1
|
Zhu L, Liu YP, Huang YT, Zhou ZJ, Liu JF, Yu LM, Wang HS. Cellular and molecular biology of posttranslational modifications in cardiovascular disease. Biomed Pharmacother 2024; 179:117374. [PMID: 39217836 DOI: 10.1016/j.biopha.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) has now become the leading cause of death worldwide, and its high morbidity and mortality rates pose a great threat to society. Although numerous studies have reported the pathophysiology of CVD, the exact pathogenesis of all types of CVD is not fully understood. Therefore, much more research is still needed to explore the pathogenesis of CVD. With the development of proteomics, many studies have successfully identified the role of posttranslational modifications in the pathogenesis of CVD, including key processes such as apoptosis, cell metabolism, and oxidative stress. In this review, we summarize the progress in the understanding of posttranslational modifications in cardiovascular diseases, including novel protein posttranslational modifications such as succinylation and nitrosylation. Furthermore, we summarize the currently identified histone deacetylase (HDAC) inhibitors used to treat CVD, providing new perspectives on CVD treatment modalities. We critically analyze the roles of posttranslational modifications in the pathogenesis of CVD-related diseases and explore future research directions related to posttranslational modifications in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Zhu
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yu-Ting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Zi-Jun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Jian-Feng Liu
- First School of Clinical Medicine, Shenyang Medical College, Shenyang 110034, Liaoning, China
| | - Li-Ming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| | - Hui-Shan Wang
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| |
Collapse
|
2
|
Vinciguerra M, Dobrev D, Nattel S. Atrial fibrillation: pathophysiology, genetic and epigenetic mechanisms. THE LANCET REGIONAL HEALTH. EUROPE 2024; 37:100785. [PMID: 38362554 PMCID: PMC10866930 DOI: 10.1016/j.lanepe.2023.100785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 02/17/2024]
Abstract
Atrial fibrillation (AF) is the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence dramatically increases with age and could reach up to ∼10% in the elderly. The management of AF is a complex issue that is object of extensive ongoing basic and clinical research, it depends on its genetic and epigenetic causes, and it varies considerably geographically and also according to the ethnicity. Mechanistically, over the last decade, Genome Wide Association Studies have uncovered over 100 genetic loci associated with AF, and have shown that European ancestry is associated with elevated risk of AF. These AF-associated loci revolve around different types of disturbances, including inflammation, electrical abnormalities, and structural remodeling. Moreover, the discovery of epigenetic regulatory mechanisms, involving non-coding RNAs, DNA methylation and histone modification, has allowed unravelling what modifications reshape the processes leading to arrhythmias. Our review provides a current state of the field regarding the identification and functional characterization of AF-related genetic and epigenetic regulatory networks, including ethnic differences. We discuss clear and emerging connections between genetic regulation and pathophysiological mechanisms of AF.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Liverpool Centre for Cardiovascular Science, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Lee J, Lee H, Sherbini AE, Baghaie L, Leroy F, Abdel-Qadir H, Szewczuk MR, El-Diasty M. Epigenetic MicroRNAs as Prognostic Markers of Postoperative Atrial Fibrillation: A Systematic Review. Curr Probl Cardiol 2024; 49:102106. [PMID: 37741599 DOI: 10.1016/j.cpcardiol.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Postoperative atrial fibrillation (POAF) is a common complication after cardiac surgery, increasing the risk for adverse outcomes such as perioperative and long-term mortality, stroke, myocardial infarction, and other thromboembolic events. Epigenetic biomarkers show promise as prognostic tools for POAF. Epigenetic changes, such as DNA methylation, histone modification, and microRNAs (miRNA), can result in altered gene expression and the development of various pathological conditions. This systematic review aims to present the current literature on the association between various epigenetic markers and the development of POAF following cardiac surgery. Here, an electronic literature search was performed using MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, and Google Scholar to identify studies that reported the role of epigenetic markers in the development of POAF. Five of the 6 studies focused on miRNAs and their association with POAF. In POAF patients, the expression of miR-1 and miR-483-5p were upregulated in the right atrial appendage (RAA), while the levels of miR-133A, miR-208a, miR-23a, miR-26a, miR-29a, miR-29b, and miR-29c were decreased in the RAA and venous blood. One study examined cytosines followed by guanines (CpGs) as DNA methylation markers. Across all studies, 488 human subjects who had undergone cardiac surgery were investigated, and 195 subjects (39.9%) developed new-onset POAF. The current literature suggests that miRNAs may play a role in predicting the development of atrial fibrillation after cardiac surgery. However, more robust clinical data are required to justify their role in routine clinical practice.
Collapse
Affiliation(s)
- Junsu Lee
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Hyunmin Lee
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Adham El Sherbini
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Fleur Leroy
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada; Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, Strasbourg, France
| | - Husam Abdel-Qadir
- Women's College Hospital, Peter Munk Cardiac Center, Toronto, ON, Canada
| | - Myron R Szewczuk
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mohammad El-Diasty
- Department of Cardiac Surgery, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH.
| |
Collapse
|
4
|
Grzeczka A, Graczyk S, Kordowitzki P. DNA Methylation and Telomeres-Their Impact on the Occurrence of Atrial Fibrillation during Cardiac Aging. Int J Mol Sci 2023; 24:15699. [PMID: 37958686 PMCID: PMC10650750 DOI: 10.3390/ijms242115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in humans. AF is characterized by irregular and increased atrial muscle activation. This high-frequency activation obliterates the synchronous work of the atria and ventricles, reducing myocardial performance, which can lead to severe heart failure or stroke. The risk of developing atrial fibrillation depends largely on the patient's history. Cardiovascular diseases are considered aging-related pathologies; therefore, deciphering the role of telomeres and DNA methylation (mDNA), two hallmarks of aging, is likely to contribute to a better understanding and prophylaxis of AF. In honor of Prof. Elizabeth Blackburn's 75th birthday, we dedicate this review to the discovery of telomeres and her contribution to research on aging.
