1
|
Insuk C, Cheeptham N, Lausen C, Xu J. DNA metabarcoding analyses reveal fine-scale microbiome structures on Western Canadian bat wings. Microbiol Spectr 2024:e0037624. [PMID: 39436130 DOI: 10.1128/spectrum.00376-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Healthy wings are vital for the survival and reproduction of bats, and wing microbiome is a key component of bat wing health. However, relatively little is known about the wing microbiome of bats in western Canada where the white nose syndrome has become an increasing threat. Here, we used DNA metabarcoding to investigate the bacterial and fungal communities on the wings of three bat species: the big brown bat (Eptesicus fuscus), the Yuma myotis (Myotis yumanensis), and the little brown myotis (M. lucifugus) from four field sites in Lillooet, British Columbia, Canada. The bacterial 16S rRNA metabarcoding revealed a total of 4,167 amplicon sequence variants (ASVs) belonging to 27 phyla, 639 genera, and 533 known and 2,423 unknown species. The wing bacteria were dominated by phyla Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria, and the most common genera were Delftia, Bordetella, Sphingomonas, Phyllobacterium, Bradyrhizobium, Pseudomonas, and Corynebacterium. The fungal internal transcribed spacer (ITS) metabarcoding revealed a total of 11,722 ASVs belonging to 16 phyla, 806 genera, and 1,420 known and 10,302 unknown species. The wing fungi were dominated by phyla Ascomycota, Basidiomycota, and Motierellomycota, and the most common genera were Cladosporium, Aspergillus, and Mycosphaerella. Principal coordinates analysis showed that both bat species and field sites contributed variably to the diversity and distribution of bacterial and fungal communities on bat wings. Interestingly, both positive and negative correlations were found in their relative abundances among several groups of microbial taxa. We discuss the implications of our results for bat health, including the management of P. destructans infection and white-nose syndrome spread. IMPORTANCE Microbiomes play important roles in host health. White-nose syndrome (WNS), a fungal infection of bat wings and muzzles, has threatened bat populations across North America since 2006. Recent research suggest that the skin microbiome of bats may play a significant role in bat's susceptibility to WNS. However, relatively little is known about the skin microbiome composition and function in bats in Western Canada, a region with a high diversity of bats, but WNS has yet to be a major issue. Here, we revealed high bacterial and fungal diversities on the skin of three common bat species in Lillooet, British Columbia, including several highly prevalent microbial species that have been rarely reported in other regions. Our analyses showed fine-scale structures of bat wing microbiome based on local sites and bat species. The knowledge obtained from WNS-naïve bat populations in this study may help develop mitigation and management strategies against WNS.
Collapse
Affiliation(s)
- Chadabhorn Insuk
- Department of Biology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Cori Lausen
- Wildlife Conservation Society Canada, Kaslo, British Columbia, Canada
| | - Jianping Xu
- Department of Biology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Bastholm CJ, Andersen B, Frisvad JC, Oestergaard SK, Nielsen JL, Madsen AM, Richter J. A novel contaminant in museums? A cross-sectional study on xerophilic Aspergillus growth in climate-controlled repositories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173880. [PMID: 38857796 DOI: 10.1016/j.scitotenv.2024.173880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
In the last decade, extensive fungal growth has developed in Danish museums parallel to climate change, challenging occupational health and heritage preservation. The growth was unexpected as the museums strived to control relative humidity below 60 %, and it should exceed 75 % to risk growth. A Danish case study found xerophilic Aspergillus species able to grow at low relative humidity in a museum repository. This cross-sectional study aimed to examine whether xerophilic growth from Aspergillus section Restricti has become a novel contaminant nationally distributed in Danish museum repositories striving to control relative humidity according to international environmental recommendations for heritage collections. The study examined The National Museum of Denmark and eight large State Recognized museums distributed throughout Denmark. It was based on 600 swab and tape-lift samples and 60 MAS100-Eco and filter air samples analyzed for fungi with cultivation and morphological identification, Big-Dye-Sanger sequencing, CaM-Nanopore and ITS-Illumina amplicon sequencing. The study showed growth from seven xerophilic Aspergillus species: A. conicus, A. domesticus, A. glabripes, A. halophilicus, A. magnivesiculatus, A. penicilloides, A. vitricola, of which three are new to Denmark, and 13 xerotolerant Aspergillus species. There was no growth from other fungal species. The multiple detection approach provided a broad characterization; however, there was variance in the detected species depending on the analysis approach. Cultivation and Big-Dye Sanger sequencing showed the highest Aspergillus diversity, detecting 17 species; CaM-Nanopore amplicon sequencing detected 12 species; and ITS-illumina amplicon sequencing detected two species but the highest overall diversity. Cultivation, followed by Big-Dye Sanger and CaM-amplicon sequencing, proved the highest compliance. The study concluded that xerophilic Aspergillus growth is nationally distributed and suggests species from Aspergillus section Restricti as a novel contaminant in climate-controlled museum repositories. To safeguard occupational health and heritage preservation research in sustainable solutions, avoiding xerophilic growth in museum collections is most important.
Collapse
Affiliation(s)
- Camilla Jul Bastholm
- Museum ROMU, Roskilde and The National Museum of Denmark, Copenhagen, Denmark; Royal Danish Academy, Copenhagen, Denmark.
| | | | | | | | | | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Cockell CS, Hallsworth JE, McMahon S, Kane SR, Higgins PM. The Concept of Life on Venus Informs the Concept of Habitability. ASTROBIOLOGY 2024; 24:628-634. [PMID: 38800952 DOI: 10.1089/ast.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
An enduring question in astrobiology is how we assess extraterrestrial environments as being suitable for life. We suggest that the most reliable assessments of the habitability of extraterrestrial environments are made with respect to the empirically determined limits to known life. We discuss qualitatively distinct categories of habitability: empirical habitability that is constrained by the observed limits to biological activity; habitability sensu stricto, which is defined with reference to the known or unknown limits to the activity of all known organisms; and habitability sensu lato (habitability in the broadest sense), which is circumscribed by the limit of all possible life in the universe, which is the most difficult (and perhaps impossible) to determine. We use the cloud deck of Venus, which is temperate but incompatible with known life, as an example to elaborate and hypothesize on these limits.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen R Kane
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Peter M Higgins
- Department of Earth Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Zorzano MP, Martínez G, Polkko J, Tamppari LK, Newman C, Savijärvi H, Goreva Y, Viúdez-Moreiras D, Bertrand T, Smith M, Hausrath EM, Siljeström S, Benison K, Bosak T, Czaja AD, Debaille V, Herd CDK, Mayhew L, Sephton MA, Shuster D, Simon JI, Weiss B, Randazzo N, Mandon L, Brown A, Hecht MH, Martínez-Frías J. Present-day thermal and water activity environment of the Mars Sample Return collection. Sci Rep 2024; 14:7175. [PMID: 38532041 DOI: 10.1038/s41598-024-57458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The Mars Sample Return mission intends to retrieve a sealed collection of rocks, regolith, and atmosphere sampled from Jezero Crater, Mars, by the NASA Perseverance rover mission. For all life-related research, it is necessary to evaluate water availability in the samples and on Mars. Within the first Martian year, Perseverance has acquired an estimated total mass of 355 g of rocks and regolith, and 38 μmoles of Martian atmospheric gas. Using in-situ observations acquired by the Perseverance rover, we show that the present-day environmental conditions at Jezero allow for the hydration of sulfates, chlorides, and perchlorates and the occasional formation of frost as well as a diurnal atmospheric-surface water exchange of 0.5-10 g water per m2 (assuming a well-mixed atmosphere). At night, when the temperature drops below 190 K, the surface water activity can exceed 0.5, the lowest limit for cell reproduction. During the day, when the temperature is above the cell replication limit of 245 K, water activity is less than 0.02. The environmental conditions at the surface of Jezero Crater, where these samples were acquired, are incompatible with the cell replication limits currently known on Earth.
Collapse
Affiliation(s)
- Maria-Paz Zorzano
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain.
| | - Germán Martínez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Jouni Polkko
- Finnish Meteorological Institute, Helsinki, Finland
| | - Leslie K Tamppari
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | | | | | - Yulia Goreva
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | | | - Tanguy Bertrand
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne, France
| | - Michael Smith
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | | | | | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew D Czaja
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Vinciane Debaille
- Laboratoire G-Time, Université Libre de Bruxelles, Brussels, Belgium
| | - Christopher D K Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Lisa Mayhew
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | | | - Justin I Simon
- Center for Isotope Cosmochemistry and Geochronology, Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX, USA
| | - Benjamin Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Randazzo
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Lucia Mandon
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | | | | | | |
Collapse
|
5
|
Spry JA, Siegel B, Bakermans C, Beaty DW, Bell MS, Benardini JN, Bonaccorsi R, Castro-Wallace SL, Coil DA, Coustenis A, Doran PT, Fenton L, Fidler DP, Glass B, Hoffman SJ, Karouia F, Levine JS, Lupisella ML, Martin-Torres J, Mogul R, Olsson-Francis K, Ortega-Ugalde S, Patel MR, Pearce DA, Race MS, Regberg AB, Rettberg P, Rummel JD, Sato KY, Schuerger AC, Sefton-Nash E, Sharkey M, Singh NK, Sinibaldi S, Stabekis P, Stoker CR, Venkateswaran KJ, Zimmerman RR, Zorzano-Mier MP. Planetary Protection Knowledge Gap Closure Enabling Crewed Missions to Mars. ASTROBIOLOGY 2024; 24:230-274. [PMID: 38507695 DOI: 10.1089/ast.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.
