1
|
Kouzai Y, Sagehashi Y, Watanabe R, Kajiwara H, Suzuki N, Ono H, Naito K, Akimoto-Tomiyama C. BglaTNB6, a tailocin produced by a plant-associated nonpathogenic bacterium, prevents rice seed-borne bacterial diseases. PLoS Pathog 2024; 20:e1012645. [PMID: 39423232 PMCID: PMC11524443 DOI: 10.1371/journal.ppat.1012645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
Rice seed-borne diseases caused by the bacterial pathogens Burkholderia glumae and B. plantarii pose a major threat to rice production worldwide. To manage these diseases in a sustainable manner, a biocontrol strategy is crucial. In this study, we showed that B. gladioli NB6 (NB6), a nonpathogenic bacterium, strongly protects rice from infection caused by the above-mentioned pathogens. NB6 was isolated from the indica rice cultivar Nona Bokra seedlings, which possesses genetic resistance to B. glumae. We discovered that cell suspensions of NB6 and its culture filtrate suppressed the disease symptoms caused by B. glumae and B. plantarii in rice seedlings, which indicated that NB6 secretes a plant-protective substance extracellularly. Through purification and mass spectrometry analysis of the culture filtrate, combined with transmission electron microscopy and mutant analysis, the substance was identified as a tailocin and named BglaTNB6. Tailocins are bacteriotoxic multiprotein structures morphologically similar to headless phage tails. BglaTNB6 exhibited antibacterial activity against several Burkholderia species, including B. glumae, B. plantarii, and B. gladioli, suggesting it can prevent pathogen infection. Interestingly, BglaTNB6 greatly contributed only to the biocontrol activity of NB6 cell suspensions against B. plantarii, and not against B. glumae. BglaTNB6 was shown to be encoded by a prophage locus lacking genes for phage head proteins, and a B. gladioli strain with the coded BglaTNB6-like locus equipped with phage head proteins failed to prevent rice seedlings from being infected with B. plantarii. These results suggested that BglaTNB6 may enhance the competitiveness of NB6 against a specific range of bacteria. Our study also highlights the potential of tailocin-producing endophytes for managing crop bacterial diseases.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Sagehashi
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Riku Watanabe
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Hideyuki Kajiwara
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Suzuki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ono
- Bioactive Chemical Analysis Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Ken Naito
- Plant Resources Unit, Research Center of Genetic Resources, NARO, Tsukuba, Ibaraki, Japan
| | - Chiharu Akimoto-Tomiyama
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Sreenayana B, Mondal KK, Mathiyalagan N, Shanmugam KN, Kumar S, Shrinivas Reddy M, Mani C. Molecular characterization and evaluation of novel management options for Burkholderia glumae BG1, the causative agent of panicle blight of rice (Oryza sativa L.). Mol Biol Rep 2024; 51:519. [PMID: 38625424 DOI: 10.1007/s11033-024-09498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Bacterial panicle blight, incited by Burkholderia glumae, has impacted rice production globally. Despite its significance, knowledge about the disease and the virulence pattern of the causal agent is very limited. Bacterial panicle blight is a major challenge in the rice-growing belts of North-western India, resulting in yield reduction. However, the management of B. glumae has become a challenge due to the lack of proper management strategies. METHODOLOGY AND RESULTS Twenty-one BG strains have been characterized using the 16S rRNA and the gyrB gene-based sequence approach in the present study. The gyrB gene-based phylogenetic analysis resulted in geographic region-specific clustering of the BG isolates. The virulence screening of twenty-one BG strains by inoculating the pathogenic bacterial suspension of 1 × 10-8 cfu/ml at the booting stage (55 DAT) revealed the variation in the disease severity and the grain yield of rice plants. The most virulent BG1 strain resulted in the highest disease incidence (82.11%) and lowest grain yield (11.12 g/plant), and the least virulent BG10 strain resulted in lowest disease incidence of 18.94% and highest grain yield (24.62 g/plant). In vitro evaluation of various biocontrol agents and nano copper at different concentrations by agar well diffusion method revealed that nano copper at 1000 mg/L inhibited the colony growth of B. glumae. Under net house conditions, nano copper at 1000 mg/L reduced the disease severity to 21.23% and increased the grain yield by 20.91% (31.76 g per plant) compared to the positive control (COC 0.25% + streptomycin 200 ppm). Remarkably, pre-inoculation with nano copper at 1000 mg/L followed by challenge inoculation with B. glumae enhanced the activity of enzymatic antioxidants viz., Phenyl ammonia-lyase (PAL), Polyphenol oxidase (PPO) and Peroxidase (POX) and non-enzymatic antioxidant phenol. Additionally, we observed a substantial transcript level upregulation of six defense-related genes to several folds viz., OsPR2, OsPR5, OsWRKY71, OsPAL1, OsAPX1, and OsPPO1 in comparison to the pathogen control and healthy control. CONCLUSIONS Overall, our study provides valuable insights into the potential and practical application of nano copper for the mitigation of bacterial panicle blight, offering promising prospects for commercial utilization in disease management.