Collapse
Affiliation(s)
| | | | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Szosa Bydgoska 13, 87-100 Torun, Poland
| |
Collapse
|
5
|
Rabkin SW, Wong CN. Epigenetics in Heart Failure: Role of DNA Methylation in Potential Pathways Leading to Heart Failure with Preserved Ejection Fraction. Biomedicines 2023; 11:2815. [PMID: 37893188 PMCID: PMC10604152 DOI: 10.3390/biomedicines11102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This review will focus on epigenetic modifications utilizing the DNA methylation mechanism, which is potentially involved in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). The putative pathways of HFpEF will be discussed, specifically myocardial fibrosis, myocardial inflammation, sarcoplasmic reticulum Ca2+-ATPase, oxidative-nitrosative stress, mitochondrial and metabolic defects, as well as obesity. The relationship of HFpEF to aging and atrial fibrillation will be examined from the perspective of DNA methylation.
Collapse
Affiliation(s)
- Simon W. Rabkin
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Division of Cardiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Chenille N. Wong
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Li D, Nie J, Han Y, Ni L. Epigenetic Mechanism and Therapeutic Implications of Atrial Fibrillation. Front Cardiovasc Med 2022; 8:763824. [PMID: 35127848 PMCID: PMC8815458 DOI: 10.3389/fcvm.2021.763824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia attacking 1. 5–2.0% of general population worldwide. It has a significant impact on morbidity and mortality globally and its prevalence increases exponentially with age. Therapies like catheter ablation or conventional antiarrhythmic drugs have not provided effective solution to the recurrence for AF over the past decades. Over 100 genetic loci have been discovered to be associated with AF by Genome-wide association studies (GWAS) but none has led to a therapy. Recently potential involvement of epigenetics (DNA methylation, histone modification, and non-coding RNAs) in the initiation and maintenance of AF has partly emerged as proof-of-concept in the mechanism and management of AF. Here we reviewed the epigenetic features involved in AF pathophysiology and provided an update of their implications in AF therapy.
Collapse
|
7
|
Inhibitors of DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:471-513. [DOI: 10.1007/978-3-031-11454-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Fang X, Poulsen R, Zhao L, Wang J, Rivkees SA, Wendler CC. Knockdown of DNA methyltransferase 1 reduces DNA methylation and alters expression patterns of cardiac genes in embryonic cardiomyocytes. FEBS Open Bio 2021. [PMID: 34235895 PMCID: PMC8329956 DOI: 10.1002/2211-5463.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
We previously found that DNA methyltransferase 3a (DNMT3a) plays an important role in regulating embryonic cardiomyocyte gene expression, morphology, and function. In this study, we investigated the role of the most abundant DNMT in mammalian cells, DNMT1, in these processes. It is known that DNMT1 is essential for embryonic development, during which it is involved in regulating cardiomyocyte DNA methylation and gene expression. We used siRNA to knock down DNMT1 expression in primary cultures of mouse embryonic cardiomyocytes. Immunofluorescence staining and multielectrode array were, respectively, utilized to evaluate cardiomyocyte growth and electrophysiology. RNA sequencing (RNA‐Seq) and multiplex bisulfite sequencing were, respectively, performed to examine gene expression and promoter methylation. At 72 h post‐transfection, reduction of DNMT1 expression decreased the number and increased the size of embryonic cardiomyocytes. Beat frequency and the amplitude of field action potentials were decreased by DNMT1 siRNA. RNA‐Seq analysis identified 801 up‐regulated genes and 494 down‐regulated genes in the DNMT1 knockdown cells when compared to controls. Pathway analysis of the differentially expressed genes revealed pathways that were associated with cell death and survival, cell morphology, cardiac function, and cardiac disease. Alternative splicing analysis identified 929 differentially expressed exons, including 583 up‐regulated exons and 308 down‐regulated exons. Moreover, decreased methylation levels were found in the promoters of cardiac genes Myh6, Myh7, Myh7b, Tnnc1, Tnni3, Tnnt2, Nppa, Nppb, mef2c, mef2d, Camta2, Cdkn1A, and Cdkn1C. Of these 13 genes, 6 (Myh6, Tnnc1, Tnni3, Tnnt2, Nppa, Nppb) and 1 (Cdkn1C) had increased or decreased gene expression, respectively. Altogether, these data show that DNMT1 is important in embryonic cardiomyocytes by regulating DNA methylation, gene expression, gene splicing, and cell function.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA.,Charles River Laboratories, Inc., Reno, NV, USA
| | - Ryan Poulsen
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lu Zhao
- Charles River Laboratories, Inc., Reno, NV, USA
| | | | - Scott A Rivkees
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher C Wendler
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Rahm AK, Gramlich D, Wieder T, Müller ME, Schoeffel A, El Tahry FA, Most P, Heimberger T, Sandke S, Weis T, Ullrich ND, Korff T, Lugenbiel P, Katus HA, Thomas D. Trigger-Specific Remodeling of K Ca2 Potassium Channels in Models of Atrial Fibrillation. Pharmgenomics Pers Med 2021; 14:579-590. [PMID: 34045886 PMCID: PMC8144362 DOI: 10.2147/pgpm.s290291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
