1
|
Pope MA, Curtis RM, Gull H, Horadigala Gamage MA, Abeyrathna SS, Abeyrathna NS, Fahrni CJ, Meloni G. Fluorescence-Based Proteoliposome Methods to Monitor Redox-Active Transition Metal Transmembrane Translocation by Metal Transporters. Methods Mol Biol 2024; 2839:77-97. [PMID: 39008249 PMCID: PMC11411439 DOI: 10.1007/978-1-0716-4043-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transmembrane transition metal transporter proteins are central gatekeepers in selectively controlling vectorial metal cargo uptake and extrusion across cellular membranes in all living organisms, thus playing key roles in essential and toxic metal homeostasis. Biochemical characterization of transporter-mediated translocation events and transport kinetics of redox-active metals, such as iron and copper, is challenged by the complexity in generating reconstituted systems in which vectorial metal transport can be studied in real time. We present fluorescence-based proteoliposome methods to monitor redox-active metal transmembrane translocation upon reconstitution of purified metal transporters in artificial lipid bilayers. By encapsulating turn-on/-off iron or copper-dependent sensors in the proteoliposome lumen and conducting real-time transport assays using small unilamellar vesicles (SUVs), in which selected purified Fe(II) and Cu(I) transmembrane importer and exporter proteins have been reconstituted, we provide a platform to monitor metal translocation events across lipid bilayers in real time. The strategy is modular and expandable toward the study of different transporter families featuring diverse metal substrate selectivity and promiscuity.
Collapse
Affiliation(s)
- Mitchell A Pope
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Rose M Curtis
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Humera Gull
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | | | - Sameera S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Nisansala S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Christoph J Fahrni
- Petit Institute for Bioengineering and Bioscience, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Lopez AE, Grigoryeva LS, Barajas A, Cianciotto NP. Legionella pneumophila Rhizoferrin Promotes Bacterial Biofilm Formation and Growth within Amoebae and Macrophages. Infect Immun 2023; 91:e0007223. [PMID: 37428036 PMCID: PMC10429650 DOI: 10.1128/iai.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Previously, we showed that Legionella pneumophila secretes rhizoferrin, a polycarboxylate siderophore that promotes bacterial growth in iron-deplete media and the murine lung. Yet, past studies failed to identify a role for the rhizoferrin biosynthetic gene (lbtA) in L. pneumophila infection of host cells, suggesting the siderophore's importance was solely linked to extracellular survival. To test the possibility that rhizoferrin's relevance to intracellular infection was missed due to functional redundancy with the ferrous iron transport (FeoB) pathway, we characterized a new mutant lacking both lbtA and feoB. This mutant was highly impaired for growth on bacteriological media that were only modestly depleted of iron, confirming that rhizoferrin-mediated ferric iron uptake and FeoB-mediated ferrous iron uptake are critical for iron acquisition. The lbtA feoB mutant, but not its lbtA-containing complement, was also highly defective for biofilm formation on plastic surfaces, demonstrating a new role for the L. pneumophila siderophore in extracellular survival. Finally, the lbtA feoB mutant, but not its complement containing lbtA, proved to be greatly impaired for growth in Acanthamoeba castellanii, Vermamoeba vermiformis, and human U937 cell macrophages, revealing that rhizoferrin does promote intracellular infection by L. pneumophila. Moreover, the application of purified rhizoferrin triggered cytokine production from the U937 cells. Rhizoferrin-associated genes were fully conserved across the many sequenced strains of L. pneumophila examined but were variably present among strains from the other species of Legionella. Outside of Legionella, the closest match to the L. pneumophila rhizoferrin genes was in Aquicella siphonis, another facultative intracellular parasite of amoebae.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Armando Barajas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
3
|
Lopez AE, Mayoral J, Cianciotto NP. Complete Genome Sequence of Legionella cardiaca Strain H63 T, Isolated from a Case of Native Valve Endocarditis. Microbiol Resour Announc 2023; 12:e0017523. [PMID: 37310280 PMCID: PMC10353460 DOI: 10.1128/mra.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
We report the complete genome sequence of Legionella cardiaca strain H63T, which had been isolated from aortic valve tissue from a patient with native endocarditis. The genome assembly contains a single 3,477,232-bp contig, with a G+C content of 38.59%, and is predicted to encode 2,948 proteins.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Joshua Mayoral
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
4
|
Shames SR. Eat or Be Eaten: Strategies Used by Legionella to Acquire Host-Derived Nutrients and Evade Lysosomal Degradation. Infect Immun 2023; 91:e0044122. [PMID: 36912646 PMCID: PMC10112212 DOI: 10.1128/iai.00441-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
To replicate within host cells, bacterial pathogens must acquire host-derived nutrients while avoiding degradative antimicrobial pathways. Fundamental insights into bacterial pathogenicity have been revealed by bacteria of the genus Legionella, which naturally parasitize free-living protozoa by establishing a membrane-bound replicative niche termed the Legionella-containing vacuole (LCV). Biogenesis of the LCV and intracellular replication rely on rapid evasion of the endocytic pathway and acquisition of host-derived nutrients, much of which is mediated by bacterial effector proteins translocated into host cells by a Dot/Icm type IV secretion system. Billions of years of co-evolution with eukaryotic hosts and broad host tropism have resulted in expansion of the Legionella genome to accommodate a massive repertoire of effector proteins that promote LCV biogenesis, safeguard the LCV from endolysosomal maturation, and mediate the acquisition of host nutrients. This minireview is focused on the mechanisms by which an ancient intracellular pathogen leverages effector proteins and hijacks host cell biology to obtain essential host-derived nutrients and prevent lysosomal degradation.
Collapse
Affiliation(s)
- Stephanie R. Shames
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Sestok AE, O'Sullivan SM, Smith AT. A general protocol for the expression and purification of the intact transmembrane transporter FeoB. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183973. [PMID: 35636558 PMCID: PMC9203943 DOI: 10.1016/j.bbamem.2022.183973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 04/27/2023]
Abstract
Ferrous iron (Fe2+) transport is an essential process that supports the growth, intracellular survival, and virulence of several drug-resistant pathogens, and the ferrous iron transport (Feo) system is the most important and widespread protein complex that mediates Fe2+ transport in these organisms. The Feo system canonically comprises three proteins (FeoA/B/C). FeoA and FeoC are both small, accessory proteins localized to the cytoplasm, and their roles in the Fe2+ transport process have been of great debate. FeoB is the only wholly-conserved component of the Feo system and serves as the inner membrane-embedded Fe2+ transporter with a soluble G-protein-like N-terminal domain. In vivo studies have underscored the importance of Feo during infection, emphasizing the need to better understand Feo-mediated Fe2+ uptake, although a paucity of research exists on intact FeoB. To surmount this problem, we designed an overproduction and purification system that can be applied generally to a suite of intact FeoBs from several organisms. Importantly, we noted that FeoB is extremely sensitive to excess salt while in the membrane of a recombinant host, and we designed a workflow to circumvent this issue. We also demonstrated effective protein extraction from the lipid bilayer through small-scale solubilization studies. We then applied this approach to the large-scale purifications of Escherichia coli and Pseudomonas aeruginosa FeoBs to high purity and homogeneity. Lastly, we show that our protocol can be generally applied to various FeoB proteins. Thus, this workflow allows for isolation of suitable quantities of FeoB for future biochemical and biophysical characterization.
