1
|
Anders M, Westphal C, Linden VMG, Weier S, Taylor PJ, Grass I. Complementary effects of pollination and biocontrol services enable ecological intensification in macadamia orchards. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024:e3049. [PMID: 39415670 DOI: 10.1002/eap.3049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
In many crops, both pollination and biocontrol determine crop yield, whereby the relative importance of the two ecosystem services can be moderated by the landscape context. However, additive and interactive effects of pollination and biocontrol in different landscape contexts are still poorly understood. We examined both ecosystem services in South African macadamia orchards. Combining observations and experiments, we disentangled their relative additive and interactive effects on crop production with variation in orchard design and landscape context (i.e., cover of natural habitat and altitude). Insect pollination increased the nut set on average by 280% (initial nut set) and 525% (final nut set), while biocontrol provided by bats and birds reduced the insect damage on average by 40%. Pollination services increased in orchards where macadamia tree rows were positioned perpendicular to orchard edges facing natural habitat. Biocontrol services decreased with elevation. Pest damage was reduced by higher cover of natural habitat at landscape scale but increased with elevation. Pollination and biocontrol are both important ecosystem services and complementary in providing high macadamia crop yield. Smart orchard design and the retention of natural habitat can simultaneously enhance both services. Conjoint management of ecosystem services can thus enable the ecological intensification of agricultural production.
Collapse
Affiliation(s)
- Mina Anders
- Functional Agrobiodiversity & Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Catrin Westphal
- Functional Agrobiodiversity & Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Lower Saxony, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Valerie M G Linden
- School of Mathematical & Natural Sciences and Core Team Member of the Centre for Invasion Biology, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Sina Weier
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| | - Peter J Taylor
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| | - Ingo Grass
- Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
- Center for Biodiversity and Integrative Taxonomy (KomBioTa), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Cruz TMP, Buchmann SL, Prudic KL. Buzzing towards Resilience: Investigating the Spatial Alignment of the Desert Pallid Bee, Centris pallida, and Its Host Plants in Response to Climate Change. INSECTS 2024; 15:793. [PMID: 39452369 PMCID: PMC11508805 DOI: 10.3390/insects15100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Wild bees are vital for the pollination of native plants and crops, providing essential ecosystem services. Climate change is known to impact biodiversity and species distributions, but insects adapted to desert ecosystems may exhibit unique physiological, behavioral, and evolutionary responses. The desert pallid bee (C. pallida), a solitary bee native to the arid southwestern United States and northern Mexico, primarily forages on yellow palo verde (P. microphylla), blue palo verde (P. florida), and desert ironwood (O. tesota). This study used MaxEnt to estimate the current and projected geographical overlap of suitable habitats for C. pallida and its host plants. Here, we used MaxEnt to estimate the current and forecasted overlapping geographically suitable habitat of C. pallida with all three host plants. We forecasted potential environmentally suitable areas for each species to the year 2040 using the current distribution model and climate projections with moderate CO2 levels. We found a continued spatial alignment in the suitable area of the bee and its host plants with a 70% increase in the range overlap area, though shifted to higher average altitudes and a slight northern expansion. These findings may provide insight to stakeholders on the conservation needs of desert-dwelling pollinators.
Collapse
Affiliation(s)
- Terese Maxine P. Cruz
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen L. Buchmann
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA;
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Kathleen L. Prudic
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
- Arizona Institute for Resilience, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Bernauer OM, Branstetter MG, Cook JM, Tierney SM. Functional trait mismatch between native and introduced bee pollinators servicing a global fruit crop. BMC Ecol Evol 2024; 24:104. [PMID: 39095704 PMCID: PMC11295329 DOI: 10.1186/s12862-024-02293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Understanding connections between biodiversity and ecosystem services can be enhanced by shifting focus from species richness to functional trait-based approaches, that when paired with comparative phylogenetic methods can provide even deeper insights. We investigated the functional ecology and phylogenetic diversity of pollination services provided by hymenopteran insects visiting apple flowers in orchards surrounded by either 'natural' or 'disturbed' landscapes in New South Wales, Australia. We assessed whether morphological and behavioural traits (hairiness, body size, glossa length, pollen load purity, and probability of loose pollen) exhibited non-random phylogenetic patterns. Then, explored whether bees, the primary pollinators in this system, filled unique or overlapping functional entities (FEs). For each landscape, we calculated phylogenetic diversity and used FEs to assess functional richness, evenness, and diversion. RESULTS A phylogenomic matrix based on ultraconserved elements (UCEs; 1,382,620 bp from 1,969 loci) was used to infer a fully-resolved and well-supported maximum likelihood phylogeny for 48 hymenopteran morphospecies. There was no significant difference in species richness between landscape categories. Pollinator communities at natural sites had higher phylogenetic complexity (X = 2.37) and functional divergence (x̄ = 0.74 ± 0.02 s.e.) than disturbed sites (X = 1.65 and x̄ = 0.6 ± 0.01 s.e.). Hairiness showed significant phylogenetic clustering (K = 0.94), whereas body size, glossa length, and loose pollen showed weaker non-random phylogenetic patterns (K between 0.3-0.5). Pollen load purity showed no association with phylogeny. The assemblage of 17 bee morphospecies comprised nine FEs: eight FEs consisted of native bees with three containing 65% of all native bee taxa. The introduced honey bee (Apis mellifera) occupied a unique FE, likely due to its different evolutionary history. Both landscape types supported six FEs each with three overlapping: two native bee FEs and the honey bee FE. CONCLUSIONS Bee hairiness was the only functional trait to exhibit demonstrable phylogenetic signal. Despite differences in species richness, and functional and phylogenetic diversity between orchard landscape types, both maintained equal bee FE numbers. While no native bee taxon was analogous to the honey bee FE, four native bee FEs shared the same hairiness level as honey bees. Health threats to honey bee populations in Australia will likely disrupt pollination services to apple, and other pollination-dependent food crops, given the low level of functional redundancy within the investigated pollinator assemblages.
Collapse
Affiliation(s)
- Olivia M Bernauer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr. Madison, Madison, WI, 53706, USA.
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, 5310 Old Main Hill, Logan, UT, 84322, USA
| | - James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Simon M Tierney
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
4
|
Bacelar E, Pinto T, Anjos R, Morais MC, Oliveira I, Vilela A, Cosme F. Impacts of Climate Change and Mitigation Strategies for Some Abiotic and Biotic Constraints Influencing Fruit Growth and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:1942. [PMID: 39065469 PMCID: PMC11280748 DOI: 10.3390/plants13141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Factors such as extreme temperatures, light radiation, and nutritional condition influence the physiological, biochemical, and molecular processes associated with fruit development and its quality. Besides abiotic stresses, biotic constraints can also affect fruit growth and quality. Moreover, there can be interactions between stressful conditions. However, it is challenging to predict and generalize the risks of climate change scenarios on seasonal patterns of growth, development, yield, and quality of fruit species because their responses are often highly complex and involve changes at multiple levels. Advancements in genetic editing technologies hold great potential for the agricultural sector, particularly in enhancing fruit crop traits. These improvements can be tailored to meet consumer preferences, which is crucial for commercial success. Canopy management and innovative training systems are also key factors that contribute to maximizing yield efficiency and improving fruit quality, which are essential for the competitiveness of orchards. Moreover, the creation of habitats that support pollinators is a critical aspect of sustainable agriculture, as they play a significant role in the production of many crops, including fruits. Incorporating these strategies allows fruit growers to adapt to changing climate conditions, which is increasingly important for the stability of food production. By investing in these areas, fruit growers can stay ahead of challenges and opportunities in the industry, ultimately leading to increased success and profitability. In this review, we aim to provide an updated overview of the current knowledge on this important topic. We also provide recommendations for future research.