AIM Effective antiarrhythmic treatment of atrial fibrillation (AF) constitutes a major challenge, in particular, when concomitant heart failure (HF) is present. HF-associated atrial arrhythmogenesis is distinctly characterized by prolonged atrial refractoriness. Small-conductance, calcium-activated K+ (KCa, SK, KCNN) channels contribute to cardiac action potential repolarization and are implicated in AF susceptibility and therapy. The mechanistic impact of AF/HF-related triggers on atrial KCa channels is not known. We hypothesized that tachycardia, stretch, β-adrenergic stimulation, and hypoxia differentially determine KCa2.1-2.3 channel remodeling in atrial cells. METHODS KCNN1-3 transcript levels were assessed in AF/HF patients and in a pig model of atrial tachypacing-induced AF with reduced left ventricular function. HL-1 atrial myocytes were subjected to proarrhythmic triggers to investigate the effects on Kcnn mRNA and KCa channel protein. RESULTS Atrial KCNN1-3 expression was reduced in AF/HF patients. KCNN2 and KCNN3 suppression was recapitulated in the corresponding pig model. In contrast to human AF, KCNN1 remained unchanged in pigs. Channel- and stressor-specific remodeling was revealed in vitro. Lower expression levels of KCNN1/KCa2.1 were linked to stretch and β-adrenergic stimulation. Furthermore, KCNN3/KCa2.3 expression was suppressed upon tachypacing and hypoxia. Finally, KCNN2/KCa2.2 abundance was specifically enhanced by hypoxia. CONCLUSION Reduction of KCa2.1-2.3 channel expression might contribute to the action potential prolongation in AF complicated by HF. Subtype-specific KCa2 channel remodeling induced by tachypacing, stretch, β-adrenergic stimulation, or hypoxia is expected to differentially determine atrial remodeling, depending on patient-specific activation of each triggering factor. Stressor-dependent KCa2 regulation in atrial myocytes provides a starting point for mechanism-based antiarrhythmic therapy.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Teresa Wieder
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Axel Schoeffel
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Fadwa A El Tahry
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Patrick Most
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Steffi Sandke
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, 69120, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, 69120, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
10
|
Wang YY, Gao B, Yang Y, Jia SB, Ma XP, Zhang MH, Wang LJ, Ma AQ, Zhang QN. Histone deacetylase 3 suppresses the expression of SHP-1 via deacetylation of DNMT1 to promote heart failure. Life Sci 2021; 292:119552. [PMID: 33932446 DOI: 10.1016/j.lfs.2021.119552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
AIMS Heart failure (HF) is a progressive disease with recurrent hospitalizations and high mortality. However, the mechanisms underlying HF remain unclear. The present study aimed to explore the regulatory mechanism of histone deacetylase 3 (HDAC3) and DNA methyltransferase 1 (DNMT1)/Src homology domain 2-containing tyrosine phosphatase-1 (SHP-1) axis in HF. METHODS The HF rat models and hypertrophy cell models were established. The characteristic parameters of the heart were detected by echocardiography. A multichannel physiological signal acquisition system was used to detect the hemodynamic parameters. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of HDAC3, DNMT1, and SHP-1 mRNAs, while Western blot was applied to analyze the expression of proteins. Masson staining was used to analyze the degree of collagen fiber infiltration. TdT-mediated DUTP nick end labeling (TUNEL) staining was performed to analyze the apoptosis of myocardial tissue cells. Co-immunoprecipitation (co-IP) was conducted to study the interaction between HDAC3 and DNMT1. Flow cytometry was used to analyze the apoptosis. KEY FINDINGS HDAC3 and DNMT1 were highly expressed in HF rat and hypertrophy cell models. HDAC3 modified DNMT1 through deacetylation to inhibit ubiquitination-mediated degradation, which promoted the expression of DNMT1. DNMT1 inhibited SHP-1 expression via methylation in the promoter region. In summary, HDAC3 modified DNMT1 by deacetylation to suppress SHP-1 expression, which in turn led to the development of cardiomyocyte hypertrophy-induced HF. SIGNIFICANCE This study provided potential therapeutic targets for HF treatment.
Collapse
Affiliation(s)
- Yi-Yong Wang
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, China; Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Gao
- Department of Cardiology, Zhongwei City People Hospital, China
| | - Yong Yang
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Shao-Bin Jia
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, China
| | - Xue-Ping Ma
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, China
| | - Ming-Hao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Li-Juan Wang
- Department of Cardiovascular Medicine, The Second People's Hospital of Yinchuan City, China
| | - Ai-Qun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, China.
| | - Qin-Ning Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
11
|
Victorino J, Alvarez-Franco A, Manzanares M. Functional genomics and epigenomics of atrial fibrillation. J Mol Cell Cardiol 2021; 157:45-55. [PMID: 33887329 DOI: 10.1016/j.yjmcc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. Despite years of study, we still do not have a full comprehension of the molecular mechanism responsible for the disease. The recent implementation of large-scale approaches in both patient samples, population studies and animal models has helped us to broaden our knowledge on the molecular drivers responsible for AF and on the mechanisms behind disease progression. Understanding genomic and epigenomic changes that take place during chronification of AF will prove essential to design novel treatments leading to improved patient care.
Collapse
Affiliation(s)
- Jesus Victorino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Spain
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
12
|
DNA Methylation in Atrial Fibrillation and Its Potential Role in Precision Medicine. Methods Mol Biol 2021. [PMID: 32710320 DOI: 10.1007/978-1-0716-0904-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Atrial fibrillation (AF), a common arrhythmia, can cause many serious consequences, including stroke and even death. The pathological mechanism of AF is very complicated. Epigenetic mechanisms, especially DNA methylation, contribute to the pathogenesis and maintenance of AF. DNA methylation is an important part of epigenetic and plays a significant role in human physiology and pathology. AF patients possess specific methylation sites (e.g., Pitx2c, RASSF1A, SURs, SERCA2a, and LINC00472), which have potential values of being biomarkers and underlie the diagnosis and prognosis of AF. These methylation sites can also benefit accurate treatment of AF. With deeper understanding into the epigenetic mechanisms of AF, the precision medicine for AF has also developed rapidly. In the future, DNA methylation omics and other research methods will be integrated to explore the epigenetic mechanisms in AF.