Collapse
Affiliation(s)
- Bhaskaran Sreenayana
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Kalyan Kumar Mondal
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India.
- National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India.
| | - Nivetha Mathiyalagan
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | - Sanjeev Kumar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | - Chander Mani
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Li X, Yang L, Jiang S, Zhou F, Jiang S, Li Y, Chen X, Yang Q, Duan Y, Huang J. Effect of Fly Maggot Protein as Dietary on Growth and Intestinal Microbial Community of Pacific White Shrimp Litopenaeus vannamei. BIOLOGY 2023; 12:1433. [PMID: 37998032 PMCID: PMC10669337 DOI: 10.3390/biology12111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
As the intensive development of aquaculture persists, the demand for fishmeal continues to grow; however, since fishery resources are limited, the price of fishmeal remains high. Therefore, there is an urgent need to develop new sources of protein. They are rich in proteins, fatty acids, amino acids, chitin, vitamins, minerals, and antibacterial substances. Maggot meal-based diet is an ideal source of high-quality animal protein and a new type of protein-based immune enhancer with good application prospects in animal husbandry and aquaculture. In the present study, we investigated the effects of three different diets containing maggot protein on the growth and intestinal microflora of Litopenaeus vannamei. The shrimp were fed either a control feed (no fly maggot protein added), FM feed (compound feed with 30% fresh fly maggot protein added), FF feed (fermented fly maggot protein), or HT feed (high-temperature pelleted fly maggot protein) for eight weeks. The results showed that fresh fly maggot protein in the feed was detrimental to shrimp growth, whereas fermented and high-temperature-pelleted fly maggot protein improved shrimp growth and survival. The effects of different fly maggot protein treatments on the intestinal microbiota of L. vannamei also varied. Fermented fly maggot protein feed and high-temperature-pelleted fly maggot protein feed increased the relative abundance of Ruegeria and Pseudomonas, which increased the abundance of beneficial bacteria and thus inhibited the growth of harmful bacteria. In contrast, fresh fly maggot proteins alter the intestinal microbiome, disrupting symbiotic relationships between bacteria, and causing invasion by Vibrio and antibiotic-resistant bacteria. These results suggest that fresh fly maggot proteins affect the composition of intestinal microorganisms, which is detrimental to the intestinal tract of L. vannamei, whereas fermented fly maggot protein feed affected the growth of L. vannamei positively by improving the composition of intestinal microorganisms.
Collapse
Affiliation(s)
- Xintao Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.L.); (L.Y.); (S.J.); (F.Z.); (S.J.); (Y.L.); (Y.D.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lishi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.L.); (L.Y.); (S.J.); (F.Z.); (S.J.); (Y.L.); (Y.D.)