Collapse
Affiliation(s)
| | | | - Corien Bakermans
- Department of Biology, Penn. State University (Altoona), Altoona, Pennsylvania, USA
| | - David W Beaty
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | - Rosalba Bonaccorsi
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - David A Coil
- School of Medicine, University of California, Davis, Davis, California, USA
| | | | - Peter T Doran
- Department of Geology & Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Lori Fenton
- SETI Institute, Mountain View, California, USA
| | - David P Fidler
- Council on Foreign Relations, Washington, District of Columbia, USA
| | - Brian Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - Fathi Karouia
- NASA Ames Research Center, Moffett Field, California, USA
| | - Joel S Levine
- College of William & Mary, Williamsburg, Virginia, USA
| | | | - Javier Martin-Torres
- School of Geoscience, University of Aberdeen, Aberdeen, United Kingdom
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Spain
| | - Rakesh Mogul
- California Polytechnic (Pomona), Pomona, California, USA
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom
| | | | - Manish R Patel
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom
| | - David A Pearce
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | | | | | - John D Rummel
- Friday Harbor Associates LLC, Friday Harbor, Washington, USA
| | | | - Andrew C Schuerger
- Department of Plant Pathology, University of Florida, Merritt Island, Florida, USA
| | | | - Matthew Sharkey
- US Department of Health & Human Services, Washington, District of Columbia, USA
| | - Nitin K Singh
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | - Carol R Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | | | | | | |
Collapse
|
6
|
Loukou E, Jensen NF, Rohde L, Andersen B. Damp Buildings: Associated Fungi and How to Find Them. J Fungi (Basel) 2024; 10:108. [PMID: 38392780 PMCID: PMC10890273 DOI: 10.3390/jof10020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The number of buildings experiencing humidity problems and fungal growth appears to be increasing as energy-saving measures and changes in construction practices and climate become more common. Determining the cause of the problem and documenting the type and extent of fungal growth are complex processes involving both building physics and indoor mycology. New detection and identification methods have been introduced, and new fungal species have been added to the list of building-related fungi. However, the lack of standardised procedures and general knowledge hampers the effort to resolve the problems and advocate for an effective renovation plan. This review provides a framework for building inspections on current sampling methods and detection techniques for building-related fungi. The review also contains tables with fungal species that have been identified on commonly used building materials in Europe and North America (e.g., gypsum wallboard, oriented strand board (OSB), concrete and mineral wool). The most reported building-associated fungi across all materials are Penicillium chrysogenum and Aspergillus versicolor. Chaetomium globosum is common on all organic materials, whereas Aspergillus niger is common on all inorganic materials.
Collapse
Affiliation(s)
- Evangelia Loukou
- Division of Building Technology, Management and Indoor Environment, Department of the Built Environment, Aalborg University, A.C. Meyers Vænge 15, DK-2450 Copenhagen, Denmark
| | - Nickolaj Feldt Jensen
- Division of Building Technology, Management and Indoor Environment, Department of the Built Environment, Aalborg University, A.C. Meyers Vænge 15, DK-2450 Copenhagen, Denmark
| | - Lasse Rohde
- Division of Energy and Sustainability in Buildings, Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, DK-9220 Aalborg, Denmark
| | - Birgitte Andersen
- Division of Building Technology, Management and Indoor Environment, Department of the Built Environment, Aalborg University, A.C. Meyers Vænge 15, DK-2450 Copenhagen, Denmark
| |
Collapse
|
7
|
Kujović A, Gostinčar C, Kavkler K, Govedić N, Gunde-Cimerman N, Zalar P. Degradation Potential of Xerophilic and Xerotolerant Fungi Contaminating Historic Canvas Paintings. J Fungi (Basel) 2024; 10:76. [PMID: 38248985 PMCID: PMC10817455 DOI: 10.3390/jof10010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Fungi are important contaminants of historic canvas paintings worldwide. They can grow on both sides of the canvas and decompose various components of the paintings. They excrete pigments and acids that change the visual appearance of the paintings and weaken their structure, leading to flaking and cracking. With the aim of recognizing the most dangerous fungal species to the integrity and stability of paintings, we studied 55 recently isolated and identified strains from historic paintings or depositories, including 46 species from 16 genera. The fungi were categorized as xero/halotolerant or xero/halophilic based on their preference for solutes (glycerol or NaCl) that lower the water activity (aw) of the medium. Accordingly, the aw value of all further test media had to be adjusted to allow the growth of xero/halophilic species. The isolates were tested for growth at 15, 24 °C and 37 °C. The biodeterioration potential of the fungi was evaluated by screening their acidification properties, their ability to excrete pigments and their enzymatic activities, which were selected based on the available nutrients in paintings on canvas. A DNase test was performed to determine whether the selected fungi could utilize DNA of dead microbial cells that may be covering surfaces of the painting. The sequestration of Fe, which is made available through the production of siderophores, was also tested. The ability to degrade aromatic and aliphatic substrates was investigated to consider the potential degradation of synthetic restoration materials. Xerotolerant and moderately xerophilic species showed a broader spectrum of enzymatic activities than obligate xerophilic species: urease, β-glucosidase, and esterase predominated, while obligate xerophiles mostly exhibited β-glucosidase, DNase, and urease activity. Xerotolerant and moderately xerophilic species with the highest degradation potential belong to the genus Penicillium, while Aspergillus penicillioides and A. salinicola represent obligately xerophilic species with the most diverse degradation potential in low aw environments.
Collapse
Affiliation(s)
- Amela Kujović
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (A.K.); (C.G.); (N.G.); (N.G.-C.)
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (A.K.); (C.G.); (N.G.); (N.G.-C.)
| | - Katja Kavkler
- Institute for the Protection of Cultural Heritage of Slovenia, Poljanska 40, SI-1000 Ljubljana, Slovenia;
| | - Natalija Govedić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (A.K.); (C.G.); (N.G.); (N.G.-C.)
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (A.K.); (C.G.); (N.G.); (N.G.-C.)
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (A.K.); (C.G.); (N.G.); (N.G.-C.)
| |
Collapse
|
8
|
Gregory SP, Mackie JRM, Barnett MJ. Radioactive waste microbiology: predicting microbial survival and activity in changing extreme environments. FEMS Microbiol Rev 2024; 48:fuae001. [PMID: 38216518 PMCID: PMC10853057 DOI: 10.1093/femsre/fuae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 01/14/2024] Open
Abstract
The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.
Collapse
Affiliation(s)
- Simon P Gregory
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Jessica R M Mackie
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Megan J Barnett
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| |
Collapse
|
9
|
Paris ER, Arandia-Gorostidi N, Klempay B, Bowman JS, Pontefract A, Elbon CE, Glass JB, Ingall ED, Doran PT, Som SM, Schmidt BE, Dekas AE. Single-cell analysis in hypersaline brines predicts a water-activity limit of microbial anabolic activity. SCIENCE ADVANCES 2023; 9:eadj3594. [PMID: 38134283 PMCID: PMC10745694 DOI: 10.1126/sciadv.adj3594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Hypersaline brines provide excellent opportunities to study extreme microbial life. Here, we investigated anabolic activity in nearly 6000 individual cells from solar saltern sites with water activities (aw) ranging from 0.982 to 0.409 (seawater to extreme brine). Average anabolic activity decreased exponentially with aw, with nuanced trends evident at the single-cell level: The proportion of active cells remained high (>50%) even after NaCl saturation, and subsets of cells spiked in activity as aw decreased. Intracommunity heterogeneity in activity increased as seawater transitioned to brine, suggesting increased phenotypic heterogeneity with increased physiological stress. No microbial activity was detected in the 0.409-aw brine (an MgCl2-dominated site) despite the presence of cell-like structures. Extrapolating our data, we predict an aw limit for detectable anabolic activity of 0.540, which is beyond the currently accepted limit of life based on cell division. This work demonstrates the utility of single-cell, metabolism-based techniques for detecting active life and expands the potential habitable space on Earth and beyond.
Collapse
Affiliation(s)
- Emily R. Paris
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | | | - Benjamin Klempay
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | - Jeff S. Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | | | - Claire E. Elbon
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jennifer B. Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ellery D. Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter T. Doran
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sanjoy M. Som
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Britney E. Schmidt
- Departments of Astronomy and Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anne E. Dekas
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Zalar P, Graf Hriberšek D, Gostinčar C, Breskvar M, Džeroski S, Matul M, Novak Babič M, Čremožnik Zupančič J, Kujović A, Gunde-Cimerman N, Kavkler K. Xerophilic fungi contaminating historically valuable easel paintings from Slovenia. Front Microbiol 2023; 14:1258670. [PMID: 38029120 PMCID: PMC10653331 DOI: 10.3389/fmicb.2023.1258670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Historically valuable canvas paintings are often exposed to conditions enabling microbial deterioration. Painting materials, mainly of organic origin, in combination with high humidity and other environmental conditions, favor microbial metabolism and growth. These preconditions are often present during exhibitions or storage in old buildings, such as churches and castles, and also in museum storage depositories. The accumulated dust serves as an inoculum for both indoor and outdoor fungi. In our study, we present the results on cultivable fungi isolated from 24 canvas paintings, mainly exhibited in Slovenian sacral buildings, dating from the 16th to 21st centuries. Fungi were isolated from the front and back of damaged and undamaged surfaces of the paintings using culture media with high- and low-water activity. A total of 465 isolates were identified using current taxonomic DNA markers and assigned to 37 genera and 98 species. The most abundant genus was Aspergillus, represented by 32 species, of which 9 xerophilic species are for the first time mentioned in contaminated paintings. In addition to the most abundant xerophilic A. vitricola, A. destruens, A. tardicrescens, and A. magnivesiculatus, xerophilic Wallemia muriae and W. canadensis, xerotolerant Penicillium chrysogenum, P. brevicompactum, P. corylophilum, and xerotolerant Cladosporium species were most frequent. When machine learning methods were used to predict the relationship between fungal contamination, damage to the painting, and the type of material present, proteins were identified as one of the most important factors and cracked paint was identified as a hotspot for fungal growth. Aspergillus species colonize paintings regardless of materials, while Wallemia spp. can be associated with animal fat. Culture media with low-water activity are suggested in such inventories to isolate and obtain an overview of fungi that are actively contaminating paintings stored indoors at low relative humidity.
Collapse
Affiliation(s)
- Polona Zalar
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Daša Graf Hriberšek
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostinčar
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Breskvar
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sašo Džeroski
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Mojca Matul
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Novak Babič
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerneja Čremožnik Zupančič
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amela Kujović
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Kavkler
- Institute for the Protection of Cultural Heritage of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
11
|
Cowan DA, Cary SC, DiRuggiero J, Eckardt F, Ferrari B, Hopkins DW, Lebre PH, Maggs-Kölling G, Pointing SB, Ramond JB, Tribbia D, Warren-Rhodes K. 'Follow the Water': Microbial Water Acquisition in Desert Soils. Microorganisms 2023; 11:1670. [PMID: 37512843 PMCID: PMC10386458 DOI: 10.3390/microorganisms11071670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of recent studies, the paradigm that desert soil microorganisms are largely dormant under xeric conditions is questionable. Gene expression profiling of microbial communities in desert soils suggests that many microbial taxa retain some metabolic functionality, even under severely xeric conditions. It, therefore, follows that other, less obvious sources of water may sustain the microbial cellular and community functionality in desert soil niches. Such sources include a range of precipitation and condensation processes, including rainfall, snow, dew, fog, and nocturnal distillation, all of which may vary quantitatively depending on the location and geomorphological characteristics of the desert ecosystem. Other more obscure sources of bioavailable water may include groundwater-derived water vapour, hydrated minerals, and metabolic hydro-genesis. Here, we explore the possible sources of bioavailable water in the context of microbial survival and function in xeric desert soils. With global climate change projected to have profound effects on both hot and cold deserts, we also explore the potential impacts of climate-induced changes in water availability on soil microbiomes in these extreme environments.