Collapse
|
13
|
Gutiérrez-Cuevas J, Sandoval-Rodriguez A, Meza-Rios A, Monroy-Ramírez HC, Galicia-Moreno M, García-Bañuelos J, Santos A, Armendariz-Borunda J. Molecular Mechanisms of Obesity-Linked Cardiac Dysfunction: An Up-Date on Current Knowledge. Cells 2021; 10:cells10030629. [PMID: 33809061 PMCID: PMC8000147 DOI: 10.3390/cells10030629] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Alejandra Meza-Rios
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
- Correspondence: ; Tel.: +52-333-677-8741
| |
Collapse
|
14
|
Epigenetics in atrial fibrillation: A reappraisal. Heart Rhythm 2021; 18:824-832. [PMID: 33440248 DOI: 10.1016/j.hrthm.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 11/21/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and an important cause of morbidity and mortality globally. Atrial remodeling includes changes in ion channel expression and function, structural alterations, and neural remodeling, which create an arrhythmogenic milieu resulting in AF initiation and maintenance. Current therapeutic strategies for AF involving ablation and antiarrhythmic drugs are associated with relatively high recurrence and proarrhythmic side effects, respectively. Over the last 2 decades, in an effort to overcome these issues, research has sought to identify the genetic basis for AF thereby gaining insight into the regulatory mechanisms governing its pathophysiology. Despite identification of multiple gene loci associated with AF, thus far none has led to a therapy, indicating additional contributors to pathology. Recently, in the context of expanding knowledge of the epigenome (DNA methylation, histone modifications, and noncoding RNAs), its potential involvement in the onset and progression of AF pathophysiology has started to emerge. Probing the role of various epigenetic mechanisms that contribute to AF may improve our knowledge of this complex disease, identify potential therapeutic targets, and facilitate targeted therapies. Here, we provide a comprehensive review of growing epigenetic features involved in AF pathogenesis and summarize the emerging epigenomic targets for therapy that have been explored in preclinical models of AF.
Collapse
|
15
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
16
|
Kao YH, Chung CC, Cheng WL, Lkhagva B, Chen YJ. Pitx2c inhibition increases atrial fibroblast activity: Implications in atrial arrhythmogenesis. Eur J Clin Invest 2019; 49:e13160. [PMID: 31378929 DOI: 10.1111/eci.13160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND A Pitx2c deficiency increases the risk of atrial fibrillation (AF). Atrial structural remodelling with fibrosis blocks electrical conduction and leads to arrhythmogenesis. A Pitx2c deficiency enhances profibrotic transforming growth factor (TGF)-β expression and calcium dysregulation, suggesting that Pitx2c may play a role in atrial fibrosis. The purposes of this study were to evaluate whether a Pitx2c deficiency modulates cardiac fibroblast activity and study the underlying mechanisms. MATERIALS AND METHODS A migration assay, proliferation analysis, Western blot analysis and calcium fluorescence imaging were conducted in Pitx2c-knockdown human atrial fibroblasts (HAFs) using short hairpin (sh)RNA or small interfering (si)RNA. RESULTS Compared to control HAFs, Pitx2c-knockdown HAFs had a greater migration but a similar proliferative ability. Pitx2c-knockdown HAFs had a higher calcium influx with enhanced phosphorylation of calmodulin kinase II (CaMKII), α-smooth muscle actin and matrix metalloproteinase-2. In the presence of a CaMKII inhibitor (KN-93, 0.5 μmol/L), control and Pitx2c-knockdown HAFs exhibited similar migratory abilities. CONCLUSION These findings suggest that downregulation of Pitx2c may regulate atrial fibrosis through modulating calcium homeostasis, which may contribute to its role in anti-atrial fibrosis, and Pitx2c downregulation may change the atrial electrophysiology and AF occurrence through modulating fibroblast activity.
Collapse
Affiliation(s)
- Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chih Chung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Baigalmaa Lkhagva
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
18
|
Doñate Puertas R, Jalabert A, Meugnier E, Euthine V, Chevalier P, Rome S. Analysis of the microRNA signature in left atrium from patients with valvular heart disease reveals their implications in atrial fibrillation. PLoS One 2018; 13:e0196666. [PMID: 29723239 PMCID: PMC5933750 DOI: 10.1371/journal.pone.0196666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Among the potential factors which may contribute to the development and perpetuation of atrial fibrillation, dysregulation of miRNAs has been suggested. Thus in this study, we have quantified the basal expressions of 662 mature human miRNAs in left atrium (LA) from patients undergoing cardiac surgery for valve repair, suffering or not from atrial fibrillation (AF) by using TaqMan® Low Density arrays (v2.0). RESULTS Among the 299 miRNAs expressed in all patients, 42 miRNAs had altered basal expressions in patients with AF. Binding-site predictions with Targetscan (conserved sites among species) indicated that the up- and down-regulated miRNAs controlled respectively 3,310 and 5,868 genes. To identify the most relevant cellular functions under the control of the altered miRNAs, we focused on the 100 most targeted genes of each list and identified 5 functional protein-protein networks among these genes. Up-regulated networks were involved in synchronisation of circadian rythmicity and in the control of the AKT/PKC signaling pathway (i.e., proliferation/adhesion). Down-regulated networks were the IGF-1 pathway and TGF-beta signaling pathway and a network involved in RNA-mediated gene silencing, suggesting for the first time that alteration of miRNAs in AF would also perturbate the whole miRNA machinery. Then we crossed the list of miRNA predicted genes, and the list of mRNAs altered in similar patients suffering from AF and we found that respectively 44.5% and 55% of the up- and down-regulated mRNA are predicted to be conserved targets of the altered miRNAs (at least one binding site in 3'-UTR). As they were involved in the same biological processes mentioned above, these data demonstrated that a great part of the transcriptional defects previously published in LA from AF patients are likely due to defects at the post-transcriptional level and involved the miRNAs. CONCLUSIONS Our stringent analysis permitted us to identify highly targeted protein-protein networks under the control of miRNAs in LA and, among them, to highlight those specifically affected in AF patients with altered miRNA signature. Further studies are now required to determine whether alterations of miRNA levels in AF pathology are causal or represent an adaptation to prevent cardiac electrical and structural remodeling.
