily through increased metabolic rates. Higher metabolic rates generate increased maintenance energy costs which are a major component of energy budgets. Organisms often employ plastic or evolutionary (e.g., local adaptation) mechanisms to optimize metabolic rate with respect to their environment. We examined relationships between temperature and standard metabolic rate across four populations of a widespread amphibian species to determine if populations vary in metabolic response and if their metabolic rates are plastic to seasonal thermal cues. Populations from warmer climates lowered metabolic rates when acclimating to summer temperatures as compared to spring temperatures. This may act as an energy saving mechanism during the warmest time of the year. No such plasticity was evident in populations from cooler climates. Both juvenile and adult salamanders exhibited metabolic plasticity. Although some populations responded to historic climate thermal cues, no populations showed plastic metabolic rate responses to future climate temperatures, indicating there are constraints on plastic responses. We postulate that impacts of warming will likely impact the energy budgets of salamanders, potentially affecting key demographic rates, such as individual growth and investment in reproduction.
Collapse
Affiliation(s)
- David Muñoz
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - David Miller
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rudolf Schilder
- Department of EntomologyDepartment of BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Evan H. Campbell Grant
- US Geological SurveyPatuxent Wildlife Research CenterSO Conte Anadromous Fish Research LabTurners FallsMassachusettsUSA
| |
Collapse
|
6
|
Smith JM, Telemeco RS, Briones Ortiz BA, Nufio CR, Buckley LB. High-Elevation Populations of Montane Grasshoppers Exhibit Greater Developmental Plasticity in Response to Seasonal Cues. Front Physiol 2021; 12:738992. [PMID: 34803731 PMCID: PMC8600268 DOI: 10.3389/fphys.2021.738992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Populations of insects can differ in how sensitive their development, growth, and performance are to environmental conditions such as temperature and daylength. The environmental sensitivity of development can alter phenology (seasonal timing) and ecology. Warming accelerates development of most populations. However, high-elevation and season-limited populations can exhibit developmental plasticity to either advance or prolong development depending on conditions. We examine how diurnal temperature variation and daylength interact to shape growth, development, and performance of several populations of the montane grasshopper, Melanoplus boulderensis, along an elevation gradient. We then compare these experimental results to observed patterns of development in the field. Although populations exhibited similar thermal sensitivities of development under long-day conditions, development of high-elevation populations was more sensitive to temperature under short-day conditions. This developmental plasticity resulted in rapid development of high elevation populations in short-day conditions with high temperature variability, consistent with their observed capacity for rapid development in the field when conditions are permissive early in the season. Notably, accelerated development generally did not decrease body size or alter body shape. Developmental conditions did not strongly influence thermal tolerance but altered the temperature dependence of performance in difficult-to-predict ways. In sum, the high-elevation and season-limited populations exhibited developmental plasticity that enables advancing or prolonging development consistent with field phenology. Our results suggest these patterns are driven by the thermal sensitivity of development increasing when days are short early in the season compared to when days are long later in the season. Developmental plasticity will shape phenological responses to climate change with potential implications for community and ecosystem structure.