Collapse
Affiliation(s)
- Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - S Craig Cary
- School of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand
| | - Jocelyne DiRuggiero
- Departments of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Frank Eckardt
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7701, South Africa
| | - Belinda Ferrari
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - David W Hopkins
- Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | | | - Stephen B Pointing
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Departamento Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Dana Tribbia
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
12
|
Hallsworth JE, Udaondo Z, Pedrós‐Alió C, Höfer J, Benison KC, Lloyd KG, Cordero RJB, de Campos CBL, Yakimov MM, Amils R. Scientific novelty beyond the experiment. Microb Biotechnol 2023; 16:1131-1173. [PMID: 36786388 PMCID: PMC10221578 DOI: 10.1111/1751-7915.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel-sometimes paradigm-changing-findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host-pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and-although we ourselves are involved in laboratory experiments and practical fieldwork-also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Zulema Udaondo
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Carlos Pedrós‐Alió
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)MadridSpain
| | - Juan Höfer
- Escuela de Ciencias del MarPontificia Universidad Católica de ValparaísoValparaísoChile
| | - Kathleen C. Benison
- Department of Geology and GeographyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Karen G. Lloyd
- Microbiology DepartmentUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Radamés J. B. Cordero
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Claudia B. L. de Campos
- Institute of Science and TechnologyUniversidade Federal de Sao Paulo (UNIFESP)São José dos CamposSPBrazil
| | | | - Ricardo Amils
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Nicolás Cabrera n° 1, Universidad Autónoma de MadridMadridSpain
- Department of Planetology and HabitabilityCentro de Astrobiología (INTA‐CSIC)Torrejón de ArdozSpain
| |
Collapse
|
13
|
Noel D, Hallsworth JE, Gelhaye E, Darnet S, Sormani R, Morel-Rouhier M. Modes-of-action of antifungal compounds: Stressors and (target-site-specific) toxins, toxicants, or Toxin-stressors. Microb Biotechnol 2023. [PMID: 37191200 DOI: 10.1111/1751-7915.14242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 05/17/2023] Open
Abstract
Fungi and antifungal compounds are relevant to the United Nation's Sustainable Development Goals. However, the modes-of-action of antifungals-whether they are naturally occurring substances or anthropogenic fungicides-are often unknown or are misallocated in terms of their mechanistic category. Here, we consider the most effective approaches to identifying whether antifungal substances are cellular stressors, toxins/toxicants (that are target-site-specific), or have a hybrid mode-of-action as Toxin-stressors (that induce cellular stress yet are target-site-specific). This newly described 'toxin-stressor' category includes some photosensitisers that target the cell membrane and, once activated by light or ultraviolet radiation, cause oxidative damage. We provide a glossary of terms and a diagrammatic representation of diverse types of stressors, toxic substances, and Toxin-stressors, a classification that is pertinent to inhibitory substances not only for fungi but for all types of cellular life. A decision-tree approach can also be used to help differentiate toxic substances from cellular stressors (Curr Opin Biotechnol 2015 33: 228-259). For compounds that target specific sites in the cell, we evaluate the relative merits of using metabolite analyses, chemical genetics, chemoproteomics, transcriptomics, and the target-based drug-discovery approach (based on that used in pharmaceutical research), focusing on both ascomycete models and the less-studied basidiomycete fungi. Chemical genetic methods to elucidate modes-of-action currently have limited application for fungi where molecular tools are not yet available; we discuss ways to circumvent this bottleneck. We also discuss ecologically commonplace scenarios in which multiple substances act to limit the functionality of the fungal cell and a number of as-yet-unresolved questions about the modes-of-action of antifungal compounds pertaining to the Sustainable Development Goals.
Collapse
Affiliation(s)
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | | | | |
Collapse
|
14
|
Zorzano MP, Olsson-Francis K, Doran PT, Rettberg P, Coustenis A, Ilyin V, Raulin F, Shehhi OA, Groen F, Grasset O, Nakamura A, Ballesteros OP, Sinibaldi S, Suzuki Y, Kumar P, Kminek G, Hedman N, Fujimoto M, Zaitsev M, Hayes A, Peng J, Ammannito E, Mustin C, Xu K. The COSPAR planetary protection requirements for space missions to Venus. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:18-24. [PMID: 37087175 DOI: 10.1016/j.lssr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 05/03/2023]
Abstract
The Committee on Space Research's (COSPAR) Planetary Protection Policy states that all types of missions to Venus are classified as Category II, as the planet has significant research interest relative to the processes of chemical evolution and the origin of life, but there is only a remote chance that terrestrial contamination can proliferate and compromise future investigations. "Remote chance" essentially implies the absence of environments where terrestrial organisms could survive and replicate. Hence, Category II missions only require simplified planetary protection documentation, including a planetary protection plan that outlines the intended or potential impact targets, brief Pre- and Post-launch analyses detailing impact strategies, and a Post-encounter and End-of-Mission Report. These requirements were applied in previous missions and are foreseen for the numerous new international missions planned for the exploration of Venus, which include NASA's VERITAS and DAVINCI missions, and ESA's EnVision mission. There are also several proposed missions including India's Shukrayaan-1, and Russia's Venera-D. These multiple plans for spacecraft coincide with a recent interest within the scientific community regarding the cloud layers of Venus, which have been suggested by some to be habitable environments. The proposed, privately funded, MIT/Rocket Lab Venus Life Finder mission is specifically designed to assess the habitability of the Venusian clouds and to search for signs of life. It includes up to three atmospheric probes, the first one targeting a launch in 2023. The COSPAR Panel on Planetary Protection evaluated scientific data that underpins the planetary protection requirements for Venus and the implications of this on the current policy. The Panel has done a thorough review of the current knowledge of the planet's conditions prevailing in the clouds. Based on the existing literature, we conclude that the environmental conditions within the Venusian clouds are orders of magnitude drier and more acidic than the tolerated survival limits of any known terrestrial extremophile organism. Because of this future orbital, landed or entry probe missions to Venus do not require extra planetary protection measures. This recommendation may be revised in the future if new observations or reanalysis of past data show any significant increment, of orders of magnitude, in the water content and the pH of the cloud layer.
Collapse
Affiliation(s)
- María Paz Zorzano
- Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, 28850, Torrejón de Ardoz, Madrid, Spain.
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - Peter T Doran
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA
| | - Petra Rettberg
- Research Group Astrobiology, Institute of Aerospace Medicine, DLR, Koeln, Germany
| | - Athena Coustenis
- LESIA, Paris Observatory, CNRS, PSL Univ., 92195, Meudon Cedex, France
| | - Vyacheslav Ilyin
- Institute for Biomedical Problems, 123007, Khoroshevskoye shosse 76a, Moscow, Russia
| | - Francois Raulin
- Univ Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
| | | | - Frank Groen
- NASA Headquarters, Washington, DC, 20546, USA
| | - Olivier Grasset
- Nantes Université, Univ Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, F-44000, Nantes, France
| | - Akiko Nakamura
- Department of Planetology, Kobe University, 657-8501, Kobe, Japan
| | - Olga Prieto Ballesteros
- Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Silvio Sinibaldi
- Planetary Protection Officer, Independent Safety Office (TEC-QI), European Space Agency (ESA) - ESTEC, Keplerlaan 1, 2201, AZ, Noordwijk, the Netherlands
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | - Gerhard Kminek
- European Space Agency (ESA) - ESTEC, Keplerlaan 1, 2201, AZ, Noordwijk, the Netherlands
| | - Niklas Hedman
- Committee, Policy and Legal Affairs Section, Office for Outer Space Affairs, United Nations Office at Vienna, Austria
| | - Masaki Fujimoto
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Kanagawa, Japan
| | - Maxim Zaitsev
- Planetary Physics Dept., Space Research Inst. of Russian Acad. of Sciences, Moscow, Russia
| | - Alex Hayes
- Cornell University, Ithaca, NY, 14853-6801, USA
| | - Jing Peng
- China National Space Administration, Beijing, China
| | | | | | - Kanyan Xu
- Laboratory of Space Microbiology, Shenzhou Space Biotechnology Group, Chinese Academy of Space Technology, Beijing, China
| |
Collapse
|
15
|
Micheluz A, Pinzari F, Rivera-Valentín EG, Manente S, Hallsworth JE. Biophysical Manipulation of the Extracellular Environment by Eurotium halophilicum. Pathogens 2022; 11:1462. [PMID: 36558795 PMCID: PMC9781259 DOI: 10.3390/pathogens11121462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Eurotium halophilicum is psychrotolerant, halophilic, and one of the most-extreme xerophiles in Earth's biosphere. We already know that this ascomycete grows close to 0 °C, at high NaCl, and-under some conditions-down to 0.651 water-activity. However, there is a paucity of information about how it achieves this extreme stress tolerance given the dynamic water regimes of the surface habitats on which it commonly occurs. Here, against the backdrop of global climate change, we investigated the biophysical interactions of E. halophilicum with its extracellular environment using samples taken from the surfaces of library books. The specific aims were to examine its morphology and extracellular environment (using scanning electron microscopy for visualisation and energy-dispersive X-ray spectrometry to identify chemical elements) and investigate interactions with water, ions, and minerals (including analyses of temperature and relative humidity conditions and determinations of salt deliquescence and water activity of extracellular brine). We observed crystals identified as eugsterite (Na4Ca(SO4)3·2H2O) and mirabilite (Na2SO4·10H2O) embedded within extracellular polymeric substances and provide evidence that E. halophilicum uses salt deliquescence to maintain conditions consistent with its water-activity window for growth. In addition, it utilizes a covering of hair-like microfilaments that likely absorb water and maintain a layer of humid air adjacent to the hyphae. We believe that, along with compatible solutes used for osmotic adjustment, these adaptations allow the fungus to maintain hydration in both space and time. We discuss these findings in relation to the conservation of books and other artifacts within the built environment, spoilage of foods and feeds, the ecology of E. halophilicum in natural habitats, and the current episode of climate change.
