1
|
Tsukida R, Hatano T, Kojima Y, Nakaba S, Horikawa Y, Funada R, Goodell B, Yoshida M. Micromorphological features of brown rotted wood revealed by broad argon ion beam milling. Sci Rep 2024; 14:32003. [PMID: 39738786 DOI: 10.1038/s41598-024-83578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Brown rot fungi, the major decomposers in the boreal coniferous forests, cause a unique wood decay pattern but many aspects of brown rot decay mechanisms remain unclear. In this study, decayed wood samples were prepared by cultivation of the brown rot fungi Gloeophyllum trabeum and Coniophora puteana on Japanese coniferous wood of Cryptomeria japonica, and the cutting planes were prepared using broad ion beam (BIB) milling, which enables observation of intact wood, in addition to traditional microtome sections. Samples were observed using field-emission SEM revealing that areas inside the end walls of ray parenchyma cells were the first to be degraded. Osmium reaction precipitates were observed in the degraded regions, as well as in plasmodesmata. In the cell wall where ray parenchyma cells contacted with the tracheids, specific degradation of cross-field pits and hyphal elongation into this area was observed in degradation by both fungi. Other pit types were also degraded as noted in previous studies. Delamination between the S1 and S2 layers of tracheids, and cracks in the tracheid cell walls were observed. These findings provide new insights into the cell wall degradation mechanisms during the incipient stages of brown rot decay.
Collapse
Affiliation(s)
- Rikako Tsukida
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Tomohiro Hatano
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- JEOL Ltd., Musashino, Tokyo, 196-8558, Akishima, Japan
| | - Yuka Kojima
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Satoshi Nakaba
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183- 8509, Japan
| | - Yoshiki Horikawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183- 8509, Japan
| | - Ryo Funada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183- 8509, Japan
| | - Barry Goodell
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
- Sustainable Materials and Technology, SFR, University of Maine, Orono, ME, 04469, USA
| | - Makoto Yoshida
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183- 8509, Japan.
| |
Collapse
|
2
|
Shamshitov A, Kadžienė G, Supronienė S. The Role of Soil Microbial Consortia in Sustainable Cereal Crop Residue Management. PLANTS (BASEL, SWITZERLAND) 2024; 13:766. [PMID: 38592825 PMCID: PMC10974107 DOI: 10.3390/plants13060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
The global escalation in cereal production, essential to meet growing population demands, simultaneously augments the generation of cereal crop residues, estimated annually at approximately 3107 × 106 Mg/year. Among different crop residue management approaches, returning them to the soil can be essential for various ecological benefits, including nutrient recycling and soil carbon sequestration. However, the recalcitrant characteristics of cereal crop residues pose significant challenges in their management, particularly in the decomposition rate. Therefore, in this review, we aim to summarize the influence of different agricultural practices on enhancing soil microbial decomposer communities, thereby effectively managing cereal crop residues. Moreover, this manuscript provides indirect estimates of cereal crop residue production in Northern Europe and Lithuania, and highlights the diverse roles of lignocellulolytic microorganisms in the decomposition process, with a particular focus on enzymatic activities. This review bridges the knowledge gap and indicates future research directions concerning the influence of agricultural practices on cereal crop residue-associated microbial consortia.
Collapse
Affiliation(s)
- Arman Shamshitov
- Laboratory of Microbiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Gražina Kadžienė
- Department of Soil and Crop Management, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania
| | - Skaidrė Supronienė
- Laboratory of Microbiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| |
Collapse
|
3
|
Kukkar D, Sharma PK, Kim KH. Recent advances in metagenomic analysis of different ecological niches for enhanced biodegradation of recalcitrant lignocellulosic biomass. ENVIRONMENTAL RESEARCH 2022; 215:114369. [PMID: 36165858 DOI: 10.1016/j.envres.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose wastes stemming from agricultural residues can offer an excellent opportunity as alternative energy solutions in addition to fossil fuels. Besides, the unrestrained burning of agricultural residues can lead to the destruction of the soil microflora and associated soil sterilization. However, the difficulties associated with the biodegradation of lignocellulose biomasses remain as a formidable challenge for their sustainable management. In this respect, metagenomics can be used as an effective option to resolve such dilemma because of its potential as the next generation sequencing technology and bioinformatics tools to harness novel microbial consortia from diverse environments (e.g., soil, alpine forests, and hypersaline/acidic/hot sulfur springs). In light of the challenges associated with the bulk-scale biodegradation of lignocellulose-rich agricultural residues, this review is organized to help delineate the fundamental aspects of metagenomics towards the assessment of the microbial consortia and novel molecules (such as biocatalysts) which are otherwise unidentifiable by conventional laboratory culturing techniques. The discussion is extended further to highlight the recent advancements (e.g., from 2011 to 2022) in metagenomic approaches for the isolation and purification of lignocellulolytic microbes from different ecosystems along with the technical challenges and prospects associated with their wide implementation and scale-up. This review should thus be one of the first comprehensive reports on the metagenomics-based analysis of different environmental samples for the isolation and purification of lignocellulose degrading enzymes.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Wangsimni-ro, Seoul - 04763, South Korea.