Collapse
Affiliation(s)
- Eunice Bacelar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Alice Vilela
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Agronomy, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Fernanda Cosme
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|
5
|
Boyes C, Rowntree JK, Coulthard E. A bee's-eye view of landscape change: differences in diet of 2 Andrena species (Hymenoptera: Andrenidae) between 1943 and 2021. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:27. [PMID: 39348595 PMCID: PMC11441578 DOI: 10.1093/jisesa/ieae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024]
Abstract
Declines in pollinating insects have been linked to changes in land cover, affecting the availability of nesting sites and floral resources. Our study is the first analysis of changes in pollen load composition of 2 mining bees, Andrena barbilabris (Kirby) and Andrena flavipes (Panzer) (Hymenoptera: Andrenidae), at the same sites in central England, over 75 years. This provides a unique opportunity to remove spatial variation and review temporal changes in pollen diet within the context of landscape change. We analyzed modern-day pollen load composition for these species and compared it with historical data from the same sites. We then examined potential links between land-use change and the bees' diets. Both bees showed dietary flexibility and lower diet breadth for A. barbilabris, and the bees' foraging strategies appear to have changed. Andrena flavipes collected more pollen taxa in a single load, while A. barbilabris appeared to source pollen from greater distances. Landscape changes at the studied sites have affected the nutritional environment for these bees. Our findings are supported by an existing assessment of floral resources, which found floral diversity has decreased overall in both the habitats used by these bees. However, more research is needed on the nutritional content of pollens used by these bees, both now and historically, to estimate how pollen diversity has changed. The bee's-eye view underlines the importance of understanding how species respond to local changes so that effective conservation strategies can be developed.
Collapse
Affiliation(s)
- Clare Boyes
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jennifer K Rowntree
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Emma Coulthard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
6
|
da Cruz Araujo SH, Mantilla-Afanador JG, Svacina T, Nascimento TF, da Silva Lima A, Camara MBP, Viteri Jumbo LO, dos Santos GR, da Rocha CQ, de Oliveira EE. Contributions of γ-Aminobutyric Acid (GABA) Receptors for the Activities of Pectis brevipedunculata Essential Oil against Drosophila suzukii and Pollinator Bees. PLANTS (BASEL, SWITZERLAND) 2024; 13:1392. [PMID: 38794461 PMCID: PMC11124835 DOI: 10.3390/plants13101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
The γ-aminobutyric acid (GABA) receptors play pivotal roles in the transmission of neuronal information in the nervous system of insects, which has led these proteins to be targeted by synthetic and natural products. Here, we assessed the insecticidal potential of the essential oil of Pectis brevipedunculata (Gardner) Sch. Bip., a neotropical Asteraceae plant used in traditional medicine, for controlling Drosophila suzukii (Matsumura) adults by feeding exposure. By using in silico approaches, we disentangle the contribution of GABA receptors and other potential neuronal targets (e.g., acetylcholinesterase, glutathione-S-transferases) in insects that may explain the essential oil differential activities against D. suzukii and two essential pollinator bees (Apis mellifera Linnaeus and Partamona helleri Friese). Neral (26.7%) and geranial (33.9%) were the main essential oil components which killed D. suzukii with an estimated median lethal concentration (LC50) of 2.25 µL/mL. Both pollinator forager bee species, which would likely contact this compound in the field, were more tolerant to the essential oil and did not have their diet consumptions affected by the essential oil. Based on the molecular predictions for the three potential targets and the essential oil main components, a higher affinity of interaction with the GABA receptors of D. suzukii (geranial -6.2 kcal/mol; neral -5.8 kcal/mol) in relation to A. mellifera (geranial -5.2 kcal/mol; neral -4.9 kcal/mol) would contribute to explaining the difference in toxicities observed in the bioassays. Collectively, our findings indicated the involvement of GABA receptors in the potential of P. brevipedunculata essential oil as an alternative tool for controlling D. suzukii.
Collapse
Affiliation(s)
| | - Javier Guillermo Mantilla-Afanador
- Grupo de Pesquisa em Microbiologia e Biotecnologia Agroindustrial, Universidad Católica de Manizales, Rua 23 N. 60-63, Manizales 170001, Colombia;
| | - Thiago Svacina
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (S.H.d.C.A.)
| | - Tarciza Fernandes Nascimento
- Programa de Pós-Graduação em Biotecnologia, Universidade do Federal do Tocantins, Gurupi 77402-970, TO, Brazil (L.O.V.J.); (G.R.d.S.)
| | - Aldilene da Silva Lima
- Departamento de Química, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (A.d.S.L.); (C.Q.d.R.)
| | - Marcos Bispo Pinheiro Camara
- Departamento de Química, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (A.d.S.L.); (C.Q.d.R.)
| | - Luis Oswaldo Viteri Jumbo
- Programa de Pós-Graduação em Biotecnologia, Universidade do Federal do Tocantins, Gurupi 77402-970, TO, Brazil (L.O.V.J.); (G.R.d.S.)
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Gil Rodrigues dos Santos
- Programa de Pós-Graduação em Biotecnologia, Universidade do Federal do Tocantins, Gurupi 77402-970, TO, Brazil (L.O.V.J.); (G.R.d.S.)
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil
| | - Cláudia Quintino da Rocha
- Departamento de Química, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (A.d.S.L.); (C.Q.d.R.)
| | - Eugênio Eduardo de Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (S.H.d.C.A.)
- Programa de Pós-Graduação em Biotecnologia, Universidade do Federal do Tocantins, Gurupi 77402-970, TO, Brazil (L.O.V.J.); (G.R.d.S.)
| |
Collapse
|
7
|
Graham KK, McArt S, Isaacs R. High pesticide exposure and risk to bees in pollinator plantings adjacent to conventionally managed blueberry fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171248. [PMID: 38402956 DOI: 10.1016/j.scitotenv.2024.171248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Wildflower plantings adjacent to agricultural fields provide diverse floral resources and nesting sites for wild bees. However, their proximity to pest control activities in the crop may result in pesticide exposure if pesticides drift into pollinator plantings. To quantify pesticide residues in pollinator plantings, we sampled flowers and soil from pollinator plantings and compared them to samples from unenhanced field margins and crop row middles. At conventionally managed farms, flowers from pollinator plantings had similar exposure profiles to those from unenhanced field margins or crop row middles, with multiple pesticides and high and similar risk quotient (RQ) values (with pollinator planting RQ: 3.9; without pollinator planting RQ: 4.0). Whereas samples from unsprayed sites had significantly lower risk (RQ: 0.005). Soil samples had overall low risk to bees. Additionally, we placed bumble bee colonies (Bombus impatiens) in field margins of crop fields with and without pollinator plantings and measured residues in bee-collected pollen. Pesticide exposure was similar in pollen from sites with or without pollinator plantings, and risk was generally high (with pollinator planting RQ: 0.5; without pollinator planting RQ: 1.1) and not significant between the two field types. Risk was lower at sites where there was no pesticide activity (RQ: 0.3), but again there was no significant difference between management types. The insecticide phosmet, which is used on blueberry farms for control of Drosophila suzukii, accounted for the majority of elevated risk. Additionally, analysis of pollen collected by bumble bees found no significant difference in floral species richness between sites with or without pollinator plantings. Our results suggest that pollinator plantings do not reduce pesticide risk and do not increase pollen diversity collected by B. impatiens, further highlighting the need to reduce exposure through enhanced IPM adoption, drift mitigation, and removal of attractive flowering weeds prior to insecticide applications.