Collapse
Affiliation(s)
- Anna Micheluz
- Conservation Science Department, Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| | - Flavia Pinzari
- Institute for Biological Systems, Council of National Research of Italy, Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | - Sabrina Manente
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 30170 Venice, Italy
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
16
|
Braga GÚL, Silva-Junior GJ, Brancini GTP, Hallsworth JE, Wainwright M. Photoantimicrobials in agriculture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112548. [PMID: 36067596 DOI: 10.1016/j.jphotobiol.2022.112548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Classical approaches for controlling plant pathogens may be impaired by the development of pathogen resistance to chemical pesticides and by limited availability of effective antimicrobial agents. Recent increases in consumer awareness of and/or legislation regarding environmental and human health, and the urgent need to improve food security, are driving increased demand for safer antimicrobial strategies. Therefore, there is a need for a step change in the approaches used for controlling pre- and post-harvest diseases and foodborne human pathogens. The use of light-activated antimicrobial substances for the so-called antimicrobial photodynamic treatment is known to be effective not only in a clinical context, but also for use in agriculture to control plant-pathogenic fungi and bacteria, and to eliminate foodborne human pathogens from seeds, sprouted seeds, fruits, and vegetables. Here, we take a holistic approach to review and re-evaluate recent findings on: (i) the ecology of naturally-occurring photoantimicrobials, (ii) photodynamic processes including the light-activated antimicrobial activities of some plant metabolites, and (iii) fungus-induced photosensitization of plants. The inhibitory mechanisms of both natural and synthetic light-activated substances, known as photosensitizers, are discussed in the contexts of microbial stress biology and agricultural biotechnology. Their modes-of-antimicrobial action make them neither stressors nor toxins/toxicants (with specific modes of poisonous activity), but a hybrid/combination of both. We highlight the use of photoantimicrobials for the control of plant-pathogenic fungi and quantify their potential contribution to global food security.
Collapse
Affiliation(s)
- Gilberto Ú L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | | | - Guilherme T P Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, United Kingdom.
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
17
|
Danilova OA, Ianutsevich EA, Bondarenko SA, Antropova AB, Tereshina VM. Membrane Lipids and Osmolytes Composition of Xerohalophilic Fungus Aspergillus penicillioides during Growth on High NaCl and Glycerol Media. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Wu H, Wong JWC. Mechanisms of indoor mold survival under moisture dynamics, a special water treatment approach within the indoor context. CHEMOSPHERE 2022; 302:134748. [PMID: 35523294 DOI: 10.1016/j.chemosphere.2022.134748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Mold contamination is one of the most important causes for indoor air pollution. Previous studies have indicated the feasibility of employing wet-dry cycles, a special water treatment approach in indoor environments, to control indoor mold contamination. However, the underlying mechanisms regulating the responses of indoor molds to changing moisture conditions remains to be elucidated. Here, we studied the mechanisms regulating the responses to wet-dry cycles (termed as moisture dynamics) in Aspergillus penicillioides, Cladosporium cladosporioides, and Aspergillus niger. First, the dormant spores of each mold species were grown to the swollen stage. Next, swollen spores were incubated at different water activity (aw) levels (0.4, 0.6 and 0.8 aw) for up to 15 days. Afterward, the viability, lipid peroxidation and antioxidant activities (both enzymatic and non-enzymatic) of treated molds were determined. Our results show that the mold species that survived better under moisture dynamics also encountered less oxidative damage and exhibited stronger antioxidant activities. Moreover, lower RH imposed severer oxidative stress to C. cladosporioides and A. niger. Pearson correlation coefficient indicate significant correlations between oxidative stress and aw of dry periods, oxidative damage and mold survival, as well as oxidative responses and mold survival. Collectively, these results imply that oxidative stress adaptation regulates the viability of A. penicillioides, C. cladosporioides, and A. niger in response to moisture dynamics. Our findings facilitate the development of novel engineering solutions for indoor air pollution.
Collapse
Affiliation(s)
- Haoxiang Wu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Jonathan Woon Chung Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
19
|
Fungi are key players in extreme ecosystems. Trends Ecol Evol 2022; 37:517-528. [PMID: 35246323 DOI: 10.1016/j.tree.2022.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
Extreme environments on Earth are typically devoid of macro life forms and are inhabited predominantly by highly adapted and specialized microorganisms. The discovery and persistence of these extremophiles provides tools to model how life arose on Earth and inform us on the limits of life. Fungi, in particular, are among the most extreme-tolerant organisms with highly versatile lifestyles and stunning ecological and morphological plasticity. Here, we overview the most notable examples of extremophilic and stress-tolerant fungi, highlighting their key roles in the functionality and balance of extreme ecosystems. The remarkable ability of fungi to tolerate and even thrive in the most extreme environments, which preclude most organisms, have reshaped current concepts regarding the limits of life on Earth.
Collapse
|
20
|
Active Microbial Airborne Dispersal and Biomorphs as Confounding Factors for Life Detection in the Cell-Degrading Brines of the Polyextreme Dallol Geothermal Field. mBio 2022; 13:e0030722. [PMID: 35384698 PMCID: PMC9040726 DOI: 10.1128/mbio.00307-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Determining the precise limits of life in polyextreme environments is challenging. Studies along gradients of polyextreme conditions in the Dallol proto-volcano area (Danakil salt desert, Ethiopia) showed the occurrence of archaea-dominated communities (up to 99%) in several hypersaline systems but strongly suggested that life did not thrive in the hyperacidic (pH ∼0), hypersaline (∼35% [wt/vol],) and sometimes hot (up to 108°C) ponds of the Dallol dome. However, it was recently claimed that archaea flourish in these brines based on the detection of one Nanohaloarchaeotas 16S rRNA gene and fluorescent in situ hybridization (FISH) experiments with archaea-specific probes. Here, we characterized the diversity of microorganisms in aerosols over Dallol, and we show that, in addition to typical bacteria from soil/dust, they transport halophilic archaea likely originating from neighboring hypersaline ecosystems. We also show that cells and DNA from cultures and natural local halophilic communities are rapidly destroyed upon contact with Dallol brine. Furthermore, we confirm the widespread occurrence of mineral particles, including silica-based biomorphs, in Dallol brines. FISH experiments using appropriate controls show that DNA fluorescent probes and dyes unspecifically bind to mineral precipitates in Dallol brines; cellular morphologies were unambiguously observed only in nearby hypersaline ecosystems. Our results show that airborne cell dispersal and unspecific binding of fluorescent probes are confounding factors likely affecting previous inferences of archaea thriving in Dallol. They highlight the need for controls and the consideration of alternative abiotic explanations before safely drawing conclusions about the presence of life in polyextreme terrestrial or extraterrestrial systems.
Collapse
|
21
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
22
|
Brancini GTP, Hallsworth JE, Corrochano LM, Braga GÚL. Photobiology of the keystone genus Metarhizium. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112374. [PMID: 34954528 DOI: 10.1016/j.jphotobiol.2021.112374] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Metarhizium fungi are soil-inhabiting ascomycetes which are saprotrophs, symbionts of plants, pathogens of insects, and participate in other trophic/ecological interactions, thereby performing multiple essential ecosystem services. Metarhizium species are used to control insect pests of crop plants and insects that act as vectors of human and animal diseases. To fulfil their functions in the environment and as biocontrol agents, these fungi must endure cellular stresses imposed by the environment, one of the most potent of which is solar ultraviolet (UV) radiation. Here, we examine the cellular stress biology of Metarhizium species in context of their photobiology, showing how photobiology facilitates key aspects of their ecology as keystone microbes and as mycoinsectides. The biophysical basis of UV-induced damage to Metarhizium, and mechanistic basis of molecular and cellular responses to effect damage repair, are discussed and interpreted in relation to the solar radiation received on Earth. We analyse the interplay between UV and visible light and how the latter increases cellular tolerance to the former via expression of a photolyase gene. By integrating current knowledge, we propose the mechanism through which Metarhizium species use the visible fraction of (low-UV) early-morning light to mitigate potentially lethal damage from intense UV radiation later in the day. We also show how this mechanism could increase Metarhizium environmental persistence and improve its bioinsecticide performance. We discuss the finding that visible light modulates stress biology in the context of further work needed on Metarhizium ecology in natural and agricultural ecosystems, and as keystone microbes that provide essential services within Earth's biosphere.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Gilberto Ú L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
23
|
Zhou J, Cheng Y, Yu L, Zhang J, Zou X. Characteristics of fungal communities and the sources of mold contamination in mildewed tobacco leaves stored under different climatic conditions. Appl Microbiol Biotechnol 2022; 106:131-144. [PMID: 34850278 DOI: 10.1007/s00253-021-11703-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023]
Abstract
Tobacco mildew is a common postharvest problem caused by fungal growth. It can directly decrease product quality and cause serious economic loss in the tobacco industry. However, the fungal community characteristics of mildewed tobacco leaves and the related influencing factors remain unknown. Here, next-generation sequencing was used to characterize the fungal communities present in mildewed and healthy tobacco leaves stored under three different climatic conditions. Mildewed leaves showed a higher pH and total nitrogen content as well as a lower carbon nitrogen ratio than healthy leaves. Fungal diversity and richness were significantly lower in the mildewed tobacco leaves than in healthy tobacco leaves, with saprophytic fungi such as Xeromyces, Aspergillus, and Wallemia being the dominant molds. Network analysis showed that the complexity, connectivity, and stability of the fungal network were significantly poorer in heavy mildew tobacco leaves than in healthy leaves. NMDS and PERMANOVA analysis showed that the distribution of fungal communities in warehoused tobacco leaves differed significantly across different regions, and temperature and humidity were the key factors affecting these differences. Mildew-causing fungi were significantly enriched in tobacco leaf samples collected in the period between the completion of flue-curing and the start of pre-re-curing. This study demonstrated that mildew is an irreversible process that destroys the balance of the tobacco ecosystem, and that environmental factors play important roles in shaping fungal communities in tobacco leaves.Key points• The diversity and composition of the fungal communities in mildewed tobacco leaves were significantly different from those in healthy tobacco leaves.• Climatic factors may play an important role in shaping fungal communities in tobacco leaves.• Tobacco leaves were most vulnerable to mold contamination between the post-flue-curing and pre-re-curing period.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Ecology/Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yu Cheng
- Department of Ecology/Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Lifei Yu
- Department of Ecology/Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Guizhou University, Guiyang, China
| | - Jian Zhang
- Department of Ecology/Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Xiao Zou
- Department of Ecology/Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China.
| |
Collapse
|
24
|
Kotsyurbenko OR, Cordova JA, Belov AA, Cheptsov VS, Kölbl D, Khrunyk YY, Kryuchkova MO, Milojevic T, Mogul R, Sasaki S, Słowik GP, Snytnikov V, Vorobyova EA. Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection. ASTROBIOLOGY 2021; 21:1186-1205. [PMID: 34255549 PMCID: PMC9545807 DOI: 10.1089/ast.2020.2296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
The search for life beyond Earth has focused on Mars and the icy moons Europa and Enceladus, all of which are considered a safe haven for life due to evidence of current or past water. The surface of Venus, on the other hand, has extreme conditions that make it a nonhabitable environment to life as we know it. This is in contrast, however, to its cloud layer, which, while still an extreme environment, may prove to be a safe haven for some extreme forms of life similar to extremophiles on Earth. We consider the venusian clouds a habitable environment based on the presence of (1) a solvent for biochemical reactions, (2) appropriate physicochemical conditions, (3) available energy, and (4) biologically relevant elements. The diversity of extreme microbial ecosystems on Earth has allowed us to identify terrestrial chemolithoautotrophic microorganisms that may be analogs to putative venusian organisms. Here, we hypothesize and describe biological processes that may be performed by such organisms in the venusian clouds. To detect putative venusian organisms, we describe potential biosignature detection methods, which include metal-microbial interactions and optical methods. Finally, we describe currently available technology that can potentially be used for modeling and simulation experiments.