Collapse
Affiliation(s)
- Alex E Sestok
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Sean M O'Sullivan
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
6
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
7
|
The Legionella genus core effectors display functional conservation among orthologs by themselves or combined with an accessory protein. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100105. [PMID: 35059677 PMCID: PMC8760000 DOI: 10.1016/j.crmicr.2022.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/03/2022] Open
Abstract
The Legionella genus contains nine core effectors. Three Legionella pneumophila core effectors are required for intracellular growth. The Legionella genus core effectors display functional conservation among orthologs. One Legionella core effector requires an accessory protein to perform its function.
The intracellular pathogen Legionella pneumophila, as well as other Legionella species, utilize the Icm/Dot type-IV secretion system to translocate an exceptionally large and diverse repertoire of effectors into their host cells. However, only nine core effectors were found to be present in all analyzed Legionella species. In this study, we investigated the core effectors, and used intracellular growth complementation to determine whether orthologs of core effectors perform the same function in different Legionella species. We found that three out of the nine L. pneumophila core effectors are required for maximal intracellular growth. Examination of orthologous core effectors from four Legionella species spread over the Legionella phylogenetic tree revealed that most of them perform the same function. Nevertheless, some of the orthologs of the core effector LegA3 did not complement the L. pneumophila legA3 deletion mutant for intracellular growth. LegA3 is encoded as part of an operon together with another gene, which we named legA3C, encoding a non-translocated protein. We found that LegA3 and LegA3C physically interact with each other, are both required for maximal intracellular growth, and the LegA3-LegA3C orthologous pairs from all the Legionella species examined fully complement the L. pneumophila legA3 deletion mutant for intracellular growth. Our results indicate that the Legionella core effectors orthologs generally perform the same function and establish that LegA3 requires LegA3C to fulfill its conserved function.
Collapse
|
8
|
The Legionella pneumophila Effector RavY Contributes to a Replication-Permissive Vacuolar Environment during Infection. Infect Immun 2021; 89:e0026121. [PMID: 34543123 DOI: 10.1128/iai.00261-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila is the causative agent of Legionnaires' disease and is capable of replicating inside phagocytic cells, such as mammalian macrophages. The Dot/Icm type IV secretion system is a L. pneumophila virulence factor that is essential for successful intracellular replication. During infection, L. pneumophila builds a replication-permissive vacuole by recruiting multiple host molecules and hijacking host cellular signaling pathways, a process mediated by the coordinated functions of multiple Dot/Icm effector proteins. RavY is a predicted Dot/Icm effector protein found to be important for optimal L. pneumophila replication inside host cells. Here, we demonstrate that RavY is a Dot/Icm-translocated effector protein that is dispensable for axenic replication of L. pneumophila but critical for optimal intracellular replication of the bacteria. RavY is not required for avoidance of endosomal maturation, and RavY does not contribute to the recruitment of host molecules found on replication-permissive vacuoles, such as ubiquitin, RAB1a, and RTN4. Vacuoles containing L. pneumophila ravY mutants promote intracellular survival but limit replication. The replication defect of the L. pneumophila ravY mutant was complemented when the mutant was in the same vacuole as wild-type L. pneumophila. Thus, RavY is an effector that is essential for promoting intracellular replication of L. pneumophila once the specialized vacuole has been established.
Collapse
|
9
|
Brown JB, Lee MA, Smith AT. Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport. Biochemistry 2021; 60:3277-3291. [PMID: 34670078 DOI: 10.1021/acs.biochem.1c00586] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.
Collapse
Affiliation(s)
- Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mark A Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
10
|
Linsky M, Segal G. A horizontally acquired Legionella genomic island encoding a LuxR type regulator and effector proteins displays variation in gene content and regulation. Mol Microbiol 2021; 116:766-782. [PMID: 34120381 DOI: 10.1111/mmi.14770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
The intracellular pathogen Legionella pneumophila translocates >300 effector proteins into host cells, many of which are regulated at the transcriptional level. Here, we describe a novel L. pneumophila genomic island, which undergoes horizontal gene transfer within the Legionella genus. This island encodes two Icm/Dot effectors: LegK3 and a previously uncharacterized effector which we named CegK3, as well as a LuxR type regulator, which we named RegK3. Analysis of this island in different Legionella species revealed a conserved regulatory element located upstream to the effector-encoding genes in the island. Further analyses, including gene expression analysis, mutagenesis of the RegK3 regulatory element, controlled expression studies, and gel-mobility shift assays, all demonstrate that RegK3 directly activates the expression levels of legK3 and cegK3 effector-encoding genes. Additionally, the expression of all the components of the island is silenced by the Fis repressors. Comparison of expression profiles of these three genes among different Legionella species revealed variability in the activation levels mediated by RegK3, which were positively correlated with the Fis-mediated repression. Furthermore, LegK3 and CegK3 effectors moderately inhibit yeast growth, and importantly, they have a strong synergistic inhibitory effect on yeast growth, suggesting these two effectors are not only co-regulated but also might function together.
Collapse
Affiliation(s)
- Marika Linsky
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
11
|
Herbert FC, Abeyrathna SS, Abeyrathna NS, Wijesundara YH, Brohlin OR, Carraro F, Amenitsch H, Falcaro P, Luzuriaga MA, Durand-Silva A, Diwakara SD, Smaldone RA, Meloni G, Gassensmith JJ. Stabilization of supramolecular membrane protein-lipid bilayer assemblies through immobilization in a crystalline exoskeleton. Nat Commun 2021; 12:2202. [PMID: 33850135 PMCID: PMC8044103 DOI: 10.1038/s41467-021-22285-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/25/2021] [Indexed: 11/09/2022] Open
Abstract
Artificial native-like lipid bilayer systems constructed from phospholipids assembling into unilamellar liposomes allow the reconstitution of detergent-solubilized transmembrane proteins into supramolecular lipid-protein assemblies called proteoliposomes, which mimic cellular membranes. Stabilization of these complexes remains challenging because of their chemical composition, the hydrophobicity and structural instability of membrane proteins, and the lability of interactions between protein, detergent, and lipids within micelles and lipid bilayers. In this work we demonstrate that metastable lipid, protein-detergent, and protein-lipid supramolecular complexes can be successfully generated and immobilized within zeolitic-imidazole framework (ZIF) to enhance their stability against chemical and physical stressors. Upon immobilization in ZIF bio-composites, blank liposomes, and model transmembrane metal transporters in detergent micelles or embedded in proteoliposomes resist elevated temperatures, exposure to chemical denaturants, aging, and mechanical stresses. Extensive morphological and functional characterization of the assemblies upon exfoliation reveal that all these complexes encapsulated within the framework maintain their native morphology, structure, and activity, which is otherwise lost rapidly without immobilization.