Collapse
Affiliation(s)
- Kelsey K Graham
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI 48824, USA; Pollinating Insect-Biology, Management, Systematics Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 1410 N 800 E, Logan, UT 84341, USA.
| | - Scott McArt
- Department of Entomology, Cornell University, 4129 Comstock Hall, Ithaca, NY 14853, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI 48824, USA; Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Symington HA, Glover BJ. Strawberry varieties differ in pollinator-relevant floral traits. Ecol Evol 2024; 14:e10914. [PMID: 38322008 PMCID: PMC10844710 DOI: 10.1002/ece3.10914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
A rising global population will need more food, increasing demand for insect pollination services. However, general insect declines conflict with this demand. One way to mitigate this conflict is to grow crop flowers that are easier for insects to find and more rewarding to those that visit them. This study quantifies variation in the pollinator-relevant traits of nectar and pollen production, flower size and flower shape in commercial strawberry, finding significant variation between varieties in all traits. Bumblebees could learn to distinguish between the extremes of variation in flower shape, but this learning is very slow, indicating that this variation is at the limit of that which can be detected by bumblebees. Bee preferences for nectar of differing sugar concentrations at field-realistic volumes were consistent with previous observations at larger volumes, suggesting that it is valid to translate lab findings to the field. This study builds on our knowledge of the range of pollinator reward present in a single cultivated species and of the impact of field-realistic levels of variation in floral traits on bumblebee preferences.
Collapse
|
9
|
Blareau E, Sy P, Daoud K, Requier F. Insect-Mediated Pollination of Strawberries in an Urban Environment. INSECTS 2023; 14:877. [PMID: 37999076 PMCID: PMC10671972 DOI: 10.3390/insects14110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
Pollination services provided by a diversity of pollinators are critical in agriculture because they enhance the yield of many crops. However, few studies have assessed pollination services in urban agricultural systems. We performed flower-visitor observations and pollination experiments on strawberries (Fragaria × ananassa) in an urban area near Paris, France, in order to assess the effects of (i) insect-mediated pollination service and (ii) potential pollination deficit on fruit set, seed set, and fruit quality (size, weight, and malformation). Flower-visitor observations revealed that the pollinator community solely comprised unmanaged pollinators, despite the presence of beehives in the surrounding landscape. Based on the pollination experiments, we found that the pollination service mediated by wild insects improved the fruit size as a qualitative value of production, but not the fruit set. We also found no evidence of pollination deficit in our urban environment. These results suggest that the local community of wild urban pollinators is able to support strawberry crop production and thus plays an important role in providing high-quality, local, and sustainable crops in urban areas.
Collapse
Affiliation(s)
- Elsa Blareau
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Pauline Sy
- LAB3S Sols Savoirs Saveurs, 32 Avenue Henri Varagnat, 93140 Bondy, France
| | - Karim Daoud
- Laboratoire Régional du Suivi de la Faune Sauvage, 32 Avenue Henri Varagnat, 93140 Bondy, France
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Varnava AI, Manganaris GA, Stavrinides MC. Assessing the biodiversity and the impact of pollinators on carob production. PLoS One 2023; 18:e0291431. [PMID: 37862335 PMCID: PMC10588836 DOI: 10.1371/journal.pone.0291431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/29/2023] [Indexed: 10/22/2023] Open
Abstract
As the current climate crisis intensifies, drought resistant crops are becoming more important due to their ability to withstand the increasingly hotter and drier summers. Such crops are valuable for pollinators as they provide food resources for wild and managed species. The carob tree (Ceratonia siliqua L.) represents an example of a heat- and drought- resistant crop, able to grow in dry areas with practically no inputs. The current study assessed over two growing seasons the diversity of wild bees and other pollinators relying on carob flowers, as well as the contribution of animal pollination to carob production. Carob flowers were subjected to two treatments: Open pollination, where inflorescences were left untreated, and wind pollination, where inflorescences were bagged in a mesh during blooming. Weekly observations during blooming showed that Apis mellifera was the most frequent floral visitor followed by wild bees and wasps. Carob flowers were visited by at least 10 different wild bee species. Open-pollinated flowers produced significantly more pods, with the benefit ranging from 4 to 16 times higher production, depending on the region. Open pollination led to pods with greater weight, length and number of seeds compared to pods derived from wind pollination. The results of the current study highlight the importance of animal pollination to carob production, as well as the significance of carob trees to wild bee conservation.
Collapse
Affiliation(s)
- Androulla I. Varnava
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - George A. Manganaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Menelaos C. Stavrinides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
11
|
Ferreira LMN, Hrncir M, de Almeida DV, Bernardes RC, Lima MAP. Effects of acephate and glyphosate-based agrochemicals on the survival and flight of Plebeia lucii Moure, 2004 (Apidae: Meliponini). ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:926-936. [PMID: 37728837 DOI: 10.1007/s10646-023-02698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The conservation of terrestrial ecosystems depends largely on the preservation of pollinators, mainly bees. Stingless bees are among the main pollinators of native plants and crops in tropical regions, where they can be exposed to agrochemicals while foraging on contaminated flowers. In the present study, we investigated the effects on stingless bees of both a commonly used insecticide and herbicide in Brazil. Plebeia lucii Moure, 2004 (Apidae: Meliponini) foragers were orally chronically exposed to food contaminated with different concentrations of commercial formulations of the insecticide acephate or the herbicide glyphosate. Bee mortality increased with increasing agrochemical concentrations. Depending on its concentration, the acephate-based formulation reduced the lifespan and impaired the flight ability of bees. The glyphosate-based formulation was toxic only under unrealistic concentrations. Our results demonstrate that realistic concentrations of acephate-based insecticides harm the survival and alter the mobility of stingless bees. The ingestion of glyphosate-based herbicides was safe for forager bees under realistic concentrations.
Collapse
Affiliation(s)
- Lívia Maria Negrini Ferreira
- Universidade Federal de Viçosa, Departamento de Biologia Geral, Programa de Pós-Graduação em Ecologia, Viçosa, MG, Brazil.
