1
|
Peddle SD, Hodgson RJ, Borrett RJ, Brachmann S, Davies TC, Erickson TE, Liddicoat C, Muñoz‐Rojas M, Robinson JM, Watson CD, Krauss SL, Breed MF. Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol Rev Camb Philos Soc 2025; 100:1-18. [PMID: 39075839 PMCID: PMC11718600 DOI: 10.1111/brv.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Soil microbiota are important components of healthy ecosystems. Greater consideration of soil microbiota in the restoration of biodiverse, functional, and resilient ecosystems is required to address the twin global crises of biodiversity decline and climate change. In this review, we discuss available and emerging practical applications of soil microbiota into (i) restoration planning, (ii) direct interventions for shaping soil biodiversity, and (iii) strategies for monitoring and predicting restoration trajectories. We show how better planning of restoration activities to account for soil microbiota can help improve progress towards restoration targets. We show how planning to embed soil microbiota experiments into restoration projects will permit a more rigorous assessment of the effectiveness of different restoration methods, especially when complemented by statistical modelling approaches that capitalise on existing data sets to improve causal understandings and prioritise research strategies where appropriate. In addition to recovering belowground microbiota, restoration strategies that include soil microbiota can improve the resilience of whole ecosystems. Fundamentally, restoration planning should identify appropriate reference target ecosystem attributes and - from the perspective of soil microbiota - comprehensibly consider potential physical, chemical and biological influences on recovery. We identify that inoculating ecologically appropriate soil microbiota into degraded environments can support a range of restoration interventions (e.g. targeted, broad-spectrum and cultured inoculations) with promising results. Such inoculations however are currently underutilised and knowledge gaps persist surrounding successful establishment in light of community dynamics, including priority effects and community coalescence. We show how the ecological trajectories of restoration sites can be assessed by characterising microbial diversity, composition, and functions in the soil. Ultimately, we highlight practical ways to apply the soil microbiota toolbox across the planning, intervention, and monitoring stages of ecosystem restoration and address persistent open questions at each stage. With continued collaborations between researchers and practitioners to address knowledge gaps, these approaches can improve current restoration practices and ecological outcomes.
Collapse
Affiliation(s)
- Shawn D. Peddle
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Riley J. Hodgson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Ryan J. Borrett
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures InstituteMurdoch University90 South StreetMurdochWestern Australia6150Australia
| | - Stella Brachmann
- University of Waikato Te Whare Wananga o Waikato Gate 1Knighton RoadHamilton3240New Zealand
| | - Tarryn C. Davies
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Todd E. Erickson
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- Centre for Engineering Innovation, School of Agriculture and EnvironmentThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Miriam Muñoz‐Rojas
- Department of Plant Biology and EcologyUniversity of SevilleC. San FernandoSevillaSpain
- School of Biological, Earth and Environmental Sciences, Centre for Ecosystem ScienceUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Carl D. Watson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Siegfried L. Krauss
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- School of Biological SciencesThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| |
Collapse
|
2
|
Petipas RH, Peru C, Parks JM, Friesen ML, Jack CN. Prairie soil improves wheat establishment and accelerates the developmental transition to flowering compared to agricultural soils. Can J Microbiol 2024; 70:482-491. [PMID: 39110997 DOI: 10.1139/cjm-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Less than 1% of native prairie lands remain in the United States. Located in eastern Washington, the rare habitat called Palouse prairie was largely converted to wheat monocropping. With this conversion came numerous physical, chemical, and biological changes to the soil that may ultimately contribute to reduced wheat yields. Here, we explored how wheat (Tritcum aestivum L.) seedling establishment, plant size, and heading, signifying the developmental transition to flowering, were affected by being planted in prairie soil versus agricultural soils. We then sought to understand whether the observed effects were the result of changes to the soil microbiota due to agricultural intensification. We found that prairie soil enhanced both the probability of wheat seedling survival and heading compared to agricultural soil; however, wheat growth was largely unaffected by soil source. We did not detect effects on wheat developmental transitions or phenotype when inoculated with prairie microbes compared with agricultural microbes, but we did observe general antagonistic effects of microbes on plant size, regardless of soil source. This work indicates that agricultural intensification has affected soils in a way that changes early seedling establishment and the timing of heading for wheat, but these effects may not be caused by microbes, and instead may be caused by soil nutrient conditions.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Cassidy Peru
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Janice M Parks
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Maren L Friesen
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Chandra N Jack
- Department of Biology, Clark University, Worchester, MA 01610, USA
