1
|
Lin YL, Lin SH, Wang HH, Hsu WC, Hung SY, Chiou YY, Liou HH, Chang MY, Ho LC, Wu CF, Lee YC. Role of Metformin in Preventing New-Onset Chronic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Pharmaceuticals (Basel) 2025; 18:95. [PMID: 39861157 PMCID: PMC11768160 DOI: 10.3390/ph18010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Recent evidence supports the protective role of metformin on kidney function in patients with type 2 diabetes mellitus. However, its potential to prevent new-onset chronic kidney disease (CKD) in patients with type 2 diabetes mellitus with normal renal function remains unclear. Therefore, this study aimed to investigate whether metformin could prevent the development of new-onset CKD in such patients. Methods: This retrospective, observational, multicenter cohort study included 316,693 patients with type 2 diabetes mellitus. After matching using the inverse probability of treatment weighting, 9109 metformin users and 1221 nonusers were analyzed. The primary outcomes were an estimated glomerular filtration rate (eGFR) of <60 mL/min/1.73 m2, urinary albumin-to-creatinine ratio of ≥30 mg/g, and a composite outcome defined as new-onset CKD. Results: The multivariable Cox survival model showed that metformin users had significantly better renal outcomes, with a notably lower risk of sustained eGFR of <60 mL/min/1.73 m2 (hazard ratio (HR), 0.71; 95% confidence interval (CI), 0.56-0.90) and new CKD onset (HR, 0.78; 95% CI, 0.65-0.94). Conclusions: Metformin plays a key role in delaying renal events in individuals with type 2 diabetes mellitus and in those with initially normal renal function.
Collapse
Affiliation(s)
- Yu-Ling Lin
- Division of Nephrology, Department of Internal Medicine, Hsinchu Cathay General Hospital, Hsinchu 300, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Cathay General Hospital, Taipei 106, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (S.-H.L.); (Y.-Y.C.)
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsi-Hao Wang
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Wan-Chia Hsu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Yuan Hung
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Yuan-Yow Chiou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (S.-H.L.); (Y.-Y.C.)
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, New Taipei City 242, Taiwan;
| | - Min-Yu Chang
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Li-Chun Ho
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Ching-Fang Wu
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Yi-Che Lee
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| |
Collapse
|
2
|
Cai J, Fang L, Zhou P, Wu J, Song Y, Tuohuti A, Sun Y, Chen X. Metformin Attenuates Vocal Fold Fibrosis via AMPK Signaling. Inflammation 2024:10.1007/s10753-024-02165-5. [PMID: 39446178 DOI: 10.1007/s10753-024-02165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Vocal fold fibrosis is a challenging condition with no clear consensus on effective treatment methods. Given the demonstrated efficacy of metformin in treating various fibrotic diseases, we hypothesized that metformin could reduce vocal fold fibrosis via the AMPK signaling pathway. In our study, we induced vocal fold injury in rabbits and administered metformin intraperitoneally at a dose of 250 mg/kg two weeks post-injury. Four weeks after the injury, vocal folds were excised and analyzed for fibrosis using Masson's trichrome staining, immunohistochemistry, quantitative real-time polymerase chain reaction (qPCR), and Western blotting. In vitro, vocal fold fibroblasts treated with metformin (10 μM) ± TGF-β1 (10 ng/mL) were utilized to assess metformin's antifibrotic effects, with Compound C (10 μM) employed to inhibit AMPK signaling. Our results demonstrate that metformin significantly improved the structural integrity of the vocal fold lamina, reduced collagen deposition, and decreased the expression levels of COL1A1 and α-SMA. Furthermore, metformin activated the AMPK signaling pathway in vocal fold fibroblasts, resulting in decreased expression of COL1A1, α-SMA, TGF-β, Smad2, and Smad3. These findings suggest that metformin attenuates vocal fold fibrosis by modulating the AMPK signaling pathway, providing a foundation for developing new therapeutic options for vocal fold fibrosis.
Collapse
Affiliation(s)
- Jie Cai
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Lucheng Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Peng Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Jianghao Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Yuliang Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Aikebaier Tuohuti
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Yuechen Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
3
|
Song X, Pickel L, Sung HK, Scholey J, Pei Y. Reprogramming of Energy Metabolism in Human PKD1 Polycystic Kidney Disease: A Systems Biology Analysis. Int J Mol Sci 2024; 25:7173. [PMID: 39000280 PMCID: PMC11240917 DOI: 10.3390/ijms25137173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xuewen Song
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| | - Lauren Pickel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (L.P.); (H.-K.S.)
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (L.P.); (H.-K.S.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Scholey
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| |
Collapse
|
4
|
Zheng Q, Zhao J, Yuan J, Qin Y, Zhu Z, Liu J, Sun S. Delaying Renal Aging: Metformin Holds Promise as a Potential Treatment. Aging Dis 2024:AD.2024.0168. [PMID: 39012670 DOI: 10.14336/ad.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
Given the rapid aging of the population, age-related diseases have become an excessive burden on global health care. The kidney, a crucial metabolic organ, ages relatively quickly. While the aging process itself does not directly cause kidney damage, the physiological changes that accompany it can impair the kidney's capacity for self-repair. This makes aging kidneys more susceptible to diseases, including increased risks of chronic kidney disease and end-stage renal disease. Therefore, delaying the progression of renal aging and preserving the youthful vitality of the kidney are crucial for preventing kidney diseases. However, effective strategies against renal aging are still lacking due to the underlying mechanisms of renal aging, which have not been fully elucidated. Accumulating evidence suggests that metformin has beneficial effects in mitigating renal aging. Metformin has shown promising anti-aging results in animal models but has not been tested for this purpose yet in clinical trials. These findings indicate the potential of metformin as an anti-renal aging drug. In this review, we primarily discuss the characteristics and mechanisms of kidney aging and the potential effects of metformin against renal aging.
Collapse
Affiliation(s)
- Qiao Zheng
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhanxin Zhu
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Malekzadeh H, Surucu Y, Chinnapaka S, Yang KS, Arellano JA, Samadi Y, Epperly MW, Greenberger JS, Rubin JP, Ejaz A. Metformin and adipose-derived stem cell combination therapy alleviates radiation-induced skin fibrosis in mice. Stem Cell Res Ther 2024; 15:13. [PMID: 38185658 PMCID: PMC10773046 DOI: 10.1186/s13287-023-03627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Radiation therapy often leads to late radiation-induced skin fibrosis (RISF), causing movement impairment and discomfort. We conducted a comprehensive study to assess the effectiveness of metformin and adipose-derived stem cells (ASCs), whether autologous or allogeneic, individually or in combination therapy, in mitigating RISF. METHODS Using a female C57BL/6J mouse model subjected to hind limb irradiation as a representative RISF model, we evaluated metformin, ASCs, or their combination in two contexts: prophylactic (started on day 1 post-irradiation) and therapeutic (initiated on day 14 post-irradiation, coinciding with fibrosis symptoms). We measured limb movement, examined skin histology, and analyzed gene expression to assess treatment efficacy. RESULTS Prophylactic metformin and ASCs, whether autologous or allogeneic, effectively prevented late fibrosis, with metformin showing promising results. However, combination therapy did not provide additional benefits when used prophylactically. Autologous ASCs, alone or with metformin, proved most effective against late-stage RISF. Prophylactic intervention outperformed late therapy for mitigating radiation skin damage. Co-culture studies revealed that ASCs and metformin downregulated inflammation and fibrotic gene expression in both mouse and human fibroblasts. CONCLUSIONS Our study suggests metformin's potential as a prophylactic measure to prevent RISF, and the combination of ASCs and metformin holds promise for late-stage RISF treatment. These findings have clinical implications for improving the quality of life for those affected by radiation-induced skin fibrosis.