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.L.); (L.Y.); (S.J.); (F.Z.); (S.J.); (Y.L.); (Y.D.)
| | - Falin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.L.); (L.Y.); (S.J.); (F.Z.); (S.J.); (Y.L.); (Y.D.)
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.L.); (L.Y.); (S.J.); (F.Z.); (S.J.); (Y.L.); (Y.D.)
| | - Yundong Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.L.); (L.Y.); (S.J.); (F.Z.); (S.J.); (Y.L.); (Y.D.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
- Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; (X.C.); (Q.Y.)
| | - Xu Chen
- Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; (X.C.); (Q.Y.)
| | - Qibin Yang
- Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; (X.C.); (Q.Y.)
| | - Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.L.); (L.Y.); (S.J.); (F.Z.); (S.J.); (Y.L.); (Y.D.)
| | - Jianhua Huang
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| |
Collapse
|
4
|
Iqbal A, Nwokocha G, Tiwari V, Barphagha IK, Grove A, Ham JH, Doerrler WT. A membrane protein of the rice pathogen Burkholderia glumae required for oxalic acid secretion and quorum sensing. MOLECULAR PLANT PATHOLOGY 2023; 24:1400-1413. [PMID: 37428013 PMCID: PMC10576180 DOI: 10.1111/mpp.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Bacterial panicle blight is caused by Burkholderia glumae and results in damage to rice crops worldwide. Virulence of B. glumae requires quorum sensing (QS)-dependent synthesis and export of toxoflavin, responsible for much of the damage to rice. The DedA family is a conserved membrane protein family found in all bacterial species. B. glumae possesses a member of the DedA family, named DbcA, which we previously showed is required for toxoflavin secretion and virulence in a rice model of infection. B. glumae secretes oxalic acid as a "common good" in a QS-dependent manner to combat toxic alkalinization of the growth medium during the stationary phase. Here, we show that B. glumae ΔdbcA fails to secrete oxalic acid, leading to alkaline toxicity and sensitivity to divalent cations, suggesting a role for DbcA in oxalic acid secretion. B. glumae ΔdbcA accumulated less acyl-homoserine lactone (AHL) QS signalling molecules as the bacteria entered the stationary phase, probably due to nonenzymatic inactivation of AHL at alkaline pH. Transcription of toxoflavin and oxalic acid operons was down-regulated in ΔdbcA. Alteration of the proton motive force with sodium bicarbonate also reduced oxalic acid secretion and expression of QS-dependent genes. Overall, the data show that DbcA is required for oxalic acid secretion in a proton motive force-dependent manner, which is critical for QS of B. glumae. Moreover, this study supports the idea that sodium bicarbonate may serve as a chemical for treatment of bacterial panicle blight.
Collapse
Affiliation(s)
- Asif Iqbal
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - George Nwokocha
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Vijay Tiwari
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Inderjit K. Barphagha
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLouisianaUSA
| | - Anne Grove
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Jong Hyun Ham
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLouisianaUSA
| | - William T. Doerrler
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
5
|
Matsumoto H, Qian Y, Fan X, Chen S, Nie Y, Qiao K, Xiang D, Zhang X, Li M, Guo B, Shen P, Wang Q, Yu Y, Cernava T, Wang M. Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. FUNDAMENTAL RESEARCH 2022; 2:198-207. [PMID: 38933150 PMCID: PMC11197535 DOI: 10.1016/j.fmre.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria equipped with virulence systems based on highly bioactive small molecules can circumvent their host's defense mechanisms. Pathogens employing this strategy are currently threatening global rice production. In the present study, variations in the virulence of the highly destructive Burkholderia plantarii were observed in different rice-producing regions. The environment-linked variation was not attributable to any known host-related or external factors. Co-occurrence analyses indicated a connection between reduced virulence and 5-Amino-1,3,4-thiadiazole-2-thiol (ATT), a non-bactericidal organic compound. ATT, which accumulates in rice plants during metabolization of specific agrochemicals, was found to reduce virulence factor secretion by B. plantarii up to 88.8% and inhibit pathogen virulence by hijacking an upstream signaling cascade. Detailed assessment of the newly discovered virulence inhibitor resulted in mechanistic insights into positive effects of ATT accumulation in plant tissues. Mechanisms of virulence alleviation were deciphered by integrating high-throughput data, gene knockout mutants, and molecular interaction assays. TroK, a histidine protein kinase in a two-component system that regulates virulence factor secretion, is likely the molecular target antagonized by ATT. Our findings provide novel insights into virulence modulation in an important plant-pathogen system that relies on the host's metabolic activity and subsequent signaling interference.