Collapse
Affiliation(s)
- Julia M Smith
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Rory S Telemeco
- Department of Biology, University of Washington, Seattle, WA, United States.,Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Bryan A Briones Ortiz
- Department of Biology, University of Washington, Seattle, WA, United States.,School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | - César R Nufio
- Howard Hughes Medical Institute, Chevy Chase, VA, United States.,University of Colorado Museum of Natural History, University of Colorado, Boulder, Boulder, CO, United States
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Buckley LB, Schoville SD, Williams CM. Shifts in the relative fitness contributions of fecundity and survival in variable and changing environments. J Exp Biol 2021; 224:224/Suppl_1/jeb228031. [DOI: 10.1242/jeb.228031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Organisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin, Madison, WI 53715-1218, USA
| | - Caroline M. Williams
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
8
|
Pörtner HO. Climate impacts on organisms, ecosystems and human societies: integrating OCLTT into a wider context. J Exp Biol 2021; 224:224/Suppl_1/jeb238360. [PMID: 33627467 DOI: 10.1242/jeb.238360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Physiological studies contribute to a cause and effect understanding of ecological patterns under climate change and identify the scope and limits of adaptation. Across most habitats, this requires analyzing organism responses to warming, which can be modified by other drivers such as acidification and oxygen loss in aquatic environments or excess humidity or drought on land. Experimental findings support the hypothesis that the width and temperature range of thermal performance curves relate to biogeographical range. Current warming causes range shifts, hypothesized to include constraints in aerobic power budget which in turn are elicited by limitations in oxygen supply capacity in relation to demand. Different metabolic scopes involved may set the borders of both the fundamental niche (at standard metabolic rate) and the realized niche (at routine rate). Relative scopes for aerobic performance also set the capacity of species to interact with others at the ecosystem level. Niche limits and widths are shifting and probably interdependent across life stages, with young adults being least thermally vulnerable. The principles of thermal tolerance and performance may also apply to endotherms including humans, their habitat and human society. Overall, phylogenetically based comparisons would need to consider the life cycle of species as well as organism functional properties across climate zones and time scales. This Review concludes with a perspective on how mechanism-based understanding allows scrutinizing often simplified modeling approaches projecting future climate impacts and risks for aquatic and terrestrial ecosystems. It also emphasizes the usefulness of a consensus-building process among experimentalists for better recognition in the climate debate.
Collapse
Affiliation(s)
- Hans-O Pörtner
- Integrative Ecophysiology section, Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, 27570 Bremetrhaven, Germany
| |
Collapse
|
9
|
Malishev M, Kramer-Schadt S. Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Nørgaard LS, Ghedini G, Phillips BL, Hall MD. Energetic scaling across different host densities and its consequences for pathogen proliferation. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Louise Solveig Nørgaard
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Vic. Australia
| | - Giulia Ghedini
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Vic. Australia
| | - Ben L. Phillips
- Department of Biosciences University of Melbourne Parkville Vic. Australia
| | - Matthew D. Hall
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Vic. Australia
| |
Collapse
|
11
|
Prinster AJ, Resasco J, Nufio CR. Weather variation affects the dispersal of grasshoppers beyond their elevational ranges. Ecol Evol 2020; 10:14411-14422. [PMID: 33391724 PMCID: PMC7771169 DOI: 10.1002/ece3.7045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 11/07/2022] Open
Abstract
Understanding how abiotic conditions influence dispersal patterns of organisms is important for understanding the degree to which species can track and persist in the face of changing climate.The goal of this study was to understand how weather conditions influence the dispersal pattern of multiple nonmigratory grasshopper species from lower elevation grassland habitats in which they complete their life-cycles to higher elevations that extend beyond their range limits.Using over a decade of weekly spring to late-summer field survey data along an elevational gradient, we explored how abundance and richness of dispersing grasshoppers were influenced by temperature, precipitation, and wind speed and direction. We also examined how changes in population sizes at lower elevations might influence these patterns.We observed that the abundance of dispersing grasshoppers along the gradient declined 4-fold from the foothills to the subalpine and increased with warmer conditions and when wind flow patterns were mild or in the downslope direction. Thirty-eight unique grasshopper species from lowland sites were detected as dispersers across the survey years, and warmer years and weak upslope wind conditions also increased the richness of these grasshoppers. The pattern of grasshoppers along the gradient was not sex biased. The positive effect of temperature on dispersal rates was likely explained by an increase in dispersal propensity rather than by an increase in the density of grasshoppers at low elevation sites.The results of this study support the hypothesis that the dispersal patterns of organisms are influenced by changing climatic conditions themselves and as such, that this context-dependent dispersal response should be considered when modeling and forecasting the ability of species to respond to climate change.
