1
|
Hotopp I, Russ A, Alkassab A, Pistorius J, Prados EA, Persigehl M. Using equivalence tests in higher tier studies of honey bees under the revised EFSA Bee Guidance-How? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1496-1503. [PMID: 38456634 DOI: 10.1002/ieam.4911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
The proposed use of equivalence tests instead of difference tests in the revised guidance on the risk assessment of plant protection products for bees is a reasonable approach given an adverse effect was observed in the lower tier studies, using the hypothesis that there is a risk as the null hypothesis places the burden to prove the opposite on the other side. However, some uncertainties regarding the application of equivalence tests in field studies are discussed in the present study. Here, we compare equivalence and difference testing methods using a control dataset of a honey bee field effect study conducted in northern Germany in 2014. Half of the 48 colonies were assigned to a hypothetical test item group, and the colony strength data were analyzed using t-tests, a generalized linear mixed model (GLMM), and the corresponding equivalence tests. The data reflected the natural variability of honey bee colonies, with initially approximately 12 000 adult bees. Although the t-test and GLMM confirmed that 24 + 24 colonies are sufficient to show "no adverse effect," the equivalence tests of the t-test and GLMM were not able to reject the null hypothesis and classified at least some of the assessments as "high risk," indicating a power that was too low. Based on this, different operating options to reduce the variability are discussed. One possible option, which may provide a more realistic application of equivalence to avoid false high risk, is to consider the lower confidence interval of the control as a baseline and use GLMMs. With this option, we demonstrate a relatively acceptable probability to prove that no high risk for initially similar groups can be achieved. Further studies with different numbers of colonies are still needed to develop and validate the suggested approach. Integr Environ Assess Manag 2024;20:1496-1503. © 2024 SETAC.
Collapse
Affiliation(s)
| | - Anja Russ
- tier3 solutions GmbH, Leverkusen, Germany
| | - Abdulrahim Alkassab
- Federal Research Centre for Cultivated Plants (JKI), Institute for Bee Protection, Braunschweig, Germany
| | - Jens Pistorius
- Federal Research Centre for Cultivated Plants (JKI), Institute for Bee Protection, Braunschweig, Germany
| | - Elena A Prados
- Unidad de Productos Fitosanitarios, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
| | | |
Collapse
|
2
|
Nicholson CC, Knapp J, Kiljanek T, Albrecht M, Chauzat MP, Costa C, De la Rúa P, Klein AM, Mänd M, Potts SG, Schweiger O, Bottero I, Cini E, de Miranda JR, Di Prisco G, Dominik C, Hodge S, Kaunath V, Knauer A, Laurent M, Martínez-López V, Medrzycki P, Pereira-Peixoto MH, Raimets R, Schwarz JM, Senapathi D, Tamburini G, Brown MJF, Stout JC, Rundlöf M. Pesticide use negatively affects bumble bees across European landscapes. Nature 2024; 628:355-358. [PMID: 38030722 PMCID: PMC11006599 DOI: 10.1038/s41586-023-06773-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.
Collapse
Affiliation(s)
| | - Jessica Knapp
- Department of Biology, Lund University, Lund, Sweden.
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Tomasz Kiljanek
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | | | - Marie-Pierre Chauzat
- Laboratory for Animal Health, ANSES, Paris-Est University, Maisons-Alfort, France
| | - Cecilia Costa
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, University of Murcia, Murcia, Spain
| | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Oliver Schweiger
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Irene Bottero
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gennaro Di Prisco
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
- Institute for Sustainable Plant Protection, The Italian National Research Council, Portici, Italy
| | - Christophe Dominik
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Simon Hodge
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Vera Kaunath
- Department of Biology, Lund University, Lund, Sweden
| | - Anina Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | - Marion Laurent
- Unit of Honey Bee Pathology, Sophia Antipolis Laboratory, ANSES, Sophia Antipolis, France
| | | | - Piotr Medrzycki
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
| | | | - Risto Raimets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Giovanni Tamburini
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Mark J F Brown
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Oliver SK, Corsi SR, Baldwin AK, Nott MA, Ankley GT, Blackwell BR, Villeneuve DL, Hladik ML, Kolpin DW, Loken L, DeCicco LA, Meyer MT, Loftin KA. Pesticide Prioritization by Potential Biological Effects in Tributaries of the Laurentian Great Lakes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:367-384. [PMID: 36562491 PMCID: PMC10107260 DOI: 10.1002/etc.5522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/16/2022] [Accepted: 11/07/2022] [Indexed: 05/09/2023]
Abstract