Collapse
Affiliation(s)
- Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Sameera S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Nisansala S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Olivia R Brohlin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, Austria
| | - Michael A Luzuriaga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Alejandra Durand-Silva
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Shashini D Diwakara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Ronald A Smaldone
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
12
|
Chauhan D, Shames SR. Pathogenicity and Virulence of Legionella: Intracellular replication and host response. Virulence 2021; 12:1122-1144. [PMID: 33843434 PMCID: PMC8043192 DOI: 10.1080/21505594.2021.1903199] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteria of the genus Legionella are natural pathogens of amoebae that can cause a severe pneumonia in humans called Legionnaires’ Disease. Human disease results from inhalation of Legionella-contaminated aerosols and subsequent bacterial replication within alveolar macrophages. Legionella pathogenicity in humans has resulted from extensive co-evolution with diverse genera of amoebae. To replicate intracellularly, Legionella generates a replication-permissive compartment called the Legionella-containing vacuole (LCV) through the concerted action of hundreds of Dot/Icm-translocated effector proteins. In this review, we present a collective overview of Legionella pathogenicity including infection mechanisms, secretion systems, and translocated effector function. We also discuss innate and adaptive immune responses to L. pneumophila, the implications of Legionella genome diversity and future avenues for the field.
Collapse
Affiliation(s)
- Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
13
|
A Novel Legionella Genomic Island Encodes a Copper-Responsive Regulatory System and a Single Icm/Dot Effector Protein Transcriptionally Activated by Copper. mBio 2020; 11:mBio.03232-19. [PMID: 31992628 PMCID: PMC6989116 DOI: 10.1128/mbio.03232-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Legionella pneumophila is an intracellular human pathogen that utilizes amoebae as its environmental host. The adaptation of L. pneumophila to the intracellular environment requires coordination of expression of its multicomponent pathogenesis system, which is composed of a secretion system and effector proteins. However, the regulatory factors controlling the expression of this pathogenesis system are only partially uncovered. Here, we discovered a novel regulatory system that is activated by copper and controls the expression of a single effector protein. The genes encoding both the regulatory system and the effector protein are located on a genomic island that undergoes horizontal gene transfer within the Legionella genus. This regulator-effector genomic island represents the first reported case of local regulation of effectors in Legionella. The discovery of this regulatory mechanism is an important step forward in the understanding of how the regulatory network of effectors functions and evolves in the Legionella genus. The intracellular pathogen Legionella pneumophila utilizes the Icm/Dot type IV secretion system to translocate >300 effector proteins into host cells during infection. The regulation of some of these effector-encoding genes was previously shown to be coordinated by several global regulators, including three two-component systems (TCSs) found in all the Legionella species examined. Here, we describe the first Legionella genomic island encoding a single Icm/Dot effector and a dedicated TCS, which regulates its expression. This genomic island, which we named Lci, undergoes horizontal gene transfer in the Legionella genus, and the TCS encoded from this island (LciRS) is homologous to TCSs that control the expression of various metal resistance systems found in other bacteria. We found that the L. pneumophila sensor histidine kinase LciS is specifically activated by copper via a unique, small periplasmic sensing domain. Upon activation by LciS, the response regulator LciR directly binds to a conserved regulatory element and activates the expression of the adjacently located lciE effector-encoding gene. Thus, LciR represents the first local regulator of effectors identified in L. pneumophila. Moreover, we found that the expression of the lciRS operon is repressed by the Fis1 and Fis3 regulators, leading to Fis-mediated effects on copper induction of LciE and silencing of the expression of this genomic island in the absence of copper. This island represents a novel type of effector regulation in Legionella, shedding new light on the ways by which the Legionella pathogenesis system evolves its effector repertoire and expands its activating signals.
Collapse
|
14
|
Park JM, Ghosh S, O'Connor TJ. Combinatorial selection in amoebal hosts drives the evolution of the human pathogen Legionella pneumophila. Nat Microbiol 2020; 5:599-609. [PMID: 31988381 DOI: 10.1038/s41564-019-0663-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/16/2019] [Indexed: 11/09/2022]
Abstract
Virulence mechanisms typically evolve through the continual interaction of a pathogen with its host. In contrast, it is poorly understood how environmentally acquired pathogens are able to cause disease without prior interaction with humans. Here, we provide experimental evidence for the model that Legionella pathogenesis in humans results from the cumulative selective pressures of multiple amoebal hosts in the environment. Using transposon sequencing, we identify Legionella pneumophila genes required for growth in four diverse amoebae, defining universal virulence factors commonly required in all host cell types and amoeba-specific auxiliary genes that determine host range. By comparing genes that promote growth in amoebae and macrophages, we show that adaptation of L. pneumophila to each amoeba causes the accumulation of distinct virulence genes that collectively allow replication in macrophages and, in some cases, leads to redundancy in this host cell type. In contrast, some bacterial proteins that promote replication in amoebae restrict growth in macrophages. Thus, amoebae-imposed selection is a double-edged sword, having both positive and negative impacts on disease. Comparing the genome composition and host range of multiple Legionella species, we demonstrate that their distinct evolutionary trajectories in the environment have led to the convergent evolution of compensatory virulence mechanisms.
Collapse
Affiliation(s)
- Jason M Park
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Soma Ghosh
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara J O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Abeyrathna SS, Abeyrathna NS, Thai NK, Sarkar P, D'Arcy S, Meloni G. IroT/MavN Is a Legionella Transmembrane Fe(II) Transporter: Metal Selectivity and Translocation Kinetics Revealed by in Vitro Real-Time Transport. Biochemistry 2019; 58:4337-4342. [PMID: 31589416 DOI: 10.1021/acs.biochem.9b00658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In intravacuolar pathogens, iron is essential for growth and virulence. In Legionella pneumophila, a putative transmembrane protein inserted on the surface of the host pathogen-containing vacuole, IroT/MavN, facilitates intravacuolar iron acquisition from the host by an unknown mechanism, bypassing the problem of Fe(III) insolubility and mobilization. We developed a platform for purification and reconstitution of IroT in artificial lipid bilayer vesicles (proteoliposomes). By encapsulating the fluorescent reporter probe Fluozin-3, we reveal, by real-time metal transport assays, that IroT is a high-affinity iron transporter selective for Fe(II) over other essential transition metals. Mutational analysis reveals important residues in the transmembrane helices, soluble domains, and loops important for substrate recognition and translocation. The work establishes the substrate transport properties in a novel transporter family important for iron acquisition at the host-pathogen intravacuolar interface and provides chemical tools for a comparative investigation of the translocation properties in other iron transporter families.