| |
Collapse
|
4
|
Belt T, Awais M, Mäkelä M. Chemical Characterization and Visualization of Progressive Brown Rot Decay of Wood by Near Infrared Imaging and Multivariate Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:940745. [PMID: 35903225 PMCID: PMC9315348 DOI: 10.3389/fpls.2022.940745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Brown rot fungi cause a type of wood decay characterized by carbohydrate degradation and lignin modification. The chemical and physical changes caused by brown rot are usually studied using bulk analytical methods, but these methods fail to consider local variations within the wood material. In this study we applied hyperspectral near infrared imaging to Scots pine sapwood samples exposed to the brown rot fungi Coniophora puteana and Rhodonia placenta to obtain position-resolved chemical information on the fungal degradative process. A stacked-sample decay test was used to create a succession of decay stages within the samples. The results showed that the key chemical changes associated with decay were the degradation of amorphous and crystalline carbohydrates and an increase in aromatic and carbonyl functionality in lignin. The position-resolved spectral data revealed that the fungi initiated degradation in earlywood, and that earlywood remained more extensively degraded than latewood even in advanced decay stages. Apart from differences in mass losses, the two fungi produced similar spectral changes in a similar spatial pattern. The results show that near infrared imaging is a useful tool for analyzing brown rot decayed wood and may be used to advance our understanding of fungal degradative processes.
Collapse
Affiliation(s)
- Tiina Belt
- Production Systems Unit, Biomass Characterization and Properties, Natural Resources Institute Finland, Espoo, Finland
| | - Muhammad Awais
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Mikko Mäkelä
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
5
|
Abstract
Brown rot fungi release massive amounts of carbon from forest deadwood, particularly at high latitudes. These fungi degrade wood by generating small reactive oxygen species (ROS) to loosen lignocellulose, to then selectively remove carbohydrates. The ROS mechanism has long been considered the key adaptation defining brown rot wood decomposition, but recently, we found preliminary evidence that fungal glycoside hydrolases (GHs) implicated in early cell wall loosening might have been adapted to tolerate ROS stress and to synergize with ROS to loosen woody lignocellulose. In the current study, we found more specifically that side chain hemicellulases that help in the early deconstruction of the lignocellulosic complex are significantly more tolerant of ROS in the brown rot fungus Rhodonia placenta than in a white rot fungus (Trametes versicolor) and a soft rot fungus (Trichoderma reesei). Using proteomics to understand the extent of tolerance, we found that significant oxidation of secreted R. placenta proteins exposed to ROS was less than half of the oxidation observed for T. versicolor or T. reesei. The principal oxidative modifications observed in all cases were monooxidation and dioxidation/trioxidation (mainly in methionine and tryptophan residues), some of which were critical for enzyme activity. At the peptide level, we found that GHs in R. placenta were the least ROS affected among our tested fungi. These results confirm and describe underlying mechanisms of tolerance in early-secreted brown rot fungal hemicellulases. These enzymatic adaptations may have been as important as nonenzymatic ROS pathway adaptations in brown rot fungal evolution.