Collapse
Affiliation(s)
- Hamid Malekzadeh
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Yusuf Surucu
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Somaiah Chinnapaka
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Katherine S Yang
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - José A Arellano
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Yasamin Samadi
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
- McGowan Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, USA
| | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
6
|
Hua Z, Yang W, Li D, Cui Y, Shen L, Rao L, Zheng Y, Zhang Q, Zeng W, Gong Y, Yuan L. Metformin regulates the LIN28B‑mediated JNK/STAT3 signaling pathway through miR‑140‑3p in subretinal fibrosis. Exp Ther Med 2023; 26:528. [PMID: 37869644 PMCID: PMC10587880 DOI: 10.3892/etm.2023.12227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
Subretinal fibrosis (SF) is an important cause of submacular neovascularization that leads to permanent vision loss, but has no effective clinical treatment. The present study examined the influence of metformin on SF, and investigated whether the mechanism involves the microRNA (miR)-140-3p/LIN28B/JNK/STAT3-mediated regulation of oxidative stress, angiogenesis and fibrosis-associated indicators. A mouse model of laser-induced SF was established. In addition, an ARPE-19 fibrotic cell model was established using TGF-β1. A Cell Counting Kit-8 assay was used to examine cell viability. Flow cytometry was used to measure reactive oxygen species levels, and western blotting was used to detect the levels of proteins associated with epithelial-mesenchymal transition (EMT), signaling and fibrosis. The levels of superoxide dismutase, malondialdehyde, glutathione-peroxidase and catalase were measured using kits. Scratch assays and Transwell assays were used to assess cell migration and invasion, respectively, and reverse transcription-quantitative PCR was used to determine the levels of miR-140-3p and LIN28B. Dual-luciferase assays were used to verify the targeting relationship between miR-140-3p and LIN28B, and coimmunoprecipitation was used to confirm the interaction between LIN28B and JNK. Masson staining and hematoxylin and eosin staining were used to examine collagenous fibers and the histopathology of eye tissue. In ARPE-19 cells induced by TGF-β1, metformin promoted miR-140-3p expression and inhibited LIN28B expression and JNK/STAT3 pathway activation, thereby inhibiting oxidative stress, EMT and fibrosis in ARPE-19 cells. The overexpression of LIN28B or treatment with the JNK/STAT3 agonist anisomycin partially reversed the inhibitory effect of metformin on oxidative stress and fibrosis in ARPE-19 cells. The dual-luciferase reporter assay and coimmunoprecipitation assay showed that miR-140-3p targeted the 3' untranslated region of LIN28B mRNA and inhibited LIN28B expression. LIN28B targeted and bound to JNK and regulated the JNK/STAT3 pathway. Therefore, it may be concluded that metformin can promote miR-140-3p expression, inhibit LIN28B and then inhibit the JNK/STAT3 pathway to alleviate SF.
Collapse
Affiliation(s)
- Zhijuan Hua
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P.R. China
| | - Wenchang Yang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Dongli Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yixin Cui
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Lu Shen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Lingna Rao
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuxiang Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiying Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wenyi Zeng
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yi Gong
- Department of Physiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ling Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
7
|
Tommerdahl KL, Kula AJ, Bjornstad P. Pharmacological management of youth with type 2 diabetes and diabetic kidney disease: a comprehensive review of current treatments and future directions. Expert Opin Pharmacother 2023; 24:913-924. [PMID: 37071054 PMCID: PMC10198950 DOI: 10.1080/14656566.2023.2203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a leading cause of mortality in people with type 2 diabetes (T2D), and over 50% of individuals with youth-onset T2D will develop DKD as a young adult. Diagnosis of early-onset DKD remains a challenge in young persons with T2D secondary to a lack of available biomarkers for early DKD, while the injuries may still be reversible. Furthermore, multiple barriers exist to initiate timely prevention and treatment strategies for DKD, including a lack of Food and Drug Administration approval of medications in pediatrics; provider comfort with medication prescription, titration, and monitoring; and medication adherence. AREAS COVERED Therapies that have promise for slowing DKD progression in youth with T2D include metformin, renin-angiotensin-aldosterone system inhibitors, glucagon-like peptide-1 receptor agonists, sodium glucose co-transporter 2 inhibitors, thiazolidinediones, sulfonylureas, endothelin receptor agonists, and mineralocorticoid antagonists. Novel agents are also in development to act synergistically on the kidneys with the aforementioned medications. We comprehensively review the available pharmacologic strategies for DKD in youth-onset T2D including mechanisms of action, potential adverse effects, and kidney-specific effects, with an emphasis on published pediatric and adult trials. EXPERT OPINION Large clinical trials evaluating pharmacologic interventions targeting the treatment of DKD in youth-onset T2D are strongly needed.
Collapse
Affiliation(s)
- Kalie L. Tommerdahl
- Department of Pediatrics, Section of Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
- Ludeman Family Center for Women’s Health Research, Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander J. Kula
- Department of Pediatrics, Section of Pediatric Nephrology, Lurie Children’s Hospital and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women’s Health Research, Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Zhu Z, Gao S, Zhu H, Chen Y, Wu D, Chen Z, Huang Y, Wu X, Hu N, Chen D, Huang W, Chen H. Metformin improves fibroblast metabolism and ameliorates arthrofibrosis in rats. J Orthop Translat 2023; 40:92-103. [PMID: 37457314 PMCID: PMC10338908 DOI: 10.1016/j.jot.2023.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background Emerging studies have suggested an essential role of fibroblast metabolic reprogramming in the pathogenesis of arthrofibrosis. The metabolic modulator metformin appears to be a therapeutic candidate for fibrotic disorders. However, whether metformin could alleviate arthrofibrosis has not been defined. In this study we have determined if treatment with metformin has beneficial effect on arthrofibrosis and its underlying mechanism. Methods Articular capsule samples were collected from patients with/without arthrofibrosis to perform gene and protein expression analysis. Arthrofibrosis animal model was established to examine the anti-fibrotic effect of metformin. Cell culture experiments were conducted to determine the mechanism by which metformin inhibits fibroblast activation. Results We found that glycolysis was upregulated in human fibrotic articular capsules. In an arthrofibrosis animal model, intra-articular injection of metformin mitigated inflammatory reactions, downregulated expression of both fibrotic and glycolytic markers, improved range of motion (ROM) of the joint, and reduced capsular fibrosis and thickening. At the cellular level, metformin inhibited the activation of fibroblasts and mitigated the abundant influx of glucose into activated fibroblasts. Interestingly, metformin prompted a metabolic shift from oxidative phosphorylation to aerobic glycolysis in activated fibroblasts, resulting in the anti-fibrotic effect of metformin. Conclusion Metformin decreased glycolysis, causing a metabolic shift toward aerobic glycolysis in activated fibroblasts and has beneficial effect on the treatment of arthrofibrosis.The translational potential of this article: The findings of this study demonstrated the therapeutic effect of metformin on arthrofibrosis and defined novel targets for the treatment of articular fibrotic disorders.