| |
Collapse
|
3
|
Metzler P, Ksiazek-Mikenas K, Chaudhary VB. Tracking arbuscular mycorrhizal fungi to their source: active inoculation and passive dispersal differentially affect community assembly in urban soils. THE NEW PHYTOLOGIST 2024; 242:1814-1824. [PMID: 38294152 DOI: 10.1111/nph.19526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Communities of arbuscular mycorrhizal (AM) fungi assemble passively over time via biotic and abiotic mechanisms. In degraded soils, AM fungal communities can assemble actively when humans manage mycorrhizas for ecosystem restoration. We investigated mechanisms of urban AM fungal community assembly in a 2-yr green roof experiment. We compared AM fungal communities in inoculated and uninoculated trays to samples from two potential sources: the inoculum and air. Active inoculation stimulated more distinct and diverse AM fungal communities, an effect that intensified over time. In the treatment trays, 45% of AM fungal taxa were detected in the inoculum, 2% were detected in aerial samples, 23% were detected in both inoculum and air, and 30% were not detected in either source. Passive dispersal of AM fungi likely resulted in the successful establishment of a small number of species, but active inoculation with native AM fungal species resulted in an immediate shift to a diverse and unique fungal community. When urban soils are constructed or modified by human activity, this is an opportunity for intervention with AM fungi that will persist and add diversity to that system.
Collapse
Affiliation(s)
- Paul Metzler
- Environmental Studies Department, Dartmouth College, Hanover, NH, 03755, USA
| | | | - V Bala Chaudhary
- Environmental Studies Department, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
4
|
Mason CN, Shahar S, Beals KK, Kelley ST, Lipson DA, Swingley WD, Barber NA. Taxonomic and functional restoration of tallgrass prairie soil microbial communities in comparison to remnant and agricultural soils. FEMS Microbiol Ecol 2023; 99:fiad120. [PMID: 37791391 DOI: 10.1093/femsec/fiad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Restoring ecosystems requires the re-establishment of diverse soil microbial communities that drive critical ecosystem functions. In grasslands, restoration and management require the application of disturbances like fire and grazing. Disturbances can shape microbial taxonomic composition and potentially functional composition as well. We characterized taxonomic and functional gene composition of soil communities using whole genome shotgun metagenomic sequencing to determine how restored soil communities differed from pre-restoration agricultural soils and original remnant soils, how management affects soil microbes, and whether restoration and management affect the number of microbial genes associated with carbohydrate degradation. We found distinct differences in both taxonomic and functional diversity and composition among restored, remnant, and agricultural soils. Remnant soils had low taxonomic and functional richness and diversity, as well as distinct composition, indicating that restoration of agricultural soils does not re-create soil microbial communities that match remnants. Prescribed fire management increased functional diversity, which also was higher in more recently planted restorations. Finally, restored and post-fire soils included high abundances of genes encoding cellulose-degrading enzymes, so restorations and their ongoing management can potentially support functions important in carbon cycling.
Collapse
Affiliation(s)
- Cayla N Mason
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Shayla Shahar
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Kendall K Beals
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Scott T Kelley
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - David A Lipson
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Nicholas A Barber
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
5
|
Acharya SM, Yee MO, Diamond S, Andeer PF, Baig NF, Aladesanmi OT, Northen TR, Banfield JF, Chakraborty R. Fine scale sampling reveals early differentiation of rhizosphere microbiome from bulk soil in young Brachypodium plant roots. ISME COMMUNICATIONS 2023; 3:54. [PMID: 37280433 PMCID: PMC10244434 DOI: 10.1038/s43705-023-00265-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
For a deeper and comprehensive understanding of the composition and function of rhizosphere microbiomes, we need to focus at the scale of individual roots in standardized growth containers. Root exudation patterns are known to vary along distinct parts of the root even in juvenile plants giving rise to spatially distinct microbial niches. To address this, we analyzed the microbial community from two spatially distinct zones of the developing primary root (tip and base) in young Brachypodium distachyon grown in natural soil using standardized fabricated ecosystems known as EcoFABs as well as in more conventional pot and tubes. 16S rRNA based community analysis showed a strong rhizosphere effect resulting in significant enrichment of several OTUs belonging to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. However, microbial community composition did not differ between root tips and root base or across different growth containers. Functional analysis of bulk metagenomics revealed significant differences between root tips and bulk soil. The genes associated with different metabolic pathways and root colonization were enriched in root tips. On the other hand, genes associated with nutrient-limitation and environmental stress were prominent in the bulk soil compared to root tips, implying the absence of easily available, labile carbon and nutrients in bulk soil relative to roots. Such insights into the relationships between developing root and microbial communities are critical for judicious understanding of plant-microbe interactions in early developmental stages of plants.