Collapse
|
6
|
Sainte-Marie J, Barrandon M, Saint-André L, Gelhaye E, Martin F, Derrien D. C-STABILITY an innovative modeling framework to leverage the continuous representation of organic matter. Nat Commun 2021; 12:810. [PMID: 33547289 PMCID: PMC7864906 DOI: 10.1038/s41467-021-21079-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
The understanding of soil organic matter (SOM) dynamics has considerably advanced in recent years. It was previously assumed that most SOM consisted of recalcitrant compounds, whereas the emerging view considers SOM as a range of polymers continuously processed into smaller molecules by decomposer enzymes. Mainstreaming this new paradigm in current models is challenging because of their ill-adapted framework. We propose the C-STABILITY model to resolve this issue. Its innovative framework combines compartmental and continuous modeling approaches to accurately reproduce SOM cycling processes. C-STABILITY emphasizes the influence of substrate accessibility on SOM turnover and makes enzymatic and microbial biotransformations of substrate explicit. Theoretical simulations provide new insights on how depolymerization and decomposers ecology impact organic matter chemistry and amount during decomposition and at steady state. The flexible mathematical structure of C-STABILITY offers a promising foundation for exploring new mechanistic hypotheses and supporting the design of future experiments.
Collapse
Affiliation(s)
- Julien Sainte-Marie
- grid.503480.aUniversité de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France ,INRAE, BEF, F-54000 Nancy, France
| | - Matthieu Barrandon
- grid.29172.3f0000 0001 2194 6418Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
| | | | - Eric Gelhaye
- grid.503276.50000 0004 1763 486XUniversité de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Francis Martin
- grid.503276.50000 0004 1763 486XUniversité de Lorraine, INRAE, IAM, F-54000 Nancy, France ,grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | | |
Collapse
|
7
|
Lee J, Shi YM, Grün P, Gube M, Feldbrügge M, Bode H, Hennicke F. Identification of Feldin, an Antifungal Polyyne from the Beefsteak Fungus Fistulina hepatica. Biomolecules 2020; 10:biom10111502. [PMID: 33142735 PMCID: PMC7692509 DOI: 10.3390/biom10111502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Fruiting body-forming members of the Basidiomycota maintain their ecological fitness against various antagonists like ascomycetous mycoparasites. To achieve that, they produce myriads of bioactive compounds, some of which are now being used as agrochemicals or pharmaceutical lead structures. Here, we screened ethyl acetate crude extracts from cultures of thirty-five mushroom species for antifungal bioactivity, for their effect on the ascomycete Saccharomyces cerevisiae and the basidiomycete Ustilago maydis. One extract that inhibited the growth of S. cerevisiae much stronger than that of U. maydis was further analyzed. For bioactive compound identification, we performed bioactivity-guided HPLC/MS fractionation. Fractions showing inhibition against S. cerevisiae but reduced activity against U. maydis were further analyzed. NMR-based structure elucidation from one such fraction revealed the polyyne we named feldin, which displays prominent antifungal bioactivity. Future studies with additional mushroom-derived eukaryotic toxic compounds or antifungals will show whether U. maydis could be used as a suitable host to shortcut an otherwise laborious production of such mushroom compounds, as could recently be shown for heterologous sesquiterpene production in U. maydis.
Collapse
Affiliation(s)
- Jungho Lee
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany; (J.L.); (M.F.)
| | - Yi-Ming Shi
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; (Y.-M.S.); (P.G.); (H.B.)
| | - Peter Grün
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; (Y.-M.S.); (P.G.); (H.B.)
| | - Matthias Gube
- Soil Science of Temperate Ecosystems, Georg-August University Göttingen, 37077 Göttingen, Germany;
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany; (J.L.); (M.F.)
| | - Helge Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; (Y.-M.S.); (P.G.); (H.B.)
- Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt, Germany
| | - Florian Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum (RUB), Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence:
| |
Collapse
|
8
|
Schilling JS, Kaffenberger JT, Held BW, Ortiz R, Blanchette RA. Using Wood Rot Phenotypes to Illuminate the "Gray" Among Decomposer Fungi. Front Microbiol 2020; 11:1288. [PMID: 32595628 PMCID: PMC7303305 DOI: 10.3389/fmicb.2020.01288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 01/16/2023] Open
Abstract
Wood-decomposing fungi use distinct strategies to deconstruct wood that can significantly vary carbon release rates and fates. White and brown rot-type fungi attack lignin as a prerequisite to access carbohydrates (white rot) or selectively remove carbohydrates (brown rot). Soft rot fungi use less well-studied mechanisms to deconstruct wood (e.g., cavitation and erosion). These fungi often co-exist in nature, creating a balance in carbon turnover that could presumably “tip” in a changing climate. There is no simple genetic marker, however, to distinguish fungi by rot types, and traditional black and white distinctions (brown and white, in this case) cannot explain a spectrum of “gray” carbon loss possibilities. In this study, we tested 39 wood-degrading fungal strains along this spectrum of rot types. We tracked wood mass loss and chemical changes in aspen blocks in early- to mid-decay stages, including three signatures of fungal nutritional mode measured from wood rather than from fungus: dilute alkali solubility, water-soluble monosaccharides, and lignin loss (%) relative to density loss (%) (L/D). Results were then plotted relative to rot types and correlated with gene counts, combining new data with past results in some cases. Results yielded a novel distinction in soluble monosaccharide patterns for brown rot fungi, and reliable distinctions between white and brown rot fungi, although soft rot fungi were not as clearly distinguished as suggested in past studies. Gene contents (carbohydrate-active enzymes and peroxidases) also clearly distinguished brown and white rot fungi, but did not offer reliable correlation with lignin vs. carbohydrate selectivity. These results support the use of wood residue chemistry to link fungal genes (with known or unknown function) with emergent patterns of decomposition. Wood signatures, particularly L/D, not only confirm the rot type of dominant fungi, but they offer a more nuanced, continuous variable to which we can correlate genomic, transcriptomic, and secretomic evidence rather than limit it to functional categories as distinct “bins.”
Collapse
Affiliation(s)
- Jonathan S Schilling
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| | - Justin T Kaffenberger
- Department of Bioproducts & Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States
| | - Benjamin W Held
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Rodrigo Ortiz
- Escuela de Construcción Civil, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| | - Robert A Blanchette
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
9
|
Hermosilla E, Schalchli H, Diez MC. Biodegradation inducers to enhance wheat straw pretreatment by Gloeophyllum trabeum to second-generation ethanol production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8467-8480. [PMID: 31902077 DOI: 10.1007/s11356-019-07460-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
The native state of lignocellulosic biomass is highly resistant to enzymatic hydrolysis and the fermentation process of biofuel production. Brown-rot fungi use an extracellular Fenton system to degrade lignocellulosic biomass in the initial stages of decay. In this work, the combined effects of Mn2+, Fe2+, and NO3- inducers were evaluated based on the activities of hydrolytic enzymes and Fe3+ reduction as well as the catechol-type compound production during wheat straw pretreatment by the brown-rot fungus Gloeophyllum trabeum. Weight loss and chemical changes were evaluated to establish the culture conditions for stimulating wheat straw degradation using a central composite design. The results showed that weight loss and the Fe3+-reducing activity were promoted at the highest concentrations of Fe2+. A positive effect on catechol compound production by the addition of Mn2+ and NO3- was observed. Cellulase activity was increased at the highest concentration of NO3-. The multiple optimizations of G. trabeum culture conditions in wheat straw resulted in 11.3% weight loss and 0.47 total crystallinity index at 0.24 M NO3-, 0.95 mM Fe2+, and 0.85 mM Mn2+ after 40 days. The wheat straw pretreatment by G. trabeum for 10 days increased glucose recovery. The results indicated that the wheat straw pretreatment using G. trabeum with biodegradation inducers could be a complementary step to physicochemical pretreatment of lignocellulosic biomass for production of second-generation ethanol.
Collapse
Affiliation(s)
- Edward Hermosilla
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco, Chile
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Heidi Schalchli
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
- Chemical Engineering Department, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - María Cristina Diez
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile.
- Chemical Engineering Department, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
10
|
Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell WK, Crowther TW, Flores-Moreno H, Floudas D, Gazis R, Hibbett D, Kennedy P, Lindner DL, Maynard DS, Milo AM, Nilsson RH, Powell J, Schildhauer M, Schilling J, Treseder KK. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev Camb Philos Soc 2019; 95:409-433. [PMID: 31763752 DOI: 10.1111/brv.12570] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.