Collapse
Affiliation(s)
- Zhenglin Zhu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Shengqiang Gao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Hui Zhu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandong Wu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Xiangdong Wu
- Department of Orthopaedic Surgery, Peking University Fourth School of Clinical Medicine/Beijing Jishuitan Hospital, Beijing, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institue of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Zhang X, Liang F, Li T, Jiang Y, Ren F. Metformin ameliorates calcium oxalate crystallization and stone formation by activating the Nrf2/HO-1 signaling pathway: Two birds with one stone. Arch Biochem Biophys 2023; 739:109568. [PMID: 36914110 DOI: 10.1016/j.abb.2023.109568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023]
Abstract
Deposition of calcium oxalate (CaOx) crystals and oxidative stress-induced injury of renal tubular epithelial cell are the primary pathogenic factors of nephrolithiasis. In this study we investigated the beneficial effects of metformin hydrochloride (MH) against nephrolithiasis and explored the underlying molecular mechanism. Our results demonstrated that MH inhibited the formation of CaOx crystals and promoted the transformation of thermodynamically stable CaOx monohydrate (COM) to more unstable CaOx dihydrate (COD). MH treatment effectively ameliorated oxalate-induced oxidative injury and mitochondrial damage in renal tubular cells and reduced CaOx crystal deposition in rat kidneys. MH also attenuated oxidative stress by lowering MDA level and enhancing SOD activity in HK-2 and NRK-52E cells and in a rat model of nephrolithiasis. In both HK-2 and NRK-52E cells, COM exposure significantlylowered the expressions of HO-1 and Nrf2, which was rescued by MH treatment even in the presence of Nrf2 and HO-1 inhibitors. In rats with nephrolithiasis, MH treatment significantly rescued the down-regulation of the mRNA and protein expression of Nrf2 and HO-1 in the kidneys. These results demonstrate that MH can alleviate CaOx crystal deposition and kidney tissue injury in rats with nephrolithiasis by suppressing oxidative stress and activating the Nrf2/HO-1 signaling pathway, suggesting the potential value of MH in the treatment of nephrolithiasis.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Futu Liang
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Tianyang Li
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Yaodong Jiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Fei Ren
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
10
|
Wang F, Zhou CX, Zheng Z, Li DJ, Li W, Zhou Y. Metformin reduces myogenic contracture and myofibrosis induced by rat knee joint immobilization via AMPK-mediated inhibition of TGF-β1/Smad signaling pathway. Connect Tissue Res 2023; 64:26-39. [PMID: 35723580 DOI: 10.1080/03008207.2022.2088365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The two structural components contributing to joint contracture formation are myogenic and arthrogenic contracture, and myofibrosis is an important part of myogenic contracture. Myofibrosis is a response to long-time immobilization and is described as a condition with excessive deposition of endomysial and perimysial connective tissue components in skeletal muscle. The purpose of this study was to confirm whether metformin can attenuate the formation of myogenic contracture and myofibrosis through the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) and inhabitation of subsequent transforming growth factor beta (TGF-β) 1/Smad signaling pathway. MATERIALS AND METHODS An immobilized rat model was used to determine whether metformin could inhibit myogenic contracture and myofibrosis. The contents of myogenic contracture of knee joint was calculated by measuring instrument of range of motion (ROM), and myofibrosis of rectus femoris were determined by ultrasound shear wave elastography and Masson staining. Protein expression of AMPK and subsequent TGF-β1/Smad signaling pathway were determined by western blot. Subsequently, Compound C, a specific AMPK inhibitor, was used to further clarify the role of the AMPK-mediated inhibition of TGF-β1/Smad signaling pathway. RESULTS We revealed that the levels of myogenic contracture and myofibrosis were gradually increased during immobilization, and overexpression of TGF-β1-induced formation of myofibrosis by activating Smad2/3 phosphorylation. Activation of AMPK by metformin suppressed overexpression of TGF-β1 and TGF-β1-induced Smad2/3 phosphorylation, further reducing myogenic contracture and myofibrosis during immobilization. In contrast, inhibition of AMPK by Compound C partially counteracted the inhibitory effect of TGF-β1/Smad signaling pathway by metformin. CONCLUSION Notably, we first illustrated the therapeutic effect of metformin through AMPK-mediated inhibition of TGF-β1/Smad signaling pathway in myofibrosis, which may provide a new therapeutic strategy for myogenic contracture.
Collapse
Affiliation(s)
- Feng Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.,Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chen Xu Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhi Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Du Juan Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Wen Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Wang SX, Feng YN, Feng S, Wu JM, Zhang M, Xu WL, Zhang YY, Zhu HB, Xiao H, Dong ED. IMM-H007 attenuates isoprenaline-induced cardiac fibrosis through targeting TGFβ1 signaling pathway. Acta Pharmacol Sin 2022; 43:2542-2549. [PMID: 35354962 PMCID: PMC9525664 DOI: 10.1038/s41401-022-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022] Open
Abstract
Upon chronic stress, β-adrenergic receptor activation induces cardiac fibrosis and leads to heart failure. The small molecule compound IMM-H007 has demonstrated protective effects in cardiovascular diseases via activation of AMP-activated protein kinase (AMPK). This study aimed to investigate IMM-H007 effects on cardiac fibrosis induced by β-adrenergic receptor activation. Because adenosine analogs also exert AMPK-independent effects, we assessed AMPK-dependent and -independent IMM-H007 effects in murine models of cardiac fibrosis. Continual subcutaneous injection of isoprenaline for 7 days caused cardiac fibrosis and cardiac dysfunction in mice in vivo. IMM-H007 attenuated isoprenaline-induced cardiac fibrosis, diastolic dysfunction, α-smooth muscle actin expression, and collagen I deposition in both wild-type and AMPKα2-/- mice. Moreover, IMM-H007 inhibited transforming growth factor β1 (TGFβ1) expression in wild-type, but not AMPKα2-/- mice. By contrast, IMM-H007 inhibited Smad2/3 signaling downstream of TGFβ1 in both wild-type and AMPKα2-/- mice. Surface plasmon resonance and molecular docking experiments showed that IMM-H007 directly interacts with TGFβ1, inhibits its binding to TGFβ type II receptors, and downregulates the Smad2/3 signaling pathway downstream of TGFβ1. These findings suggest that IMM-H007 inhibits isoprenaline-induced cardiac fibrosis via both AMPKα2-dependent and -independent mechanisms. IMM-H007 may be useful as a novel TGFβ1 antagonist.
Collapse
Affiliation(s)
- Shuai-Xing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ye-Nan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Shan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ji-Min Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Mi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wen-Li Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - You-Yi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Hai-Bo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| | - Er-Dan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| |
Collapse
|
12
|
Wu X, Xiao X, Chen X, Yang M, Hu Z, Shuai S, Fu Q, Yang H, Du Q. Effectiveness and mechanism of metformin in animal models of pulmonary fibrosis: A preclinical systematic review and meta-analysis. Front Pharmacol 2022; 13:948101. [PMID: 36147352 PMCID: PMC9485720 DOI: 10.3389/fphar.2022.948101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Pulmonary fibrosis (PF) is a lung disease with no curative drug, characterized by a progressive decrease in lung function. Metformin (MET) is a hypoglycemic agent with the advantages of high safety and low cost and has been used in several in vivo trials to treat fibrotic diseases. Objective: This study aimed to explore the efficacy and safety of MET in treating PF and elaborate on its mechanism. Methods: Eight databases were searched for in vivo animal trials of MET for PF from the time of database creation until 1 March 2022. The risk of bias quality assessment of the included studies was conducted using SYRCLE’s risk of bias assessment. Pulmonary inflammation and fibrosis scores were the primary outcomes of this study. Hydroxyproline (HYP), type I collagen (collagen I), α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), Smad, AMP-activated protein kinase (AMPK), and extracellular signal–regulated kinase (ERK) protein expression in lung tissues and animal mortality were secondary outcomes. Effect magnitudes were combined and calculated using Revman 5.3 and Stata 16.0 to assess the efficacy and safety of MET in animal models of PF. Inter-study heterogeneity was examined using the I2 or Q test, and publication bias was assessed using funnel plots and Egger’s test. Results: A total of 19 studies involving 368 animals were included, with a mean risk of bias of 5.9. The meta-analysis showed that MET significantly suppressed the level of inflammation and degree of PF in the lung tissue of the PF animal model. MET also reduced the content of HYP, collagen I, α-SMA, and TGF-β and phosphorylation levels of Smad2, Smad3, p-smad2/3/smad2/3, ERK1/2, and p-ERK1/2/ERK1/2 in lung tissues. MET also elevated AMPK/p-AMPK levels in lung tissues and significantly reduced animal mortality. Conclusion: The results of this study suggest that MET has a protective effect on lung tissues in PF animal models and may be a potential therapeutic candidate for PF treatment. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=327285, identifier CRD42022327285.
Collapse
Affiliation(s)
- Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sijia Shuai
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwei Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Han Yang, ; Quanyu Du,
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Han Yang, ; Quanyu Du,
| |
Collapse
|
13
|
Sun H, Shi K, Zuo B, Zhang X, Liu Y, Sun D, Wang F. Kidney-Targeted Drug Delivery System Based on Metformin-Grafted Chitosan for Renal Fibrosis Therapy. Mol Pharm 2022; 19:3075-3084. [PMID: 35938707 DOI: 10.1021/acs.molpharmaceut.1c00827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our previous study demonstrated that metformin plays an anti-fibrotic role in addition to its hypoglycemic effect. Worryingly, it often requires more than 5 times the hypoglycemic dose to achieve a satisfactory anti-fibrotic effect, which greatly increases the risk of systemic acidosis caused by metformin overdose. Low-molecular-weight chitosan (LMWC) has natural kidney-targeting properties and good biocompatibility and degradability. Thus, we synthesized a novel carrier metformin-grafted chitosan (CS-MET) based on an imine reaction between oxidized chitosan and metformin. Then, GFP was recruited to form GFP-loaded CS-MET nanoparticles (CS-MET/GFP NPs) with controllable particle size. We hypothesized that CS-MET/GFP NPs would enrich in the kidney and be absorbed by HK-2 cells via megalin-mediated endocytosis by intravenous injection, which may avoid systemic acidosis caused by metformin overdose. Subsequently, the nanoparticle ruptures and releases metformin to exert its anti-apoptotic, anti-inflammatory, and anti-fibrotic effects. Our results showed that CS-MET/GFP NPs have great transfection efficiency and could enter HK-2 cells mainly through megalin-mediated endocytosis. Compared to the free metformin, CS-MET/GFP NPs showed similar anti-apoptotic ability but better therapeutic effects on cellular inflammation and fibrosis in vitro. On the other hand, CS-MET/GFP NPs showed great kidney-targeting ability and superior anti-apoptotic, anti-inflammatory, and anti-fibrotic effects in vivo.