Collapse
Affiliation(s)
- Oleg R. Kotsyurbenko
- Yugra State University, The Institute of Oil and Gas, School of Ecology, Khanty-Mansiysk, Russian Federation
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
| | - Jaime A. Cordova
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrey A. Belov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Vladimir S. Cheptsov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
- Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Denise Kölbl
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Yuliya Y. Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Ekaterinburg, Russian Federation
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Margarita O. Kryuchkova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Tetyana Milojevic
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, California, USA
| | - Satoshi Sasaki
- School of Biosciences and Biotechnology/School of Health Sciences, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Grzegorz P. Słowik
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Valery Snytnikov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Elena A. Vorobyova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| |
Collapse
|
25
|
Belilla J, Iniesto M, Moreira D, Benzerara K, López-García JM, López-Archilla AI, Reboul G, Deschamps P, Gérard E, López-García P. Archaeal overdominance close to life-limiting conditions in geothermally influenced hypersaline lakes at the Danakil Depression, Ethiopia. Environ Microbiol 2021; 23:7168-7182. [PMID: 34519149 DOI: 10.1111/1462-2920.15771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023]
Abstract
The Dallol protovolcanic area on the Danakil Depression (Afar region, Ethiopia) exhibits unique hydrothermal manifestations in hypersaline context, yielding varied polyextreme physicochemical conditions. Previous studies identified a wide archaeal diversity in less extreme brines but failed to identify microorganisms thriving in either high-chaotropicity, low-water-activity brines or hyperacidic-hypersaline Na-Fe-rich brines. Recently, we accessed several small lakes under intense degassing activity adjacent to the Round Mountain, west to the Dallol dome [Western Canyon Lakes (WCL); WCL1-5]. They exhibited intermediate parameter combinations (pH ~ 5, 34%-41% (weight/volume) NaCl-dominated salts with relatively high levels of chaotropic Mg-Ca salts) that should allow to better constrain life limits. These lakes were overwhelmingly dominated by Archaea, encompassing up to 99% of prokaryotic 16S rRNA gene amplicon sequences in metabarcoding studies. The majority belonged to Halobacteriota and Nanohaloarchaeota, the latter representing up to half of prokaryotic sequences. Optical and epifluorescence microscopy showed active cells in natural samples and diverse morphotypes in enrichment cultures. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed tiny cells (200-300 nm diameter) epibiotically associated with somewhat larger cells (0.6-1 μm) but also the presence of silica-dominated precipitates of similar size and shape, highlighting the difficulty of distinguishing microbes from mineral biomorphs in this kind of low-biomass systems.
Collapse
Affiliation(s)
- Jodie Belilla
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Miguel Iniesto
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | - Guillaume Reboul
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Philippe Deschamps
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
26
|
Nguyen Van Long N, Rigalma K, Jany JL, Mounier J, Vasseur V. Intraspecific variability in cardinal growth temperatures and water activities within a large diversity of Penicillium roqueforti strains. Food Res Int 2021; 148:110610. [PMID: 34507754 DOI: 10.1016/j.foodres.2021.110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Different strains of a given fungal species may display heterogeneous growth behavior in response to environmental factors. In predictive mycology, the consideration of such variability during data collection could improve the robustness of predictive models. Among food-borne fungi, Penicillium roqueforti is a major food spoiler species which is also used as a ripening culture for blue cheese manufacturing. In the present study, we investigated the intraspecific variability of cardinal temperatures and water activities (aw), namely, minimal (Tmin and awmin), optimal (Topt and awopt) and maximal (Tmax) temperatures and/or aw estimated with the cardinal model for radial growth, of 29 Penicillium roqueforti strains belonging to 3 genetically distinct populations. The mean values of cardinal temperatures and aw for radial growth varied significantly across the tested strains, except for Tmax which was constant. In addition, the relationship between the intraspecific variability of the biological response to temperature and aw and putative genetic populations (based on microsatellite markers) within the selected P. roqueforti strains was investigated. Even though no clear relationship was identified between growth parameters and ecological characteristics, PCA confirmed that certain strains had marginal growth response to temperature or aw. Overall, the present data support the idea that a better knowledge of the response to abiotic factors such as temperature and aw at an intraspecific level would be useful to model fungal growth in predictive mycology approaches.
Collapse
Affiliation(s)
- Nicolas Nguyen Van Long
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Karim Rigalma
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jean-Luc Jany
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Mounier
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Valérie Vasseur
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
27
|
Bosch J, Varliero G, Hallsworth JE, Dallas TD, Hopkins D, Frey B, Kong W, Lebre P, Makhalanyane TP, Cowan DA. Microbial anhydrobiosis. Environ Microbiol 2021; 23:6377-6390. [PMID: 34347349 DOI: 10.1111/1462-2920.15699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022]
Abstract
The loss of cellular water (desiccation) and the resulting low cytosolic water activity are major stress factors for life. Numerous prokaryotic and eukaryotic taxa have evolved molecular and physiological adaptions to periods of low water availability or water-limited environments that occur across the terrestrial Earth. The changes within cells during the processes of desiccation and rehydration, from the activation (and inactivation) of biosynthetic pathways to the accumulation of compatible solutes, have been studied in considerable detail. However, relatively little is known on the metabolic status of organisms in the desiccated state; that is, in the sometimes extended periods between the drying and rewetting phases. During these periods, which can extend beyond decades and which we term 'anhydrobiosis', organismal survival could be dependent on a continued supply of energy to maintain the basal metabolic processes necessary for critical functions such as macromolecular repair. Here, we review the state of knowledge relating to the function of microorganisms during the anhydrobiotic state, highlighting substantial gaps in our understanding of qualitative and quantitative aspects of molecular and biochemical processes in desiccated cells.
Collapse
Affiliation(s)
- Jason Bosch
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Gilda Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Tiffany D Dallas
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | | | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Pedro Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
28
|
Guyot S, Pottier L, Bertheau L, Dumont J, Dorelle Hondjuila Miokono E, Dupont S, Ragon M, Denimal E, Marin A, Hallsworth JE, Beney L, Gervais P. Increased xerotolerance of Saccharomyces cerevisiae during an osmotic pressure ramp over several generations. Microb Biotechnol 2021; 14:1445-1461. [PMID: 33739621 PMCID: PMC8313259 DOI: 10.1111/1751-7915.13789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/01/2022] Open
Abstract
Although mechanisms involved in response of Saccharomyces cerevisiae to osmotic challenge are well described for low and sudden stresses, little is known about how cells respond to a gradual increase of the osmotic pressure (reduced water activity; aw ) over several generations as it could encounter during drying in nature or in food processes. Using glycerol as a stressor, we propagated S. cerevisiae through a ramp of the osmotic pressure (up to high molar concentrations to achieve testing-to-destruction) at the rate of 1.5 MPa day-1 from 1.38 to 58.5 MPa (0.990-0.635 aw ). Cultivability (measured at 1.38 MPa and at the harvest osmotic pressure) and glucose consumption compared with the corresponding sudden stress showed that yeasts were able to grow until about 10.5 MPa (0.926 aw ) and to survive until about 58.5 MPa, whereas glucose consumption occurred until 13.5 MPa (about 0.915 aw ). Nevertheless, the ramp conferred an advantage since yeasts harvested at 10.5 and 34.5 MPa (0.778 aw ) showed a greater cultivability than glycerol-shocked cells after a subsequent shock at 200 MPa (0.234 aw ) for 2 days. FTIR analysis revealed structural changes in wall and proteins in the range 1.38-10.5 MPa, which would be likely to be involved in the resistance at extreme osmotic pressure.
Collapse
Affiliation(s)
- Stéphane Guyot
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, F-21000, France
| | - Laurence Pottier
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, F-21000, France
| | - Lucie Bertheau
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, F-21000, France
| | - Jennifer Dumont
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, F-21000, France
| | | | - Sébastien Dupont
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, F-21000, France
| | - Mélanie Ragon
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, F-21000, France
| | - Emmanuel Denimal
- Direction des Systèmes d'Information, AgroSup Dijon, 26 Boulevard Docteur Petitjean, Dijon, 21000, France
| | - Ambroise Marin
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, F-21000, France
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Laurent Beney
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, F-21000, France
| | - Patrick Gervais
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, F-21000, France
| |
Collapse
|
29
|
Benison KC, O'Neill WK, Blain D, Hallsworth JE. Water Activities of Acid Brine Lakes Approach the Limit for Life. ASTROBIOLOGY 2021; 21:729-740. [PMID: 33819431 PMCID: PMC8219186 DOI: 10.1089/ast.2020.2334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/09/2021] [Indexed: 05/19/2023]
Abstract
Water activity is an important characteristic for describing unusual waters and is a determinant of habitability for microorganisms. However, few empirical studies of water activity have been done for natural waters exhibiting an extreme chemistry. Here, we investigate water activity for acid brines from Western Australia and Chile with pH as low as 1.4, salinities as high as 32% total dissolved solids, and complex chemical compositions. These acid brines host diverse communities of extremophilic microorganisms, including archaea, bacteria, algae, and fungi, according to metagenomic analyses. For the most extreme brine, its water activity (0.714) was considerably lower than that of saturated (pure) NaCl brine. This study provides a thermodynamic insight into life within end-member natural waters that lie at, or possibly beyond, the very edge of habitable space on Earth.