Collapse
Affiliation(s)
| | - Julian Resasco
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| | - Cesar R. Nufio
- University of Colorado Museum of Natural HistoryUniversity of ColoradoBoulderCOUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
12
|
Yadav S, Stow A, Dudaniec RY. Elevational partitioning in species distribution, abundance and body size of Australian alpine grasshoppers (Kosciuscola
). AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sonu Yadav
- Department of Biological Sciences; Macquarie University; North Ryde 2109 New South Wales Australia
| | - Adam Stow
- Department of Biological Sciences; Macquarie University; North Ryde 2109 New South Wales Australia
| | - Rachael Y. Dudaniec
- Department of Biological Sciences; Macquarie University; North Ryde 2109 New South Wales Australia
| |
Collapse
|
13
|
Preston DB, Johnson SG. Generalist grasshoppers from thermally variable sites do not have higher thermal tolerance than grasshoppers from thermally stable sites - A study of five populations. J Therm Biol 2020; 88:102527. [PMID: 32126002 DOI: 10.1016/j.jtherbio.2020.102527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
Thermal tolerance allows many organisms, including insects, to withstand stressful temperatures. Thermal generalists are expected to have higher thermal tolerance than specialists, but the environmental conditions leading to the evolution of a thermal generalist life history are not fully understood. Thermal variability has been put forth as an evolutionary driver of high thermal tolerance, but rarely has this been empirically tested. We used a generalist agricultural pest grasshopper, Melanoplus differentialis, to test upper and lower thermal limits of populations that experienced different levels of thermal variability. We quantified thermal heterogeneity at five sites in a longitudinal transect in the Midwestern U.S. by examining, over a 101-year period, 1) variance in daily thermal maxima and minima; and 2) daily range. Also, as a measure of a biologically relevant thermal extreme, we depicted days per month at each site that reached a stressfully high temperature for M. differentialis. We collected individuals from these sites and tested their upper and lower thermal limits. We found that most of our metrics of thermal heterogeneity differed among sites, while all sites experienced an average of at least two stressfully high temperature events per month. We found that heavier males from these sites were able to withstand both warmer and colder temperatures than smaller males, while heavier females had no thermal advantage over lighter females. However, site of origin had no effect on thermal tolerance. Our findings indicate three things: 1) there is no clear correlation between thermal variability and thermal tolerance in the populations we studied; 2) weight affects thermal tolerance range among sites for M. differentialis males, and 3) thermal extremes may be more important than thermal variability in determining CTMax in this species.
Collapse
Affiliation(s)
- Devin B Preston
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA.
| | - Steven G Johnson
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA.
| |
Collapse
|
14
|
Slatyer RA, Schoville SD, Nufio CR, Buckley LB. Do different rates of gene flow underlie variation in phenotypic and phenological clines in a montane grasshopper community? Ecol Evol 2020; 10:980-997. [PMID: 32015859 PMCID: PMC6988534 DOI: 10.1002/ece3.5961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023] Open
Abstract
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life-history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome-wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short-winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short-winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high-elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.
Collapse
Affiliation(s)
| | | | - César R. Nufio
- University of Colorado Natural History MuseumUniversity of ColoradoBoulderCOUSA
- National Science FoundationAlexandriaVAUSA
| | | |
Collapse
|
15
|
Caruso NM, Rissler LJ. Museum Specimens Reveal Life History Characteristics in Plethodon montanus. COPEIA 2019. [DOI: 10.1643/ch-18-145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nicholas M. Caruso
- Department of Biological Sciences, Box 870345 MHB Hall, University of Alabama, Tuscaloosa, Alabama 35487
| | - Leslie J. Rissler
- Department of Biological Sciences, Box 870345 MHB Hall, University of Alabama, Tuscaloosa, Alabama 35487
| |
Collapse
|
16
|
Nufio CR, Buckley LB. Grasshopper phenological responses to climate gradients, variability, and change. Ecosphere 2019. [DOI: 10.1002/ecs2.2866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- César R. Nufio
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado 80309 USA
- University of Colorado Natural History Museum University of Colorado Boulder Colorado 80309 USA
- National Science Foundation Alexandria Virginia 22314 USA
| | - Lauren B. Buckley
- Department of Biology University of Washington Seattle Washington 98195‐1800 USA
| |
Collapse
|
17
|
Shik JZ, Arnan X, Oms CS, Cerdá X, Boulay R. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient. J Anim Ecol 2019; 88:1240-1249. [DOI: 10.1111/1365-2656.13007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan Zvi Shik
- Section for Ecology and Evolution, Department of Biology University of Copenhagen Copenhagen Denmark
| | | | | | - Xim Cerdá
- Estación Biológica Doñana (CSIC) Sevilla Spain
| | - Raphaël Boulay
- Institute of Insect Biology Tours University Tours France
| |
Collapse
|
18
|
Munro JT, Medina I, Walker K, Moussalli A, Kearney MR, Dyer AG, Garcia J, Rankin KJ, Stuart-Fox D. Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies. Proc Biol Sci 2019; 286:20190234. [PMID: 30862288 PMCID: PMC6458314 DOI: 10.1098/rspb.2019.0234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colour variation across climatic gradients is a common ecogeographical pattern; yet there is long-standing contention over underlying causes, particularly selection for thermal benefits. We tested the evolutionary association between climate gradients and reflectance of near-infrared (NIR) wavelengths, which influence heat gain but are not visible to animals. We measured ultraviolet (UVA), visible (Vis) and NIR reflectance from calibrated images of 372 butterfly specimens from 60 populations (49 species, five families) spanning the Australian continent. Consistent with selection for thermal benefits, the association between climate and reflectance was stronger for NIR than UVA-Vis wavelengths. Furthermore, climate predicted reflectance of the thorax and basal wing, which are critical to thermoregulation; but it did not predict reflectance of the entire wing, which has a variable role in thermoregulation depending on basking behaviour. These results provide evidence that selection for thermal benefits has shaped the reflectance properties of butterflies.