Watersheds of the Great Lakes Basin (USA/Canada) are highly modified and impacted by human activities including pesticide use. Despite labeling restrictions intended to minimize risks to nontarget organisms, concerns remain that environmental exposures to pesticides may be occurring at levels negatively impacting nontarget organisms. We used a combination of organismal-level toxicity estimates (in vivo aquatic life benchmarks) and data from high-throughput screening (HTS) assays (in vitro benchmarks) to prioritize pesticides and sites of concern in streams at 16 tributaries to the Great Lakes Basin. In vivo or in vitro benchmark values were exceeded at 15 sites, 10 of which had exceedances throughout the year. Pesticides had the greatest potential biological impact at the site with the greatest proportion of agricultural land use in its basin (the Maumee River, Toledo, OH, USA), with 72 parent compounds or transformation products being detected, 47 of which exceeded at least one benchmark value. Our risk-based screening approach identified multiple pesticide parent compounds of concern in tributaries of the Great Lakes; these compounds included: eight herbicides (metolachlor, acetochlor, 2,4-dichlorophenoxyacetic acid, diuron, atrazine, alachlor, triclopyr, and simazine), three fungicides (chlorothalonil, propiconazole, and carbendazim), and four insecticides (diazinon, fipronil, imidacloprid, and clothianidin). We present methods for reducing the volume and complexity of potential biological effects data that result from combining contaminant surveillance with HTS (in vitro) and traditional (in vivo) toxicity estimates. Environ Toxicol Chem 2023;42:367-384. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Samantha K. Oliver
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Steven R. Corsi
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | | | - Michele A. Nott
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Gerald T. Ankley
- US Environmental Protection AgencyGreat Lakes Ecology and Toxicology DivisionDuluthMinnesotaUSA
| | - Brett R. Blackwell
- US Environmental Protection AgencyGreat Lakes Ecology and Toxicology DivisionDuluthMinnesotaUSA
| | - Daniel L. Villeneuve
- US Environmental Protection AgencyGreat Lakes Ecology and Toxicology DivisionDuluthMinnesotaUSA
| | - Michelle L. Hladik
- US Geological SurveySacramento, California Water Science CenterCaliforniaUSA
| | | | - Luke Loken
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Laura A. DeCicco
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Michael T. Meyer
- US Geological SurveyKansas Water Science CenterLawrenceKansasUSA
| | - Keith A. Loftin
- US Geological SurveyKansas Water Science CenterLawrenceKansasUSA
| |
Collapse
|
4
|
Straub L, Strobl V, Yañez O, Albrecht M, Brown MJ, Neumann P. Do pesticide and pathogen interactions drive wild bee declines? Int J Parasitol Parasites Wildl 2022; 18:232-243. [PMID: 35800107 PMCID: PMC9253050 DOI: 10.1016/j.ijppaw.2022.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/20/2022]
Abstract
There is clear evidence for wild insect declines globally. Habitat loss, climate change, pests, pathogens and environmental pollution have all been shown to cause detrimental effects on insects. However, interactive effects between these stressors may be the key to understanding reported declines. Here, we review the literature on pesticide and pathogen interactions for wild bees, identify knowledge gaps, and suggest avenues for future research fostering mitigation of the observed declines. The limited studies available suggest that effects of pesticides most likely override effects of pathogens. Bees feeding on flowers and building sheltered nests, are likely less adapted to toxins compared to other insects, which potential susceptibility is enhanced by the reduced number of genes encoding detoxifying enzymes compared with other insect species. However, to date all 10 studies using a fully-crossed design have been conducted in the laboratory on social bees using Crithidia spp. or Nosema spp., identifying an urgent need to test solitary bees and other pathogens. Similarly, since laboratory studies do not necessarily reflect field conditions, semi-field and field studies are essential if we are to understand these interactions and their potential effects in the real-world. In conclusion, there is a clear need for empirical (semi-)field studies on a range of pesticides, pathogens, and insect species to better understand the pathways and mechanisms underlying their potential interactions, in particular their relevance for insect fitness and population dynamics. Such data are indispensable to drive forward robust modelling of interactive effects in different environmental settings and foster predictive science. This will enable pesticide and pathogen interactions to be put into the context of other stressors more broadly, evaluating their relative importance in driving the observed declines of wild bees and other insects. Ultimately, this will enable the development of more effective mitigation measures to protect bees and the ecosystem services they supply.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Mark J.F. Brown
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
| |
Collapse
|
5
|
Straub L, Villamar‐Bouza L, Bruckner S, Chantawannakul P, Kolari E, Maitip J, Vidondo B, Neumann P, Williams GR. Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lars Straub
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
- Swiss Bee Research CentreAgroscope Bern Switzerland
| | | | - Selina Bruckner
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
- Department of Entomology and Plant Pathology Auburn University Auburn AL USA
| | - Panuwan Chantawannakul
- Bee Protection Laboratory Department of Biology Faculty of Science Chiang Mai University Chiang Mai Thailand
- Environmental Science Research Center Faculty of Science Chiang Mai University Chiang Mai Thailand
| | - Eleonora Kolari
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
| | - Jakkrawut Maitip
- Bee Protection Laboratory Department of Biology Faculty of Science Chiang Mai University Chiang Mai Thailand
- Faculty of Science, Energy and Environment King Mongkut’s University of Technology North Bangkok Rayong Thailand
| | - Beatriz Vidondo
- Veterinary Public Health Institute Vetsuisse Faculty University of Bern Bern Switzerland
| | - Peter Neumann
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
- Swiss Bee Research CentreAgroscope Bern Switzerland
| | - Geoffrey R. Williams
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
- Swiss Bee Research CentreAgroscope Bern Switzerland
- Bee Protection Laboratory Department of Biology Faculty of Science Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
6
|