Collapse
Affiliation(s)
- Haihan Sun
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, People's Republic of China
| | - Kun Shi
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu Province 221006, People's Republic of China
| | - Bangjie Zuo
- Department of Nephrology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu Province 224006, People's Republic of China
| | - Xin Zhang
- Department of Nephrology, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221006, People's Republic of China
| | - Yue Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, People's Republic of China
| | - Dong Sun
- Department of Nephrology, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221006, People's Republic of China
| | - Fengzhen Wang
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, People's Republic of China.,Department of Clinical Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221006, People's Republic of China
| |
Collapse
|
14
|
Wang Y, Wang Z, Yang H, Chen S, Zheng D, Liu X, Jiang Q, Chen Y. Metformin Ameliorates Chronic Colitis-Related Intestinal Fibrosis via Inhibiting TGF-β1/Smad3 Signaling. Front Pharmacol 2022; 13:887497. [PMID: 35645830 PMCID: PMC9136141 DOI: 10.3389/fphar.2022.887497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Intestinal fibrosis is considered to be a chronic complication of inflammatory bowel disease (IBD) and seriously threatening human health. Effective medical therapies or preventive measures are desirable but currently unavailable. Metformin has been proved to have a satisfactory anti-inflammatory effects in ulcerative colitis (UC) patients. Whether metformin can ameliorate chronic colitis-related intestinal fibrosis and the possible mechanisms remain unclear. Here, we established colitis-related intestinal fibrosis in mice by repetitive administration of TNBS or DSS. Preventive and therapeutic administration of metformin to chronic TNBS or DSS colitis mice indicated that metformin significantly attenuated intestinal fibrosis by suppressing Smad3 phosphorylation. In vitro studies with human colon fibroblast cell line (CCD-18Co) and primary human intestinal fibroblast treated with TGF-β1 confirmed the anti-fibrotic function of metformin for fibroblast activation, proliferation and collagen production. Mechanistically, metformin particularly inhibited phosphorylation and nuclear translocation of Smad3 by blocking the interaction of Smad3 with TβRI. These findings suggest that metformin will be an attractive anti-fibrotic drug for intestinal fibrosis in future therapies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiping Yang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuze Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dekai Zheng
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuying Liu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinrui Jiang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Ye Chen,
| |
Collapse
|
15
|
Chen XC, Wu D, Wu HL, Li HY, Yang C, Su HY, Liu ZJ, Huang XR, Lu X, Huang LF, Zhu SP, Pan QJ, An N, Liu HF. Metformin improves renal injury of MRL/lpr lupus-prone mice via the AMPK/STAT3 pathway. Lupus Sci Med 2022; 9:9/1/e000611. [PMID: 35414608 PMCID: PMC9006817 DOI: 10.1136/lupus-2021-000611] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/30/2022] [Indexed: 12/12/2022]
Abstract
Objective Lupus nephritis (LN) is a major complication and cause of death among patients with SLE. This research used in vivo and in vitro experiments to explore the therapeutic potential of metformin in kidney injury from LN-induced inflammation. Methods In vivo study, 8-week-old MRL/MpJ-Faslpr/J (MRL/lpr) mice were randomly divided into two groups (n=12 each): daily administration of 0.3 mg/mL metformin in drinking water and control (water only). Body weight and urinary samples were measured biweekly. Mice were sacrificed after 8-week treatment to harvest serum, lymph nodes, spleen and kidneys. In vitro study, human kidney-2 (HK-2) cells were pretreated with 1 mM metformin for 1 hour and then stimulated with 20 µg/mL lipopolysaccharides (LPS) or 10 ng/mL tumour necrosis factor-α (TNF-α) for another 48 hours. Protein was collected for subsequent analysis. Results We found that metformin administration improved renal function in MRL/lpr lupus-prone mice, measured by decreased urea nitrogen and urinary proteins. Metformin reduced immunoglobulin G and complement C3 deposition in glomeruli. The treatment also downregulated systemic and renal inflammation, as seen in decreased renal infiltration of F4/80-positive macrophages and reduced splenic and renal MCP-1 (monocyte chemoattractant protein-1) and TNF-α, and renal IL-1β (interleukin 1β) expression. Metformin administration decreased renal expression of necroptosis markers p-RIPK1 (phosphorylated receptor-interacting protein kinase 1) and p-MLKL, along with tubular injury marker KIM-1 (kidney injury molecule-1) in lupus mice. In addition, metformin alleviated the necroptosis of HK-2 cells stimulated by LPS and TNF-α, evidencing by a decrease in the expression of necroptosis markers p-RIPK1, p-RIPK3 and p-MLKL, and the inflammasome-related markers NLRP3 (NLR family pyrin domain containing 3), ASC (apoptosis-associated speck-like protein containing a CARD), caspase-1. Mechanistically, metformin treatment upregulated p-AMPK (phosphorylated AMP-activated protein kinase) and downregulated p-STAT3 (phosphorylated signal transducer and activator of transcription 3) expression in the kidneys. Moreover, AMPKα2 knockdown abolished the protective effects of metformin in vitro. Conclusions Metformin alleviated kidney injury in LN though suppressing renal necroptosis and inflammation via the AMPK/STAT3 pathway.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Dan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Hong-Luan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Hui-Yuan Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Hong-Yong Su
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Ze-Jian Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Xiao-Rong Huang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Li-Feng Huang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Shao-Ping Zhu
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qing-Jun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Ning An
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China .,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China .,Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases co-sponsored by province and city, Zhanjiang, Guangdong, China
| |
Collapse
|
16
|
Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK-induced NF-κB inactivation in mice intoxicated with carbon tetrachloride. Life Sci 2021; 286:120070. [PMID: 34688695 DOI: 10.1016/j.lfs.2021.120070] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
AIM Metformin and empagliflozin combined therapy may have complementary effects that go beyond the well-recognized targets of their monotherapy through AMPK activation. Therefore, the current study was designed to investigate for the first time the hepatoprotective effects of such combination therapy in the carbon tetrachloride (CCl4)-induced hepatic fibrosis model in mice. MATERIALS AND METHODS Determination of liver enzymes and the liver content of oxidative stress parameters, and hydroxyproline were performed biochemically. ELISA was performed to measure PDGF-BB, TNF-α, TGF-β, TIMP-1, AMPK, p-mTOR, NF-κB P65 binding activity, p38 MAPKα, JNK1/2 and ERK1/2. Real-time qPCR was conducted to determine Col1a1 and α-SMA. In addition, histopathological examination using H&E and Masson's trichrome stain were performed for determination of histopathological changes. KEY FINDINGS Empagliflozin inhibited the activation of p38 MAPK and ERK1/2 and exhibited a weak AMPKα stimulation. On the other hand, metformin exerted a more robust stimulatory action on the AMPKα that was accompanied by a notable decrease in the NF-κB nuclear binding activity and a decline in the p-mTOR levels. Nevertheless, the effect of metformin on MAPK kinases was insignificant. Our results revealed that blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhanced the antifibrotic effect of metformin and augmented its AMPK-induced NF-κB inactivation. SIGNIFICANCE As diabetes is one of the most common risk factors for liver fibrosis, the use of antidiabetic drugs is expected to improve therapeutic outcome. Therefore, metformin/empagliflozin combined therapy could be promising in preventing hepatic inflammation and fibrosis via exhibiting complementary effects particularly in diabetic patients.