- Universidade Federal de Viçosa, Departamento de Entomologia, Viçosa, MG, Brazil.
| | - Michael Hrncir
- Universidade de São Paulo, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Danilo Vieira de Almeida
- Universidade Federal de Viçosa, Departamento de Agronomia, Curso de Graduação em Agronomia, Viçosa, MG, Brazil
| | | | | |
Collapse
|
12
|
Misiewicz A, Mikołajczyk Ł, Bednarska AJ. Floral resources,energetic value and pesticide residues in provisions collected by Osmia bicornis along a gradient of oilseed rape coverage. Sci Rep 2023; 13:13372. [PMID: 37591888 PMCID: PMC10435552 DOI: 10.1038/s41598-023-39950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Pollinators in agricultural landscapes are facing global decline and the main pressures include food scarcity and pesticide usage. Intensive agricultural landscapes may provide important food resources for wild pollinators via mass flowering crops. However, these are monofloral, short-term, and may contain pesticide residues. We explored how the landscape composition with a different proportion of oilseed rape (6-65%) around Osmia bicornis nests affects floral diversity, contamination with pesticides, and energetic value of provisions collected by this species of wild bees as food for their offspring. Altogether, the bees collected pollen from 28 plant taxa (6-15 per nest) and provisions were dominated by Brassica napus (6.0-54.2%, median 44.4%, 12 nests), Quercus sp. (1.2-19.4%, median 5.2%, 12 nests), Ranunculus sp. (0.4-42.7%, median 4.7%, 12 nests), Poaceae (1.2-59.9%, median 5.8%, 11 nests) and Acer sp. (0.6-42%, median 18.0%, 8 nests). Residues of 12 pesticides were found in provisions, with acetamiprid, azoxystrobin, boscalid, and dimethoate being the most frequently detected at concentrations up to 1.2, 198.4, 16.9 and 17.8 ng/g (median 0.3, 10.6, 11.3, 4.4 ng/g), respectively. Floral diversity and energetic value of provisions, but not the Pesticide Risk Index depended on landscape structure. Moreover, pollen diversity decreased, and energetic value increased with landscape diversity. Thus, even a structurally simple landscape may provide diverse food for O. bicornis if the nest is located close to a single but resource-diverse patch. Both B. napus and non-crop pollen were correlated with pesticide concentrations.
Collapse
Affiliation(s)
- Anna Misiewicz
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland.
| | - Łukasz Mikołajczyk
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
| |
Collapse
|
13
|
Roch JC, Malfi R, Van Wyk JI, Muñoz Agudelo DC, Milam J, Adler LS. The intersection of bee and flower sexes: pollen presence shapes sex-specific bee foraging associations in sunflower. ENVIRONMENTAL ENTOMOLOGY 2023; 52:480-490. [PMID: 36961107 DOI: 10.1093/ee/nvad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 06/17/2023]
Abstract
Foraging preferences are known to differ among bee taxa, and can also differ between male and female bees of the same species. Similarly, bees can prefer a specific flower sex, particularly if only one sex provides pollen. Such variation in foraging preferences could lead to divergent bee communities visiting different flower sexes of a plant species. We sampled bees visiting sunflowers to characterize bee species richness, abundance, and sex ratios on pollen-fertile and pollen-sterile cultivars. We asked whether female or male bees were more abundant on sunflowers, whether female bees were more abundant on pollen-fertile or pollen-sterile cultivars, and whether pollen presence predicted the sex of sampled bees. We further asked whether the bee community differed between pollen-fertile and pollen-sterile cultivars. Females of most bee species were more abundant on sunflowers compared to males, and females were usually more abundant on pollen-fertile cultivars. In three bee species, pollen presence was predictive of a bee's sex, with females more abundant on pollen-fertile cultivars than males. Further, the bee community differed significantly between pollen-fertile and pollen-sterile cultivars, with two bee species functioning as indicators for pollen-fertile sunflowers. Our results demonstrate that a bee's sex shapes foraging associations on sunflowers and influences abundance between pollen-fertile and pollen-sterile cultivars, and that pollen-fertile and pollen-sterile cultivars are visited by different bee communities. Bee sexes and flower pollen presence may be under-appreciated factors shaping pollination services in both agricultural and natural ecosystems, and could be important considerations for pollination of crops with pollen-fertile and pollen-sterile flowers.
Collapse
Affiliation(s)
- Justin C Roch
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Rosemary Malfi
- Massachusetts Pollinator Network, Northeast Organic Farming Association, Florence, MA 01062, USA
| | - Jennifer I Van Wyk
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Deicy Carolina Muñoz Agudelo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joan Milam
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Westreich LR, Westreich ST, Tobin PC. Native solitary bee reproductive success depends on early season precipitation and host plant richness. Oecologia 2023; 201:965-978. [PMID: 36947272 DOI: 10.1007/s00442-023-05354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Spring-emerging bees depend upon the synchronized bloom times of angiosperms that provide pollen and nectar for offspring. The emergence of such bees and bloom times are linked to weather but can be phenologically mismatched, which could limit bee developmental success. However, it remains unclear how such phenologically asynchrony could affect spring-emerging pollinators, and especially for those that forage over a relatively short time period. We examined the relationship between weather and host plant selection on the native spring-foraging solitary bee, Osmia lignaria, across 3 years at urban and rural sites in and around Seattle, Washington, USA. We used community science weather data to test the effects of precipitation, wind, and temperature on O. lignaria oviposition and developmental success. We also collected pollen data over two distinct foraging periods, early and late spring, and used Next-Generation Sequencing to identify plant genera from pollen. Among the weather variables, precipitation during the early foraging period adversely affected larval developmental success and adult bee emergence success, but not oviposition. Using DNA metabarcoding, we observed that increases in the number of plant genera in pollen increased adult emergence in both foraging periods, but not oviposition or larval development. We also observed that foraging bees consistently visited certain genera during each foraging period, especially Acer, Salix, and Rubus. However, pollen collected by O. lignaria over different years varied in the number of total genera visited, highlighting the importance of multi-year studies to ascertain bee foraging preferences and its link to developmental success.
Collapse
Affiliation(s)
- Lila R Westreich
- School of Environmental and Forest Sciences, University of Washington, 3715 W. Stevens Way NE, Seattle, WA, 98195, USA
| | | | - Patrick C Tobin
- School of Environmental and Forest Sciences, University of Washington, 3715 W. Stevens Way NE, Seattle, WA, 98195, USA.
| |
Collapse
|
15
|
Spatial Monitoring and Insect Behavioural Analysis Using Computer Vision for Precision Pollination. Int J Comput Vis 2022. [DOI: 10.1007/s11263-022-01715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Sciligo AR, M'Gonigle LK, Kremen C. Local diversification enhances pollinator visitation to strawberry and may improve pollination and marketability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.941840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous studies show that semi-natural habitats within agricultural landscapes benefit native pollinating insects and increase resultant crop pollination services. More recently, evidence is emerging that agricultural diversification techniques on farms, as well as increased compositional and configurational heterogeneity within the cropped portion of landscapes, enhance pollinator communities. However, to date, only a few studies have investigated how diversifying the crops within the farm field itself (i.e., polyculture) influences wild pollinator communities and crop pollination services. In the Central Coast of California, we investigate how local crop diversification within fields, crossed with the proportion of natural habitat in the surrounding landscape, jointly affect pollinator communities and services to strawberry. On 16 organic farms varying in farm type (monoculture vs. polyculture) and proportion of natural land cover, we find that both factors enhance pollinator abundance and richness, although neither affect honey bee abundance. Further, natural cover has a stronger effect on pollinator richness on monoculture (vs. polyculture) farms. Although strawberry can self-pollinate, we document experimentally that pollinator exclusion doubles the probability of berry malformation, while excluding both pollinators and wind triples malformation, with corresponding effects on berry marketability. Finally, in post-hoc tests, we find that berry malformation is significantly higher with greater visitation by honey bees, and observed a trend that this reduction was mitigated by increased native bee richness. These results suggest that both polyculture and semi-natural habitat cover support more abundant and diverse pollinator communities, and that ambient levels of pollinator visitation to strawberry provide an important crop pollination service by improving berry marketability (i.e., by reducing berry malformation). Although further confirmation would be needed, our work suggests that honey bees alone do not provide sufficient pollination services. Prior work has shown that honey bees tend to visit only the top of the strawberry flower receptacle, while other native bees often crawl around the flower base, leading to more complete pollination of the achenes and, consequently, better formed berries. If honey bee visits reduced native bee visitation in our system, this could explain the unexpected correlation between increased honey bee visits and malformation.