Kindergarten Children’s Perception about the Ecological Roles of Living Organisms. SUSTAINABILITY 2020. [DOI: 10.3390/su12229565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Young children will inherit the biosphere; therefore, it is crucial that they recognize the importance of all living organisms based on their intrinsic value and ecosystem function, not only on their “cuteness”. However, children’s knowledge about the interdependence among organisms has been little investigated. We interviewed 56 kindergarten children (5–6 years old) in Norway. The aim of the study was to investigate their perception of the importance for nature of six organisms, representing different trophic levels of food webs (producers, consumers, decomposers) and providing different ecosystem services (production, decomposition, and pollination). There was no difference in ranking between sexes or between ordinary and farm-based kindergartens. Bumblebees and earthworms were perceived as the most important organisms, followed by squirrel, trees, and wolf. None of the children recognized the ecological role of mushrooms. Our results show that, although upon completing kindergarten many children had gained an early understanding of the role of different organisms in nature, they missed the importance of plants and fungi. Kindergarten children’s “fungi blindness” might reflect a neglect of the public for this extremely important, diverse, and dominating taxon. We should therefore put more emphasis in raising awareness about the interdependence among trophic levels in food webs.
Collapse
|
7
|
Greenop A, Mica-Hawkyard N, Walkington S, Wilby A, Cook SM, Pywell RF, Woodcock BA. Equivocal Evidence for Colony Level Stress Effects on Bumble Bee Pollination Services. INSECTS 2020; 11:E191. [PMID: 32197403 PMCID: PMC7142647 DOI: 10.3390/insects11030191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
Climate change poses a threat to global food security with extreme heat events causing drought and direct damage to crop plants. However, by altering behavioural or physiological responses of insects, extreme heat events may also affect pollination services on which many crops are dependent. Such effects may potentially be exacerbated by other environmental stresses, such as exposure to widely used agro-chemicals. To determine whether environmental stressors interact to affect pollination services, we carried out field cage experiments on the buff-tailed bumble bee (Bombus terrestris). Using a Bayesian approach, we assessed whether heat stress (colonies maintained at an ambient temperature of 25 °C or 31 °C) and insecticide exposure (5 ng g-1 of the neonicotinoid insecticide clothianidin) could induce behavioural changes that affected pollination of faba bean (Vicia faba). Only the bumble bee colonies and not the plants were exposed to the environmental stress treatments. Bean plants exposed to heat-stressed bumble bee colonies (31 °C) had a lower proportional pod set compared to colonies maintained at 25 °C. There was also weak evidence that heat stressed colonies caused lower total bean weight. Bee exposure to clothianidin was found to have no clear effect on plant yields, either individually or as part of an interaction. We identified no effect of either colony stressor on bumble bee foraging behaviours. Our results suggest that extreme heat stress at the colony level may impact on pollination services. However, as the effect for other key yield parameters was weaker (e.g. bean yields), our results are not conclusive. Overall, our study highlights the need for further research on how environmental stress affects behavioural interactions in plant-pollinator systems that could impact on crop yields.
Collapse
Affiliation(s)
- Arran Greenop
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK;
| | - Nevine Mica-Hawkyard
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
| | - Sarah Walkington
- Core Research Laboratories, Natural History Museum, Cromwell Rd, Kensington, London SW7 5BD, UK;
| | - Andrew Wilby
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK;
| | - Samantha M Cook
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK;
| | - Richard F Pywell
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
| | - Ben A Woodcock
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
| |
Collapse
|
8
|
Mancini F, Woodcock BA, Redhead J, Spurgeon D, Jarvis S, Pywell RF, Shore R, Johnson A, Isaac N. Detecting landscape scale consequences of insecticide use on invertebrate communities. ADV ECOL RES 2020. [DOI: 10.1016/bs.aecr.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Impact of Stressors on Honey Bees (Apis mellifera; Hymenoptera: Apidae): Some Guidance for Research Emerge from a Meta-Analysis. DIVERSITY 2019. [DOI: 10.3390/d12010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bees play an essential role in plant pollination and their decline is a threat to crop yields and biodiversity sustainability. The causes of their decline have not yet been fully identified, despite the numerous studies that have been carried out, especially on Apis mellifera. This meta-analysis was conducted to identify gaps in the current research and new potential directions for research. The aim of this analysis of 293 international scientific papers was to achieve an inventory of the studied populations, the stressors and the methods used to study their impact on Apis mellifera. It also aimed to investigate the stressors with the greatest impact on bees and explore whether the evidence for an impact varies according to the type of study or the scale of study. According to this analysis, it is important to identify the populations and the critical developmental stages most at risk, and to determine the differences in stress sensibility between subspecies. This meta-analysis also showed that studies on climate change or habitat fragmentation were lacking. Moreover, it highlighted that technical difficulties in the field and the buffer effect of the colony represent methodological and biological barriers that are still difficult to overcome. Mathematical modeling or radio frequency identification (RFID) chips represent promising ways to overcome current methodological difficulties.