Collapse
Affiliation(s)
- Sameera S Abeyrathna
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Nisansala S Abeyrathna
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Nathan Khoi Thai
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Prithwijit Sarkar
- Department of Biological Sciences , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , Richardson , Texas 75080 , United States.,Department of Biological Sciences , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| |
Collapse
|
16
|
Christenson ET, Isaac DT, Yoshida K, Lipo E, Kim JS, Ghirlando R, Isberg RR, Banerjee A. The iron-regulated vacuolar Legionella pneumophila MavN protein is a transition-metal transporter. Proc Natl Acad Sci U S A 2019; 116:17775-17785. [PMID: 31431530 PMCID: PMC6731752 DOI: 10.1073/pnas.1902806116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Legionella pneumophila causes a potentially fatal form of pneumonia by replicating within macrophages in the Legionella-containing vacuole (LCV). Bacterial survival and proliferation within the LCV rely on hundreds of secreted effector proteins comprising high functional redundancy. The vacuolar membrane-localized MavN, hypothesized to support iron transport, is unique among effectors because loss-of-function mutations result in severe intracellular growth defects. We show here an iron starvation response by L. pneumophila after infection of macrophages that was prematurely induced in the absence of MavN, consistent with MavN granting access to limiting cellular iron stores. MavN cysteine accessibilities to a membrane-impermeant label were determined during macrophage infections, revealing a topological pattern supporting multipass membrane transporter models. Mutations to several highly conserved residues that can take part in metal recognition and transport resulted in defective intracellular growth. Purified MavN and mutant derivatives were directly tested for transporter activity after heterologous purification and liposome reconstitution. Proteoliposomes harboring MavN exhibited robust transport of Fe2+, with the severity of defect of most mutants closely mimicking the magnitude of defects during intracellular growth. Surprisingly, MavN was equivalently proficient at transporting Fe2+, Mn2+, Co2+, or Zn2+ Consequently, flooding infected cells with either Mn2+ or Zn2+ allowed collaboration with iron to enhance intracellular growth of L. pneumophila ΔmavN strains, indicating a clear role for MavN in transporting each of these ions. These findings reveal that MavN is a transition-metal-ion transporter that plays a critical role in response to iron limitation during Legionella infection.
Collapse
Affiliation(s)
- Eric T Christenson
- Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Dervla T Isaac
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Karin Yoshida
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Erion Lipo
- Program in Genetics, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Jin-Sik Kim
- Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111;
| | - Anirban Banerjee
- Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
17
|
Abstract
Within the human host, Legionella pneumophila replicates within alveolar macrophages, leading to pneumonia. However, L. pneumophila is an aquatic generalist pathogen that replicates within a wide variety of protist hosts, including amoebozoa, percolozoa, and ciliophora. The intracellular lifestyles of L. pneumophila within the two evolutionarily distant hosts macrophages and protists are remarkably similar. Coevolution with numerous protist hosts has shaped plasticity of the genome of L. pneumophila, which harbors numerous proteins encoded by genes acquired from primitive eukaryotic hosts through interkingdom horizontal gene transfer. The Dot/Icm type IVb translocation system translocates ∼6,000 effectors among Legionella species and >320 effector proteins in L. pneumophila into host cells to modulate a plethora of cellular processes to create proliferative niches. Since many of the effectors have likely evolved to modulate cellular processes of primitive eukaryotic hosts, it is not surprising that most of the effectors do not contribute to intracellular growth within human macrophages. Some of the effectors may modulate highly conserved eukaryotic processes, while others may target protist-specific processes that are absent in mammals. The lack of studies to determine the role of the effectors in adaptation of L. pneumophila to various protists has hampered the progress to determine the function of most of these effectors, which are routinely studied in mouse or human macrophages. Since many protists restrict L. pneumophila, utilization of such hosts can also be instrumental in deciphering the mechanisms of failure of L. pneumophila to overcome restriction of certain protist hosts. Here, we review the interaction of L. pneumophila with its permissive and restrictive protist environmental hosts and outline the accomplishments as well as gaps in our knowledge of L. pneumophila-protist host interaction and L. pneumophila's evolution to become a human pathogen.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
18
|
Genomic Insight into Symbiosis-Induced Insect Color Change by a Facultative Bacterial Endosymbiont, " Candidatus Rickettsiella viridis". mBio 2018; 9:mBio.00890-18. [PMID: 29895637 PMCID: PMC6016236 DOI: 10.1128/mbio.00890-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Members of the genus Rickettsiella are bacterial pathogens of insects and other arthropods. Recently, a novel facultative endosymbiont, “Candidatus Rickettsiella viridis,” was described in the pea aphid Acyrthosiphon pisum, whose infection causes a striking host phenotype: red and green genetic color morphs exist in aphid populations, and upon infection with the symbiont, red aphids become green due to increased production of green polycyclic quinone pigments. Here we determined the complete genome sequence of the symbiont. The 1.6-Mb circular genome, harboring some 1,400 protein-coding genes, was similar to the genome of entomopathogenic Rickettsiella grylli (1.6 Mb) but was smaller than the genomes of phylogenetically allied human pathogens Coxiella burnetii (2.0 Mb) and Legionella pneumophila (3.4 Mb). The symbiont’s metabolic pathways exhibited little complementarity to those of the coexisting primary symbiont Buchnera aphidicola, reflecting the facultative nature of the symbiont. The symbiont genome harbored neither polyketide synthase genes nor the evolutionarily allied fatty acid synthase genes that are suspected to catalyze the polycyclic quinone synthesis, indicating that the green pigments are produced not by the symbiont but by the host aphid. The symbiont genome retained many type IV secretion system genes and presumable effector protein genes, whose homologues in L. pneumophila were reported to modulate a variety of the host's cellular processes for facilitating infection and virulence. These results suggest the possibility that the symbiont is involved in the green pigment production by affecting the host’s metabolism using the secretion machineries for delivering the effector molecules into the host cells. Insect body color is relevant to a variety of biological aspects such as species recognition, sexual selection, mimicry, aposematism, and crypsis. Hence, the bacterial endosymbiont “Candidatus Rickettsiella viridis,” which alters aphid body color from red to green, is of ecological interest, given that different predators preferentially exploit either red- or green-colored aphids. Here we determined the complete 1.6-Mb genome of the symbiont and uncovered that, although the red-green color transition was ascribed to upregulated production of green polycyclic quinone pigments, the symbiont genome harbored few genes involved in the polycyclic quinone biosynthesis. Meanwhile, the symbiont genome contained type IV secretion system genes and presumable effector protein genes, whose homologues modulate eukaryotic cellular processes for facilitating infection and virulence in the pathogen Legionella pneumophila. We propose the hypothesis that the symbiont may upregulate the host’s production of polycyclic quinone pigments via cooption of secretion machineries and effector molecules for pathogenicity.