Collapse
Affiliation(s)
- Rosa Doñate Puertas
- Institut NeuroMyoGene (INMG), UMR CNRS 5310-INSERM U1217 / University of Lyon, Lyon, France
| | - Audrey Jalabert
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - Vanessa Euthine
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - Philippe Chevalier
- Institut NeuroMyoGene (INMG), UMR CNRS 5310-INSERM U1217 / University of Lyon, Lyon, France
- Rhythmology Unit, Louis Pradel Cardiology Hospital, Hospices Civils de Lyon, Bron, France
- * E-mail: (SR); (PC)
| | - Sophie Rome
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
- * E-mail: (SR); (PC)
| |
Collapse
|
19
|
Shen K, Tu T, Yuan Z, Yi J, Zhou Y, Liao X, Liu Q, Zhou X. DNA methylation dysregulations in valvular atrial fibrillation. Clin Cardiol 2017; 40:686-691. [PMID: 28846808 PMCID: PMC6490353 DOI: 10.1002/clc.22715] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The epigenetic changes underlying the development of atrial fibrillation (AF) remain incompletely understood. Limited evidence suggests that abnormal DNA methylation might be involved in the pathogenesis of AF. In the present study, we evaluated the methylation status of genomic DNA from myocardial tissue in AF patients and sinus rhythm (SR) patients systematically. HYPOTHESIS DNA methylation dysregulations will be associated with valvular AF. METHODS Right atrial myocardial tissue was obtained from rheumatic valvular patients who had undergone valve replacement surgery (SR group, n = 10; AF group, n = 10). The global DNA methylation level, the promoter methylation level of the natriuretic peptide receptor-A gene (NPRA), and its correlation with the mRNA expression level of DNA methyltransferase genes were detected. RESULTS The global DNA methylation level was significantly higher in the AF group than in the SR group (P < 0.05). The NPRA mRNA expression was decreased and the NPRA gene was hypermethylated in the AF group (P < 0.05). Meanwhile, the NPRA mRNA expression level has a negative correlation with the mean methylation level in the promoter region of the NPRA gene. CONCLUSIONS DNA methylation dysregulations may be relevant in the pathogenesis of AF. DNA methyltransferase 3B likely plays an essential role in the DNA methylation dysregulations in AF.
Collapse
Affiliation(s)
- Kangjun Shen
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Zhaoshun Yuan
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Jiangfeng Yi
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Yangzhao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Xiaobo Liao
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| |
Collapse
|
20
|
Sabia C, Picascia A, Grimaldi V, Amarelli C, Maiello C, Napoli C. The epigenetic promise to improve prognosis of heart failure and heart transplantation. Transplant Rev (Orlando) 2017; 31:249-256. [PMID: 28882368 DOI: 10.1016/j.trre.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/03/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022]
Abstract
Heart transplantation is still the only possible life-saving treatment for end-stage heart failure, the critical epilogue of several cardiac diseases. Epigenetic mechanisms are being intensively investigated because they could contribute to establishing innovative diagnostic and predictive biomarkers, as well as ground-breaking therapies both for heart failure and heart transplantation rejection. DNA methylation and histone modifications can modulate the innate and adaptive immune response by acting on the expression of immune-related genes that, in turn, are crucial determinants of transplantation outcome. Epigenetic drugs acting on methylation and histone-modification pathways may modulate Treg activity by acting as immunosuppressive agents. Moreover, the identification of non-invasive and reliable epigenetic biomarkers for the prediction of allograft rejection and for monitoring immunosuppressive therapies represents an attractive perspective in the management of transplanted patients. MiRNAs seem to fit particularly well to this purpose because they are differently expressed in patients at high and low risk of rejection and are detectable in biological fluids besides biopsies. Although increasing evidence supports the involvement of epigenetic tags in heart failure and transplantation, further short and long-term clinical studies are needed to translate the possible available findings into clinical setting.
Collapse
Affiliation(s)
- Chiara Sabia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy.
| | - Antonietta Picascia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy
| | - Vincenzo Grimaldi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy; Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Cristiano Amarelli
- Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Azienda dei Colli, Naples, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Azienda dei Colli, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy; SDN Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, Via Gianturco 113, 80143 Naples, Italy
| |
Collapse
|
21
|
Abstract
Background The epigenetic changes underlying the development of rheumatic heart valve disease (RHVD) remain incompletely understood. Limited evidence suggests that abnormal DNA methylation might be involved in the pathogenesis of RHVD. In the present study, we evaluated the DNA methylation dysregulations from myocardial tissue in RHVD patients systematically. Methods Right atrial myocardial tissue obtained from rheumatic valvular patients who had undergone valve replacements surgery (n = 73) and were compared to healthy controls (n = 4). the promoter methylation level of Intercellular adhesion molecule-1 (ICAM-1) gene and its correlation with ICAM-1 mRNA expression level, the global DNA methylation level and its correlation with age and mRNA expression level of DNA methyltransferase (DNMT) genes were detected. Results The ICAM-1 mRNA expression was increased (healthy control vs. NHYA III, 0.70 ± 0.19 vs. 4.38 ± 3.19, p = 0.011; NYHA IIvs. NHYA III, 2.60 ± 1.99 vs. 4.38 ± 3.19, p = 0.008) and the ICAM-1 gene was hypomethylated in RHVD patients (healthy controls vs. NYHA II, 0.120 ± 0.011 vs. 0.076 ± 0.057, p = 0.039; healthy control vs. NHYA III, 0.120 ± 0.011 vs. 0.041 ± 0.022, p < 0.001; NYHA IIvs. NHYA III, 0.076 ± 0.057 vs. 0.041 ± 0.022, p < 0.001). Meanwhile, The ICAM-1 mRNA expression level has negative correlation with the mean methylation level in the promoter region of ICAM-1 gene (r = −0.459, p < 0.001). The global DNA methylation levels was significantly increased in RHVD patients than in healthy controls (healthy control vs. NHYA III, 0.77 ± 0.28 vs. 2.09 ± 1.20, p = 0.017; NYHA IIvs. NHYA III, 1.57 ± 0.78 vs. 2.09 ± 1.20, p = 0.040) and had positive correlation with age (r = 0.326, p = 0.005), especially for older age group (≥ 60 years). DNMT1 likely plays an essential role in the DNA dysregulations in RHVD patients. Conclusions Our analysis revealed that DNA methylation dysregulations may be relevant in the pathogenesis of RHVD.