Collapse
Affiliation(s)
- Shwetha M Acharya
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mon Oo Yee
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Spencer Diamond
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
| | - Peter F Andeer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nameera F Baig
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Omolara T Aladesanmi
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
| | - Romy Chakraborty
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Badger Hanson E, Docherty KM. Mini-review: Current and Future Perspectives on Microbially Focused Restoration Strategies in Tallgrass Prairies. MICROBIAL ECOLOGY 2023; 85:1087-1097. [PMID: 36449026 DOI: 10.1007/s00248-022-02150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 05/04/2023]
Abstract
Ecosystem restoration is a critical conservation strategy, especially for increasing resilience and resistance to climate change. Current restoration efforts that convert reclaimed agricultural land to native tallgrass prairies typically focus on aboveground communities, but it can take decades to restore soil microbial biodiversity and function using these strategies, if they recover at all. This incomplete restoration can have detrimental impacts on longer-term restoration goals, such as supporting late-successional plant species and facilitating soil carbon sequestration. Soil microorganisms are key components in determining the fate of organic material that enters the soil. They mediate decomposition rates and contribute to plant-microbe-soil interactions, produce microbial biomass, necromass, and metabolic products, and physically protect soil carbon through aggregation. Interactions with plants and controls over soil carbon vary widely depending on the specific microbial taxa present, their physiology, their functional capabilities, and their responses to environmental stressors. Thus, the ability for new restorations, prairie conservation corridors, and prairies planted in marginal lands to act as carbon sinks and help balance greenhouse gas emissions can depend on the success of microbial restoration. Next-generation sequencing approaches can support novel methods for evaluating existing restoration practices and developing microbially focused management strategies. This review summarizes the growing body of literature describing microbially focused tallgrass prairie restoration and considers when and how integrating next-generation sequencing approaches into management efforts can be beneficial. We provide a roadmap for future restoration efforts where microbial ecologists, restoration ecologists, and land managers can work together to meet their goals to promote climate-ready restored ecosystems.
Collapse
Affiliation(s)
- Ellen Badger Hanson
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI, 49008, USA
| | - Kathryn M Docherty
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
7
|
Barber NA, Klimek DM, Bell JK, Swingley WD. Restoration age and reintroduced bison may shape soil bacterial communities in restored tallgrass prairies. FEMS Microbiol Ecol 2023; 99:6994523. [PMID: 36669763 DOI: 10.1093/femsec/fiad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Knowledge of how habitat restoration shapes soil microbial communities often is limited despite their critical roles in ecosystem function. Soil community diversity and composition change after restoration, but the trajectory of these successional changes may be influenced by disturbances imposed for habitat management. We studied soil bacterial communities in a restored tallgrass prairie chronosequence for >6 years to document how diversity and composition changed with age, management through fire, and grazing by reintroduced bison, and in comparison to pre-restoration agricultural fields and remnant prairies. Soil C:N increased with restoration age and bison, and soil pH first increased and then declined with age, although bison weakened this pattern. Bacterial richness and diversity followed a similar hump-shaped pattern as soil pH, such that the oldest restorations approached the low diversity of remnant prairies. β-diversity patterns indicated that composition in older restorations with bison resembled bison-free sites, but over time they became more distinct. In contrast, younger restorations with bison maintained unique compositions throughout the study, suggesting bison disturbances may cause a different successional trajectory. We used a novel random forest approach to identify taxa that indicate these differences, finding that they were frequently associated with bacteria that respond to grazing in other grasslands.