Collapse
Affiliation(s)
- Haruna Matsumoto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuan Qian
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Fan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kun Qiao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Dandan Xiang
- Key laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Meng Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Bo Guo
- Shanghai International Studies University, Shanghai 200083, China
| | - Peilin Shen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Xiaoshan Agricultural Comprehensive Development Zone & Management Committee, Hangzhou 311200, China
| | - Qiangwei Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
6
|
Scholtz V, Jirešová J, Šerá B, Julák J. A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods 2021; 10:foods10122927. [PMID: 34945478 PMCID: PMC8701285 DOI: 10.3390/foods10122927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023] Open
Abstract
Cereals, an important food for humans and animals, may carry microbial contamination undesirable to the consumer or to the next generation of plants. Currently, non-thermal plasma (NTP) is often considered a new and safe microbicidal agent without or with very low adverse side effects. NTP is a partially or fully ionized gas at room temperature, typically generated by various electric discharges and rich in reactive particles. This review summarizes the effects of NTP on various types of cereals and products. NTP has undisputed beneficial effects with high potential for future practical use in decontamination and disinfection.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Jana Jirešová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
- Correspondence:
| | - Božena Šerá
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Jaroslav Julák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00 Prague, Czech Republic;
| |
Collapse
|
7
|
Chemical or Genetic Alteration of Proton Motive Force Results in Loss of Virulence of Burkholderia glumae, the Cause of Rice Bacterial Panicle Blight. Appl Environ Microbiol 2021; 87:e0091521. [PMID: 34260305 DOI: 10.1128/aem.00915-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rice is an important source of food for more than half of the world's population. Bacterial panicle blight (BPB) is a disease of rice characterized by grain discoloration or sheath rot caused mainly by Burkholderia glumae. B. glumae synthesizes toxoflavin, an essential virulence factor that is required for symptoms of the disease. The products of the tox operons, ToxABCDE and ToxFGHI, are responsible for the synthesis and the proton motive force (PMF)-dependent secretion of toxoflavin, respectively. The DedA family is a highly conserved membrane protein family found in most bacterial genomes that likely function as membrane transporters. Our previous work has demonstrated that absence of certain DedA family members results in pleiotropic effects, impacting multiple pathways that are energized by PMF. We have demonstrated that a member of the DedA family from Burkholderia thailandensis, named DbcA, is required for the extreme polymyxin resistance observed in this organism. B. glumae encodes a homolog of DbcA with 73% amino acid identity to Burkholderia thailandensis DbcA. Here, we created and characterized a B. glumae ΔdbcA strain. In addition to polymyxin sensitivity, the B. glumae ΔdbcA strain is compromised for virulence in several BPB infection models and secretes only low amounts of toxoflavin (∼15% of wild-type levels). Changes in membrane potential in the B. glumae ΔdbcA strain were reproduced in the wild-type strain by the addition of subinhibitory concentrations of sodium bicarbonate, previously demonstrated to cause disruption of PMF. Sodium bicarbonate inhibited B. glumae virulence in rice, suggesting a possible non-toxic chemical intervention for bacterial panicle blight. IMPORTANCE Bacterial panicle blight (BPB) is a disease of rice characterized by grain discoloration or sheath rot caused mainly by Burkholderia glumae. The DedA family is a highly conserved membrane protein family found in most bacterial genomes that likely function as membrane transporters. Here, we constructed a B. glumae mutant with a deletion in a DedA family member named dbcA and report a loss of virulence in models of BPB. Physiological analysis of the mutant shows that the proton motive force is disrupted, leading to reduction of secretion of the essential virulence factor toxoflavin. The mutant phenotypes are reproduced in the virulent wild-type strain without an effect on growth using sodium bicarbonate, a nontoxic buffer that has been reported to disrupt the PMF. The results presented here suggest that bicarbonate may be an effective antivirulence agent capable of controlling BPB without imposing an undue burden on the environment.