Collapse
Affiliation(s)
- Joshua T. Munro
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Iliana Medina
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ken Walker
- Sciences Department, Museums Victoria, Carlton Gardens, Victoria 3053, Australia
| | - Adnan Moussalli
- Sciences Department, Museums Victoria, Carlton Gardens, Victoria 3053, Australia
| | - Michael R. Kearney
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adrian G. Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - Jair Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - Katrina J. Rankin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
19
|
Trochet A, Dupoué A, Souchet J, Bertrand R, Deluen M, Murarasu S, Calvez O, Martinez-Silvestre A, Verdaguer-Foz I, Darnet E, Chevalier HL, Mossoll-Torres M, Guillaume O, Aubret F. Variation of preferred body temperatures along an altitudinal gradient: A multi-species study. J Therm Biol 2018; 77:38-44. [DOI: 10.1016/j.jtherbio.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023]
|
20
|
Winterová B, Gvoždík L. Influence of interspecific competitors on behavioral thermoregulation: developmental or acute plasticity? Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2587-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Sharma R, Singh H, Kaushik M, Nautiyal R, Singh O. Adaptive physiological response, carbon partitioning, and biomass production of Withania somnifera (L.) Dunal grown under elevated CO 2 regimes. 3 Biotech 2018; 8:267. [PMID: 29868305 PMCID: PMC5970103 DOI: 10.1007/s13205-018-1292-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/18/2018] [Indexed: 11/28/2022] Open
Abstract
Winter cherry or Ashwagandha (Withania somnifera) is an important medicinal plant used in traditional and herbal medicine system. Yet, there is no information available on response of this plant to changing climatic conditions particularly elevated atmospheric CO2 concentrations. Therefore, we conducted an experiment to examine the effect of elevated CO2 concentrations (ECs) on Withania somnifera. The variations in traits of physiological adaptation, net primary productivity, carbon partitioning, morphology, and biomass in response to elevated CO2 concentrations (ambient, 600 and 800 µmol mol-1) during one growth cycle were investigated within the open top chamber (OTC) facility in the foothill of the Himalayas, Dehardun, India. ECs significantly increased photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, soil respiration, net primary productivity and the carbon content of plant tissues (leaf, stem, and root), and soil carbon. Furthermore, ECs significantly enhanced biomass production (root and shoot), although declined night leaf respiration. Overall, it was summarized that photosynthesis, stomatal conductance, water use efficiency, leaf, and soil carbon and biomass increased under ECs rendering the physiological adaptation to the plant. Increased net primary productivity might facilitate mitigation effects by sequestering elevated levels of carbon dioxide. We advocate further studies to investigate the effects of ECs on the accumulation of secondary metabolites and health-promoting substances of this as well as other medicinal plants.