Collapse
|
17
|
Li Y, Song B, Ruan C, Xue W, Zhao J. AdipoRon Attenuates Hypertension-Induced Epithelial-Mesenchymal Transition and Renal Fibrosis via Promoting Epithelial Autophagy. J Cardiovasc Transl Res 2021; 14:538-545. [PMID: 33025271 DOI: 10.1007/s12265-020-10075-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
Hypertension-induced epithelial-mesenchymal transition (EMT) is a major mechanism of renal fibrosis. Adiponectin protects against hypertension-induced target organ damage. AdipoRon is an orally active synthetic adiponectin receptor agonist. However, it is unclear whether AdipoRon could attenuate EMT and renal fibrosis in hypertensive mice. C57BJ/6J mice were utilized to induce DOCA-salt-sensitive hypertensive model. Hypertension results in an altered adiponectin expression and promotes EMT in the kidney. In vitro, AdipoRon inhibits aldosterone (Aldo)-induced EMT and promotes autophagic flux in HK-2 epithelial cells. Mechanically, AdipoRon activates AMPK/ULK1 pathway in epithelial cells. Blockade of AMPK activation, as well as inhibition of autophagy, blocks the effects of AdipoRon on Aldo-induced EMT. Moreover, AdipoRon treatment promotes autophagy and improves renal fibrosis in DOCA-salt-hypertensive mice. Our data suggest that AdipoRon could be a potential therapeutic option to prevent renal fibrosis in hypertensive patients. Graphical abstract.
Collapse
Affiliation(s)
- Yan Li
- Department of Cardiology, RuiJin Hospital/LuWan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bei Song
- Department of General Practice, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chengchao Ruan
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - WenJie Xue
- Huangpu District Bansongyuan Road Health Service Center, Shanghai, China.
| | - Jianrong Zhao
- Department of Cardiology, RuiJin Hospital/LuWan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
18
|
Chen L, Lv L, Zhang L, Gao Z, Liu Y, Wang S, Zhou N, Xia Y, Cui J, Jiang X, Zhang X, Li Y, Shi B. Metformin ameliorates bladder dysfunction in a rat model of partial bladder outlet obstruction. Am J Physiol Renal Physiol 2021; 320:F838-F858. [PMID: 33645317 DOI: 10.1152/ajprenal.00625.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alteration of bladder morphology and function was the most important consequence of bladder outlet obstruction (BOO). Using a rat model of partial BOO (pBOO), we found that rats treated with metformin showed lower baseline pressures with a reduced inflammatory reaction in the early phase (2 wk) after pBOO. The NLR family pyrin domain containing 3 inflammasome pathway was inhibited in pBOO rat bladders with treatment of metformin in the early phase. Metformin reduced the activity of NLR family pyrin domain containing 3 in primary urothelial cells. In the chronic phase (9 wk after pBOO), metformin treatment ameliorated bladder fibrosis and improved the reduced compliance. Treatment with metformin suppressed the activation of Smad3 and compensated the diminished autophagy in 9-wk pBOO rat bladders. Autophagy was inhibited with upregulation of profibrotic proteins in primary fibroblasts from chronic pBOO bladders, which could be restored by administration of metformin. The antifibrotic effects of metformin on fibroblasts were diminished after silencing of AMP-activated protein kinase or light chain 3B. In summary, this study elucidates that oral administration of metformin relieves inflammation in the bladder during the early phase of pBOO. Long-term oral administration of metformin can prevent functional and histological changes in the pBOO rat bladder. The current study suggests that metformin might be used to prevent the development of bladder dysfunction secondary to BOO.NEW & NOTEWORTHY The present study in a rat model showed that oral administration of metformin alleviated inflammation following partial bladder outlet obstruction in the early phase and ameliorated bladder fibrosis as well as bladder dysfunction by long-term treatment. Our study indicated that metformin is a potential drug to inhibit bladder remodeling and alleviate bladder dysfunction. Clinical trials are needed to validate the effect of metformin on the bladder dysfunction and bladder fibrosis in the future.
Collapse
Affiliation(s)
- Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Linchen Lv
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Lekai Zhang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Zhengdong Gao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Jinan, China
| | - Shuai Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Xiulin Zhang
- Department of Urology, Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| |
Collapse
|
19
|
Chung S, Kim GH. Use of Anti-Diabetic Agents in Non-Diabetic Kidney Disease: From Bench to Bedside. Life (Basel) 2021; 11:389. [PMID: 33923115 PMCID: PMC8146249 DOI: 10.3390/life11050389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022] Open
Abstract
New drugs were recently developed to treat hyperglycemia in patients with type 2 diabetes mellitus (T2D). However, metformin remains the first-line anti-diabetic agent because of its cost-effectiveness. It has pleiotropic action that produces cardiovascular benefits, and it can be useful in diabetic nephropathy, although metformin-associated lactic acidosis is a hindrance to its use in patients with kidney failure. New anti-diabetic agents, including glucagon-like peptide-1 receptor (GLP-1R) agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2 (SGLT-2) inhibitors, also produce cardiovascular or renal benefits in T2D patients. Their glucose-independent beneficial actions can lead to cardiorenal protection via hemodynamic stabilization and inflammatory modulation. Systemic hypertension is relieved by natriuresis and improved vascular dysfunction. Enhanced tubuloglomerular feedback can be restored by SGLT-2 inhibition, reducing glomerular hypertension. Patients with non-diabetic kidney disease might also benefit from those drugs because hypertension, proteinuria, oxidative stress, and inflammation are common factors in the progression of kidney disease, irrespective of the presence of diabetes. In various animal models of non-diabetic kidney disease, metformin, GLP-1R agonists, DPP-4 inhibitors, and SGLT-2 inhibitors were favorable to kidney morphology and function. They strikingly attenuated biomarkers of oxidative stress and inflammatory responses in diseased kidneys. However, whether those animal results translate to patients with non-diabetic kidney disease has yet to be evaluated. Considering the paucity of new agents to treat kidney disease and the minimal adverse effects of metformin, GLP-1R agonists, DPP-4 inhibitors, and SGLT-2 inhibitors, these anti-diabetic agents could be used in patients with non-diabetic kidney disease. This paper provides a rationale for clinical trials that apply metformin, GLP-1R agonists, DPP-4 inhibitors, and SGLT-2 inhibitors to non-diabetic kidney disease.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Korea
| |
Collapse
|
20
|
Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function. Clin Sci (Lond) 2021; 134:2469-2487. [PMID: 32940670 DOI: 10.1042/cs20191088] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
Sulforaphane (SFN) prevents diabetic nephropathy (DN) in type 2 diabetes (T2D) by up-regulating nuclear factor (erythroid-derived 2)-like 2 (Nrf2). AMP-activated protein kinase (AMPK) can attenuate the pathogenesis of DN by improving renal lipotoxicity along with the activation of Nrf2-mediated antioxidative signaling. Therefore, we investigated whether AMPKα2, the central subunit of AMPK in energy metabolism, is required for SFN protection against DN in T2D, and whether potential cross-talk occurs between AMPKα2 and Nrf2. AMPKα2 knockout (Ampkα2-/-) mice and wildtype (WT) mice were fed a high-fat diet (HFD) or a normal diet (ND) to induce insulin resistance, followed by streptozotocin (STZ) injection to induce hyperglycemia, as a T2D model. Both T2D and control mice were treated with SFN or vehicle for 3 months. At the end of the 3-month treatment, all mice were maintained only on HFD or ND for an additional 3 months without SFN treatment. Mice were killed at sixth month after T2D onset. Twenty-four-hour urine albumin at third and sixth months was significantly increased as renal dysfunction, along with significant renal pathological changes and biochemical changes including renal hypertrophy, oxidative damage, inflammation, and fibrosis in WT T2D mice, which were prevented by SFN in certain contexts, but not in Ampkα2-/- T2D mice. SFN prevention of T2D-induced renal lipotoxicity was associated with AMPK-mediated activation of lipid metabolism and Nrf2-dependent antioxidative function in WT mice, but not in SFN-treated Ampkα2-/- mice. Therefore, SFN prevention of DN is AMPKα2-mediated activation of probably both lipid metabolism and Nrf2 via AMPK/AKT/glycogen synthase kinase (GSK)-3β/Src family tyrosine kinase (Fyn) pathways.