Collapse
|
8
|
Lee HH, Park J, Jung H, Seo YS. Pan-Genome Analysis Reveals Host-Specific Functional Divergences in Burkholderia gladioli. Microorganisms 2021; 9:1123. [PMID: 34067383 PMCID: PMC8224644 DOI: 10.3390/microorganisms9061123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence.
Collapse
Affiliation(s)
- Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| |
Collapse
|
9
|
Ortega L, Rojas CM. Bacterial Panicle Blight and Burkholderia glumae: From Pathogen Biology to Disease Control. PHYTOPATHOLOGY 2021; 111:772-778. [PMID: 33206007 DOI: 10.1094/phyto-09-20-0401-rvw] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial panicle blight (BPB), caused by the bacterium Burkholderia glumae, has affected rice production worldwide. Despite its importance, neither the disease nor the causal agent are well understood. Moreover, methods to manage BPB are still lacking. Nevertheless, the emerging importance of this pathogen has stimulated research to identify the mechanisms of pathogenicity, to gain insight into plant disease resistance, and to develop strategies to manage the disease. In this review, we consolidate current information regarding the virulence factors that have been identified in B. glumae and present a model of the disease and the pathogen. We also provide an update on the current research status to develop methods to control the disease especially through biological control approaches and through the development of resistant cultivars.
Collapse
Affiliation(s)
- Laura Ortega
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701
| | - Clemencia M Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
10
|
Matsumoto H, Fan X, Wang Y, Kusstatscher P, Duan J, Wu S, Chen S, Qiao K, Wang Y, Ma B, Zhu G, Hashidoko Y, Berg G, Cernava T, Wang M. Bacterial seed endophyte shapes disease resistance in rice. NATURE PLANTS 2021; 7:60-72. [PMID: 33398157 DOI: 10.1038/s41477-020-00826-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/24/2020] [Indexed: 05/20/2023]
Abstract
Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.
Collapse
Affiliation(s)
- Haruna Matsumoto
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Xiaoyan Fan
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Jie Duan
- Laboratory of Molecular and Ecological Chemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sanling Wu
- Analysis Center of Agrobiology and Environmental Sciences, Faculty of Agriculture, Life and Environment Sciences, Zhejiang University, Hangzhou, China
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kun Qiao
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Yasuyuki Hashidoko
- Laboratory of Molecular and Ecological Chemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Mengcen Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Burkholderia gladioli CGB10: A Novel Strain Biocontrolling the Sugarcane Smut Disease. Microorganisms 2020; 8:microorganisms8121943. [PMID: 33297590 PMCID: PMC7762381 DOI: 10.3390/microorganisms8121943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, we isolated an endophytic Burkholderia gladioli strain, named CGB10, from sugarcane leaves. B. gladioli CGB10 displayed strong inhibitory activity against filamentous growth of fungal pathogens, one of which is Sporisorium scitamineum that causes sugarcane smut, a major disease affecting the quality and production of sugarcane in tropical and subtropical regions. CGB10 could effectively suppress sugarcane smut under field conditions, without itself causing any obvious damage or disease, thus underscoring a great potential as a biocontrol agent (BCA) for the management of sugarcane smut. A toxoflavin biosynthesis and transport gene cluster potentially responsible for such antifungal activity was identified in the CGB10 genome. Additionally, a quorum-sensing gene cluster was identified too and compared with two close Burkholderia species, thus supporting an overall connection to the regulation of toxoflavin synthesis therein. Overall, this work describes the in vitro and field Sporisorium scitamineum biocontrol by a new B. gladioli strain, and reports genes and molecular mechanisms potentially involved.