Collapse
|
17
|
El Abdouni I, Lhomme P, Christmann S, Dorchin A, Sentil A, Pauly A, Hamroud L, Ihsane O, Reverté S, Patiny S, Wood TJ, Bencharki Y, Rasmont P, Michez D. Diversity and Relative Abundance of Insect Pollinators in Moroccan Agroecosystems. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.866581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agroecosystems are often impoverished ecosystems, but they can host diverse communities of insects which provide ecosystem services. Specifically, crops may benefit from insect pollinators that increase their quantity and quality of yields. Basic knowledge is still needed regarding the identity, diversity, abundance, and ecology of insect pollinators in many parts of the world, especially in low and middle-income countries. In this study we investigate the potential of agroecosystems and crops in Morocco to host a high diversity of insect pollinators. We sampled insects in four eco-climatic regions encompassing a total of 22 crops for 2 years (2018–2019). After describing the general pattern of diversity and abundance of insect pollinators, we focused our comparative analyses on bees as they are known to be the most efficient and abundant group of insect pollinators. We recorded a total of 53,361 insect pollinators in all agroecosystems among which 37,091 were visiting crop flowers. Bees were by far the most abundant group visiting crops. Honeybees represented 49% of crop visitors followed by wild bees representing 33% of relative abundance. Three genera (Lasioglossum, Andrena, and Xylocopa) represented 53% of the total abundance of wild bees visiting crops. We identified a total of 213 species visiting crops (22% of national wild bee species richness). A comparison of the abundance, species richness, and community composition of wild bees visiting the same crops showed significant inter-regional differences for zucchini, faba bean, and eggplant. This study highlights the high diversity of pollinators in Moroccan agroecosystems and represents an important step toward exploring the Moroccan pollinator fauna. It provides basic information for future studies on pollinator conservation and pollination services.
Collapse
|
18
|
Van Oystaeyen A, Tuyttens E, Boonen S, De Smedt L, Bellinkx S, Wäckers F, Pekas A. Dual purpose: Predatory hoverflies pollinate strawberry crops and protect them against the strawberry aphid, Chaetospihon fragaefolii. PEST MANAGEMENT SCIENCE 2022; 78:3051-3060. [PMID: 35437904 DOI: 10.1002/ps.6931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Predatory syrphids are an important functional group due to their potential for providing multiple ecosystem services. Adults feed on nectar and pollen, and can be effective pollinators, while larvae are voracious predators that can reduce aphid pressure. Still, little research has addressed their potential dual function in agroecosystems. In this study, we assessed the potential of two predatory hoverflies, Eupeodes corollae and Sphaerophoria rueppellii, for delivering concurrent pollination and biological control of Chaetospihon fragaefolii in greenhouse strawberries. RESULTS Both hoverfly species effectively pollinated strawberry flowers of two different varieties ('Elsanta' and 'Sonsation'), resulting in an increase in high-quality marketable fruits, a reduction of fruit deformities, and higher number of seeds per fruit compared to pollinator-excluded fruits. S. ruepellii had a significantly longer flower handling time than E. corollae, which translated to a more efficient pollination expressed as higher seed numbers per fruit after a single flower visit. By contrast, flowers that were open to multiple visits were more effectively pollinated by E. corollae, suggesting that E. corollae is potentially a better cross-pollinator than S. rueppellii. In addition, both hoverfly species suppressed aphid populations in strawberry (var. 'Sonata'), with S. rueppellii and E. corollae reducing aphid populations by 49% and 62%, respectively. CONCLUSION Predatory syrphids can concurrently contribute to pollination and biological control in strawberry in a greenhouse setting. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Ella Tuyttens
- Research & Development, Biobest Group NV, Westerlo, Belgium
| | - Sten Boonen
- Research & Development, Biobest Group NV, Westerlo, Belgium
| | - Lien De Smedt
- Research & Development, Biobest Group NV, Westerlo, Belgium
| | - Stijn Bellinkx
- Research & Development, Biobest Group NV, Westerlo, Belgium
| | - Felix Wäckers
- Research & Development, Biobest Group NV, Westerlo, Belgium
| | | |
Collapse
|
19
|
Kendall LK, Stavert JR, Gagic V, Hall M, Rader R. Initial floral visitor identity and foraging time strongly influence blueberry reproductive success. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Scherr KD, Jamieson MA. Abiotic and biotic drivers of strawberry productivity across a rural-urban gradient. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Thapa-Magar KB, Davis TS. Bumblebee (Hymenoptera: Apidae) Visitation Frequency Drives Seed Yields and Interacts with Site-Level Species Richness to Drive Pollination Services in Sunflower. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1194-1202. [PMID: 34228801 DOI: 10.1093/ee/nvab063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 06/13/2023]
Abstract
Understanding whether pollinator behaviors and species richness drive crop yields is a key area of investigation in pollination ecology. Using sunflower as a study species we describe variation in mean floral visitation times among bee taxa and test how interactions between bee richness and the proportion of bumblebees in localized communities impact seed yield. Seven bee genera commonly visited sunflower including Agapostemon, Bombus, Halictus, Lasioglossum, Megachile, Melissodes, and Svastra. Mean visitation times to sunflower varied across genera and Bombus and Halictus spp. spent the most time foraging on inflorescences, but the number of visits by Bombus spp. was the only parameter associated with increased yields. Experimental pollination deficit reduced seed development and yields, and these effects were stronger in stands of wild-type sunflower in the field compared to a confection variety grown in the greenhouse. Relationships between bee richness and pollination services differed for potted and wild sunflower: when bees had short-term access to potted sunflower, bee richness and relative Bombus abundances were not associated with pollination quotients. When bees had long-term access to wild sunflower, relative Bombus abundances predicted pollination services but were modified by site-level bee richness: as richness increased, the effects of Bombus abundance decreased. Our studies demonstrate that bee species richness is not always a clear predictor of pollination services; instead, our results underscore the importance of specific taxa when species richness is low (here, bumblebees), and show that the effects of bee functional groups important for pollination may be modified by changes in site-level species richness.