Collapse
Affiliation(s)
- Kangjun Shen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139. Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Hui Liu
- Department of Hemodialysis Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Ran Jing
- Department of Cardiology, The Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Jiangfeng Yi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139. Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139. Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
22
|
Doñate Puertas R, Meugnier E, Romestaing C, Rey C, Morel E, Lachuer J, Gadot N, Scridon A, Julien C, Tronc F, Chapuis B, Valla C, Janin A, Pirola L, Méjat A, Rome S, Chevalier P. Atrial fibrillation is associated with hypermethylation in human left atrium, and treatment with decitabine reduces atrial tachyarrhythmias in spontaneously hypertensive rats. Transl Res 2017; 184:57-67.e5. [PMID: 28427903 DOI: 10.1016/j.trsl.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. As the molecular mechanisms underlying the pathology are largely unknown, this cardiac arrhythmia remains difficult to treat. To identify specific molecular actors involved in AF, we have performed a transcriptomic analysis on left atrium (LA) from patients with valvular heart disease with or without AF. We showed that 1627 genes had altered basal expression level in LA tissue of AF patients compared with the control group. The significantly enriched gene ontology biological process "anatomical structure morphogenesis" contained the highest number of genes in line with changes in structure that occur when the human heart remodels following AF development (ie, LA dilatation and interstitial fibrosis). We then focused the study on Pitx2 (paired-like homeodomain 2), being the most altered transcription factor in LA from AF patients and from which compelling evidence have indicated that its reduced expression can be considered as a marker for the disease. In addition, its expression was inversely correlated with LA size. We demonstrated that AF is associated with Pitx2 promoter hypermethylation both in humans and arrhythmic aging spontaneously hypertensive rats. Chronic administration of a DNA methylation inhibitor (ie, 5-Aza-2'-deoxycitidine) improved ECG arrhythmic profiles and superoxide dismutase activities and reduced fibrosis in the left ventricle of spontaneously hypertensive rats. Taken together, these data support the notion that AF is associated with epigenetic changes in LA and provide a proof-of-concept that hypomethylating agents have to be considered in the treatment of atrial arrhythmias.
Collapse
Affiliation(s)
| | - E Meugnier
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - C Romestaing
- LEHNA Laboratory, CNRS, UMR 5023, University of Lyon, Villeurbanne, France
| | - C Rey
- ProfilXpert, UNIV-US7 INSERM-UMS 3453 CNRS, Lyon, France
| | - E Morel
- Rhythmology Unit, Louis Pradel Cardiology Hospital, Hospices Civils de Lyon, Bron, France
| | - J Lachuer
- ProfilXpert, UNIV-US7 INSERM-UMS 3453 CNRS, Lyon, France
| | - N Gadot
- Plateform Anipath, Laënnec Faculty of Medecine, University of Lyon, Lyon, France
| | - A Scridon
- Physiology Department, University of Medicine and Pharmacy of Tîrgu Mures, Tîrgu Mures, Romania
| | - C Julien
- EA 4612 Neurocardiology unit, University of Lyon, Lyon, France
| | - F Tronc
- Pneumology Unit, Louis Pradel Cardiology Hospital, Hospices Civils de Lyon, Bron, France
| | - B Chapuis
- EA 4612 Neurocardiology unit, University of Lyon, Lyon, France
| | - C Valla
- Institut NeuroMyoGene (INMG), UMR CNRS 5310-INSERM U1217 / University of Lyon, Lyon, France
| | - A Janin
- Institut NeuroMyoGene (INMG), UMR CNRS 5310-INSERM U1217 / University of Lyon, Lyon, France
| | - L Pirola
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - A Méjat
- Institut NeuroMyoGene (INMG), UMR CNRS 5310-INSERM U1217 / University of Lyon, Lyon, France
| | - S Rome
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - Philippe Chevalier
- EA 4612 Neurocardiology unit, University of Lyon, Lyon, France; Rhythmology Unit, Louis Pradel Cardiology Hospital, Hospices Civils de Lyon, Bron, France.