Collapse
Affiliation(s)
- Rupali Sharma
- Ecology, Climate Change and Forest Influence Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006 India
| | - Hukum Singh
- Ecology, Climate Change and Forest Influence Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006 India
| | - Monica Kaushik
- Ecology, Climate Change and Forest Influence Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006 India
| | - Raman Nautiyal
- Indian Council of Forestry Research and Education, P. O. New Forest, Dehradun, Uttarakhand 248006 India
| | - Ombir Singh
- Ecology, Climate Change and Forest Influence Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006 India
| |
Collapse
|
22
|
McLean N, van der Jeugd HP, van de Pol M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS One 2018; 13:e0192401. [PMID: 29466460 PMCID: PMC5821336 DOI: 10.1371/journal.pone.0192401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/23/2018] [Indexed: 01/18/2023] Open
Abstract
It is generally assumed that populations of a species will have similar responses to climate change, and thereby that a single value of sensitivity will reflect species-specific responses. However, this assumption is rarely systematically tested. High intraspecific variation will have consequences for identifying species- or population-level traits that can predict differences in sensitivity, which in turn can affect the reliability of projections of future climate change impacts. We investigate avian body condition responses to changes in six climatic variables and how consistent and generalisable these responses are both across and within species, using 21 years of data from 46 common passerines across 80 Dutch sites. We show that body condition decreases with warmer spring/early summer temperatures and increases with higher humidity, but other climate variables do not show consistent trends across species. In the future, body condition is projected to decrease by 2050, mainly driven by temperature effects. Strikingly, populations of the same species generally responded just as differently as populations of different species implying that a single species signal is not meaningful. Consequently, species-level traits did not explain interspecific differences in sensitivities, rather population-level traits were more important. The absence of a clear species signal in body condition responses implies that generalisation and identifying species for conservation prioritisation is problematic, which sharply contrasts conclusions of previous studies on the climate sensitivity of phenology.
Collapse
Affiliation(s)
- Nina McLean
- Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, Australia
- * E-mail:
| | - Henk P. van der Jeugd
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Martijn van de Pol
- Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, Australia
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
23
|
Novarro AJ, Gabor CR, Goff CB, Mezebish TD, Thompson LM, Grayson KL. Physiological responses to elevated temperature across the geographic range of a terrestrial salamander. J Exp Biol 2018; 221:jeb.178236. [DOI: 10.1242/jeb.178236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/31/2018] [Indexed: 01/18/2023]
Abstract
Widespread species often possess physiological mechanisms for coping with thermal heterogeneity, and uncovering these mechanisms provides insight into species responses to climate change. The emergence of non-invasive corticosterone (CORT) assays allows us to rapidly assess physiological responses to environmental change on a large scale. We lack, however, a basic understanding of how temperature affects CORT, and whether temperature and CORT interactively affect performance. Here, we examine the effects of elevated temperature on CORT and whole-organism performance in a terrestrial salamander, Plethodon cinereus, across a latitudinal gradient. Using water-borne hormone assays, we found that raising ambient temperature from 15 to 25°C increased CORT release at a similar rate for salamanders from all sites. However, CORT release rate was higher overall in the warmest, southernmost site. Elevated temperatures also affected physiological performance, but the effects differed among sites. Ingestion rate increased in salamanders from the warmer sites but remained the same for those from cooler sites. Mass gain was reduced for most individuals, though this reduction was more dramatic in salamanders from the cooler sites. We also found a temperature-dependent relationship between CORT and food conversion efficiency (i.e., the amount of mass gained per unit food ingested). CORT was negatively related to food conversion efficiency at 25°C but was unrelated at 15°C. Thus, the energetic gains of elevated ingestion rates may be counteracted by elevated CORT release rates experienced by salamanders in warmer environments. By integrating multiple physiological metrics, we highlight the complex relationships between temperature and individual responses to warming climates.