Collapse
|
10
|
Franklin EL, Raine NE. Moving beyond honeybee-centric pesticide risk assessments to protect all pollinators. Nat Ecol Evol 2019; 3:1373-1375. [PMID: 31527730 DOI: 10.1038/s41559-019-0987-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elizabeth L Franklin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada. .,Cornwall College, Newquay, UK.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
11
|
Dietzsch AC, Kunz N, Wirtz IP, Stähler M, Heimbach U, Pistorius J. Does winter oilseed rape grown from clothianidin-coated seeds affect experimental populations of mason bees and bumblebees? A semi-field and field study. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01225-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Collado MÁ, Sol D, Bartomeus I. Bees use anthropogenic habitats despite strong natural habitat preferences. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12899] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Miguel Á. Collado
- Estación Biológica de Doñana (EBD‐CSIC) Sevilla Spain
- CREAF Catalonia Spain
| | - Daniel Sol
- CREAF Catalonia Spain
- CSIC Catalonia Spain
| | | |
Collapse
|
13
|
Croft S, Brown M, Wilkins S, Hart A, Smith GC. Evaluating European Food Safety Authority Protection Goals for Honeybees (Apis mellifera): What Do They Mean for Pollination? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2018; 14:750-758. [PMID: 29923683 DOI: 10.1002/ieam.4078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/04/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
In recent years there has been growing concern regarding the sudden and unexplained failure of honeybee (Apis mellifera) colonies. Several factors have been suggested, including pesticides. In an effort to regulate their impact, guidance published by the European Food Safety Authority (EFSA) has recommended that the magnitude of effects on exposed colonies should not exceed 7% reduction in colony size after 2 brood cycles. However, fears have been raised regarding the practicality of measuring such a loss in the field. It is also unclear how this protection goal relates to maintaining the ecosystem services provided by bees, which we argue should be a primary objective for regulators. Here, we evaluate what these protection goals mean in relation to ecosystems performance using a computational colony model that incorporates mechanisms to simulate both lethal and sublethal pesticide effects. To these simulations, we apply a testing regime similar to that commonly used in field trials to produce standard assessment metrics. By relating these measures to losses in forager activity, we aim to identify which could be used as effective indicators of reduced ecoservice and to quantify acceptable limits below which performance can be maintained. Our findings show that loss of colony size is the best indicator of reduced ecoservice. Metrics that focus on specific colony functions such as increased brood or forager mortality are ineffective indicators for all types of simulated pesticide effects. At the levels of colony loss recommended by EFSA, using our default parameterization, we predict a loss of ecosystems performance of 3% to 4%. However, based on an extensive sensitivity analysis, it is clear that this estimate is subject to substantial uncertainty with losses under alternative parameterizations of up to 14%. Nevertheless, our model provides a valuable framework for assessing protection goals, allowing regulators to test relevant impacts and quantify their magnitude. Integr Environ Assess Manag 2018;14:750-758. © 2018 Crown Copyright and SETAC.
Collapse
Affiliation(s)
- Simon Croft
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, United Kingdom
| | - Mike Brown
- National Bee Unit, Animal and Plant Health Agency, Sand Hutton, York, United Kingdom
| | - Selwyn Wilkins
- Fera Science, National Agri-Food Innovation Campus, Sand Hutton, York, United Kingdom
| | - Andy Hart
- Fera Science, National Agri-Food Innovation Campus, Sand Hutton, York, United Kingdom
| | - Graham C Smith
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, United Kingdom
| |
Collapse
|
14
|
Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat MP, vanEngelsdorp D. Drivers of colony losses. CURRENT OPINION IN INSECT SCIENCE 2018; 26:142-148. [PMID: 29764654 DOI: 10.1016/j.cois.2018.02.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 05/11/2023]
Abstract
Over the past decade, in some regions of the world, honey bee (Apis mellifera L.) colonies have experienced rates of colony loss that are difficult for beekeepers to sustain. The reasons for losses are complex and interacting, with major drivers including Varroaand related viruses, pesticides, nutrition and beekeeper practices. In these endeavors it has also become apparent that defining a dead colony, and singling out the effects of specific drivers of loss, is not so straightforward. Using the class of neonicotinoid pesticides as an example we explain why quantifying risk factor impact at the colony level is at times elusive and in some cases unpractical. In this review, we discuss the caveats of defining and quantifying dead colonies. We also summarize the current leading drivers of colony losses, their interactions and the most recent research on their effects on colony mortality.