| |
Collapse
|
23
|
Abstract
With the impressive advancement in high-throughput 'omics' technologies over the past two decades, epigenetic mechanisms have emerged as the regulatory interface between the genome and environmental factors. These mechanisms include DNA methylation, histone modifications, ATP-dependent chromatin remodeling and RNA-based mechanisms. Their highly interdependent and coordinated action modulates the chromatin structure controlling access of the transcription machinery and thereby regulating expression of target genes. Given the rather limited proliferative capability of human cardiomyocytes, epigenetic regulation appears to play a particularly important role in the myocardium. The highly dynamic nature of the epigenome allows the heart to adapt to environmental challenges and to respond quickly and properly to cardiac stress. It is now becoming evident that histone-modifying and chromatin-remodeling enzymes as well as numerous non-coding RNAs play critical roles in cardiac development and function, while their dysregulation contributes to the onset and development of pathological cardiac remodeling culminating in HF. This review focuses on up-to-date knowledge about the epigenetic mechanisms and highlights their emerging role in the healthy and failing heart. Uncovering the determinants of epigenetic regulation holds great promise to accelerate the development of successful new diagnostic and therapeutic strategies in human cardiac disease.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ, 08904, USA,
| | | |
Collapse
|
24
|
Greenwood MP, Greenwood M, Gillard BT, Loh SY, Paton JFR, Murphy D. Epigenetic Control of the Vasopressin Promoter Explains Physiological Ability to Regulate Vasopressin Transcription in Dehydration and Salt Loading States in the Rat. J Neuroendocrinol 2016; 28. [PMID: 26833868 PMCID: PMC4855680 DOI: 10.1111/jne.12371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/06/2016] [Accepted: 01/23/2016] [Indexed: 02/06/2023]
Abstract
The synthesis of arginine vasopressin (AVP) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus is sensitive to increased plasma osmolality and a decreased blood volume, and thus is robustly increased by both dehydration (increased plasma osmolality and decreased blood volume) and salt loading (increased plasma osmolality). Both stimuli result in functional remodelling of the SON and PVN, a process referred to as functional-related plasticity. Such plastic changes in the brain have recently been associated with altered patterns of DNA methylation at CpG (cytosine-phosphate-guanine) residues, a process considered to be important for the regulation of gene transcription. In this regard, the proximal Avp promoter contains a number of CpG sites and is recognised as one of four CpG islands for the Avp gene, suggesting that methylation may be regulating Avp transcription. In the present study, we show that, in an immortalised hypothalamic cell line 4B, the proximal Avp promoter is highly methylated, and treatment of these cells with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine to demethylate DNA dramatically increases basal and stimulated Avp biosynthesis. We report no changes in the expression of DNA methyltransferases, Dnmt1 and Dnmt3a, whereas there is decreased expression of the demethylating enzyme ten-eleven-translocation 2, Tet2, in the SON by dehydration and salt loading. We found higher methylation of the SON Avp promoter in dehydrated but not salt-loaded rats. By analysis of individual CpG sites, we observed hypomethylation, hypermethylation and no change in methylation of specific CpGs in the SON Avp promoter of the dehydrated rat. Using reporter gene assays, we show that mutation of individual CpGs can result in altered Avp promoter activity. We propose that methylation of the SON Avp promoter is necessary to co-ordinate the duel inputs of increased plasma osmolality and decreased blood volume on Avp transcription in the chronically dehydrated rat.
Collapse
Affiliation(s)
- M P Greenwood
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - M Greenwood
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - B T Gillard
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - S Y Loh
- Department of Physiology, University of Malaya, Kuala Lumpur, Malaysia
| | - J F R Paton
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - D Murphy
- School of Clinical Sciences, University of Bristol, Bristol, UK
- Department of Physiology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Lopez M, Halby L, Arimondo PB. DNA Methyltransferase Inhibitors: Development and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:431-473. [DOI: 10.1007/978-3-319-43624-1_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Tao H, Shi KH, Yang JJ, Li J. Epigenetic mechanisms in atrial fibrillation: New insights and future directions. Trends Cardiovasc Med 2015; 26:306-18. [PMID: 26475117 DOI: 10.1016/j.tcm.2015.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/23/2015] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. AF is a complex disease that results from genetic and environmental factors and their interactions. In recent years, numerous studies have shown that epigenetic mechanisms significantly participate in AF pathogenesis. Even though a poor understanding of the molecular and electrophysiologic mechanisms of AF, accumulated evidence has suggested that the relevance of epigenetic changes in the development of AF. The aim of this review is to describe the present knowledge about the epigenetic regulatory features significantly participates in AF, and look ahead on new perspectives of epigenetic mechanisms research. Epigenetic regulatory features such as DNA methylation, histone modification, and microRNA influence gene expression by epigenetic mechanisms and by directly binding to various factor response elements in the target gene promoters. Given the role of epigenetic alterations in regulating genes, there is potential for the integration of factors-induced epigenetic alterations as informative factors in the risk assessment process. In this review, new insight into the epigenetic mechanisms in AF pathogenesis is discussed, with special emphasis on DNA methylation, histone modification, and microRNA. Further studies are needed to reveal the potential targets of epigenetic mechanisms, and it can be developed as a therapeutic target for AF.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China.
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Lin YK, Chen YC, Kao YH, Tsai CF, Yeh YH, Huang JL, Cheng CC, Chen SA, Chen YJ. A monounsaturated fatty acid (oleic acid) modulates electrical activity in atrial myocytes with calcium and sodium dysregulation. Int J Cardiol 2014; 176:191-8. [PMID: 25064200 DOI: 10.1016/j.ijcard.2014.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/07/2014] [Accepted: 07/05/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Obesity and metabolic syndrome are important risk factors for atrial fibrillation. High plasma concentrations of monounsaturated fatty acids, including oleic acid (OLA), are frequently noted in obese individuals and patients with metabolic syndrome. However, it is not clear whether monounsaturated fatty acids (MUFAs) can directly modulate the electrophysiological characteristics of atrial myocytes. METHODS Whole-cell patch clamp, indo-1 fluorescence, and Western blot analyses were used to record the action potentials (APs), ionic currents, and protein expressions of HL-1 myocytes incubated with and without (control) OLA (0.5mM) for 24h. RESULTS Compared to control myocytes (n=14), OLA-treated myocytes (n=16) had shorter APD90 (65 ± 6 vs. 85 ± 6 ms, p<0.05) and APD50 (24 ± 6 vs. 38 ± 4 ms, p<0.05) with a higher incidence of delayed afterdepolarizations (35.7% vs. 7%, p<0.05), which were suppressed by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, a blocker of the calcium-activated chloride current). In addition, OLA-treated myocytes (n=19) exhibited larger calcium transients (0.54 ± 0.06 vs. 0.38 ± 0.05 R410/485, p<0.05), and sarcoplasmic reticular calcium contents (0.91 ± 0.05 vs. 0.64 ± 0.08 R410/485, p<0.05) than control myocytes (n=15). OLA-treated myocytes had larger late sodium currents, smaller sodium-calcium exchanger currents, and smaller sodium-potassium pump currents. Moreover OLA-treated myocytes had higher expressions of sarcoplasmic reticular Ca(2+)-ATPase and calmodulin kinase II, but lower expression of the sodium-potassium ATPase protein than control myocytes. CONCLUSIONS MUFAs can regulate atrial electrophysiological characteristics with calcium and sodium dysregulation, which may contribute to atrial arrhythmogenesis.