Collapse
Affiliation(s)
| | - Caitlin R. Gabor
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Cory B. Goff
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Tori D. Mezebish
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Lily M. Thompson
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | | |
Collapse
|
24
|
Ghedini G, White CR, Marshall DJ. Does energy flux predict density‐dependence? An empirical field test. Ecology 2017; 98:3116-3126. [DOI: 10.1002/ecy.2033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Giulia Ghedini
- Centre for Geometric Biology School of Biological Sciences Monash University Melbourne Victoria 3800 Australia
| | - Craig R. White
- Centre for Geometric Biology School of Biological Sciences Monash University Melbourne Victoria 3800 Australia
| | - Dustin J. Marshall
- Centre for Geometric Biology School of Biological Sciences Monash University Melbourne Victoria 3800 Australia
| |
Collapse
|
25
|
Thurman JH, Crowder DW, Northfield TD. Biological control agents in the Anthropocene: current risks and future options. CURRENT OPINION IN INSECT SCIENCE 2017; 23:59-64. [PMID: 29129283 DOI: 10.1016/j.cois.2017.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/06/2017] [Accepted: 07/19/2017] [Indexed: 05/25/2023]
Abstract
Global climate change is often expected to disrupt biological control. Predicting the effects of climate change on biological control, and identifying natural enemies that will thrive in future climate scenarios, is thus essential to ensure agricultural sustainability. To promote biological control under climate change, land managers should prioritise the conservation of natural enemy diversity to ensure some effective natural enemies are always present despite often-unpredictable climate scenarios. In addition, ecophysiological and habitat domain models should be combined to predict climate change-induced shifts in predation by diverse predator communities. Finally, insights from land managers during extreme weather events, such as droughts and heat waves, may be invaluable in the effort to identify key biological control agents for future scenarios.
Collapse
Affiliation(s)
- Jessa H Thurman
- Department of Biology, Hendrix College, 1600 Washington Ave., Conway, AR 72032, United States
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, WA 99164, United States
| | - Tobin D Northfield
- Centre for Tropical Environmental and Sustainability Studies, College of Marine and Environmental Sciences, James Cook University, Cairns, QLD, Australia.
| |
Collapse
|
26
|
Ecotypic differentiation matters for latitudinal variation in energy metabolism and flight performance in a butterfly under climate change. Sci Rep 2016; 6:36941. [PMID: 27845372 PMCID: PMC5109404 DOI: 10.1038/srep36941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/05/2016] [Indexed: 12/04/2022] Open
Abstract
Life histories of organisms may vary with latitude as they experience different thermal constraints and challenges. This geographic, intraspecific variation could be of significance for range dynamics under climate change beyond edge-core comparisons. In this study, we did a reciprocal transplant experiment between the temperature-regimes of two latitudes with an ectotherm insect, examining the effects on energy metabolism and flight performance. Pararge aegeria expanded its ecological niche from cool woodland (ancestral) to warmer habitat in agricultural landscape (novel ecotype). Northern males had higher standard metabolic rates than southern males, but in females these rates depended on their ecotype. Southern males flew for longer than northern ones. In females, body mass-corrected flight performance depended on latitude and thermal treatment during larval development and in case of the southern females, their interaction. Our experimental study provides evidence for the role of ecological differentiation at the core of the range to modulate ecophysiology and flight performance at different latitudes, which in turn may affect the climatic responsiveness of the species.
Collapse
|
27
|
Rosenblatt AE, Crowley BT, Schmitz OJ. Linking trophic interactions to plasticity in thermal sensitivity of geographically separated populations of a herbivore. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9827-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Buckley LB, Nufio CR, Kirk EM, Kingsolver JG. Elevational differences in developmental plasticity determine phenological responses of grasshoppers to recent climate warming. Proc Biol Sci 2016; 282:20150441. [PMID: 26041342 DOI: 10.1098/rspb.2015.0441] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Annual species may increase reproduction by increasing adult body size through extended development, but risk being unable to complete development in seasonally limited environments. Synthetic reviews indicate that most, but not all, species have responded to recent climate warming by advancing the seasonal timing of adult emergence or reproduction. Here, we show that 50 years of climate change have delayed development in high-elevation, season-limited grasshopper populations, but advanced development in populations at lower elevations. Developmental delays are most pronounced for early-season species, which might benefit most from delaying development when released from seasonal time constraints. Rearing experiments confirm that population, elevation and temperature interact to determine development time. Population differences in developmental plasticity may account for variability in phenological shifts among adults. An integrated consideration of the full life cycle that considers local adaptation and plasticity may be essential for understanding and predicting responses to climate change.