Collapse
Affiliation(s)
- Kathleen C. Benison
- Department of Geology and Geography, West Virginia University, Morgantown, West Virginia, USA
| | - William K. O'Neill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - David Blain
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
30
|
Thompson TP, Kelly SA, Skvortsov T, Plunkett G, Ruffell A, Hallsworth JE, Hopps J, Gilmore BF. Microbiology of a
NaCl
stalactite ‘salticle’ in Triassic halite. Environ Microbiol 2021; 23:3881-3895. [DOI: 10.1111/1462-2920.15524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas P. Thompson
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
| | - Stephen A. Kelly
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
| | - Timofey Skvortsov
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
| | - Gill Plunkett
- School of Natural and Built Environment, Department of Archaeology, Geography and Palaeoecology Queen's University Belfast Belfast BT7 1NN UK
| | - Alastair Ruffell
- School of Natural and Built Environment, Department of Archaeology, Geography and Palaeoecology Queen's University Belfast Belfast BT7 1NN UK
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast BT9 5DL UK
| | - Jason Hopps
- Irish Salt Mining & Exploration Company Ltd. Carrickfergus BT38 9BT UK
| | - Brendan F. Gilmore
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast BT9 5DL UK
| |
Collapse
|
31
|
Hallsworth JE, Mancinelli RL, Conley CA, Dallas TD, Rinaldi T, Davila AF, Benison KC, Rapoport A, Cavalazzi B, Selbmann L, Changela H, Westall F, Yakimov MM, Amils R, Madigan MT. Astrobiology of life on Earth. Environ Microbiol 2021; 23:3335-3344. [PMID: 33817931 DOI: 10.1111/1462-2920.15499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue 'Ecophysiology of Extremophiles'. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.
Collapse
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Rocco L Mancinelli
- Bay Area Environmental Research Institute, NASA Ames Research Center, Mountain View, CA, 94035, USA
| | | | - Tiffany D Dallas
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Teresa Rinaldi
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
| | | | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, 26506-6300, USA
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, Riga, LV-1004, Latvia
| | - Barbara Cavalazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.,Italian Antarctic National Museum (MNA), Mycological Section, Genoa, 16128, Italy
| | - Hitesh Changela
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Department of Earth and Planetary Science, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Frances Westall
- CNRS, Ctr Biophys Mol UPR 4301, Rue Charles Sadron, CS 80054, Orleans, F-45071, France
| | - Michail M Yakimov
- Institute of Marine Biological Resources and Biotechnology, IRBIM-CNR, Messina, 98122, Italy
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CBMSO, CSICUAM), Cantoblanco, Madrid, 28049, Spain.,Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
32
|
Lopez‐Fernandez M, Jroundi F, Ruiz‐Fresneda MA, Merroun ML. Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications. Microb Biotechnol 2021; 14:810-828. [PMID: 33615734 PMCID: PMC8085914 DOI: 10.1111/1751-7915.13718] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022] Open
Abstract
Radionuclides (RNs) generated by nuclear and civil industries are released in natural ecosystems and may have a hazardous impact on human health and the environment. RN-polluted environments harbour different microbial species that become highly tolerant of these elements through mechanisms including biosorption, biotransformation, biomineralization and intracellular accumulation. Such microbial-RN interaction processes hold biotechnological potential for the design of bioremediation strategies to deal with several contamination problems. This paper, with its multidisciplinary approach, provides a state-of-the-art review of most research endeavours aimed to elucidate how microbes deal with radionuclides and how they tolerate ionizing radiations. In addition, the most recent findings related to new biotechnological applications of microbes in the bioremediation of radionuclides and in the long-term disposal of nuclear wastes are described and discussed.
Collapse
Affiliation(s)
- Margarita Lopez‐Fernandez
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
- Present address:
Institute of Resource EcologyHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstraße 400Dresden01328Germany
| | - Fadwa Jroundi
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
| | - Miguel A. Ruiz‐Fresneda
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
- Present address:
Departamento de Cristalografía y Biología EstructuralCentro Superior de Investigaciones Científicas (CSIC)Instituto de Química‐Física Rocasolano (IQFR)Calle Serrano 119Madrid28006Spain
| | - Mohamed L. Merroun
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
| |
Collapse
|
33
|
Klempay B, Arandia-Gorostidi N, Dekas AE, Bartlett DH, Carr CE, Doran PT, Dutta A, Erazo N, Fisher LA, Glass JB, Pontefract A, Som SM, Wilson JM, Schmidt BE, Bowman JS. Microbial diversity and activity in Southern California salterns and bitterns: analogues for remnant ocean worlds. Environ Microbiol 2021; 23:3825-3839. [PMID: 33621409 DOI: 10.1111/1462-2920.15440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Concurrent osmotic and chaotropic stress make MgCl2 -rich brines extremely inhospitable environments. Understanding the limits of life in these brines is essential to the search for extraterrestrial life on contemporary and relict ocean worlds, like Mars, which could host similar environments. We sequenced environmental 16S rRNA genes and quantified microbial activity across a broad range of salinity and chaotropicity at a Mars-analogue salt harvesting facility in Southern California, where seawater is evaporated in a series of ponds ranging from kosmotropic NaCl brines to highly chaotropic MgCl2 brines. Within NaCl brines, we observed a proliferation of specialized halophilic Euryarchaeota, which corresponded closely with the dominant taxa found in salterns around the world. These communities were characterized by very slow growth rates and high biomass accumulation. As salinity and chaotropicity increased, we found that the MgCl2 -rich brines eventually exceeded the limits of microbial activity. We found evidence that exogenous genetic material is preserved in these chaotropic brines, producing an unexpected increase in diversity in the presumably sterile MgCl2 -saturated brines. Because of their high potential for biomarker preservation, chaotropic brines could therefore serve as repositories of genetic biomarkers from nearby environments (both on Earth and beyond) making them prime targets for future life-detection missions.
Collapse
Affiliation(s)
- Benjamin Klempay
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | | | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Douglas H Bartlett
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Earth and Atmospheric Studies, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Peter T Doran
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Avishek Dutta
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Natalia Erazo
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Luke A Fisher
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jennifer B Glass
- School of Earth and Atmospheric Studies, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Sanjoy M Som
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Jesse M Wilson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Britney E Schmidt
- School of Earth and Atmospheric Studies, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
34
|
Cockell CS, McMahon S, Biddle JF. When is Life a Viable Hypothesis? The Case of Venusian Phosphine. ASTROBIOLOGY 2021; 21:261-264. [PMID: 33337946 DOI: 10.1089/ast.2020.2390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Charles S Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Sean McMahon
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
35
|
Fisher LA, Pontefract A, Som S, Carr CE, Klempay B, Schmidt B, Bowman J, Bartlett DH. Current state of athalassohaline deep‐sea hypersaline anoxic basin research—recommendations for future work and relevance to astrobiology. Environ Microbiol 2021; 23:3360-3369. [DOI: 10.1111/1462-2920.15414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Luke A. Fisher
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego La Jolla CA 92093‐0202 USA
| | | | - Sanjoy Som
- Blue Marble Space Institute of Science Seattle WA 98104 USA
| | - Christopher E. Carr
- Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta GA 30332 USA
| | - Benjamin Klempay
- Integrative Oceanography Division, Scripps Institution of Oceanography University of California San Diego La Jolla CA 92093‐0218 USA
| | - Britney Schmidt
- Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta GA 30332 USA
| | - Jeff Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography University of California San Diego La Jolla CA 92093‐0218 USA
- Center for Microbiome Innovation University of California San Diego La Jolla CA 92093‐0218 USA
| | - Douglas H. Bartlett
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego La Jolla CA 92093‐0202 USA
| |
Collapse
|
36
|
Ijadpanahsaravi M, Punt M, Wösten HAB, Teertstra WR. Minimal nutrient requirements for induction of germination of Aspergillus niger conidia. Fungal Biol 2020; 125:231-238. [PMID: 33622539 DOI: 10.1016/j.funbio.2020.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Aspergillus niger reproduces asexually by forming conidia. Here, the minimal nutrient requirements were studied that activate germination of A. niger conidia. To this end, germination was monitored in time using an oCelloScope imager. Data was used as input in an asymmetric model to describe the process of swelling and germ tube formation. The maximum number of spores (Pmax) that were activated to swell and to form germ tubes was 32.54% and 20.51%, respectively, in minimal medium with 50 mM glucose. In contrast, Pmax of swelling and germ tube formation was <1% in water or 50 mM glucose. Combining 50 mM glucose with either NaNO3, KH2PO4, or MgSO4 increased Pmax of swelling and germination up to 15.25% and 5.4%, respectively, while combining glucose with two of these inorganic components further increased these Pmax values up to 25.85% and 10.99%. Next, 10 mM amino acid was combined with a phosphate buffer and MgSO4. High (e.g. proline), intermediate and low (e.g. cysteine) inducing amino acids were distinguished. Together, a combination of an inducing carbon source with either inorganic phosphate, inorganic nitrogen or magnesium sulphate is the minimum requirement for A. niger conidia to germinate.
Collapse
Affiliation(s)
- Maryam Ijadpanahsaravi
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | - Maarten Punt
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands.
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | - Wieke R Teertstra
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands.