Collapse
Affiliation(s)
- Yung-Kuo Lin
- Division of Cardiovascular Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chin-Feng Tsai
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Hsin Yeh
- The First Cardiovascular Division, Chang-Gung Memorial Hospital, Chang-Gung University, Taoyuan, Taiwan
| | - Jin-Long Huang
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine and Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| | | | - Shih-Ann Chen
- National Yang-Ming University, School of Medicine, Division of Cardiology and Cardiovascular Research Center, Veterans General Hospital-Taipei, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
28
|
Kao YH, Lien GS, Chao TF, Chen YJ. DNA methylation inhibition: a novel therapeutic strategy for heart failure. Int J Cardiol 2014; 176:232-3. [PMID: 25042654 DOI: 10.1016/j.ijcard.2014.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/13/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Yu-Hsun Kao
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Gi-Shih Lien
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology and Cardiovascular Research Center, Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
29
|
Turdi S, Sun W, Tan Y, Yang X, Cai L, Ren J. Inhibition of DNA methylation attenuates low-dose cadmium-induced cardiac contractile and intracellular Ca(2+) anomalies. Clin Exp Pharmacol Physiol 2014; 40:706-12. [PMID: 23902534 DOI: 10.1111/1440-1681.12158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 12/28/2022]
Abstract
(1) Cadmium is a human carcinogen with unfavourable health impacts probably associated with its DNA methylation property. Recent data suggest that environmental cadmium exposure is associated with the incidence of myocardial infarction and peripheral arterial disease. Nonetheless, the effect of chronic cadmium exposure on cardiac contractile function remains unknown. (2) The present study was designed to examine the impact of low-dose cadmium exposure on cardiac contractile function and intracellular Ca2+ homeostasis. Adult male mice were exposed to cadmium for 4 weeks (20 nmol/kg, i.p. every other day for 4 weeks) with or without the DNA methylation inhibitor 5-aza-2'-deoxyctidene (5-AZA; 0.25 mg/kg, i.p., twice a week for 6 weeks, starting at the same time as cadmium administration). Cardiac contractile and intracellular Ca2+ properties were analysed, including echocardiographic left ventricular parameters, fractional shortening (FS), peak shortening (PS) amplitude, maximal velocity of shortening/relengthening (±dL/dt), time to PS (TPS), time to 90% relengthening (TR90 ), electrically stimulated increases in intracellular Ca2+ and intracellular Ca2+ decay. (3) Cadmium exposure depressed FS, PS, ±dL/dt and electrically stimulated increases in intracellular Ca2+ without affecting TPS, TR90 , intracellular Ca2+ levels or the decay rate. The effects of cadmium were significantly attenuated (PS) or blocked altogether (all other parameters) by 5-AZA. Cadmium exposure led to overt interstitial fibrosis (collagen deposition), which was mitigated by 5-AZA treatment. Western blot analysis revealed that cadmium exposure and/or 5-AZA treatment had no effect on the expression of intercellular adhesion molecule-1, tumour necrosis factor-α and cleaved caspase 3, suggesting a relatively minor role of proinflammatory cytokines and apoptosis in the cardiac responses to cadmium and 5-AZA. (4) Together, our data demonstrate, for the first time, direct cardiac depressant effects following cadmium exposure, which may be rescued by inhibition of DNA methylation.
Collapse
Affiliation(s)
- Subat Turdi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | | | | | | | | | | |
Collapse
|
30
|
Valente S, Liu Y, Schnekenburger M, Zwergel C, Cosconati S, Gros C, Tardugno M, Labella D, Florean C, Minden S, Hashimoto H, Chang Y, Zhang X, Kirsch G, Novellino E, Arimondo PB, Miele E, Ferretti E, Gulino A, Diederich M, Cheng X, Mai A. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem 2014; 57:701-13. [PMID: 24387159 PMCID: PMC3983372 DOI: 10.1021/jm4012627] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
DNA
methyltransferases (DNMTs) are important enzymes involved in
epigenetic control of gene expression and represent valuable targets
in cancer chemotherapy. A number of nucleoside DNMT inhibitors (DNMTi)
have been studied in cancer, including in cancer stem cells, and two
of them (azacytidine and decitabine) have been approved for treatment
of myelodysplastic syndromes. However, only a few non-nucleoside DNMTi
have been identified so far, and even fewer have been validated in
cancer. Through a process of hit-to-lead optimization, we report here
the discovery of compound 5 as a potent non-nucleoside
DNMTi that is also selective toward other AdoMet-dependent protein
methyltransferases. Compound 5 was potent at single-digit
micromolar concentrations against a panel of cancer cells and was
less toxic in peripheral blood mononuclear cells than two other compounds
tested. In mouse medulloblastoma stem cells, 5 inhibited
cell growth, whereas related compound 2 showed high cell
differentiation. To the best of our knowledge, 2 and 5 are the first non-nucleoside DNMTi tested in a cancer stem
cell line.
Collapse
Affiliation(s)
- Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , P.le Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|