Collapse
|
19
|
Sun S, Noorian P, McDougald D. Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Front Microbiol 2018; 9:1017. [PMID: 29867902 PMCID: PMC5967200 DOI: 10.3389/fmicb.2018.01017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most opportunistic pathogens transit in the environment between hosts and the environment plays a significant role in the evolution of protective traits. The coincidental evolution hypothesis suggests that virulence factors arose as a response to other selective pressures rather for virulence per se. This idea is strongly supported by the elucidation of bacterial-protozoal interactions. In response to protozoan predation, bacteria have evolved various defensive mechanisms which may also function as virulence factors. In this review, we summarize the dual role of factors involved in both grazing resistance and human pathogenesis, and compare the traits using model intracellular and extracellular pathogens. Intracellular pathogens rely on active invasion, blocking of the phagosome and lysosome fusion and resistance to phagocytic digestion to successfully invade host cells. In contrast, extracellular pathogens utilize toxin secretion and biofilm formation to avoid internalization by phagocytes. The complexity and diversity of bacterial virulence factors whose evolution is driven by protozoan predation, highlights the importance of protozoa in evolution of opportunistic pathogens.
Collapse
Affiliation(s)
- Shuyang Sun
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane McDougald
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
20
|
Legionella Effectors Explored with INSeq: New Functional Insights. Trends Microbiol 2018; 26:169-170. [PMID: 29395730 DOI: 10.1016/j.tim.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/22/2022]
Abstract
Legionella pneumophila secretes over 300 effector proteins that manipulate host cells. This multiplicity of effectors hampers the characterization of their individual roles. Shames et al. report a new approach to solve the enigma of Legionella effector function by using INSeq to analyse effector functions in the context of infection.
Collapse
|
21
|
Moumène A, Gonzalez-Rizzo S, Lefrançois T, Vachiéry N, Meyer DF. Iron Starvation Conditions Upregulate Ehrlichia ruminantium Type IV Secretion System, tr1 Transcription Factor and map1 Genes Family through the Master Regulatory Protein ErxR. Front Cell Infect Microbiol 2018; 7:535. [PMID: 29404278 PMCID: PMC5780451 DOI: 10.3389/fcimb.2017.00535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
Ehrlichia ruminantium is an obligatory intracellular bacterium that causes heartwater, a fatal disease in ruminants. Due to its intracellular nature, E. ruminantium requires a set of specific virulence factors, such as the type IV secretion system (T4SS), and outer membrane proteins (Map proteins) in order to avoid and subvert the host's immune response. Several studies have been conducted to understand the regulation of the T4SS or outer membrane proteins, in Ehrlichia, but no integrated approach has been used to understand the regulation of Ehrlichia pathogenicity determinants in response to environmental cues. Iron is known to be a key nutrient for bacterial growth both in the environment and within hosts. In this study, we experimentally demonstrated the regulation of virB, map1, and tr1 genes by the newly identified master regulator ErxR (for Ehrlichia ruminantium expression regulator). We also analyzed the effect of iron depletion on the expression of erxR gene, tr1 transcription factor, T4SS and map1 genes clusters in E. ruminantium. We show that exposure of E. ruminantium to iron starvation induces erxR and subsequently tr1, virB, and map1 genes. Our results reveal tight co-regulation of T4SS and map1 genes via the ErxR regulatory protein at the transcriptional level, and, for the first time link map genes to the virulence function sensu stricto, thereby advancing our understanding of Ehrlichia's infection process. These results suggest that Ehrlichia is able to sense changes in iron concentrations in the environment and to regulate the expression of virulence factors accordingly.
Collapse
Affiliation(s)
- Amal Moumène
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, UMR ASTRE, Petit-Bourg, France.,ASTRE, Univ Montpellier, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Institut National de la Recherche Agronomique, Montpellier, France.,UFR Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, France
| | - Silvina Gonzalez-Rizzo
- Institut de Biologie Paris Seine (EPS - IBPS), Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, Centre National de la Recherche Scientifique Evolution Paris Seine, Paris, France.,Equipe Biologie de la Mangrove, UFR Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, France
| | - Thierry Lefrançois
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, UMR ASTRE, Petit-Bourg, France.,ASTRE, Univ Montpellier, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Institut National de la Recherche Agronomique, Montpellier, France
| | - Nathalie Vachiéry
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, UMR ASTRE, Petit-Bourg, France.,ASTRE, Univ Montpellier, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Institut National de la Recherche Agronomique, Montpellier, France
| | - Damien F Meyer
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, UMR ASTRE, Petit-Bourg, France.,ASTRE, Univ Montpellier, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Institut National de la Recherche Agronomique, Montpellier, France
| |
Collapse
|
22
|
Buracco S, Peracino B, Andreini C, Bracco E, Bozzaro S. Differential Effects of Iron, Zinc, and Copper on Dictyostelium discoideum Cell Growth and Resistance to Legionella pneumophila. Front Cell Infect Microbiol 2018; 7:536. [PMID: 29379774 PMCID: PMC5770829 DOI: 10.3389/fcimb.2017.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022] Open
Abstract
Iron, zinc, and copper play fundamental roles in eucaryotes and procaryotes, and their bioavailability regulates host-pathogen interactions. For intracellular pathogens, the source of metals is the cytoplasm of the host, which in turn manipulates intracellular metal traffic following pathogen recognition. It is established that iron is withheld from the pathogen-containing vacuole, whereas for copper and zinc the evidence is unclear. Most infection studies in mammals have concentrated on effects of metal deficiency/overloading at organismal level. Thus, zinc deficiency or supplementation correlate with high risk of respiratory tract infection or recovery from severe infection, respectively. Iron, zinc, and copper deficiency or overload affects lymphocyte proliferation/maturation, and thus the adaptive immune response. Whether they regulate innate immunity at macrophage level is open, except for iron. The early identification in a mouse mutant susceptible to mycobacterial infection of the iron transporter Nramp1 allowed dissecting Nramp1 role in phagocytes, from the social amoeba Dictyostelium to macrophages. Nramp1 regulates iron efflux from the phagosomes, thus starving pathogenic bacteria for iron. Similar studies for zinc or copper are scant, due to the large number of copper and zinc transporters. In Dictyostelium, zinc and copper transporters include 11 and 6 members, respectively. To assess the role of zinc or copper in Dictyostelium, cells were grown under conditions of metal depletion or excess and tested for resistance to Legionella pneumophila infection. Iron shortage or overload inhibited Dictyostelium cell growth within few generations. Surprisingly, zinc or copper depletion failed to affect growth. Zinc or copper overloading inhibited cell growth at, respectively, 50- or 500-fold the physiological concentration, suggesting very efficient control of their homeostasis, as confirmed by Inductively Coupled Plasma Mass Spectrometry quantification of cellular metals. Legionella infection was inhibited or enhanced in cells grown under iron shortage or overload, respectively, confirming a major role for iron in controlling resistance to pathogens. In contrast, zinc and copper depletion or excess during growth did not affect Legionella infection. Using Zinpyr-1 as fluorescent sensor, we show that zinc accumulates in endo-lysosomal vesicles, including phagosomes, and the contractile vacuole. Furthermore, we provide evidence for permeabilization of the Legionella-containing vacuole during bacterial proliferation.