Collapse
|
12
|
NMR-based metabolic profiling to follow the production of anti-phytopathogenic compounds in the culture of the marine strain Streptomyces sp. PNM-9. Microbiol Res 2020; 239:126507. [DOI: 10.1016/j.micres.2020.126507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
|
13
|
Mirghasempour A, Glick BR, Hou Y, Huang S. A system to study the expression of phytopathogenic genes encoded by Burkholderia glumae. Arch Microbiol 2020; 203:383-387. [PMID: 32785734 DOI: 10.1007/s00203-020-01986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/28/2022]
Abstract
Rice is often infected by bacterial panicle blight disease caused by Burkholderia glumae. Since most studies have assessed the transcriptome of the plant when it is exposed to bacteria, the gene expression of the phytopathogenic bacteria have not been well elaborated during the infection process or in the host cell. Recently, a few researches were conducted to evaluate the in vivo transcriptome of bacteria during the infective process. Most bacterial cells do not express genes involved in pathogenicity in culture medium making it difficult to investigate gene expression of bacterial cells in plant cells. Here, we sought a simulated patho-system that would allow bacterial cells to express their pathogenic genes. Thus, rice root exudates (RE) and bacterial N-acyl homoserine lactone (AHL) were used and their effects on bacterial gene expression were assessed. Transcription patterns of B. glumae virulence determinants showed that enrichment medium (LB + RE + C8-HSL) could significantly induce virulence factor genes compared with Luria Bertani (LB; control) medium. The data indicate that the artificial environment is similar to the real patho-system, and that this induced maximum relevant gene expression. In this model system, bacterial gene expression changes are traceable in the infection process. Bacterial cells exposed to either an artificial environment or LB + RE + C8-HSL behaved similarly to the natural environment in situ.
Collapse
Affiliation(s)
- A Mirghasempour
- China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - B R Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Y Hou
- China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - S Huang
- China National Rice Research Institute, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
14
|
[Genetic characterization of rice endophytic bacteria (Oryza sativa L.) with antimicrobial activity against Burkholderia glumae]. Rev Argent Microbiol 2020; 52:315-327. [PMID: 32147231 DOI: 10.1016/j.ram.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to isolate, select and characterize endophytic bacteria in rice inhibiting Burkholderia glumae THT as well as to characterize the genetic diversity and virulence factors in strains of B. glumae and Burkholderia gladioli of rice. Rice plants were collected in 4 departments from the northern region of Peru, isolating endophytic bacteria, after tissue sterilization, at 30°C (48h) in Trypticase Soy Agar (TSA), evaluating the antimicrobial activity against B. glumae THT, production of siderophores, resistance of toxoflavine and partial sequencing of the 16S rRNA gene. Furthermore, B. glumae and B. gladioli were isolated in selective medium (pH 4.5) at 41°C/72h. Molecular identification was performed using BOX-PCR and sequencing of the 16S rRNA gene, in addition to the production of extracellular enzymes, motility tests and sensitivity/resistance to bactericides. One hundred and eighty nine (189) endophytic bacteria were isolated, and only 9 strains showed antimicrobial activity against B. glumae THT, highlighting Burkholderia vietnamiensis TUR04-01, B. vietnamiensis TUR04-03 and Bacillus aryabhattai AMH12-02. The strains produced siderophores and at least 55.5% were resistant to toxoflavin. Additionally, 17 strains were grouped into 9 BOX-PCR profiles, where 16 had similarity with B. glumae LMG2196T (100%) and 1 with B. gladioli NBRC 13700T (99.86%). High diversity was found according to geographical origin and virulence factors. In conclusion, strains of the genus Bacillus and Burkholderia are potential biocontrol agents against B. glumae.