Collapse
Affiliation(s)
- Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Michelle E Afkhami
- Department of Biology, University of Miami, Coral Gables, FL, 33146, U.S.A
| | - Carlos A Aguilar-Trigueros
- Freie Universität-Berlin, Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Scott Bates
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, 46391, U.S.A
| | | | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97330, U.S.A
| | - Natalie Christian
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, U.S.A.,Department of Biology, University of Louisville, Louisville, KY 40208, U.S.A
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Habacuc Flores-Moreno
- Department of Ecology, Evolution, and Behavior, and Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Dimitrios Floudas
- Microbial Ecology Group, Department of Biology, Lund University, Lund, Sweden
| | - Romina Gazis
- Department of Plant Pathology, Tropical Research & Education Center, University of Florida, Homestead, FL, 33031, U.S.A
| | - David Hibbett
- Biology Department, Clark University, Worcester, MA, 01610, U.S.A
| | - Peter Kennedy
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Daniel L Lindner
- US Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin, WI, 53726, U.S.A
| | - Daniel S Maynard
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Amy M Milo
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Rolf Henrik Nilsson
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, Box 461, 405 30, Göteborg, Sweden
| | - Jeff Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Mark Schildhauer
- National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara, CA, 93101, U.S.A
| | - Jonathan Schilling
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, U.S.A
| |
Collapse
|
11
|
Adesogan AT, Arriola KG, Jiang Y, Oyebade A, Paula EM, Pech-Cervantes AA, Romero JJ, Ferraretto LF, Vyas D. Symposium review: Technologies for improving fiber utilization. J Dairy Sci 2019; 102:5726-5755. [PMID: 30928262 DOI: 10.3168/jds.2018-15334] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The forage lignocellulosic complex is one of the greatest limitations to utilization of the nutrients and energy in fiber. Consequently, several technologies have been developed to increase forage fiber utilization by dairy cows. Physical or mechanical processing techniques reduce forage particle size and gut fill and thereby increase intake. Such techniques increase the surface area for microbial colonization and may increase fiber utilization. Genetic technologies such as brown midrib mutants (BMR) with less lignin have been among the most repeatable and practical strategies to increase fiber utilization. Newer BMR corn hybrids are better yielding than the early hybrids and recent brachytic dwarf BMR sorghum hybrids avoid lodging problems of early hybrids. Several alkalis have been effective at increasing fiber digestibility. Among these, ammoniation has the added benefit of increasing the nitrogen concentration of the forage. However, few of these have been widely adopted due to the cost and the caustic nature of the chemicals. Urea treatment is more benign but requires sufficient urease and moisture for efficacy. Ammonia-fiber expansion technology uses high temperature, moisture, and pressure to degrade lignocellulose to a greater extent than ammoniation alone, but it occurs in reactors and is therefore not currently usable on farms. Biological technologies for increasing fiber utilization such as application of exogenous fibrolytic enzymes, live yeasts, and yeast culture have had equivocal effects on forage fiber digestion in individual studies, but recent meta-analyses indicate that their overall effects are positive. Nonhydrolytic expansin-like proteins act in synergy with fibrolytic enzymes to increase fiber digestion beyond that achieved by the enzyme alone due to their ability to expand cellulose microfibrils allowing greater enzyme penetration of the cell wall matrix. White-rot fungi are perhaps the biological agents with the greatest potential for lignocellulose deconstruction, but they require aerobic conditions and several strains degrade easily digestible carbohydrates. Less ruminant nutrition research has been conducted on brown rot fungi that deconstruct lignocellulose by generating highly destructive hydroxyl radicals via the Fenton reaction. More research is needed to increase the repeatability, efficacy, cost effectiveness, and on-farm applicability of technologies for increasing fiber utilization.
Collapse
Affiliation(s)
- A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611.