Collapse
Affiliation(s)
- Simona Buracco
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Claudia Andreini
- Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, Turin, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
23
|
Sprenger M, Kasper L, Hensel M, Hube B. Metabolic adaptation of intracellular bacteria and fungi to macrophages. Int J Med Microbiol 2017; 308:215-227. [PMID: 29150190 DOI: 10.1016/j.ijmm.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
The mature phagosome of macrophages is a hostile environment for the vast majority of phagocytosed microbes. In addition to active destruction of the engulfed microbes by antimicrobial compounds, restriction of essential nutrients in the phagosomal compartment contributes to microbial growth inhibition and killing. However, some pathogenic microorganisms have not only developed various strategies to efficiently withstand or counteract antimicrobial activities, but also to acquire nutrients within macrophages for intracellular replication. Successful intracellular pathogens are able to utilize host-derived amino acids, carbohydrates and lipids as well as trace metals and vitamins during intracellular growth. This requires sophisticated strategies such as phagosome modification or escape, efficient nutrient transporters and metabolic adaptation. In this review, we discuss the metabolic adaptation of facultative intracellular bacteria and fungi to the intracellular lifestyle inside macrophages.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Michael Hensel
- Division of Microbiology, University Osnabrück, Osnabrück, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany.
| |
Collapse
|
24
|
Experimental human-like model to assess the part of viable Legionella reaching the thoracic region after nebulization. PLoS One 2017; 12:e0186042. [PMID: 28982141 PMCID: PMC5628919 DOI: 10.1371/journal.pone.0186042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 09/25/2017] [Indexed: 11/24/2022] Open
Abstract
The incidence of Legionnaires’ disease (LD) in European countries and the USA has been constantly increasing since 1998. Infection of humans occurs through aerosol inhalation. To bridge the existing gap between the concentration of Legionella in a water network and the deposition of bacteria within the thoracic region (assessment of the number of viable Legionella), we validated a model mimicking realistic exposure through the use of (i) recent technology for aerosol generation and (ii) a 3D replicate of the human upper respiratory tract. The model’s sensitivity was determined by monitoring the deposition of (i) aerosolized water and Tc99m radio-aerosol as controls, and (ii) bioaerosols generated from both Escherichia coli and Legionella pneumophila sg 1 suspensions. The numbers of viable Legionella prior to and after nebulization were provided by culture, flow cytometry and qPCR. This study was designed to obtain more realistic data on aerosol inhalation (vs. animal experimentation) and deposition at the thoracic region in the context of LD. Upon nebulization, 40% and 48% of the initial Legionella inoculum was made of cultivable and non-cultivable cells, respectively; 0.7% of both populations reached the filter holder mimicking the thoracic region in this setup. These results are in agreement with experimental data based on quantitative microbial risk assessment methods and bring new methods that may be useful for preventing LD.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Legionella pneumophila is a facultative intracellular pathogen and an important cause of community-acquired and nosocomial pneumonia. This review focuses on the latest literature examining Legionella's virulence strategies and the mammalian host response. RECENT FINDINGS Recent studies identify novel virulence strategies used by L. pneumophila and new aspects of the host immune response to this pathogen. Legionella prevents acidification of the phagosome by recruiting Rab1, a host protein. Legionella also blocks a conserved endoplasmic reticulum stress response. To access iron from host stores, L. pneumophila upregulates more regions allowing vacuolar colocalization N. In response to Legionella, the host cell may activate caspase-1, caspase-11 (mice) or caspase-4 (humans). Caspase-3 and apoptosis are activated by a secreted, bacterial effector. Infected cells send signals to their uninfected neighbors, allowing the elaboration of inflammatory cytokines in trans. Antibody subclasses provide robust protection against Legionella. SUMMARY L. pneumophila is a significant human pathogen that lives in amoebae in the environment but may opportunistically infect the alveolar macrophage. To maintain its intracellular lifestyle, Legionella extracts essential iron from the cell, blocks inflammatory responses and manipulates trafficking to avoid fusion with the lysosome. The mammalian host has counter strategies, which include the release of proinflammatory cytokines, the activation of caspases and antibody-mediated immunity.
Collapse
|
26
|
|
27
|
Yersinia pestis Resists Predation by Acanthamoeba castellanii and Exhibits Prolonged Intracellular Survival. Appl Environ Microbiol 2017; 83:AEM.00593-17. [PMID: 28455335 DOI: 10.1128/aem.00593-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
Plague is a flea-borne rodent-associated zoonotic disease caused by Yersinia pestis The disease is characterized by epizootics with high rodent mortalities, punctuated by interepizootic periods when the bacterium persists in an unknown reservoir. This study investigates the interaction between Y. pestis and the ubiquitous soil free-living amoeba (FLA) Acanthamoeba castellanii to assess if the bacterium can survive within soil amoebae and whether intracellular mechanisms are conserved between infection of mammalian macrophages and soil amoebae. The results demonstrate that during coculture with amoebae, representative Y. pestis strains of epidemic biovars Medievalis, Orientalis, and Antiqua are phagocytized and able to survive within amoebae for at least 5 days. Key Y. pestis determinants of the intracellular interaction of Y. pestis and phagocytic macrophages, PhoP and the type three secretion system (T3SS), were then tested for their roles in the Y. pestis-amoeba interaction. Consistent with a requirement for the PhoP transcriptional activator in the intracellular survival of Y. pestis in macrophages, a PhoP mutant is unable to survive when cocultured with amoebae. Additionally, induction of the T3SS blocks phagocytic uptake of Y. pestis by amoebae, similar to that which occurs during macrophage infection. Electron microscopy revealed that in A. castellanii, Y. pestis resides intact within spacious vacuoles which were characterized using lysosomal trackers as being separated from the lysosomal compartment. This evidence for prolonged survival and subversion of intracellular digestion of Y. pestis within FLA suggests that protozoa may serve as a protective soil reservoir for Y. pestisIMPORTANCEYersinia pestis is a reemerging flea-borne zoonotic disease. Sylvatic plague cycles are characterized by an epizootic period during which the disease spreads rapidly, causing high rodent mortality, and an interepizootic period when the bacterium quiescently persists in an unknown reservoir. An understanding of the ecology of Y. pestis in the context of its persistence in the environment and its reactivation to initiate a new epizootic cycle is key to implementing novel surveillance strategies to more effectively predict and prevent new disease outbreaks. Here, we demonstrate prolonged survival and subversion of intracellular digestion of Y. pestis within a soil free-living amoeba. This suggests the potential role for protozoa as a protective soil reservoir for Y. pestis, which may help explain the recrudescence of plague epizootics.