Collapse
Affiliation(s)
- Nicholas A Barber
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Desirae M Klimek
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Jennifer K Bell
- Morton Arboretum, Lisle, IL, USA
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
8
|
Native plant gardens support more microbial diversity and higher relative abundance of potentially beneficial taxa compared to adjacent turf grass lawns. Urban Ecosyst 2023. [DOI: 10.1007/s11252-022-01325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Ren H, Ding Y, Hao X, Hao J, Liu J, Wang Y. Enhanced rhizoremediation of polychlorinated biphenyls by resuscitation-promoting factor stimulation linked to plant growth promotion and response of functional microbial populations. CHEMOSPHERE 2022; 309:136519. [PMID: 36210576 DOI: 10.1016/j.chemosphere.2022.136519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Rhizoremediation is acknowledged as a green technology for removing polychlorinated biphenyls (PCBs) in soil. However, rhizoremediation is limited because most soil microorganisms enter into a viable but non-culturable (VBNC) state under PCBs stress. This work was to study the effect of resuscitation-promoting factor (Rpf) on rhizoremediation efficiency of PCBs in alfalfa and rhizosphere microbiological communities. Results suggested that Rpf promoted alfalfa growth in PCB-contaminated soil by improving antioxidant enzymes and detoxification metabolites in alfalfa. After 40 d Rpf treatment, removal rate for five selected PCBs significantly increased by 0.5-2.2 times. Rpf enhanced relative abundances of bphA and bphC responsible for degrading PCBs, and enzymatic activities of metabolizing exogenous compounds in rhizosphere soil. High-throughput sequencing showed that Rpf did not change the dominant microbial population at phyla and genera levels, but caused variation of the bacterial community structures. The promoting function of Rpf was linked to the shift of various key populations having different functions depending on Rpf concentrations. Pseudomonas and Rhizobium spp. enrichment might stimulate PCB degradation and Streptomyces and Bacillus spp. primarily contributed to alfalfa growth. Predicted functions in rhizosphere soil bacterial community indicated Rpf facilitated soil nutrient cycling and environmental adaptation. This study indicated that Rpf was an active additive for strengthening rhizoremediation efficiency of PCB-contaminated soil and enhancing their in-situ remediation.
Collapse
Affiliation(s)
- Hejun Ren
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China.
| | - Yuzhu Ding
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
| | - Xinyu Hao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
| | - Jianjun Hao
- School of Food & Agriculture, The University of Maine, Orono, 04469-5735, USA
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Yan Wang
- College of Plant Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Peddle SD, Bissett A, Borrett RJ, Bullock P, Gardner MG, Liddicoat C, Tibbett M, Breed MF, Krauss SL. Soil
DNA
chronosequence analysis shows bacterial community re‐assembly following post‐mining forest rehabilitation. Restor Ecol 2022. [DOI: 10.1111/rec.13706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shawn D. Peddle
- College of Science and Engineering Flinders University Bedford Park SA Australia
| | | | - Ryan J. Borrett
- Environmental and Conservation Sciences Murdoch University Murdoch WA Australia
| | | | - Michael G. Gardner
- College of Science and Engineering Flinders University Bedford Park SA Australia
- Evolutionary Biology Unit, South Australian Museum Adelaide SA Australia
| | - Craig Liddicoat
- College of Science and Engineering Flinders University Bedford Park SA Australia
- School of Public Health The University of Adelaide Adelaide Australia
| | - Mark Tibbett
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development University of Reading Berkshire United Kingdom
- School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Martin F. Breed
- College of Science and Engineering Flinders University Bedford Park SA Australia
| | - Siegfried L. Krauss
- Kings Park Science, Department of Biodiversity Conservation and Attractions Perth WA Australia
- School of Biological Sciences The University of Western Australia Crawley WA Australia
| |
Collapse
|
11
|
Das BK, Ishii S, Antony L, Smart AJ, Scaria J, Brözel VS. The Microbial Nitrogen Cycling, Bacterial Community Composition, and Functional Potential in a Natural Grassland Are Stable from Breaking Dormancy to Being Dormant Again. Microorganisms 2022; 10:923. [PMID: 35630367 PMCID: PMC9148154 DOI: 10.3390/microorganisms10050923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023] Open
Abstract
The quantity of grass-root exudates varies by season, suggesting temporal shifts in soil microbial community composition and activity across a growing season. We hypothesized that bacterial community and nitrogen cycle-associated prokaryotic gene expressions shift across three phases of the growing season. To test this hypothesis, we quantified gene and transcript copy number of nitrogen fixation (nifH), ammonia oxidation (amoA, hao, nxrB), denitrification (narG, napA, nirK, nirS, norB, nosZ), dissimilatory nitrate reduction to ammonia (nrfA), and anaerobic ammonium oxidation (hzs, hdh) using the pre-optimized Nitrogen Cycle Evaluation (NiCE) chip. Bacterial community composition was characterized using V3-V4 of the 16S rRNA gene, and PICRUSt2 was used to draw out functional inferences. Surprisingly, the nitrogen cycle genes and transcript quantities were largely stable and unresponsive to seasonal changes. We found that genes and transcripts related to ammonia oxidation and denitrification were different for only one or two time points across the seasons (p < 0.05). However, overall, the nitrogen cycling genes did not show drastic variations. Similarly, the bacterial community also did not vary across the seasons. In contrast, the predicted functional potential was slightly low for May and remained constant for other months. Moreover, soil chemical properties showed a seasonal pattern only for nitrate and ammonium concentrations, while ammonia oxidation and denitrification transcripts were strongly correlated with each other. Hence, the results refuted our assumptions, showing stability in N cycling and bacterial community across growing seasons in a natural grassland.