Collapse
Affiliation(s)
- Khum Bahadur Thapa-Magar
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO 80523-1472, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1472, USA
| | - Thomas Seth Davis
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO 80523-1472, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1472, USA
| |
Collapse
|
22
|
Seasonal dynamics of plant pollinator networks in agricultural landscapes: how important is connector species identity in the network? Oecologia 2021; 196:825-837. [PMID: 34160660 DOI: 10.1007/s00442-021-04975-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Farm habitat enrichment is crucial for sustainable production of pollinator-dependent crops. Correct choice of crop and non-crop plant species in habitat management support resilient pollinator fauna and effective pollination service delivery. We identify key network metrices to recognize suitable crop and non-crop plant species for farm habitat enrichment. We also highlight the importance of seasonal variation of the key plant and pollinator species that will crucially inform farm management. Crop species played a key role in maintaining plant-pollinator network integrity. In contrast to the conventional practice of focussing on non-crop plants for pollination service restoration, we find crop plants across seasons hold a key role in maintaining healthy plant-pollinator networks. Our study highlights the importance of non-bee pollinators especially, flies and butterflies in sustaining healthy plant-pollinator network. Bees were important as connector species and controlled other species in the network. Only 16.67% bees and 33.33% of plant species acted as connector species. Our study also shows that the identity of connector species in a plant-pollinator network can change drastically across seasons.
Collapse
|
23
|
Castro H, Siopa C, Casais V, Castro M, Loureiro J, Gaspar H, Dias MC, Castro S. Spatiotemporal Variation in Pollination Deficits in an Insect-Pollinated Dioecious Crop. PLANTS 2021; 10:plants10071273. [PMID: 34206665 PMCID: PMC8309125 DOI: 10.3390/plants10071273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
Inadequate quantity and quality of pollen reaching the stigmas decreases the sexual reproductive output of plants, compromising yield. Still, the current extent of pollen limitation affecting yield (i.e., pollination deficits) is poorly quantified. This study is aimed at quantifying pollination deficits in kiwifruit orchards, a dioecious plant with a fruit caliber and market value largely dependent on pollination services. For that, we set up a pollination experiment and quantified services and yield provided by current pollination vectors, and under optimal pollination, over two years in a total of twenty-three orchards covering the kiwifruit production range in Portugal. We characterized nine fruit traits and used: (1) fruit weight to calculate pollination deficits and relate them with pollinator diversity and abundance, and environmental variables; and (2) production values, fruit caliber, and market values to calculate economic impact of pollination deficits. Results showed that pollination deficits were variable in time and space and were significantly and negatively correlated with pollinator abundance, while the opposite pattern was obtained for production, supporting the notion that a higher pollinator's abundance is related to lower pollination deficits and higher yields. Understanding the factors affecting pollination deficits is crucial to depict the need for nature-based solutions promoting pollinators and to resort to management practices assisting pollination.
Collapse
|
24
|
Angelella GM, McCullough CT, O’Rourke ME. Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips. Sci Rep 2021; 11:3202. [PMID: 33547371 PMCID: PMC7865060 DOI: 10.1038/s41598-021-81967-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
Pollinator refuges such as wildflower strips are planted on farms with the goals of mitigating wild pollinator declines and promoting crop pollination services. It is unclear, however, whether or how these goals are impacted by managed honey bee (Apis mellifera L.) hives on farms. We examined how wildflower strips and honey bee hives and/or their interaction influence wild bee communities and the fruit count of two pollinator-dependent crops across 21 farms in the Mid-Atlantic U.S. Although wild bee species richness increased with bloom density within wildflower strips, populations did not differ significantly between farms with and without them whereas fruit counts in both crops increased on farms with wildflower strips during one of 2 years. By contrast, wild bee abundance decreased by 48%, species richness by 20%, and strawberry fruit count by 18% across all farm with honey bee hives regardless of wildflower strip presence, and winter squash fruit count was consistently lower on farms with wildflower strips with hives as well. This work demonstrates that honey bee hives could detrimentally affect fruit count and wild bee populations on farms, and that benefits conferred by wildflower strips might not offset these negative impacts. Keeping honey bee hives on farms with wildflower strips could reduce conservation and pollination services.
Collapse
Affiliation(s)
- G. M. Angelella
- grid.438526.e0000 0001 0694 4940School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA USA ,grid.508980.cPresent Address: USDA, Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951 USA
| | - C. T. McCullough
- grid.438526.e0000 0001 0694 4940School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Present Address: Department of Entomology, Virginia Tech, Blacksburg, VA USA
| | - M. E. O’Rourke
- grid.438526.e0000 0001 0694 4940School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA USA ,grid.482914.20000 0000 9502 2261Present Address: USDA, National Institute of Food and Agriculture, Kansas City, MO USA
| |
Collapse
|
25
|
Thapa-Magar KB, Davis TS, Kondratieff B. Livestock grazing is associated with seasonal reduction in pollinator biodiversity and functional dispersion but cheatgrass invasion is not: Variation in bee assemblages in a multi-use shortgrass prairie. PLoS One 2020; 15:e0237484. [PMID: 33332351 PMCID: PMC7746148 DOI: 10.1371/journal.pone.0237484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022] Open
Abstract
Livestock grazing and non-native plant species affect rangeland habitats globally. These factors may have important effects on ecosystem services including pollination, yet, interactions between pollinators, grazing, and invasive plants are poorly understood. To address this, we tested the hypothesis that cattle grazing and site colonization by cheatgrass (Bromus tectorum) impact bee foraging and nesting habitats, and the biodiversity of wild bee communities, in a shortgrass prairie system. Bee nesting habitats (litter and wood cover) were marginally improved in non-grazed sites with low cheatgrass cover, though foraging habitat (floral cover and richness, bare soil) did not differ among cattle-grazed sites or non-grazed sites with low or high cheatgrass cover. However, floral cover was a good predictor of bee abundance and functional dispersion. Mean bee abundance, richness, diversity and functional diversity were significantly lower in cattle-grazed habitats than in non-grazed habitats. Differences in bee diversity among habitats were pronounced early in the growing season (May) but by late-season (August) these differences eroded as Melissodes spp. and Bombus spp. became more abundant at study sites. Fourth-corner analysis revealed that sites with high floral cover tended to support large, social, polylectic bees; sites with high grass cover tended to support oligolectic solitary bees. Both cattle-grazed sites and sites with high cheatgrass cover were associated with lower abundances of above-ground nesting bees but higher abundance of below-ground nesters than non-grazed sites with low cheatgrass cover. We conclude that high cheatgrass cover is not associated with reduced bee biodiversity or abundance, but cattle grazing was negatively associated with bee abundances and altered species composition. Although floral cover is an important predictor of bee assemblages, this was not impacted by cattle grazing and our study suggests that cattle likely impact bee communities through effects other than those mediated by forbs, including soil disturbance or nest destruction. Efforts aimed at pollinator conservation in prairie habitats should focus on managing cattle impacts early in the growing season to benefit sensitive bee species.