Collapse
|
21
|
Yi H, Huang C, Shi Y, Cao Q, Chen J, Chen XM, Pollock CA. Metformin Attenuates Renal Fibrosis in a Mouse Model of Adenine-Induced Renal Injury Through Inhibiting TGF-β1 Signaling Pathways. Front Cell Dev Biol 2021; 9:603802. [PMID: 33614642 PMCID: PMC7889967 DOI: 10.3389/fcell.2021.603802] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
It is well-known that all progressive chronic kidney disease (CKD) is pathologically characterized by tubulointerstitial fibrosis process. Multiple studies have shown the critical role of inflammation and fibrosis in the development of CKD. Hence strategies that target inflammatory and fibrotic signaling pathways may provide promising opportunities to protect against renal fibrosis. Metformin has been used as the first-line glucose-lowering agent to treat patients with type 2 diabetes mellitus (T2DM) for over 50 years. Accumulating evidence suggests the potential for additional therapeutic applications of metformin, including mitigation of renal fibrosis. In this study, the anti-fibrotic effects of metformin independent of its glucose-lowering mechanism were examined in an adenine -induced mouse model of CKD. Expressions of inflammatory markers MCP-1, F4/80 and ICAM, fibrotic markers type IV collagen and fibronectin, and the cytokine TGF-β1 were increased in adenine-induced CKD when compared to control groups and significantly attenuated by metformin treatment. Moreover, treatment with metformin inhibited the phosphorylation of Smad3, ERK1/2, and P38 and was associated with activation of the AMP-activated protein kinase (AMPK) in the kidneys of adenine-treated mice. These results indicate that metformin attenuates adenine-induced renal fibrosis through inhibition of TGF-β1 signaling pathways and activation of AMPK, independent of its glucose-lowering action.
Collapse
Affiliation(s)
- Hao Yi
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Chunling Huang
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ying Shi
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Qinghua Cao
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Jason Chen
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
22
|
Zou J, Li C, Jiang S, Luo L, Yan X, Huang D, Luo Z. AMPK inhibits Smad3-mediated autoinduction of TGF-β1 in gastric cancer cells. J Cell Mol Med 2021; 25:2806-2815. [PMID: 33538080 PMCID: PMC7957200 DOI: 10.1111/jcmm.16308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that adenine monophosphate‐activated protein kinase (AMPK) regulates transforming growth factor β (TGF‐β)‐triggered Smad3 phosphorylation. Here we report that AMPK inhibits TGF‐β1 production. First, metformin reduced mRNA levels of TGF‐β1 in gastric cancer cells, in parallel to the decrease of its protein abundance. The effects were more prominent in the cells containing LKB1, an upstream kinase of AMPK. Second, knockdown of Smad3 by siRNA abrogated the expression of TGF‐β1. Third, metformin suppressed firefly luciferase activity whose transcription was driven by TGF‐β1 promoter. In accordance, deletion of the putative binding site of Smad3 in the TGF‐β1 promoter region severely impaired the promoter activity and response to metformin. Fourth, in support of our in vitro study, clinical treatment of type 2 diabetes with metformin significantly reduced the plasma level of TGF‐β1. Finally, immunohistochemical studies revealed that TGF‐β1 was highly expressed in human gastric cancer tissues as compared with adjacent normal tissues. In contrast, p‐AMPK exhibited opposite changes. Furthermore, the survival rate of gastric cancer patients was positively correlated with p‐AMPK and negative with TGF‐β1. Therefore, our present studies depict a mechanism underlying AMPK suppression of TGF‐β1 autoinduction, which is mediated through inhibition of Smad3 phosphorylation and activation. Collectively, our study sheds a light on the potential usage of AMPK activators in the treatment of TGF‐β1‐mediated gastric cancer progression.
Collapse
Affiliation(s)
- Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Cong Li
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Pharmacy Department, Xiangyang Stomatological Hospital, Affiliated Stomatological Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Shanshan Jiang
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Department of Biochemistry, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Wu M, Xu H, Liu J, Tan X, Wan S, Guo M, Long Y, Xu Y. Metformin and Fibrosis: A Review of Existing Evidence and Mechanisms. J Diabetes Res 2021; 2021:6673525. [PMID: 34007848 PMCID: PMC8102119 DOI: 10.1155/2021/6673525] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Fibrosis is a physiological response to organ injury and is characterized by the excessive deposition of connective tissue components in an organ, which results in the disruption of physiological architecture and organ remodeling, ultimately leading to organ failure and death. Fibrosis in the lung, kidney, and liver accounts for a substantial proportion of the global burden of disability and mortality. To date, there are no effective therapeutic strategies for controlling fibrosis. A class of metabolically targeted chemicals, such as adenosine monophosphate-activated protein kinase (AMPK) activators and peroxisome proliferator-activated receptor (PPAR) agonists, shows strong potential in fighting fibrosis. Metformin, which is a potent AMPK activator and is the only recommended first-line drug for the treatment of type 2 diabetes, has emerged as a promising method of fibrosis reduction or reversion. In this review, we first summarize the key experimental and clinical studies that have specifically investigated the effects of metformin on organ fibrosis. Then, we discuss the mechanisms involved in mediating the antifibrotic effects of metformin in depth.
Collapse
Affiliation(s)
- Maoyan Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China 646000
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Huiwen Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China 646000
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Jingyu Liu
- Southwest Medical University, Luzhou, Sichuan, China 646000
| | - Xiaozhen Tan
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Shengrong Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China 646000
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Man Guo
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China 646000
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China 646000
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| |
Collapse
|
24
|
Targeting AMP-activated protein kinase (AMPK) for treatment of autosomal dominant polycystic kidney disease. Cell Signal 2020; 73:109704. [DOI: 10.1016/j.cellsig.2020.109704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
|
25
|
Rogacka D, Audzeyenka I, Piwkowska A. Regulation of podocytes function by AMP-activated protein kinase. Arch Biochem Biophys 2020; 692:108541. [PMID: 32781053 DOI: 10.1016/j.abb.2020.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells that form an essential, integral part of the glomerular filter. These cells limit the outside border of the glomerular basement membrane, forming a tight barrier that prevents significant protein loss from the capillary space. The slit diaphragm formed by podocytes is crucial for maintaining glomerular integrity and function. They are the target of injury in many glomerular diseases, including hypertension and diabetes mellitus. Accumulating studies have revealed that AMP-activated protein kinase (AMPK), an essential cellular energy sensor, might play a fundamental role in regulating podocyte metabolism and function. AMPK participates in insulin signaling, therefore controls glucose uptake and podocytes insulin sensitivity. It is also involved in insulin-dependent cytoskeleton reorganization in podocytes, mediating glomerular albumin permeability. AMPK plays an important role in the regulation of autophagy/apoptosis processes, which influence podocytes viability. The present review aimed to highlight the molecular mechanisms associated with AMPK that are involved in the regulation of podocyte function in health and disease states.
Collapse
Affiliation(s)
- Dorota Rogacka
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Irena Audzeyenka
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
26
|
Significance of Metformin Use in Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21124239. [PMID: 32545901 PMCID: PMC7352798 DOI: 10.3390/ijms21124239] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
Metformin is a glucose-lowering agent that is used as a first-line therapy for type 2 diabetes (T2D). Based on its various pharmacologic actions, the renoprotective effects of metformin have been extensively studied. A series of experimental studies demonstrated that metformin attenuates diabetic kidney disease (DKD) by suppressing renal inflammation, oxidative stress and fibrosis. In clinical studies, metformin use has been shown to be associated with reduced rates of mortality, cardiovascular disease and progression to end-stage renal disease (ESRD) in T2D patients with chronic kidney disease (CKD). However, metformin should be administered with caution to patients with CKD because it may increase the risk of lactic acidosis. In this review article, we summarize our current understanding of the safety and efficacy of metformin for DKD.
Collapse
|
27
|
Christensen M, Nørgård MØ, Jensen MS, Møller BK, Nørregaard R. Metformin modulates immune cell infiltration into the kidney during unilateral ureteral obstruction in mice. Physiol Rep 2020; 7:e14141. [PMID: 31250538 PMCID: PMC6597795 DOI: 10.14814/phy2.14141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Metformin is today the first choice treatment for type‐2 diabetes, but has also protective effects in several renal disease models. Previously, we have demonstrated that the protective effects in response to unilateral ureteral obstruction (UUO) are independent of organic cation transporters (OCTs), the transporters responsible for the metformin uptake into the renal cells. The mechanisms behind the renoprotective effects are incompletely understood, but our previous results indicate that the renoprotective effects at least partly could be dependent on actions of metformin outside the renal cells. In this study, we investigate whether the renoprotective effects of metformin can be mediated via systemic immunomodulatory actions. We demonstrated that metformin can affect the immune system in the kidney as well as in the peripheral blood and spleen following UUO. UUO kidneys showed infiltration of immune cells including monocytes, B cells, and T cells, but metformin limited infiltration of all cell types. UUO animals had increased spleen sizes, but this increase was attenuated by metformin. Metformin treatment surprisingly resulted in a higher proportion of monocytes with infiltratory capacity 7 days after UUO. Other studies have suggested that metformin regulates monocyte maturation through signal transducer and activator of transcription 3 (STAT3) activation, as also indicated by our results. In conclusion, our results demonstrate that metformin limits the infiltration of immune cells into the kidney, as well as modulates immune cell composition at a systemic level.