Collapse
|
15
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
16
|
Seynos-García E, Castañeda-Lucio M, Muñoz-Rojas J, López-Pliego L, Villalobos M, Bustillos-Cristales R, Fuentes-Ramírez LE. Loci Identification of a N-acyl Homoserine Lactone Type Quorum Sensing System and a New LysR-type Transcriptional Regulator Associated with Antimicrobial Activity and Swarming in Burkholderia Gladioli UAPS07070. Open Life Sci 2019; 14:165-178. [PMID: 33817149 PMCID: PMC7874821 DOI: 10.1515/biol-2019-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
A random transposition mutant library of B. gladioli UAPS07070 was analyzed for searching mutants with impaired microbial antagonism. Three derivates showed diminished antimicrobial activity against a sensitive strain. The mutated loci showed high similarity to the quorum sensing genes of the AHL-synthase and its regulator. Another mutant was affected in a gene coding for a LysrR-type transcriptional regulator. The production of toxoflavin, the most well known antimicrobial-molecule and a major virulence factor of plant-pathogenic B. glumae and B. gladioli was explored. The absence of a yellowish pigment related to toxoflavin and the undetectable transcription of toxA in the mutants indicated the participation of the QS system and of the LysR-type transcriptional regulator in the regulation of toxoflavin. Additionally, those genes were found to be related to the swarming phenotype. Lettuce inoculated with the AHL synthase and the lysR mutants showed less severe symptoms. We present evidence of the participation of both, the quorum sensing and for the first time, of a LysR-type transcriptional regulator in antibiosis and swarming phenotype in a strain of B. gladioli
Collapse
Affiliation(s)
- E Seynos-García
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - M Castañeda-Lucio
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - J Muñoz-Rojas
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - L López-Pliego
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - M Villalobos
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Carretera Estatal Sta Inés Tecuexcomac‑Tepetitla, km. 1.5, C.P: 90700 Tepetitla de Lárdizabal, Tlaxcala,Mexico
| | - R Bustillos-Cristales
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - L E Fuentes-Ramírez
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| |
Collapse
|
17
|
Torres M, Dessaux Y, Llamas I. Saline Environments as a Source of Potential Quorum Sensing Disruptors to Control Bacterial Infections: A Review. Mar Drugs 2019; 17:md17030191. [PMID: 30934619 PMCID: PMC6471967 DOI: 10.3390/md17030191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Saline environments, such as marine and hypersaline habitats, are widely distributed around the world. They include sea waters, saline lakes, solar salterns, or hypersaline soils. The bacteria that live in these habitats produce and develop unique bioactive molecules and physiological pathways to cope with the stress conditions generated by these environments. They have been described to produce compounds with properties that differ from those found in non-saline habitats. In the last decades, the ability to disrupt quorum-sensing (QS) intercellular communication systems has been identified in many marine organisms, including bacteria. The two main mechanisms of QS interference, i.e., quorum sensing inhibition (QSI) and quorum quenching (QQ), appear to be a more frequent phenomenon in marine aquatic environments than in soils. However, data concerning bacteria from hypersaline habitats is scarce. Salt-tolerant QSI compounds and QQ enzymes may be of interest to interfere with QS-regulated bacterial functions, including virulence, in sectors such as aquaculture or agriculture where salinity is a serious environmental issue. This review provides a global overview of the main works related to QS interruption in saline environments as well as the derived biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
18
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
19
|
Choi JE, Nguyen CM, Lee B, Park JH, Oh JY, Choi JS, Kim JC, Song JK. Isolation and characterization of a novel metagenomic enzyme capable of degrading bacterial phytotoxin toxoflavin. PLoS One 2018; 13:e0183893. [PMID: 29293506 PMCID: PMC5749703 DOI: 10.1371/journal.pone.0183893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/14/2017] [Indexed: 11/19/2022] Open
Abstract