Collapse
Affiliation(s)
- Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - César R Nufio
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA University of Colorado Natural History Museum, University of Colorado, Boulder, CO 80309, USA
| | - Evan M Kirk
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER. Functional traits, convergent evolution, and periodic tables of niches. Ecol Lett 2015; 18:737-751. [PMID: 26096695 PMCID: PMC4744997 DOI: 10.1111/ele.12462] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 11/26/2022]
Abstract
Ecology is often said to lack general theories sufficiently predictive for applications. Here, we examine the concept of a periodic table of niches and feasibility of niche classification schemes from functional trait and performance data. Niche differences and their influence on ecological patterns and processes could be revealed effectively by first performing data reduction/ordination analyses separately on matrices of trait and performance data compiled according to logical associations with five basic niche 'dimensions', or aspects: habitat, life history, trophic, defence and metabolic. Resultant patterns then are integrated to produce interpretable niche gradients, ordinations and classifications. Degree of scheme periodicity would depend on degrees of niche conservatism and convergence causing species clustering across multiple niche dimensions. We analysed a sample data set containing trait and performance data to contrast two approaches for producing niche schemes: species ordination within niche gradient space, and niche categorisation according to trait-value thresholds. Creation of niche schemes useful for advancing ecological knowledge and its applications will depend on research that produces functional trait and performance datasets directly related to niche dimensions along with criteria for data standardisation and quality. As larger databases are compiled, opportunities will emerge to explore new methods for data reduction, ordination and classification.
Collapse
Affiliation(s)
- Kirk O Winemiller
- Program in Ecology and Evolutionary Biology and Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, 77843-2258, USA
| | - Daniel B Fitzgerald
- Program in Ecology and Evolutionary Biology and Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, 77843-2258, USA
| | - Luke M Bower
- Program in Ecology and Evolutionary Biology and Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, 77843-2258, USA
| | - Eric R Pianka
- Department of Integrative Biology, University of Texas, Austin, TX, 8712-0253, USA
| |
Collapse
|
30
|
Schoville SD, Slatyer RA, Bergdahl JC, Valdez GA. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae). JOURNAL OF INSECT PHYSIOLOGY 2015; 78:55-61. [PMID: 25956197 DOI: 10.1016/j.jinsphys.2015.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region. Here we test critical thermal limits and supercooling points for five Grylloblatta populations from across a large geographic area, to examine whether the stable microhabitats of this group are associated with a narrow thermal niche and assess their capacity to tolerate cold conditions. Thermal limits are highly conserved in Grylloblatta, despite substantial genetic divergence among populations spanning 1500 m elevation and being separated by over 500 km. Further, Grylloblatta show exceptionally narrow thermal limits compared to other insect taxa with little capacity to improve cold tolerance via plasticity. In contrast, upper thermal limits were significantly depressed by cold acclimation. Grylloblatta maintain coordinated movement until they freeze, and they die upon freezing. Convergence of the critical thermal minima, supercooling point and lower lethal limits point to adaptation to a cold but, importantly, constant thermal environment. These physiological data provide an explanation for the high endemism and patchy distribution of Grylloblatta, which relies on subterranean retreats to accommodate narrow thermal limits. These retreats are currently buffered from temperature fluctuations by snow cover, and a declining snowpack thus places Grylloblatta at risk of exposure to temperatures beyond its tolerance capacity.
Collapse
Affiliation(s)
- Sean D Schoville
- University of Wisconsin-Madison, Department of Entomology, 1630 Linden Drive, Madison, WI 53706, USA.
| | - Rachel A Slatyer
- Department of Zoology, University of Melbourne, Parkville 3010, Australia
| | - James C Bergdahl
- Conservation Biology Center, University of the Wilderness, 919 S. Adams St., Spokane, WA 99204, USA
| | - Glenda A Valdez
- University of Wisconsin-Madison, Department of Entomology, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
31
|
Sears MW, Angilletta MJ. Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs. Am Nat 2015; 185:E94-102. [PMID: 25811092 DOI: 10.1086/680008] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, ecologists have stepped up to address the challenges imposed by rapidly changing climates. Some researchers have developed niche-based methods to predict how species will shift their ranges. Such methods have evolved rapidly, resulting in models that incorporate physiological and behavioral mechanisms. Despite their sophistication, these models fail to account for environmental heterogeneity at the scale of an organism. We used an individual-based model to quantify the effects of operative environmental temperatures, as well as their heterogeneity and spatial structure, on the thermoregulation, movement, and energetics of ectotherms. Our simulations showed that the heterogeneity and spatial structure of a thermal landscape are as important as its mean temperature. In fact, temperature and heterogeneity interact to determine organismal performance. Consequently, the popular index of environmental quality (d(e)), which ignores variance and spatial structure, is inherently flawed as a descriptor of the thermal quality of an environment. Future efforts to model species' distributions should link thermoregulation and activity to environmental heterogeneity at fine scales.