Collapse
Affiliation(s)
| | - Mikkel Ø Nørgård
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael S Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Ono K, Wada H, Satoh-Asahara N, Inoue H, Uehara K, Funada J, Ogo A, Horie T, Fujita M, Shimatsu A, Hasegawa K. Effects of Metformin on Left Ventricular Size and Function in Hypertensive Patients with Type 2 Diabetes Mellitus: Results of a Randomized, Controlled, Multicenter, Phase IV Trial. Am J Cardiovasc Drugs 2020; 20:283-293. [PMID: 31721026 PMCID: PMC7266803 DOI: 10.1007/s40256-019-00381-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Metformin is the most widely used oral antihyperglycemic agent for patients with type 2 diabetes mellitus (T2DM). Despite the possible benefits of metformin on diabetes mellitus (DM) and heart failure (HF), acute or unstable HF remains a precaution for its use. Objective The aim of the present prospective randomized controlled trial was to assess whether metformin treatment has beneficial effects on patients with T2DM with hypertension without overt HF. Methods A total of 164 patients (92 males, 72 females; median age 66 years) were included in this study. Patients with T2DM with a history of hypertension were randomized 1:1 to treatment for 1 year with either metformin (metformin-treated group) or other hypoglycemic agents (control group). The primary endpoints were changes in brain natriuretic peptide (BNP) levels, left ventricular (LV) mass index, and indicators of LV diastolic function. We also evaluated changes in both clinical findings and blood laboratory examination data. Results We observed no significant changes between baseline and 1-year post-treatment in LV mass index, BNP levels, or E/e′ (early diastolic transmitral flow velocity/early diastolic mitral annular velocity; an indicator of LV diastolic function) in either the metformin-treated (n = 83) or the control (n = 81) groups. The metformin-treated group had a significant reduction of body mass index (BMI) and low-density lipoprotein cholesterol (LDL-C), but the control group did not. We determined that renal function, including serum creatinine and estimated glomerular filtration rate, deteriorated significantly in the control group but not in the metformin-treated group. Conclusion LV mass and diastolic function were not affected after 1 year of metformin treatment in patients with T2DM. However, we observed benefits in terms of reductions in both BMI and LDL-C levels and preservation of renal function. Trial Registration UMIN000006504. Registered 7 October 2011.
Collapse
|
29
|
Pan Q, Lu X, Zhao C, Liao S, Chen X, Guo F, Yang C, Liu HF. Metformin: the updated protective property in kidney disease. Aging (Albany NY) 2020; 12:8742-8759. [PMID: 32364526 PMCID: PMC7244070 DOI: 10.18632/aging.103095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Metformin is a frontline hypoglycemic agent, which is mainly prescribed to manage type 2 diabetes mellitus with obesity. Emerging evidence suggests that metformin also exerts protective effects against various kidney diseases. Some postulate that kidney disease is actually a metabolic disease, accompanied by nonresolving pathophysiologic pathways controlling oxidative stress, endoplasmic reticulum stress, inflammation, lipotoxicity, fibrosis, and senescence, as well as insufficient host defense mechanisms such as AMP-activated protein kinase (AMPK) signaling and autophagy. Metformin may interfere with these pathways by orchestrating AMPK signaling and AMPK-independent pathways to protect the kidneys from injury. Furthermore, the United States Food and Drug Administration declared metformin is safe for patients with mild or moderate kidney impairment in 2016, assuaging some conservative attitudes about metformin management in patients with renal insufficiency and broadening the scope of research on the renal protective effects of metformin. This review focuses on the molecular mechanisms by which metformin imparts renal protection and its potential in the treatment of various kidney diseases.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Xiaoqun Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
30
|
Akhter MS, Uppal P. Toxicity of Metformin and Hypoglycemic Therapies. Adv Chronic Kidney Dis 2020; 27:18-30. [PMID: 32146997 DOI: 10.1053/j.ackd.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Metformin along with other antidiabetic medications provide benefit to patients in the treatment of type 2 diabetes mellitus, but caution is advised in certain scenarios to avoid toxicity in kidney disease. Renal dosing, monitoring of kidney function, and evaluating the risk of developing serious side effects are warranted with some agents. The available literature with regard to incidence of adverse events and toxicity of hypoglycemic therapies is reviewed.
Collapse
|
31
|
Gao J, Yuan J, Wang Q, Lei T, Shen X, Cui B, Zhang F, Ding W, Lu Z. Metformin protects against PM 2.5-induced lung injury and cardiac dysfunction independent of AMP-activated protein kinase α2. Redox Biol 2020; 28:101345. [PMID: 31669973 PMCID: PMC6838896 DOI: 10.1016/j.redox.2019.101345] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/30/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Fine particulate matter (PM2.5) airborne pollution increases the risk of respiratory and cardiovascular diseases. Although metformin is a well-known antidiabetic drug, it also confers protection against a series of diseases through the activation of AMP-activated protein kinase (AMPK). However, whether metformin affects PM2.5-induced adverse health effects has not been investigated. In this study, we exposed wild-type (WT) and AMPKα2-/- mice to PM2.5 every other day via intratracheal instillation for 4 weeks. After PM2.5 exposure, the AMPKα2-/- mice developed more severe lung injury and cardiac dysfunction than were developed in the WT mice; however the administration of metformin was effective in attenuating PM2.5-induced lung injury and cardiac dysfunction in both the WT and AMPKα2-/- mice. In the PM2.5-exposed mice, metformin treatment resulted in reduced systemic and pulmonary inflammation, preserved left ventricular ejection fraction, suppressed induction of pulmonary and myocardial fibrosis and oxidative stress, and increased levels of mitochondrial antioxidant enzymes. Moreover, pretreatment with metformin significantly attenuated PM2.5-induced cell death and oxidative stress in control and AMPKα2-depleted BEAS-2B and H9C2 cells, and was associated with preserved expression of mitochondrial antioxidant enzymes. These data support the notion that metformin protects against PM2.5-induced adverse health effects through a pathway that appears independent of AMPKα2. Our findings suggest that metformin may also be a novel drug for therapies that treat air pollution associated disease.
Collapse
Affiliation(s)
- Junling Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juntao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiao'e Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Tong Lei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyue Shen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingqing Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Usher KM, Zhu S, Mavropalias G, Carrino JA, Zhao J, Xu J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res 2019; 7:9. [PMID: 30937213 PMCID: PMC6433953 DOI: 10.1038/s41413-019-0047-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Arthrofibrosis is a fibrotic joint disorder that begins with an inflammatory reaction to insults such as injury, surgery and infection. Excessive extracellular matrix and adhesions contract pouches, bursae and tendons, cause pain and prevent a normal range of joint motion, with devastating consequences for patient quality of life. Arthrofibrosis affects people of all ages, with published rates varying. The risk factors and best management strategies are largely unknown due to a poor understanding of the pathology and lack of diagnostic biomarkers. However, current research into the pathogenesis of fibrosis in organs now informs the understanding of arthrofibrosis. The process begins when stress signals stimulate immune cells. The resulting cascade of cytokines and mediators drives fibroblasts to differentiate into myofibroblasts, which secrete fibrillar collagens and transforming growth factor-β (TGF-β). Positive feedback networks then dysregulate processes that normally terminate healing processes. We propose two subtypes of arthrofibrosis occur: active arthrofibrosis and residual arthrofibrosis. In the latter the fibrogenic processes have resolved but the joint remains stiff. The best therapeutic approach for each subtype may differ significantly. Treatment typically involves surgery, however, a pharmacological approach to correct dysregulated cell signalling could be more effective. Recent research shows that myofibroblasts are capable of reversing differentiation, and understanding the mechanisms of pathogenesis and resolution will be essential for the development of cell-based treatments. Therapies with significant promise are currently available, with more in development, including those that inhibit TGF-β signalling and epigenetic modifications. This review focuses on pathogenesis of sterile arthrofibrosis and therapeutic treatments.