Collapse
Affiliation(s)
- Khum Bahadur Thapa-Magar
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thomas Seth Davis
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Boris Kondratieff
- Agricultural Biology, College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
26
|
Rivers-Moore J, Andrieu E, Vialatte A, Ouin A. Wooded Semi-Natural Habitats Complement Permanent Grasslands in Supporting Wild Bee Diversity in Agricultural Landscapes. INSECTS 2020; 11:insects11110812. [PMID: 33218064 PMCID: PMC7698930 DOI: 10.3390/insects11110812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 11/25/2022]
Abstract
Simple Summary Loss of semi-natural habitats in agricultural landscapes negatively affects wild bees. These pollinators are, however, very important in agricultural landscapes as they enable the pollination of crops and wild plants. The aim of this study was thus to understand the respective roles of different wooded and herbaceous habitats in their ability to support a diversity of wild bees. We first found that wild bee communities differed between wooded and herbaceous habitats, some bee species being found in one type of habitat and not in the other. We also showed that wooded semi-natural habitats provide some species of pollen preferred by the bees. Finally, we found that in wooded habitats there are some interactions between plant and bee species that do not happen in permanent grasslands. However, the latter also plays an important role in the diversity of bees and plants, and these wooded and herbaceous habitats complement each other. Overall, our results underline the importance of maintaining a diversity of semi-natural habitats in agricultural landscapes to maintain a diversity of wild bees and thus promote the pollination of wild plants and crops. Abstract Loss of semi-natural habitats (SNH) in agricultural landscapes affects wild bees, often negatively. However, how bee communities respond varies and is still unclear. To date, few studies have used precise descriptors to understand these effects. Our aim was to understand the respective and complementary influences of different wooded and herbaceous habitats on wild bee communities. We selected thirty 500-m radius landscapes on a gradient of a percentage of wooded SNH in south-western France. At each landscape, we sampled wild bees in spring 2016 and plants in spring 2015 and 2016 at the forest edge, in a hedgerow, and in a permanent grassland. Pollen carried by the most abundant bee species was collected and identified. Using beta diversity indices, we showed that wild bee community composition differs between the three SNH types, and especially between herbaceous and wooded SNH. Based on Jacobs’ selection index, we showed that pollen of some plant species recorded in wooded SNH are preferentially selected by wild bees. Studying the impact of the loss of each SNH type on the global bee-pollen interaction network, we found that wooded SNH contributed to its resilience, enabling specific plant–bee interactions. Overall, our results underline the non-negligible contribution of wooded SNH to the diversity of wild bees in agricultural landscapes, and thus the importance of maintaining different types of SNH.
Collapse
Affiliation(s)
- Justine Rivers-Moore
- DYNAFOR, Université de Toulouse, INRAE, 31320 Castanet-Tolosan, France; (E.A.); (A.V.); (A.O.)
- LTSER Zone Atelier « PYRÉNÉES GARONNE », 31320 Auzeville-Tolosane, France
- Correspondence:
| | - Emilie Andrieu
- DYNAFOR, Université de Toulouse, INRAE, 31320 Castanet-Tolosan, France; (E.A.); (A.V.); (A.O.)
- LTSER Zone Atelier « PYRÉNÉES GARONNE », 31320 Auzeville-Tolosane, France
| | - Aude Vialatte
- DYNAFOR, Université de Toulouse, INRAE, 31320 Castanet-Tolosan, France; (E.A.); (A.V.); (A.O.)
- LTSER Zone Atelier « PYRÉNÉES GARONNE », 31320 Auzeville-Tolosane, France
| | - Annie Ouin
- DYNAFOR, Université de Toulouse, INRAE, 31320 Castanet-Tolosan, France; (E.A.); (A.V.); (A.O.)
- LTSER Zone Atelier « PYRÉNÉES GARONNE », 31320 Auzeville-Tolosane, France
| |
Collapse
|
27
|
Averting robo-bees: why free-flying robotic bees are a bad idea. Emerg Top Life Sci 2020; 3:723-729. [PMID: 32915225 DOI: 10.1042/etls20190063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022]
Abstract
Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, 'Insect Armageddon' from both practical and ethical viewpoints.
Collapse
|
28
|
Hall MA, Jones J, Rocchetti M, Wright D, Rader R. Bee Visitation and Fruit Quality in Berries Under Protected Cropping Vary Along the Length of Polytunnels. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1337-1346. [PMID: 32188974 DOI: 10.1093/jee/toaa037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Wild and managed bees provide effective crop pollination services worldwide. Protected cropping conditions are thought to alter the ambient environmental conditions in which pollinators forage for flowers, yet few studies have compared conditions at the edges and center of growing tunnels. We measured environmental variables (temperature, relative humidity, wind speed, white light, and UV light) and surveyed activity of the managed honey bee, Apis mellifera L.; wild stingless bee, Tetragonula carbonaria Smith; and wild sweat bee, Homalictus urbanus Smith, along the length of 32 multiple open-ended polyethylene growing tunnels. These were spaced across 12 blocks at two commercial berry farms, in Coffs Harbour, New South Wales and Walkamin, North Queensland, Australia. Berry yield, fresh weight, and other quality metrics were recorded at discrete increments along the length of the tunnels. We found a higher abundance and greater number of flower visits by stingless bees and honey bees at the end of tunnels, and less frequent visits to flowers toward the middle of tunnels. The center of tunnels experienced higher temperatures and reduced wind speed. In raspberry, fruit shape was improved with greater pollinator abundance and was susceptible to higher temperatures. In blueberry, per plant yield and mean berry weight were positively associated with pollinator abundance and were lower at the center of tunnels than at the edge. Fruit quality (crumbliness) in raspberries was improved with a greater number of visits by sweat bees, who were not as susceptible to climatic conditions within tunnels. Understanding bee foraging behavior and changes to yield under protected cropping conditions is critical to inform the appropriate design of polytunnels, aid pollinator management within them, and increase economic gains in commercial berry crops.
Collapse
Affiliation(s)
- Mark A Hall
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Jeremy Jones
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | | | - Derek Wright
- Costagroup, Corindi Berry Farm, Corindi, NSW, Australia
| | - Romina Rader
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
29
|
MacInnis G, Buddle CM, Forrest JR. Small wild bee abundance declines with distance into strawberry crops regardless of field margin habitat. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Longing SD, Peterson EM, Jewett CT, Rendon BM, Discua SA, Wooten KJ, Subbiah S, Smith PN, McIntyre NE. Exposure of Foraging Bees (Hymenoptera) to Neonicotinoids in the U.S. Southern High Plains. ENVIRONMENTAL ENTOMOLOGY 2020; 49:528-535. [PMID: 32025712 DOI: 10.1093/ee/nvaa003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Exposure to pesticides is a major threat to insect pollinators, potentially leading to negative effects that could compromise pollination services and biodiversity. The objectives of this study were to quantify neonicotinoid concentrations among different bee genera and to examine differences attributable to body size and surrounding land use. During the period of cotton planting (May-June), 282 wild bees were collected from habitat patches associated with cropland, grassland, and urban land cover and analyzed for three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Twenty bees among eight genera contained one or more of the neonicotinoid compounds and detections occurred in all landscape types, yet with the most detections occurring in cropland-associated habitats. Apis Linnaeus (Hymenoptera: Apidae), Melissodes Latreille (Apidae), Perdita Smith (Andrenidae), and Lasioglossum Curtis (Halictidae) had multiple individuals with neonicotinoid detections. Two of the largest bees (Apis and Melissodes) had the greatest number of detections within genera, yet the relatively small-bodied genus Perdita had the three highest neonicotinoid concentrations reported. The number of detections within a genus and average generic body mass showed a marginally significant trend towards larger bees having a greater frequency of neonicotinoid detections. Overall, the relatively low percentage of detections across taxa suggests practices aimed at conserving grassland remnants in intensified agricultural regions could assist in mitigating exposure of wild bees to agrochemicals, while differences in bee traits and resource use could in part drive exposure. Further work is needed to address variable agrochemical exposures among pollinators, to support strategies for conservation and habitat restoration in affected landscapes.