Collapse
Affiliation(s)
- Nathalie Steinhauer
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Kelly Kulhanek
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones, Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - Hannelie Human
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, 50200, Thailand
| | - Marie-Pierre Chauzat
- Unit of Honey Bee Pathology, ANSES, European Union and National Reference Laboratory for Honey Bee Health, Sophia Antipolis, France
| | | |
Collapse
|
15
|
Ruddle N, Elston C, Klein O, Hamberger A, Thompson H. Effects of exposure to winter oilseed rape grown from thiamethoxam-treated seed on the red mason bee Osmia bicornis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1071-1083. [PMID: 29120069 DOI: 10.1002/etc.4034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/08/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
There has been increasing interest in the effects of neonicotinoid insecticides on wild bees. In solitary bee species the direct link between each individual female and reproductive success offers the opportunity to evaluate effects on individuals. The present study investigated effects of exposure to winter oilseed rape grown from thiamethoxam-treated seed on reproductive behavior and output of solitary red mason bees (Osmia bicornis) released in 6 pairs of fields over a 2-yr period and confined to tunnels in a single year. After adjustment to the number of females released, there was significantly lower production of cells and cocoons/female in tunnels than in open field conditions. This difference may be because of the lack of alternative forage within the tunnels. Under open field conditions, palynology of the pollen provisions within the nests demonstrated a maximum average of 31% oilseed rape pollen at any site, with Quercus (oak) contributing up to 86% of the pollen. There were no significant effects from exposure to oilseed rape grown from thiamethoxam-treated seed from nest establishment through cell production to emergence under tunnel or field conditions. Environ Toxicol Chem 2018;37:1071-1083. © 2017 SETAC.
Collapse
Affiliation(s)
- Natalie Ruddle
- Syngenta, Jealott's Hill International Research Station, Bracknell, Berkshire, United Kingdom
| | - Charlotte Elston
- Syngenta, Jealott's Hill International Research Station, Bracknell, Berkshire, United Kingdom
| | - Olaf Klein
- Eurofins Agroscience Services Ecotox, Niefern-Öschelbronn, Germany
| | - Anja Hamberger
- Eurofins Agroscience Services Ecotox, Niefern-Öschelbronn, Germany
| | - Helen Thompson
- Syngenta, Jealott's Hill International Research Station, Bracknell, Berkshire, United Kingdom
| |
Collapse
|
16
|
Bargańska Ż, Lambropoulou D, Namieśnik J. Problems and Challenges to Determine Pesticide Residues in Bumblebees. Crit Rev Anal Chem 2018; 48:447-458. [DOI: 10.1080/10408347.2018.1445517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Żaneta Bargańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
17
|
Ben-Shahar Y. The Impact of Environmental Mn Exposure on Insect Biology. Front Genet 2018; 9:70. [PMID: 29545824 PMCID: PMC5837978 DOI: 10.3389/fgene.2018.00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/16/2018] [Indexed: 01/18/2023] Open
Abstract
Manganese (Mn) is an essential trace element that acts as a metal co-factor in diverse biochemical and cellular functions. However, chronic environmental exposure to high levels of Mn is a well-established risk factor for the etiology of severe, atypical parkinsonian syndrome (manganism) via its accumulation in the basal ganglia, pallidum, and striatum brain regions, which is often associated with abnormal dopamine, GABA, and glutamate neural signaling. Recent studies have indicated that chronic Mn exposure at levels that are below the risk for manganism can still cause behavioral, cognitive, and motor dysfunctions via poorly understood mechanisms at the molecular and cellular levels. Furthermore, in spite of significant advances in understanding Mn-induced behavioral and neuronal pathologies, available data are primarily for human and rodents. In contrast, the possible impact of environmental Mn exposure on brain functions and behavior of other animal species, especially insects and other invertebrates, remains mostly unknown both in the laboratory and natural habitats. Yet, the effects of environmental exposure to metals such as Mn on insect development, physiology, and behavior could also have major indirect impacts on human health via the long-term disruptions of food webs, as well as direct impact on the economy because of the important role insects play in crop pollination. Indeed, laboratory and field studies indicate that chronic exposures to metals such as Mn, even at levels that are below what is currently considered toxic, affect the dopaminergic signaling pathway in the insect brain, and have a major impact on the behavior of insects, including foraging activity of important pollinators such as the honey bee. Together, these studies highlight the need for a better understanding of the neuronal, molecular, and genetic processes that underlie the toxicity of Mn and other metal pollutants in diverse animal species, including insects.