Collapse
|
28
|
Sahr T, Rusniok C, Impens F, Oliva G, Sismeiro O, Coppée JY, Buchrieser C. The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system. PLoS Genet 2017; 13:e1006629. [PMID: 28212376 PMCID: PMC5338858 DOI: 10.1371/journal.pgen.1006629] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/06/2017] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
The carbon storage regulator protein CsrA regulates cellular processes post-transcriptionally by binding to target-RNAs altering translation efficiency and/or their stability. Here we identified and analyzed the direct targets of CsrA in the human pathogen Legionella pneumophila. Genome wide transcriptome, proteome and RNA co-immunoprecipitation followed by deep sequencing of a wild type and a csrA mutant strain identified 479 RNAs with potential CsrA interaction sites located in the untranslated and/or coding regions of mRNAs or of known non-coding sRNAs. Further analyses revealed that CsrA exhibits a dual regulatory role in virulence as it affects the expression of the regulators FleQ, LqsR, LetE and RpoS but it also directly regulates the timely expression of over 40 Dot/Icm substrates. CsrA controls its own expression and the stringent response through a regulatory feedback loop as evidenced by its binding to RelA-mRNA and links it to quorum sensing and motility. CsrA is a central player in the carbon, amino acid, fatty acid metabolism and energy transfer and directly affects the biosynthesis of cofactors, vitamins and secondary metabolites. We describe the first L. pneumophila riboswitch, a thiamine pyrophosphate riboswitch whose regulatory impact is fine-tuned by CsrA, and identified a unique regulatory mode of CsrA, the active stabilization of RNA anti-terminator conformations inside a coding sequence preventing Rho-dependent termination of the gap operon through transcriptional polarity effects. This allows L. pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Thus the L. pneumophila genome has evolved to acclimate at least five different modes of regulation by CsrA giving it a truly unique position in its life cycle. The RNA binding protein CsrA is the master regulator of the bi-phasic life cycle of Legionella pneumophila governing virulence expression in this intracellular pathogen. Here, we have used deep sequencing of RNA enriched by co-immunoprecipitation with epitope-tagged CsrA to identify CsrA-associated transcripts at the genome level. We found 479 mRNAs or non-coding RNAs to be targets of CsrA. Among those major regulators including FleQ, the regulator of flagella expression, LqsR, the regulator of quorum sensing and RpoS implicated in stress response were identified. The expression of over 40 type IV secreted effector proteins important for intracellular survival and virulence are under the control of CsrA. Combined with transcriptomics, whole shotgun proteomics of a wild type and a CsrA mutant strain and functional analyses of several CsrA-targeted RNAs we identified the first riboswitch in L. pneumophila, a thiamine pyrophosphate riboswitch, and discovered a new mode of regulation by CsrA that allows L. pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Our results further underline the indispensable role of CsrA in the life cycle of L. pneumophila and provide new insights into its regulatory roles and mechanisms.
Collapse
Affiliation(s)
- Tobias Sahr
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris France
- CNRS UMR 3525, Paris, France
| | - Christophe Rusniok
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris France
- CNRS UMR 3525, Paris, France
| | - Francis Impens
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Inserm U604, INRA Unité sous-contrat, Paris, France
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Giulia Oliva
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris France
- CNRS UMR 3525, Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Transcriptome and EpiGenome, BioMics, Center for Innovation and Technological Research, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Transcriptome and EpiGenome, BioMics, Center for Innovation and Technological Research, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris France
- CNRS UMR 3525, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Iron Limitation Triggers Early Egress by the Intracellular Bacterial Pathogen Legionella pneumophila. Infect Immun 2016; 84:2185-2197. [PMID: 27185787 DOI: 10.1128/iai.01306-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/11/2016] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that replicates in alveolar macrophages, causing a severe form of pneumonia. Intracellular growth of the bacterium depends on its ability to sequester iron from the host cell. In the L. pneumophila strain 130b, one mechanism used to acquire this essential nutrient is the siderophore legiobactin. Iron-bound legiobactin is imported by the transport protein LbtU. Here, we describe the role of LbtP, a paralog of LbtU, in iron acquisition in the L. pneumophila strain Philadelphia-1. Similar to LbtU, LbtP is a siderophore transport protein and is required for robust growth under iron-limiting conditions. Despite their similar functions, however, LbtU and LbtP do not contribute equally to iron acquisition. The Philadelphia-1 strain lacking LbtP is more sensitive to iron deprivation in vitro Moreover, LbtP is important for L. pneumophila growth within macrophages while LbtU is dispensable. These results demonstrate that LbtP plays a dominant role over LbtU in iron acquisition. In contrast, loss of both LbtP and LbtU does not impair L. pneumophila growth in the amoebal host Acanthamoeba castellanii, demonstrating a host-specific requirement for the activities of these two transporters in iron acquisition. The growth defect of the ΔlbtP mutant in macrophages is not due to alterations in growth kinetics. Instead, the absence of LbtP limits L. pneumophila replication and causes bacteria to prematurely exit the host cell. These results demonstrate the existence of a preprogrammed exit strategy in response to iron limitation that allows L. pneumophila to abandon the host cell when nutrients are exhausted.
Collapse
|
30
|
Cianciotto NP. An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction. Future Microbiol 2016; 10:841-51. [PMID: 26000653 DOI: 10.2217/fmb.15.21] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron acquisition is critical for the growth and pathogenesis of Legionella pneumophila, the causative agent of Legionnaires' disease. L. pneumophila utilizes two main modes of iron assimilation, namely ferrous iron uptake via the FeoB system and ferric iron acquisition through the action of the siderophore legiobactin. This review highlights recent studies concerning the mechanism of legiobactin assimilation, the impact of c-type cytochromes on siderophore production, the importance of legiobactin in lung infection and a newfound role for a bacterial pyomelanin in iron acquisition. These data demonstrate that key aspects of L. pneumophila iron acquisition are significantly distinct from those of long-studied, 'model' organisms. Indeed, L. pneumophila may represent a new paradigm for a variety of other intracellular parasites, pathogens and under-studied bacteria.
Collapse
|
31
|
Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O, Gilbert JA, Pupko T, Shuman HA, Segal G. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat Genet 2016; 48:167-75. [PMID: 26752266 DOI: 10.1038/ng.3481] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/08/2015] [Indexed: 11/09/2022]
Abstract
Infection by the human pathogen Legionella pneumophila relies on the translocation of ∼ 300 virulence proteins, termed effectors, which manipulate host cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species and predicted their effector repertoires using a previously validated machine learning approach. This analysis identified 5,885 predicted effectors. The effector repertoires of different Legionella species were found to be largely non-overlapping, and only seven core effectors were shared by all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from the natural protozoan hosts of these species. Furthermore, we detected numerous new conserved effector domains and discovered new domain combinations, which allowed the inference of as yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution.