Collapse
Affiliation(s)
- Kayley M. Usher
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia Australia
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Georgios Mavropalias
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia Australia
| | | | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia Australia
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi China
| |
Collapse
|
33
|
Scheen AJ. Effects of glucose-lowering agents on surrogate endpoints and hard clinical renal outcomes in patients with type 2 diabetes. DIABETES & METABOLISM 2018; 45:110-121. [PMID: 30477733 DOI: 10.1016/j.diabet.2018.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease (DKD) represents an enormous burden in patients with type 2 diabetes mellitus (T2DM). Preclinical studies using most glucose-lowering agents have suggested renal-protective effects, but the proposed mechanisms of renoprotection have yet to be defined, and the promising results from experimental studies remain to be translated into human clinical findings to improve the prognosis of patients at risk of DKD. Also, it is important to distinguish effects on surrogate endpoints, such as decreases in albuminuria and estimated glomerular filtration rate (eGFR), and hard clinical endpoints, such as progression to end-stage renal disease (ESRD) and death from renal causes. Data regarding insulin therapy are surprisingly scarce, and it is nearly impossible to separate the effects of better glucose control from those of insulin per se, whereas favourable preclinical data with metformin, thiazolidinediones and dipeptidyl peptidase (DPP)-4 inhibitors are plentiful, and positive effects have been observed in clinical studies, at least for surrogate endpoints. The most favourable renal results have been reported with glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter type-2 inhibitors (SGLT2is). Significant reductions in both albuminuria and eGFR decline have been reported with these classes of glucose-lowering medications compared with placebo and other glucose-lowering agents. Moreover, in large prospective cardiovascular outcome trials using composite renal outcomes as secondary endpoints, both GLP-1RAs and SGLT2is added to standard care reduced renal outcomes combining persistent macro-albuminuria, doubling of serum creatinine, progression to ESRD and kidney-related death; however, to date, only SGLT2is have been clearly shown to reduce such hard clinical outcomes. Yet, as the renoprotective effects of SGLT2is and GLP-1RAs appear to be independent of glucose-lowering activity, the underlying mechanisms are still a matter of debate. For this reason, further studies with renal outcomes as primary endpoints are now awaited in T2DM patients at high risk of DKD, including trials evaluating the potential add-on benefits of combined GLP-1RA-SGLT2i therapies.
Collapse
Affiliation(s)
- A J Scheen
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU de Liège, Liège, Belgium.
| |
Collapse
|
34
|
Lee M, Katerelos M, Gleich K, Galic S, Kemp BE, Mount PF, Power DA. Phosphorylation of Acetyl-CoA Carboxylase by AMPK Reduces Renal Fibrosis and Is Essential for the Anti-Fibrotic Effect of Metformin. J Am Soc Nephrol 2018; 29:2326-2336. [PMID: 29976587 DOI: 10.1681/asn.2018010050] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Expression of genes regulating fatty acid metabolism is reduced in tubular epithelial cells from kidneys with tubulointerstitial fibrosis (TIF), thus decreasing the energy produced by fatty acid oxidation (FAO). Acetyl-CoA carboxylase (ACC), a target for the energy-sensing AMP-activating protein kinase (AMPK), is the major controller of the rate of FAO within cells. Metformin has a well described antifibrotic effect, and increases phosphorylation of ACC by AMPK, thereby increasing FAO. METHODS We evaluated phosphorylation of ACC in cell and mouse nephropathy models, as well as the effects of metformin administration in mice with and without mutations that reduce ACC phosphorylation. RESULTS Reduced phosphorylation of ACC on the AMPK site Ser79 occurred in both tubular epithelial cells treated with folate to mimic cellular injury and in wild-type (WT) mice after induction of the folic acid nephropathy model. When this effect was exaggerated in mice with knock-in (KI) Ser to Ala mutations of the phosphorylation sites in ACC, lipid accumulation and fibrosis increased significantly compared with WT. The effect of ACC phosphorylation on fibrosis was confirmed in the unilateral ureteric obstruction model, which showed significantly increased lipid accumulation and fibrosis in the KI mice. Metformin use was associated with significantly reduced fibrosis and lipid accumulation in WT mice. In contrast, in the KI mice, the drug was associated with worsened fibrosis. CONCLUSIONS These data indicate that reduced phosphorylation of ACC after renal injury contributes to the development of TIF, and that phosphorylation of ACC is required for metformin's antifibrotic action in the kidney.
Collapse
Affiliation(s)
- Mardiana Lee
- Kidney Laboratory, Department of Nephrology, and.,Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia
| | | | - Kurt Gleich
- Kidney Laboratory, Department of Nephrology, and
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; and
| | - Bruce E Kemp
- Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia.,St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; and.,Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Peter F Mount
- Kidney Laboratory, Department of Nephrology, and.,Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia.,The Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - David A Power
- Kidney Laboratory, Department of Nephrology, and .,Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia.,The Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
35
|
Mantuano P, Sanarica F, Conte E, Morgese MG, Capogrosso RF, Cozzoli A, Fonzino A, Quaranta A, Rolland JF, De Bellis M, Camerino GM, Trabace L, De Luca A. Effect of a long-term treatment with metformin in dystrophic mdx mice: A reconsideration of its potential clinical interest in Duchenne muscular dystrophy. Biochem Pharmacol 2018; 154:89-103. [PMID: 29684379 DOI: 10.1016/j.bcp.2018.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 12/18/2022]
Abstract
The pharmacological stimulation of AMP-activated protein kinase (AMPK) via metabolic enhancers has been proposed as potential therapeutic strategy for Duchenne muscular dystrophy (DMD). Metformin, a widely-prescribed anti-hyperglycemic drug which activates AMPK via mitochondrial respiratory chain, has been recently tested in DMD patients in synergy with nitric oxide (NO)-precursors, with encouraging results. However, preclinical data supporting the use of metformin in DMD are still poor, and its actions on skeletal muscle appear controversial. Therefore, we investigated the effects of a long-term treatment with metformin (200 mg/kg/day in drinking water, for 20 weeks) in the exercised mdx mouse model, characterized by a severe mechanical-metabolic maladaptation. Metformin significantly ameliorated histopathology in mdx gastrocnemius muscle, in parallel reducing TGF-β1 with a recovery score (r.s) of 106%; this was accompanied by a decreased plasma matrix-metalloproteinase-9 (r.s. 43%). In addition, metformin significantly increased mdx diaphragm twitch and tetanic tension ex vivo (r.s. 44% and 36%, respectively), in spite of minor effects on in vivo weakness. However, no clear protective actions on dystrophic muscle metabolism were observed, as shown by the poor metformin effect on AMPK activation measured by western blot, on the expression of mechanical-metabolic response genes analyzed by qPCR, and by the lack of fast-to-slow fiber-type-shift assessed by SDH staining in tibialis anterior muscle. Similar results were obtained in the milder phenotype of sedentary mdx mice. The lack of metabolic effects could be, at least partly, due to metformin inability to increase low mdx muscle levels of l-arginine, l-citrulline and taurine, found by HPLC. Our findings encourage to explore alternative, metabolism-independent mechanisms of action to differently repurpose metformin in DMD, supporting its therapeutic combination with NO-sources.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Grazia Morgese
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | | | - Anna Cozzoli
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Angelo Quaranta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Bari, Italy
| | | | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Luigia Trabace
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
36
|
Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget 2017; 8:92827-92840. [PMID: 29190959 PMCID: PMC5696225 DOI: 10.18632/oncotarget.21608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background and aims Determine the effect of AMPK activation and inhibition on the development of AAA (abdominal aortic aneurysm). Methods AAA was induced in ApoE−/− mice by Ang II (Angiotensin II)-infusion. AICAR (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside) was used as AMPK activator and Compound C was used as AMPK inhibitor. We further investigate the effect of metformin, a widely used anti-diabetic drug which could activate AMPK signal pathway, on the pathogenesis of aneurysm. Results Phospho-AMPK level was significantly decreased in AAA tissue compared with control aortas. AICAR significantly reduced the incidence, severity and mortality of aneurysm in the Ang II-infusion model. AICAR also alleviated macrophage infiltration and neovascularity in Ang II infusion model at day 28. The expression of pro-inflammatory factors, angiogenic factors and the activity of MMPs were also alleviated by AICAR during AAA induction. On the other hand, Compound C treatment did not exert obvious protective effect. AMPK activation may inhibit the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription-3 (STAT-3) during AAA induction. Administration of metformin also activated AMPK signal pathway and retarded AAA progression in Ang II infusion model. Conclusions Activation of AMPK signaling pathway may inhibit the Ang II-induced AAA in mice. Metformin may be a promising approach to the treatment of AAA.
Collapse
|