Collapse
Affiliation(s)
- Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
18
|
Woodcock BA, Ridding L, Freeman SN, Pereira MG, Sleep D, Redhead J, Aston D, Carreck NL, Shore RF, Bullock JM, Heard MS, Pywell RF. Neonicotinoid residues in UK honey despite European Union moratorium. PLoS One 2018; 13:e0189681. [PMID: 29298300 PMCID: PMC5751988 DOI: 10.1371/journal.pone.0189681] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Due to concerns over negative impacts on insect pollinators, the European Union has implemented a moratorium on the use of three neonicotinoid pesticide seed dressings for mass-flowering crops. We assessed the effectiveness of this policy in reducing the exposure risk to honeybees by collecting 130 samples of honey from bee keepers across the UK before (2014: N = 21) and after the moratorium was in effect (2015: N = 109). Neonicotinoids were present in about half of the honey samples taken before the moratorium, and they were present in over a fifth of honey samples following the moratorium. Clothianidin was the most frequently detected neonicotinoid. Neonicotinoid concentrations declined from May to September in the year following the ban. However, the majority of post-moratorium neonicotinoid residues were from honey harvested early in the year, coinciding with oilseed rape flowering. Neonicotinoid concentrations were correlated with the area of oilseed rape surrounding the hive location. These results suggest mass flowering crops may contain neonicotinoid residues where they have been grown on soils contaminated by previously seed treated crops. This may include winter seed treatments applied to cereals that are currently exempt from EU restrictions. Although concentrations of neonicotinoids were low (<2.0 ng g-1), and posed no risk to human health, they may represent a continued risk to honeybees through long-term chronic exposure.
Collapse
Affiliation(s)
- Ben A. Woodcock
- NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Lucy Ridding
- NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Stephen N. Freeman
- NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - M. Gloria Pereira
- NERC Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster, United Kingdom
| | - Darren Sleep
- NERC Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster, United Kingdom
| | - John Redhead
- NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - David Aston
- BBKA Technical and Environmental Committee, The British Beekeepers Association, The National Beekeeping Centre, National Agricultural Centre, Stoneleigh Park, Warwickshire, United Kingdom
| | - Norman L. Carreck
- Laboratory of Apiculture and Social Insects, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex
| | - Richard F. Shore
- NERC Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster, United Kingdom
| | - James M. Bullock
- NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Matthew S. Heard
- NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Richard F. Pywell
- NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| |
Collapse
|
19
|
Thogmartin WE, Wiederholt R, Oberhauser K, Drum RG, Diffendorfer JE, Altizer S, Taylor OR, Pleasants J, Semmens D, Semmens B, Erickson R, Libby K, Lopez-Hoffman L. Monarch butterfly population decline in North America: identifying the threatening processes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170760. [PMID: 28989778 PMCID: PMC5627118 DOI: 10.1098/rsos.170760] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/24/2017] [Indexed: 05/24/2023]
Abstract
The monarch butterfly (Danaus plexippus) population in North America has sharply declined over the last two decades. Despite rising concern over the monarch butterfly's status, no comprehensive study of the factors driving this decline has been conducted. Using partial least-squares regressions and time-series analysis, we investigated climatic and habitat-related factors influencing monarch population size from 1993 to 2014. Potential threats included climatic factors, habitat loss (milkweed and overwinter forest), disease and agricultural insecticide use (neonicotinoids). While climatic factors, principally breeding season temperature, were important determinants of annual variation in abundance, our results indicated strong negative relationships between population size and habitat loss variables, principally glyphosate use, but also weaker negative effects from the loss of overwinter forest and breeding season use of neonicotinoids. Further declines in population size because of glyphosate application are not expected. Thus, if remaining threats to habitat are mitigated we expect climate-induced stochastic variation of the eastern migratory population of monarch butterfly around a relatively stationary population size.