| |
Collapse
|
37
|
Zhao L, Zhou Y, Li J, Xia Y, Wang W, Luo X, Yin J, Zhong J. Transcriptional response of Bacillus megaterium FDU301 to PEG200-mediated arid stress. BMC Microbiol 2020; 20:351. [PMID: 33198631 PMCID: PMC7670681 DOI: 10.1186/s12866-020-02039-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/08/2020] [Indexed: 11/12/2022] Open
Abstract
Background For microorganisms on a paper surface, the lack of water is one of the most important stress factors. A strain of Bacillus megaterium FDU301 was isolated from plaques on a paper surface using culture medium with polyethylene glycol 200 (PEG200) to simulate an arid condition. Global transcriptomic analysis of B. megaterium FDU301 grown under normal and simulated arid conditions was performed via RNA-seq technology to identify genes involved in arid stress adaptation. Results The transcriptome of B. megaterium FDU301 grown in LB medium under arid (15% PEG200 (w/w)) and normal conditions were compared. A total of 2941 genes were differentially expressed, including 1422 genes upregulated and 1519 genes downregulated under arid conditions. Oxidative stress-responsive regulatory genes perR, fur, and tipA were significantly upregulated, along with DNA protecting protein (dps), and catalase (katE). Genes related to Fe2+ uptake (feoB), sporulation stage II (spoIIB, spoIIE, spoIIGA), small acid-soluble spore protein (sspD), and biosynthesis of compatible solute ectoine (ectB, ectA) were also highly expressed to various degrees. Oxidative phosphorylation-related genes (atpB, atpE, atpF, atpH, atpA, atpG, atpD, atpC) and glycolysis-related genes (pgk, tpiA, frmA) were significantly downregulated. Conclusion This is the first report about transcriptomic analysis of a B. megaterium to explore the mechanism of arid resistance. Major changes in transcription were seen in the arid condition simulated by PEG200 (15%), with the most important one being genes related to oxidative stress. The results showed a complex mechanism for the bacteria to adapt to arid stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02039-4.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai, 200433, China
| | - Yanjun Zhou
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianbei Li
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yucheng Xia
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Weiyun Wang
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiuqi Luo
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Juan Yin
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiang Zhong
- Department of Microbiology and Microbial Engineering and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
38
|
Metabolt: An In-Situ Instrument to Characterize the Metabolic Activity of Microbial Soil Ecosystems Using Electrochemical and Gaseous Signatures. SENSORS 2020; 20:s20164479. [PMID: 32796545 PMCID: PMC7472036 DOI: 10.3390/s20164479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022]
Abstract
Metabolt is a portable soil incubator to characterize the metabolic activity of microbial ecosystems in soils. It measures the electrical conductivity, the redox potential, and the concentration of certain metabolism-related gases in the headspace just above a given sample of regolith. In its current design, the overall weight of Metabolt, including the soils (250 g), is 1.9 kg with a maximum power consumption of 1.5 W. Metabolt has been designed to monitor the activity of the soil microbiome for Earth and space applications. In particular, it can be used to monitor the health of soils, the atmospheric-regolith fixation, and release of gaseous species such as N2, H2O, CO2, O2, N2O, NH3, etc., that affect the Earth climate and atmospheric chemistry. It may be used to detect and monitor life signatures in soils, treated or untreated, as well as in controlled environments like greenhouse facilities in space, laboratory research environments like anaerobic chambers, or simulating facilities with different atmospheres and pressures. To illustrate its operation, we tested the instrument with sub-arctic soil samples at Earth environmental conditions under three different conditions: (i) no treatment (unperturbed); (ii) sterilized soil: after heating at 125 °C for 35.4 h (thermal stress); (iii) stressed soil: after adding 25% CaCl2 brine (osmotic stress); with and without addition of 0.5% glucose solution (for control). All the samples showed some distinguishable metabolic response, however there was a time delay on its appearance which depends on the treatment applied to the samples: 80 h for thermal stress without glucose, 59 h with glucose; 36 h for osmotic stress with glucose and no significant reactivation in the pure water case. This instrument shows that, over time, there is a clear observable footprint of the electrochemical signatures in the redox profile which is complementary to the gaseous footprint of the metabolic activity through respiration.
Collapse
|
39
|
Rivera-Valentín EG, Chevrier VF, Soto A, Martínez G. DISTRIBUTION AND HABITABILITY OF (META)STABLE BRINES ON PRESENT-DAY MARS. NATURE ASTRONOMY 2020; 4:756-761. [PMID: 33344776 PMCID: PMC7745847 DOI: 10.1038/s41550-020-1080-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/17/2020] [Indexed: 06/12/2023]
Abstract
Special Regions on Mars are defined as environments able to host liquid water that meets certain temperature and water activity requirements that allow known terrestrial organisms to replicate1,2, and therefore could be habitable. Such regions would be a concern for planetary protection policies owing to the potential for forward contamination (biological contamination from Earth). Pure liquid water is unstable on the Martian surface3,4, but brines may be present3,5. Experimental work has shown that brines persist beyond their predicted stability region, leading to metastable liquids8-10. Here we show that (meta)stable brines can form and persist from the equator to high latitudes on the surface of Mars for a few percent of the year for up to six consecutive hours, a broader range than previously thought11,12. However, only the lowest eutectic solutions can form, leading to brines with temperatures of less than 225 K. Our results indicate that (meta)stable brines on the Martian surface and shallow subsurface (a few centimeters deep) are not habitable because their water activities and temperatures fall outside the known tolerances for terrestrial life. Furthermore, (meta)stable brines do not meet the Special Regions requirements, reducing the risk for forward contamination and easing threats related to the exploration of the Martian surface.
Collapse
Affiliation(s)
| | - Vincent F. Chevrier
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Germán Martínez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
40
|
Turnau K, Jędrzejczyk RJ, Ważny R, Chlebda D, Janicka M, Pawcenis D, Łojewski T. Microbes of XVI century Arrases of Krakow Royal Castle. Microbiol Res 2020; 238:126485. [PMID: 32474293 DOI: 10.1016/j.micres.2020.126485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
Sixteenth-century Arrases from the Krakow Royal Castle constitute a Polish national cultural heritage; hence, they should be under special protection. The storage of historic objects at strict temperature and humidity conditions is fundamental for their protection against microorganisms. However, sometimes active preservation must be applied to disinfect bio-contaminated objects. In this study, 39 strains of microorganisms, both fungi and bacteria, isolated from Arrases deposited in the Wawel warehouse were isolated and then identified using molecular tools. Fungal ability to colonize and degrade silk and wool laboratory samples was studied. Selected microbial strains were compared concerning their ability to affect silk fibroin using size-exclusion chromatography (SEC). The effectiveness of low-temperature helium-generated plasma in disinfecting the model wool and silk samples inoculated with selected strains was tested. The results showed that plasma, despite its high biocidal activity in the case of paper, was not effective on porous textile materials. The alternative protection mechanism, involving active packaging in the form of textiles impregnated with silver-exchanged zeolites, could be used to separate layers of rolled tapestries in the warehouse. Nevertheless, optimal temperature and humidity conditions should be strictly maintained and controlled.
Collapse
Affiliation(s)
- K Turnau
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387 Poland.
| | - R J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - R Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - D Chlebda
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland.
| | - M Janicka
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387 Poland.
| | - D Pawcenis
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland.
| | - T Łojewski
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland.
| |
Collapse
|
41
|
Huang W, Ertekin E, Wang T, Cruz L, Dailey M, DiRuggiero J, Kisailus D. Mechanism of water extraction from gypsum rock by desert colonizing microorganisms. Proc Natl Acad Sci U S A 2020; 117:10681-10687. [PMID: 32366642 PMCID: PMC7245118 DOI: 10.1073/pnas.2001613117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microorganisms, in the most hyperarid deserts around the world, inhabit the inside of rocks as a survival strategy. Water is essential for life, and the ability of a rock substrate to retain water is essential for its habitability. Here we report the mechanism by which gypsum rocks from the Atacama Desert, Chile, provide water for its colonizing microorganisms. We show that the microorganisms can extract water of crystallization (i.e., structurally ordered) from the rock, inducing a phase transformation from gypsum (CaSO4·2H2O) to anhydrite (CaSO4). To investigate and validate the water extraction and phase transformation mechanisms found in the natural geological environment, we cultivated a cyanobacterium isolate on gypsum rock samples under controlled conditions. We found that the cyanobacteria attached onto high surface energy crystal planes ({011}) of gypsum samples generate a thin biofilm that induced mineral dissolution accompanied by water extraction. This process led to a phase transformation to an anhydrous calcium sulfate, anhydrite, which was formed via reprecipitation and subsequent attachment and alignment of nanocrystals. Results in this work not only shed light on how microorganisms can obtain water under severe xeric conditions but also provide insights into potential life in even more extreme environments, such as Mars, as well as offering strategies for advanced water storage methods.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Emine Ertekin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Taifeng Wang
- Materials Science and Engineering Program, University of California, Riverside, CA 92521
| | - Luz Cruz
- Materials Science and Engineering Program, University of California, Riverside, CA 92521
| | - Micah Dailey
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | | - David Kisailus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521;
- Materials Science and Engineering Program, University of California, Riverside, CA 92521
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| |
Collapse
|
42
|
Dijksterhuis J, van Egmond W, Yarwood A. From colony to rodlet: "A six meter long portrait of the xerophilic fungus Aspergillus restrictus decorates the hall of the Westerdijk institute.". Fungal Biol 2020; 124:509-515. [PMID: 32389314 DOI: 10.1016/j.funbio.2020.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
The extreme xerophilic fungus Aspergillus restrictus is used as a model for a large artwork created out of five microscopic pictures in total measuring 80 cm by 624 cm. The artwork is printed on aluminium and located at the entrance of the Westerdijk Institute, Utrecht, The Netherlands. The first picture is made from a colony of the fungus, which has a dimension of 1 cm and the last picture shows details of ornamentation on conidia and phialides of the fungus. The first two pictures of the artwork are made using a unique method of light microscopy in which many hundreds of pictures are made at different focal depths resulting in high detail and resolution of the pictures. For three other pictures, cryo-electron scanning microscopy was used including both a conventional system for lower magnification and a field emission scanning electron microscope for high resolution micrographs. The range of magnification is, at real size, between 78 and 63,000 times. When the observer passes the artwork it acts like a virtual microscope, just by walking past it you zoom-in to the smallest possible details. This coherent increase of magnification of one fungus, with very high quality light- and electron microscopy micrographs, shows different layers of fungal organization and emergent properties. These include the occurrence of secondary outcrops of hyphae and conidiophores in a colony; the formation of a stipe on a thin aerial hyphae; the presence and formation of characteristic structures on stipes, vesicles and phialides and a continuous zone between the forming conidia and phialides.
Collapse
Affiliation(s)
- Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands.
| | - Wim van Egmond
- Studio: Bacinol 2, Hooikade 13, 2627, AB, Delft, the Netherlands
| | - Andrew Yarwood
- JEOL (UK) Ltd, JEOL House, Silver Court Watchmead, Welwyn Garden City, Herts, AL7 1LT, UK
| |
Collapse
|
43
|
Katsurayama AM, Martins LM, Iamanaka BT, Fungaro MHP, Silva JJ, Pitt JI, Frisvad JC, Taniwaki MH. Fungal communities in rice cultivated in different Brazilian agroclimatic zones: From field to market. Food Microbiol 2020; 87:103378. [DOI: 10.1016/j.fm.2019.103378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 02/09/2023]
|
44
|
Hamill PG, Stevenson A, McMullan PE, Williams JP, Lewis ADR, S S, Stevenson KE, Farnsworth KD, Khroustalyova G, Takemoto JY, Quinn JP, Rapoport A, Hallsworth JE. Microbial lag phase can be indicative of, or independent from, cellular stress. Sci Rep 2020; 10:5948. [PMID: 32246056 PMCID: PMC7125082 DOI: 10.1038/s41598-020-62552-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Measures of microbial growth, used as indicators of cellular stress, are sometimes quantified at a single time-point. In reality, these measurements are compound representations of length of lag, exponential growth-rate, and other factors. Here, we investigate whether length of lag phase can act as a proxy for stress, using a number of model systems (Aspergillus penicillioides; Bacillus subtilis; Escherichia coli; Eurotium amstelodami, E. echinulatum, E. halophilicum, and E. repens; Mrakia frigida; Saccharomyces cerevisiae; Xerochrysium xerophilum; Xeromyces bisporus) exposed to mechanistically distinct types of cellular stress including low water activity, other solute-induced stresses, and dehydration-rehydration cycles. Lag phase was neither proportional to germination rate for X. bisporus (FRR3443) in glycerol-supplemented media (r2 = 0.012), nor to exponential growth-rates for other microbes. In some cases, growth-rates varied greatly with stressor concentration even when lag remained constant. By contrast, there were strong correlations for B. subtilis in media supplemented with polyethylene-glycol 6000 or 600 (r2 = 0.925 and 0.961), and for other microbial species. We also analysed data from independent studies of food-spoilage fungi under glycerol stress (Aspergillus aculeatinus and A. sclerotiicarbonarius); mesophilic/psychrotolerant bacteria under diverse, solute-induced stresses (Brochothrix thermosphacta, Enterococcus faecalis, Pseudomonas fluorescens, Salmonella typhimurium, Staphylococcus aureus); and fungal enzymes under acid-stress (Terfezia claveryi lipoxygenase and Agaricus bisporus tyrosinase). These datasets also exhibited diversity, with some strong- and moderate correlations between length of lag and exponential growth-rates; and sometimes none. In conclusion, lag phase is not a reliable measure of stress because length of lag and growth-rate inhibition are sometimes highly correlated, and sometimes not at all.