Collapse
Affiliation(s)
- Michael W Sears
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634
| | | |
Collapse
|
32
|
Levy RA, Nufio CR. Dispersal potential impacts size clines of grasshoppers across an elevation gradient. OIKOS 2014. [DOI: 10.1111/oik.01615] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard A. Levy
- University of Colorado Museum of Natural History, Univ. of Colorado; Boulder CO 80309 USA
- Denver Botanic Gardens; Denver CO 80206 USA
| | - César R. Nufio
- University of Colorado Museum of Natural History, Univ. of Colorado; Boulder CO 80309 USA
- Dept of Ecology and Evolutionary Biology; Univ. of Colorado; Boulder CO 80309 USA
| |
Collapse
|
33
|
Lemoine NP, Burkepile DE, Parker JD. Variable effects of temperature on insect herbivory. PeerJ 2014; 2:e376. [PMID: 24860701 PMCID: PMC4017821 DOI: 10.7717/peerj.376] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/22/2014] [Indexed: 11/20/2022] Open
Abstract
Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass.
Collapse
Affiliation(s)
- Nathan P Lemoine
- Department of Biological Sciences, Florida International University , Miami, FL , United States
| | - Deron E Burkepile
- Department of Biological Sciences, Florida International University , Miami, FL , United States
| | - John D Parker
- Smithsonian Environmental Research Center, Smithsonian Institution , Edgewater, MD , United States
| |
Collapse
|
34
|
Humphries MM, McCann KS. Metabolic ecology. J Anim Ecol 2013; 83:7-19. [DOI: 10.1111/1365-2656.12124] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Murray M. Humphries
- Department of Natural Resource Sciences; McGill University; Sainte-Anne-de-Bellevue QC H9X 3V9 Canada
| | - Kevin S. McCann
- Department of Integrative Biology; University of Guelph; Guelph ON N1G 2W1 Canada
| |
Collapse
|
35
|
Reuman DC, Holt RD, Yvon-Durocher G. A metabolic perspective on competition and body size reductions with warming. J Anim Ecol 2013; 83:59-69. [PMID: 23521010 DOI: 10.1111/1365-2656.12064] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 01/26/2013] [Indexed: 01/23/2023]
Abstract
Temperature is a key driver of ecological processes and patterns. The ramifications of temperature for ecological communities include not only its direct effects on the physiology of individuals, but also how these effects play out in the context of other processes such as competition. Apparently idiosyncratic or difficult to predict effects of temperature on competitive outcomes are well represented in the literature. General theoretical understanding of how physiological influences of temperature filter through community dynamics to determine outcomes is limited. We present a theoretical framework for predicting the effects of temperature on competition among species, based on understanding the effects of temperature on the physiological and population parameters of the species. The approach helps unify formal resource competition theory with metabolic and physiological ecology. Phytoplankton and many other ectotherms are smaller at higher temperatures. This has been observed experimentally, across geographical gradients, and as change accompanying climate warming, but it has not been explained in terms of competition. As a case study, we apply our theoretical framework to competition for nutrients among differently sized phytoplankton. Based on this analysis, we hypothesize that the prevalence of smaller phytoplankton at higher temperatures is at least partly due to an accentuated competitive advantage of smaller cells at higher temperatures with respect to nutrient uptake and growth. We examine the scope for extending the approach to understand resource competition, generally, among ectotherms of different sizes.
Collapse
Affiliation(s)
- Daniel C Reuman
- Division of Ecology and Evolution, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK; Laboratory of Populations, Rockefeller University, 1230 York Ave, New York, NY, 10065, USA
| | | | | |
Collapse
|