| | - K G Arriola
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Y Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - A Oyebade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - E M Paula
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - A A Pech-Cervantes
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - J J Romero
- Animal and Veterinary Sciences Program, School of Food and Agriculture, University of Maine, Orono 04469
| | - L F Ferraretto
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| |
Collapse
|
12
|
Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 2017; 41:941-962. [PMID: 29088355 PMCID: PMC5812493 DOI: 10.1093/femsre/fux049] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Pawlik
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Justyna Sulej
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Urszula Swiderska-Burek
- Department of Botany and Mycology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Jarosz-Wilkolazka
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Andrzej Paszczynski
- School of Food Science, Food Research Center, Room 103, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
13
|
Goodell B, Zhu Y, Kim S, Kafle K, Eastwood D, Daniel G, Jellison J, Yoshida M, Groom L, Pingali SV, O’Neill H. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:179. [PMID: 28702084 PMCID: PMC5504834 DOI: 10.1186/s13068-017-0865-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/30/2017] [Indexed: 06/01/2023]
Abstract
Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Results showed that the CMF mechanism mimicked brown rot fungal attack for both holocellulose and lignin components of the wood. Crystalline cellulose and lignin were both depolymerized by the CMF reaction. Porosity of the softwood cell wall did not increase during CMF treatment, enzymes secreted by the fungi did not penetrate the decayed wood. The enzymes in the cellulose cocktail also did not appear to alter the effects of the CMF-treated wood relative to enhancing cell wall deconstruction. This suggests a rethinking of current brown rot decay models and supports a model where monomeric sugars and oligosaccharides diffuse from the softwood cell walls during non-enzymatic action. In this regard, the CMF mechanism should not be thought of as a "pretreatment" used to permit enzymatic penetration into softwood cell walls, but instead it enhances polysaccharide components diffusing to fungal enzymes located in wood cell lumen environments during decay. SANS and other data are consistent with a model for repolymerization and aggregation of at least some portion of the lignin within the cell wall, and this is supported by AFM and TEM data. The data suggest that new approaches for conversion of wood substrates to platform chemicals in biorefineries could be achieved using the CMF mechanism with >75% solubilization of lignocellulose, but that a more selective suite of enzymes and other downstream treatments may be required to work when using CMF deconstruction technology. Strategies to enhance polysaccharide release from lignocellulose substrates for enhanced enzymatic action and fermentation of the released fraction would also aid in the efficient recovery of the more uniform modified lignin fraction that the CMF reaction generates to enhance biorefinery profitability.
Collapse
Affiliation(s)
- Barry Goodell
- Department of Microbiology, Morrill Science Center IV, University of Massachusetts, Amherst, MA 01003-9298 USA
| | - Yuan Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Seong Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA USA
| | - Kabindra Kafle
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA USA
| | - Daniel Eastwood
- Department of Biosciences, Swansea University, Singleton Park Campus, Swansea, UK
| | - Geoffrey Daniel
- Department of Forest Products/Wood Science, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Jody Jellison
- Center for Agriculture, Food and the Environment, University of Massachusetts, 316 Stockbridge Hall, Amherst, USA
| | - Makoto Yoshida
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Leslie Groom
- USDA Forest Service, Southern Research Station, Pineville, Louisiana 71360 USA
| | - Sai Venkatesh Pingali
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Hugh O’Neill
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
14
|
Song Z, Kennedy PG, Liew FJ, Schilling JS. Fungal endophytes as priority colonizers initiating wood decomposition. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12735] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zewei Song
- Department of Plant Pathology University of Minnesota St Paul MN55108 USA
| | - Peter G. Kennedy
- Department of Plant Biology University of Minnesota St Paul MN55108 USA
| | - Feng J. Liew
- Department of Bioproducts & Biosystems Engineering University of Minnesota St Paul MN55108 USA
| | - Jonathan S. Schilling
- Department of Bioproducts & Biosystems Engineering University of Minnesota St Paul MN55108 USA
- Institute on the Environment University of Minnesota St Paul MN55108 USA
| |
Collapse
|
15
|
Zhang J, Presley GN, Hammel KE, Ryu JS, Menke JR, Figueroa M, Hu D, Orr G, Schilling JS. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc Natl Acad Sci U S A 2016; 113:10968-73. [PMID: 27621450 PMCID: PMC5047196 DOI: 10.1073/pnas.1608454113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108
| | - Gerald N Presley
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108
| | - Kenneth E Hammel
- Institute for Microbial and Biochemical Technology, US Forest Products Laboratory, Madison, WI 53726; Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | - Jae-San Ryu
- Eco-Friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 660-360, Republic of Korea
| | - Jon R Menke
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108
| | - Melania Figueroa
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108
| | - Dehong Hu
- Chemical and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Galya Orr
- Chemical and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Jonathan S Schilling
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108;
| |
Collapse
|
16
|
Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest. Oecologia 2016; 182:287-97. [PMID: 27236291 DOI: 10.1007/s00442-016-3662-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.
Collapse
|
17
|
An H, Xiao T, Fan H, Wei D. Molecular characterization of a novel thermostable laccase PPLCC2 from the brown rot fungus Postia placenta MAD-698-R. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|