Collapse
Affiliation(s)
- Philip G Hamill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - James P Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Abiann D R Lewis
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Sudharsan S
- Department of Chemistry, PGP College of Arts and Science, NH-7, Karur Main Road, Paramathi, Namakkal, Tamil Nadu, 637 207, India
| | - Kath E Stevenson
- Special Collections and Archives, McClay Library, Queen's University Belfast, 10 College Park Avenue, Belfast, BT7 1LP, Northern Ireland
| | - Keith D Farnsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Galina Khroustalyova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Jon Y Takemoto
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan, UT, 84322, USA
| | - John P Quinn
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland.
| |
Collapse
|
45
|
Alder-Rangel A, Idnurm A, Brand AC, Brown AJP, Gorbushina A, Kelliher CM, Campos CB, Levin DE, Bell-Pedersen D, Dadachova E, Bauer FF, Gadd GM, Braus GH, Braga GUL, Brancini GTP, Walker GM, Druzhinina I, Pócsi I, Dijksterhuis J, Aguirre J, Hallsworth JE, Schumacher J, Wong KH, Selbmann L, Corrochano LM, Kupiec M, Momany M, Molin M, Requena N, Yarden O, Cordero RJB, Fischer R, Pascon RC, Mancinelli RL, Emri T, Basso TO, Rangel DEN. The Third International Symposium on Fungal Stress - ISFUS. Fungal Biol 2020; 124:235-252. [PMID: 32389286 DOI: 10.1016/j.funbio.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, VIC, Australia
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Anna Gorbushina
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia B Campos
- Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - David E Levin
- Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Graeme M Walker
- School of Applied Sciences, Abertay University, Dundee, Scotland, UK
| | | | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | | | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Michelle Momany
- Fungal Biology Group & Plant Biology Department, University of Georgia, Athens, GA, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jeruslaem, Rehovot 7610001, Israel
| | - Radamés J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Renata C Pascon
- Biological Sciences Department, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Tamas Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Thiago O Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
46
|
Baricz A, Chiriac CM, Andrei AȘ, Bulzu PA, Levei EA, Cadar O, Battes KP, Cîmpean M, Șenilă M, Cristea A, Muntean V, Alexe M, Coman C, Szekeres EK, Sicora CI, Ionescu A, Blain D, O'Neill WK, Edwards J, Hallsworth JE, Banciu HL. Spatio-temporal insights into microbiology of the freshwater-to-hypersaline, oxic-hypoxic-euxinic waters of Ursu Lake. Environ Microbiol 2020; 23:3523-3540. [PMID: 31894632 DOI: 10.1111/1462-2920.14909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 12/30/2022]
Abstract
Ursu Lake is located in the Middle Miocene salt deposit of Central Romania. It is stratified, and the water column has three distinct water masses: an upper freshwater-to-moderately saline stratum (0-3 m), an intermediate stratum exhibiting a steep halocline (3-3.5 m), and a lower hypersaline stratum (4 m and below) that is euxinic (i.e. anoxic and sulphidic). Recent studies have characterized the lake's microbial taxonomy and given rise to intriguing ecological questions. Here, we explore whether the communities are dynamic or stable in relation to taxonomic composition, geochemistry, biophysics, and ecophysiological functions during the annual cycle. We found: (i) seasonally fluctuating, light-dependent communities in the upper layer (≥0.987-0.990 water-activity), a stable but phylogenetically diverse population of heterotrophs in the hypersaline stratum (water activities down to 0.762) and a persistent plate of green sulphur bacteria that connects these two (0.958-0.956 water activity) at 3-3.5 to 4 m; (ii) communities that might be involved in carbon- and sulphur-cycling between and within the lake's three main water masses; (iii) uncultured lineages including Acetothermia (OP1), Cloacimonetes (WWE1), Marinimicrobia (SAR406), Omnitrophicaeota (OP3), Parcubacteria (OD1) and other Candidate Phyla Radiation bacteria, and SR1 in the hypersaline stratum (likely involved in the anaerobic steps of carbon- and sulphur-cycling); and (iv) that species richness and habitat stability are associated with high redox-potentials. Ursu Lake has a unique and complex ecology, at the same time exhibiting dynamic fluctuations and stability, and can be used as a modern analogue for ancient euxinic water bodies and comparator system for other stratified hypersaline systems.
Collapse
Affiliation(s)
- Andreea Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Cecilia Maria Chiriac
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Adrian-Ștefan Andrei
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České, Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Karina Paula Battes
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Mirela Cîmpean
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Marin Șenilă
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Adorján Cristea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Vasile Muntean
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Mircea Alexe
- Department of Physical and Technical Geography, Faculty of Geography, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Cristian Coman
- National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Edina Kriszta Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Cosmin Ionel Sicora
- Biological Research Center Jibou, 16 Wesselenyi Miklos Str., 455200, Jibou, Romania
| | - Artur Ionescu
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, 30 Fantanele Str., 400294, Cluj-Napoca, Romania
| | - David Blain
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - William Kenneth O'Neill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Jessica Edwards
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - John Edward Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| |
Collapse
|
47
|
|
48
|
Belilla J, Moreira D, Jardillier L, Reboul G, Benzerara K, López-García JM, Bertolino P, López-Archilla AI, López-García P. Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat Ecol Evol 2019; 3:1552-1561. [PMID: 31666740 PMCID: PMC6837875 DOI: 10.1038/s41559-019-1005-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022]
Abstract
Microbial life has adapted to various individual extreme conditions; yet, organisms simultaneously adapted to very low pH, high salt and high temperature are unknown. We combined environmental 16S/18S rRNA-gene metabarcoding, cultural approaches, fluorescence-activated cell sorting, scanning electron microscopy and chemical analyses to study samples along such unique polyextreme gradients in the Dallol-Danakil area (Ethiopia). We identify two physicochemical barriers to life in the presence of surface liquid water defined by: i) high chaotropicity-low water activity in Mg2+/Ca2+-dominated brines and ii) hyperacidity-salt combinations (pH~0/NaCl-dominated salt-saturation). When detected, life was dominated by highly diverse ultrasmall archaea widely distributed across phyla with and without previously known halophilic members. We hypothesize that high cytoplasmic K+-level was an original archaeal adaptation to hyperthermophily, subsequently exapted during multiple transitions to extreme halophily. We detect active silica encrustment/fossilization of cells but also abiotic biomorphs of varied chemistry. Our work helps circumscribing habitability and calls for cautionary interpretations of morphological biosignatures on Earth and beyond.
Collapse
Affiliation(s)
- Jodie Belilla
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Ludwig Jardillier
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guillaume Reboul
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Paola Bertolino
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France.
| |
Collapse
|
49
|
Osmotolerance as a determinant of microbial ecology: A study of phylogenetically diverse fungi. Fungal Biol 2019; 124:273-288. [PMID: 32389289 DOI: 10.1016/j.funbio.2019.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Osmotic stress induced by high solute concentration can prevent fungal metabolism and growth due to alterations in properties of the cytosol, changes in turgor, and the energy required to synthesize and retain compatible solutes. We used germination to quantify tolerance/sensitivity to the osmolyte KCl (0.1-4.5 M, in 0.1 M increments) for 71 strains (40 species) of ecologically diverse fungi. These include 11 saprotrophic species (17 strains, including two xerophilic species), five mycoparasitic species (five strains), six plant-pathogenic species (13 strains), and 19 entomopathogenic species (36 strains). A dendrogram obtained from cluster analyses, based on KCl inhibitory concentrations 50 % and 90 % calculated by Probit Analysis, revealed three groups of fungal isolates accordingly to their osmotolerance. The most-osmotolerant group (Group 3) contained the majority of saprotrophic fungi, and Aspergillus niger (F19) was the most tolerant. The highly xerophilic Aspergillus montevidense and Aspergillus pseudoglaucus were the second- and third-most tolerant species, respectively. All Aspergillus and Cladosporium species belonged to Group 3, followed by the entomopathogens Colletotrichum fioriniae, Simplicillium lanosoniveum, and Trichothecium roseum. Group 2 exhibited a moderate osmotolerance, and included plant-pathogens such as Colletotrichum and Fusarium, mycoparasites such as Clonostachys spp, some saprotrophs such as Mucor and Penicillium spp., and some entomopathogens such as Isaria, Lecanicillium, Mariannaea, Simplicillium, and Torrubiella. Group 1 contained the osmo-sensitive strains: the rest of the entomopathogens and the mycoparasitic Gliocladium and Trichoderma. Although stress tolerance did not correlate with their primary ecological niche, classification of these 71 fungal strains was more closely aligned with their ecology than with their phylogenetic relatedness. We discuss the implications for both microbial ecology and fungal taxonomy.
Collapse
|
50
|
Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet? GEOSCIENCES 2019. [DOI: 10.3390/geosciences9090361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mars is a planet of great interest in the search for signatures of past or present life beyond Earth. The years of research, and more advanced instrumentation, have yielded a lot of evidence which may be considered by the scientific community as proof of past or present habitability of Mars. Recent discoveries including seasonal methane releases and a subglacial lake are exciting, yet challenging findings. Concurrently, laboratory and environmental studies on the limits of microbial life in extreme environments on Earth broaden our knowledge of the possibility of Mars habitability. In this review, we aim to: (1) Discuss the characteristics of the Martian surface and subsurface that may be conducive to habitability either in the past or at present; (2) discuss laboratory-based studies on Earth that provide us with discoveries on the limits of life; and (3) summarize the current state of knowledge in terms of direction for future research.
Collapse
|