Collapse
Affiliation(s)
- Scott D Longing
- Department of Plant and Soil Science, Texas Tech University, 2911 15th Street, Lubbock, TX
| | - Eric M Peterson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX
| | - Christopher T Jewett
- Department of Plant and Soil Science, Texas Tech University, 2911 15th Street, Lubbock, TX
| | - Bianca M Rendon
- Department of Plant and Soil Science, Texas Tech University, 2911 15th Street, Lubbock, TX
| | - Samuel A Discua
- Department of Plant and Soil Science, Texas Tech University, 2911 15th Street, Lubbock, TX
| | - Kimberly J Wooten
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX
| | - Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX
| | - Nancy E McIntyre
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
31
|
Appenfeller LR, Lloyd S, Szendrei Z. Citizen science improves our understanding of the impact of soil management on wild pollinator abundance in agroecosystems. PLoS One 2020; 15:e0230007. [PMID: 32155198 PMCID: PMC7064200 DOI: 10.1371/journal.pone.0230007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/25/2022] Open
Abstract
Native bees provide essential pollination services in both natural and managed ecosystems. However, declines in native bee species highlight the need for increased understanding of land management methods that can promote healthy, persistent populations and diverse communities. This can be challenging and costly using traditional scientific methods, but citizen science can overcome many limitations. In this study, we examined the distribution and abundance of an agriculturally important wild bee species, the squash bee (Eucera (Peponapis) pruinosa, Hymenoptera: Apidae). They are ground nesting, specialist bees that depend on cultivated varieties of Cucurbita (squash, pumpkins, gourds). The intimate relationship between squash bees and their host plants suggests that they are likely sensitive to farm management practices, particularly those that disturb the soil. In this study, citizen scientists across Michigan used a survey to submit field management and bee observation data. Survey results indicated that squash bees occupy a wide geographic range and are more abundant in farms with reduced soil disturbance. Citizen science provided an inexpensive and effective method for examining impacts of farm management practices on squash bees and could be a valuable tool for monitoring and conserving other native pollinators.
Collapse
Affiliation(s)
- Logan R. Appenfeller
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Sarah Lloyd
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
32
|
Pérez‐Méndez N, Andersson GKS, Requier F, Hipólito J, Aizen MA, Morales CL, García N, Gennari GP, Garibaldi LA. The economic cost of losing native pollinator species for orchard production. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Néstor Pérez‐Méndez
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural Universidad Nacional de Río Negro San Carlos de Bariloche Río Negro Argentina
- IRTA Estació Experimental de l'Ebre Tarragona Spain
| | - Georg K. S. Andersson
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural Universidad Nacional de Río Negro San Carlos de Bariloche Río Negro Argentina
- Centre for Environmental and Climate Research Lund University Lund Sweden
| | - Fabrice Requier
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural Universidad Nacional de Río Negro San Carlos de Bariloche Río Negro Argentina
- Evolution Génome Comportement et Ecologie CNRSIRDUniversité Paris‐SudUniversité Paris‐Saclay Paris France
| | - Juliana Hipólito
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural Universidad Nacional de Río Negro San Carlos de Bariloche Río Negro Argentina
- Instituto Nacional de Pesquisas da Amazônia - INPA Amazonas Manaus Brazil
| | - Marcelo A. Aizen
- Grupo de Ecología de la Polinización INIBIOMAUniversidad Nacional del Comahue and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Carlos de Bariloche Argentina
| | - Carolina L. Morales
- Grupo de Ecología de la Polinización INIBIOMAUniversidad Nacional del Comahue and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Carlos de Bariloche Argentina
| | - Nancy García
- Centro Pyme Adeneu Agencia de desarrollo económico del Neuquén Neuquén Argentina
| | - Gerardo P. Gennari
- Estación Experimental Agropecuaria Famaillá – Programa Nacional de Apicultura (PROAPI) Instituto Nacional de Tecnología Agropecuaria (INTA) Tucumán Argentina
| | - Lucas A. Garibaldi
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural Universidad Nacional de Río Negro San Carlos de Bariloche Río Negro Argentina
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural Consejo Nacional de Investigaciones Científicas y Técnicas San Carlos de Bariloche Río Negro Argentina
| |
Collapse
|
33
|
Martin CD, Fountain MT, Brown MJ. Varietal and seasonal differences in the effects of commercial bumblebees on fruit quality in strawberry crops. AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 2019; 281:124-133. [PMID: 31481820 PMCID: PMC6686987 DOI: 10.1016/j.agee.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 02/26/2019] [Accepted: 04/03/2019] [Indexed: 05/24/2023]
Abstract
Both wild and managed pollinators significantly contribute to global food production by providing pollination services to crops. Colonies of commercially-reared honey bees and bumblebees are two of the largest groups of managed pollinators. Bumblebees in particular are increasingly used on soft fruit crops, such as strawberry, an economically important crop globally. Despite the use of commercial bumblebees in strawberry crops, there is little quantitative evidence that they provide a benefit to farmers. Given the negative impacts that commercial colonies can have on wild bee populations, it is vital that the benefits of commercial bumblebees are quantified, so reasoned management decisions can be made that provide maximum benefit to both farmers and wild bees. In this study, commercial colonies of the UK native subspecies Bombus terrestris audax were placed into June-bearer (flowering March-April, varieties 'Malling Centenary' and 'Flair') and everbearer (flowering May-June) strawberry polytunnels on a soft-fruit farm in the south east of England, and opened and closed at weekly intervals. The flower-visiting assemblage inside polytunnels was quantified, and fruit was harvested and quality assessed. In the June-bearer variety Malling Centenary, the presence of commercial bumblebees increased the amount of high commercial grade fruit by 25%. In contrast, no benefit of commercial bees on pollination or fruit quality was observed in the June-bearer variety Flair and the everbearer crop. The increase in quality of fruit in the Malling Centenary crop may be driven by the higher B. terrestris audax flower visitation rates seen in this crop in combination with varietal differences in pollination dependency. The number of flower visits by wild pollinators was not a well-supported predictor of strawberry quality, thus the benefit they provide in this system remains to be elucidated. The results presented here suggest that commercial bumblebees can greatly increase the quality and subsequent value of a strawberry crop, when deployed on a suitable variety at a time when wild pollinator numbers are low. However, the results also raise the possibility that commercial colonies do not always provide the benefits to strawberry crops that they are thought to. For growers to make informed decisions on commercial bumblebee use, further research is required into the effect of commercial bumblebees on the major strawberry varieties, in different locations and seasons. This study is an important step in gaining this understanding.
Collapse
Affiliation(s)
- Callum D. Martin
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | | | - Mark J.F. Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| |
Collapse
|