Collapse
Affiliation(s)
- Wayne E. Thogmartin
- US Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603, USA
| | - Ruscena Wiederholt
- Everglades Foundation, 18001 Old Cutler Road, Suite 625, Palmetto Bay, FL 33157, USA
| | - Karen Oberhauser
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St Paul, MN 55455, USA
| | - Ryan G. Drum
- US Fish and Wildlife Service, Bloomington, MN 55437, USA
| | - Jay E. Diffendorfer
- US Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Orley R. Taylor
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - John Pleasants
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Darius Semmens
- US Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, USA
| | - Brice Semmens
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard Erickson
- US Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603, USA
| | - Kaitlin Libby
- School of Natural Resources & the Environment, The University of Arizona, Tucson, AZ 85721, USA
| | - Laura Lopez-Hoffman
- School of Natural Resources & the Environment, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
20
|
Qin Y, Zhang J, Li Y, Wang Q, Wu Y, Xu L, Jin X, Pan C. Automated multi-filtration cleanup with nitrogen-enriched activated carbon material as pesticide multi-residue analysis method in representative crop commodities. J Chromatogr A 2017; 1515:62-68. [PMID: 28803648 DOI: 10.1016/j.chroma.2017.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/28/2022]
Abstract
An automated multi-filtration cleanup (Auto m-FC) method with nitrogen-enriched activated carbon material based on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. It was applied to pesticide multi-residue analysis in six representative crop commodities. The automatic device was aimed to improve the cleanup efficiency and reduce manual operation workload in cleanup step. By controlling extracts volume, flow rate and Auto m-FC cycles, the device could finish cleanup process accurately. In this work, nitrogen-enriched activated carbon mixed with alternative sorbents and anhydrous magnesium sulfate (MgSO4) was packed in a column for Auto m-FC and followed by liquid chromatography with tandem mass spectrometric (LC-MS/MS) detection. This newly developed carbon material showed excellent cleanup performance. It was validated by analyzing 23 pesticides in six representative matrices spiked at two concentration levels of 10 and 100μg/kg. Water addition volume, salts, sorbents, Auto m-FC procedure including the flow rate and the Auto m-FC cycles for each matrix were optimized. Then, three general Auto m-FC methods were introduced to high water content, high oil and starch content, difficult commodities. Spike recoveries were within 82 and 106% and 1-14% RSD for all analytes in the tested matrices. Matrix-matched calibrations were performed with the coefficients of determination over 0.997 between concentration levels of 10 and 1000μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples.
Collapse
Affiliation(s)
- Yuhong Qin
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jingru Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifan Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qiuxiao Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yangliu Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lanshu Xu
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Jin
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Canping Pan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Siede R, Faust L, Meixner MD, Maus C, Grünewald B, Büchler R. Performance of honey bee colonies under a long-lasting dietary exposure to sublethal concentrations of the neonicotinoid insecticide thiacloprid. PEST MANAGEMENT SCIENCE 2017; 73:1334-1344. [PMID: 28168846 PMCID: PMC5485166 DOI: 10.1002/ps.4547] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Substantial honey bee colony losses have occurred periodically in the last decades. The drivers for these losses are not fully understood. The influence of pests and pathogens are beyond dispute, but in addition, chronic exposure to sublethal concentrations of pesticides has been suggested to affect the performance of honey bee colonies. This study aims to elucidate the potential effects of a chronic exposure to sublethal concentrations (one realistic worst-case concentration) of the neonicotinoid thiacloprid to honey bee colonies in a three year replicated colony feeding study. RESULTS Thiacloprid did not significantly affect the colony strength. No differences between treatment and control were observed for the mortality of bees, the infestation with the parasitic mite Varroa destructor and the infection levels of viruses. No colony losses occurred during the overwintering seasons. Furthermore, thiacloprid did not influence the constitutive expression of the immunity-related hymenoptaecin gene. However, upregulation of hymenoptaecin expression as a response to bacterial challenge was less pronounced in exposed bees than in control bees. CONCLUSION Under field conditions, bee colonies are not adversely affected by a long-lasting exposure to sublethal concentrations of thiacloprid. No indications were found that field-realistic and higher doses exerted a biologically significant effect on colony performance. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Reinhold Siede
- Landesbetrieb Landwirtschaft HessenBieneninstitut KirchhainKirchhainGermany
| | - Lena Faust
- Institut für Bienenkunde, Oberursel, Polytechnische Gesellschaft, Fachbereich BiowissenschaftenGoethe‐Universität Frankfurt am MainOberurselGermany
| | - Marina D Meixner
- Landesbetrieb Landwirtschaft HessenBieneninstitut KirchhainKirchhainGermany
| | | | - Bernd Grünewald
- Institut für Bienenkunde, Oberursel, Polytechnische Gesellschaft, Fachbereich BiowissenschaftenGoethe‐Universität Frankfurt am MainOberurselGermany
| | - Ralph Büchler
- Landesbetrieb Landwirtschaft HessenBieneninstitut KirchhainKirchhainGermany
| |
Collapse
|
22
|
Woodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG, Redhead J, Ridding L, Dean H, Sleep D, Henrys P, Peyton J, Hulmes S, Hulmes L, Sárospataki M, Saure C, Edwards M, Genersch E, Knäbe S, Pywell RF. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 2017; 356:1393-1395. [DOI: 10.1126/science.aaa1190] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/22/2017] [Indexed: 11/02/2022]
Abstract
Neonicotinoid seed dressings have caused concern world-wide. We use large field experiments to assess the effects of neonicotinoid-treated crops on three bee species across three countries (Hungary, Germany, and the United Kingdom). Winter-sown oilseed rape was grown commercially with either seed coatings containing neonicotinoids (clothianidin or thiamethoxam) or no seed treatment (control). For honey bees, we found both negative (Hungary and United Kingdom) and positive (Germany) effects during crop flowering. In Hungary, negative effects on honey bees (associated with clothianidin) persisted over winter and resulted in smaller colonies in the following spring (24% declines). In wild bees (Bombus terrestris and Osmia bicornis), reproduction was negatively correlated with neonicotinoid residues. These findings point to neonicotinoids causing a reduced capacity of bee species to establish new populations in the year following exposure.