Toxoflavin, a 7-azapteridine phytotoxin produced by the bacterial pathogens such as Burkholderia glumae and Burkholderia gladioli, has been known as one of the key virulence factors in crop diseases. Because the toxoflavin had an antibacterial activity, a metagenomic E. coli clone capable of growing well in the presence of toxoflavin (30 μg/ml) was isolated and the first metagenome-derived toxoflavin-degrading enzyme, TxeA of 140 amino acid residues, was identified from the positive E. coli clone. The conserved amino acids for metal-binding and extradiol dioxygenase activity, Glu-12, His-8 and Glu-130, were revealed by the sequence analysis of TxeA. The optimum conditions for toxoflavin degradation were evaluated with the TxeA purified in E. coli. Toxoflavin was totally degraded at an initial toxoflavin concentration of 100 μg/ml and at pH 5.0 in the presence of Mn2+, dithiothreitol and oxygen. The final degradation products of toxoflavin and methyltoxoflavin were fully identified by MS and NMR as triazines. Therefore, we suggested that the new metagenomic enzyme, TxeA, provided the clue to applying the new metagenomic enzyme to resistance development of crop plants to toxoflavin-mediated disease as well as to biocatalysis for Baeyer-Villiger type oxidation.
Collapse
Affiliation(s)
- Ji-Eun Choi
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Cuong Mai Nguyen
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Phytochemistry, Vietnam Institute of Industrial Chemistry, HoanKiem, Hanoi, Vietnam
| | - Boyoung Lee
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Ji Hyun Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Joon Young Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jung Sup Choi
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jae Kwang Song
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
20
|
Nguyen TT, Lee HH, Park J, Park I, Seo YS. Computational Identification and Comparative Analysis of Secreted and Transmembrane Proteins in Six Burkholderia Species. THE PLANT PATHOLOGY JOURNAL 2017; 33:148-162. [PMID: 28381962 PMCID: PMC5378436 DOI: 10.5423/ppj.oa.11.2016.0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 05/14/2023]
Abstract
As a step towards discovering novel pathogenesis-related proteins, we performed a genome scale computational identification and characterization of secreted and transmembrane (TM) proteins, which are mainly responsible for bacteria-host interactions and interactions with other bacteria, in the genomes of six representative Burkholderia species. The species comprised plant pathogens (B. glumae BGR1, B. gladioli BSR3), human pathogens (B. pseudomallei K96243, B. cepacia LO6), and plant-growth promoting endophytes (Burkholderia sp. KJ006, B. phytofirmans PsJN). The proportions of putative classically secreted proteins (CSPs) and TM proteins among the species were relatively high, up to approximately 20%. Lower proportions of putative type 3 non-classically secreted proteins (T3NCSPs) (~10%) and unclassified non-classically secreted proteins (NCSPs) (~5%) were observed. The numbers of TM proteins among the three clusters (plant pathogens, human pathogens, and endophytes) were different, while the distribution of these proteins according to the number of TM domains was conserved in which TM proteins possessing 1, 2, 4, or 12 TM domains were the dominant groups in all species. In addition, we observed conservation in the protein size distribution of the secreted protein groups among the species. There were species-specific differences in the functional characteristics of these proteins in the various groups of CSPs, T3NCSPs, and unclassified NCSPs. Furthermore, we assigned the complete sets of the conserved and unique NCSP candidates of the collected Burkholderia species using sequence similarity searching. This study could provide new insights into the relationship among plant-pathogenic, human-pathogenic, and endophytic bacteria.
Collapse
Affiliation(s)
- Thao Thi Nguyen
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Inmyoung Park
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Asian Food and Culinary Arts, Youngsan University, Busan 48015,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
21
|
Abstract
In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains.
Collapse
Affiliation(s)
- Leo Eberl
- Department of Plant and Microbial Biology, University Zürich, Zurich, CH-8008, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|