Collapse
Affiliation(s)
- David Burstein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Francisco Amaro
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Tal Zusman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ziv Lifshitz
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Cohen
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jack A Gilbert
- Biology Division, Argonne National Laboratory and Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Howard A Shuman
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Gil Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
MavN is a Legionella pneumophila vacuole-associated protein required for efficient iron acquisition during intracellular growth. Proc Natl Acad Sci U S A 2015; 112:E5208-17. [PMID: 26330609 DOI: 10.1073/pnas.1511389112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Iron is essential for the growth and virulence of most intravacuolar pathogens. The mechanisms by which microbes bypass host iron restriction to gain access to this metal across the host vacuolar membrane are poorly characterized. In this work, we identify a unique intracellular iron acquisition strategy used by Legionella pneumophila. The bacterial Icm/Dot (intracellular multiplication/defect in organelle trafficking) type IV secretion system targets the bacterial-derived MavN (more regions allowing vacuolar colocalization N) protein to the surface of the Legionella-containing vacuole where this putative transmembrane protein facilitates intravacuolar iron acquisition. The ΔmavN mutant exhibits a transcriptional iron-starvation signature before its growth is arrested during the very early stages of macrophage infection. This intracellular growth defect is rescued only by the addition of excess exogenous iron to the culture medium and not a variety of other metals. Consistent with MavN being a translocated substrate that plays an exclusive role during intracellular growth, the mutant shows no defect for growth in broth culture, even under severe iron-limiting conditions. Putative iron-binding residues within the MavN protein were identified, and point mutations in these residues resulted in defects specific for intracellular growth that are indistinguishable from the ΔmavN mutant. This model of a bacterial protein inserting into host membranes to mediate iron transport provides a paradigm for how intravacuolar pathogens can use virulence-associated secretion systems to manipulate and acquire host iron.
Collapse
|
33
|
Li L, Mendis N, Trigui H, Faucher SP. Transcriptomic changes of Legionella pneumophila in water. BMC Genomics 2015; 16:637. [PMID: 26306795 PMCID: PMC4549902 DOI: 10.1186/s12864-015-1869-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background Legionella pneumophila (Lp) is a water-borne opportunistic pathogen. In water, Lp can survive for an extended period of time until it encounters a permissive host. Therefore, identifying genes that are required for survival in water may help develop strategies to prevent Legionella outbreaks. Results We compared the global transcriptomic response of Lp grown in a rich medium to that of Lp exposed to an artificial freshwater medium (Fraquil) for 2, 6 and 24 hours. We uncovered successive changes in gene expression required for the successful adaptation to a nutrient-limited water environment. The repression of major pathways involved in cell division, transcription and translation, suggests that Lp enters a quiescent state in water. The induction of flagella associated genes (flg, fli and mot), enhanced-entry genes (enh) and some Icm/Dot effector genes suggests that Lp is primed to invade a suitable host in response to water exposure. Moreover, many genes involved in resistance to antibiotic and oxidative stress were induced, suggesting that Lp may be more tolerant to these stresses in water. Indeed, Lp exposed to water is more resistant to erythromycin, gentamycin and kanamycin than Lp cultured in rich medium. In addition, the bdhA gene, involved in the degradation pathway of the intracellular energy storage compound polyhydroxybutyrate, is also highly expressed in water. Further characterization show that expression of bdhA during short-term water exposure is dependent upon RpoS, which is required for the survival of Lp in water. Deletion of bdhA reduces the survival of Lp in water at 37 °C. Conclusions The increase of antibiotic resistance and the importance of bdhA to the survival of Lp in water seem consistent with the observed induction of these genes when Lp is exposed to water. Other genes that are highly induced upon exposure to water could also be necessary for Lp to maintain viability in the water environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1869-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada.
| | - Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada.
| | - Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada.
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada.
| |
Collapse
|
34
|
Strategies of Intracellular Pathogens for Obtaining Iron from the Environment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:476534. [PMID: 26120582 PMCID: PMC4450229 DOI: 10.1155/2015/476534] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.
Collapse
|
35
|
So EC, Mattheis C, Tate EW, Frankel G, Schroeder GN. Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. Can J Microbiol 2015; 61:617-35. [PMID: 26059316 DOI: 10.1139/cjm-2015-0166] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Gram-negative facultative intracellular pathogen Legionella pneumophila infects a wide range of different protozoa in the environment and also human alveolar macrophages upon inhalation of contaminated aerosols. Inside its hosts, it creates a defined and unique compartment, termed the Legionella-containing vacuole (LCV), for survival and replication. To establish the LCV, L. pneumophila uses its Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effector proteins into the host cell. Although it has become apparent in the past years that these effectors subvert a multitude of cellular processes and allow Legionella to take control of host cell vesicle trafficking, transcription, and translation, the exact function of the vast majority of effectors still remains unknown. This is partly due to high functional redundancy among the effectors, which renders conventional genetic approaches to elucidate their role ineffective. Here, we review the current knowledge about Legionella T4SS effectors, highlight open questions, and discuss new methods that promise to facilitate the characterization of T4SS effector functions in the future.
Collapse
Affiliation(s)
- Ernest C So
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.,b Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
| | - Corinna Mattheis
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Edward W Tate
- b Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
| | - Gad Frankel
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| |
Collapse
|
36
|
Vieira A, Seddon AM, Karlyshev AV. Campylobacter-Acanthamoeba interactions. MICROBIOLOGY-SGM 2015; 161:933-947. [PMID: 25757600 DOI: 10.1099/mic.0.000075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/09/2015] [Indexed: 02/02/2023]
Abstract
Campylobacter jejuni is a foodborne pathogen recognized as the major cause of human bacterial enteritis. Undercooked poultry products and contaminated water are considered as the most important sources of infection. Some studies suggest transmission and survival of this bacterial pathogen may be assisted by the free-living protozoa Acanthamoeba. The latter is known to play the role of a host for various pathogenic bacteria, protecting them from harsh environmental conditions. Importantly, there is a similarity between the mechanisms of bacterial survival within amoebae and macrophages, making the former a convenient tool for the investigation of the survival of pathogenic bacteria in the environment. However, the molecular mechanisms involved in the interaction between Campylobacter and Acanthamoeba are not well understood. Whilst some studies suggest the ability of C. jejuni to survive within the protozoa, the other reports support an extracellular mode of survival only. In this review, we focus on the studies investigating the interaction between Campylobacter and Acanthamoeba, address some reasons for the contradictory results, and discuss possible implications of these results for epidemiology. Additionally, as the molecular mechanisms involved remain unknown, we also suggest possible factors that may be involved in this process. Deciphering the molecular mechanisms of pathogen-protozoa interaction will assist in a better understanding of Campylobacter lifestyle and in the development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Ana Vieira
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Alan M Seddon
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Andrey V Karlyshev
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|