Collapse
|
23
|
Rortais A, Arnold G, Dorne JL, More SJ, Sperandio G, Streissl F, Szentes C, Verdonck F. Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:524-537. [PMID: 28279532 DOI: 10.1016/j.scitotenv.2016.09.127] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 05/21/2023]
Abstract
Current approaches to risk assessment in bees do not take into account co-exposures from multiple stressors. The European Food Safety Authority (EFSA) is deploying resources and efforts to move towards a holistic risk assessment approach of multiple stressors in bees. This paper describes the general principles of pesticide risk assessment in bees, including recent developments at EFSA dealing with risk assessment of single and multiple pesticide residues and biological hazards. The EFSA Guidance Document on the risk assessment of plant protection products in bees highlights the need for the inclusion of an uncertainty analysis, other routes of exposures and multiple stressors such as chemical mixtures and biological agents. The EFSA risk assessment on the survival, spread and establishment of the small hive beetle, Aethina tumida, an invasive alien species, is provided with potential insights for other bee pests such as the Asian hornet, Vespa velutina. Furthermore, data gaps are identified at each step of the risk assessment, and recommendations are made for future research that could be supported under the framework of Horizon 2020. Finally, the recent work conducted at EFSA is presented, under the overarching MUST-B project ("EU efforts towards the development of a holistic approach for the risk assessment on MUltiple STressors in Bees") comprising a toolbox for harmonised data collection under field conditions and a mechanistic model to assess effects from pesticides and other stressors such as biological agents and beekeeping management practices, at the colony level and in a spatially complex landscape. Future perspectives at EFSA include the development of a data model to collate high quality data to calibrate and validate the model to be used as a regulatory tool. Finally, the evidence collected within the framework of MUST-B will support EFSA's activities on the development of a holistic approach to the risk assessment of multiple stressors in bees. In conclusion, EFSA calls for collaborative action at the EU level to establish a common and open access database to serve multiple purposes and different stakeholders.
Collapse
Affiliation(s)
- Agnès Rortais
- European Food Safety Authority (EFSA), via Carlo Magno 1A, Parma 43126, Italy.
| | - Gérard Arnold
- Laboratoire Evolution, Génomes, Comportement, Ecologie, Centre National de la Recherche Scientifique (CNRS) - Université Paris-Sud (UMR 9191), avenue de la Terrasse, 91198 Gif sur Yvette, France.
| | - Jean-Lou Dorne
- European Food Safety Authority (EFSA), via Carlo Magno 1A, Parma 43126, Italy.
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Giorgio Sperandio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Franz Streissl
- European Food Safety Authority (EFSA), via Carlo Magno 1A, Parma 43126, Italy.
| | - Csaba Szentes
- European Food Safety Authority (EFSA), via Carlo Magno 1A, Parma 43126, Italy.
| | - Frank Verdonck
- European Food Safety Authority (EFSA), via Carlo Magno 1A, Parma 43126, Italy.
| |
Collapse
|
24
|
Campbell P, Coulson M, Ward K. Authors response on Schick et al. 2017 "An experiment of the impact of a neonicotinoid pesticide on honey bees; the value of a formal analysis of the data". Environ Sci Eur (2017). ENVIRONMENTAL SCIENCES EUROPE 2017; 29:2. [PMID: 28163990 PMCID: PMC5253393 DOI: 10.1186/s12302-016-0102-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/25/2016] [Indexed: 05/31/2023]
Abstract
Whilst a formal statistical analysis of any experimental data is always preferable in principle, in the case of Pilling et al. (PLoS ONE 8:e77193, 2013), it is hard to see how the results of any formal analysis-including those provided by Schick et al.-could be considered reliable. Regardless of the issue of statistical analysis, there was a wealth of valuable and novel biological and chemical residue data generated under field conditions of use in Pilling et al., which when taken into consideration alongside other relevant available published data and information (i.e. expert judgement) demonstrated a low risk to honeybees from thiamethoxam when used as a seed treatment on oilseed rape. Indeed, similar conclusions have been reported in subsequent published honeybee field studies using thiamethoxam seed-treated oilseed rape, thus supporting the original conclusions of Pilling et al.
Collapse
Affiliation(s)
- Peter Campbell
- Jealotts Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY UK
| | - Mike Coulson
- Jealotts Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY UK
| | - Keith Ward
- Jealotts Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY UK
| |
Collapse
|