Collapse
Affiliation(s)
- Bikram K. Das
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA;
| | - Satoshi Ishii
- Water and Climate Institute, University of Minnesota, St. Paul, MN 55108, USA;
- Biotechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Linto Antony
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD 57006, USA; (L.A.); (J.S.)
| | - Alexander J. Smart
- Department of Natural Resource Management, South Dakota State University, Brookings, SD 57006, USA;
| | - Joy Scaria
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD 57006, USA; (L.A.); (J.S.)
| | - Volker S. Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA;
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
| |
Collapse
|
12
|
Dixon CM, Robertson KM, Ulyshen MD, Sikes BA. Pine savanna restoration on agricultural landscapes: The path back to native savanna ecosystem services. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151715. [PMID: 34800452 DOI: 10.1016/j.scitotenv.2021.151715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Restoration of savanna ecosystems within their historic range is expected to increase provision of ecosystem services to resident human populations. However, the benefits of restoration depend on the degree to which ecosystems and their services can be restored, the rate of restoration of particular services, and tradeoffs in services between restored ecosystems and other common land uses. We use a chronosequence approach to infer multi-decadal changes in ecosystem services under management aimed at restoring fire-dependent pine savannas, including the use of frequent prescribed fire, following abandonment of row-crop agriculture in the southeastern U.S. We compare ecosystem services between restored pine savannas of different ages and reference pine savannas as well as other common land uses (row-crop agriculture, improved pasture, pine plantation, unmanaged forest). Our results suggest that restoring pine savannas results in many improvements to ecosystem services, including increases in plant species richness, perennial grass cover, tree biomass, total ecosystem carbon, soil carbon and C:N, reductions in soil bulk density and predicted erosion and sedimentation, shifts from soil fungal pathogens to fungal symbionts, and changes in soil chemistry toward reference pine savanna conditions. However, the rate of improvement varies widely among services from a few years to decades. Compared to row-crop agriculture and improved pasture, restored savannas have lower erosion, soil bulk density, and soil pathogens and a higher percentage of mycorrhizal fungi and ecosystem carbon storage. Compared to pine plantations and unmanaged forests, restored pine savannas have lower fire-prone fuel loads and higher water yield and bee pollinator abundance. Our results indicate that restoration of pine savanna using frequent fire provides a broad suite of ecosystem services that increase the landscape's overall resilience to climate change. These results are likely relevant to other savannas dominated by perennial vegetation and maintained with frequent fire.
Collapse
Affiliation(s)
- Cinnamon M Dixon
- Tall Timbers Research Station, 13093 Henry Beadel Dr., Tallahassee, FL 32312, USA.
| | - Kevin M Robertson
- Tall Timbers Research Station, 13093 Henry Beadel Dr., Tallahassee, FL 32312, USA.
| | - Michael D Ulyshen
- USDA Forest Service, Southern Research Station, 320 Green Street, Athens, GA 30602, USA.
| | - Benjamin A Sikes
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
13
|
Hawkins JH, Zeglin LH. Microbial Dispersal, Including Bison Dung Vectored Dispersal, Increases Soil Microbial Diversity in a Grassland Ecosystem. Front Microbiol 2022; 13:825193. [PMID: 35432281 PMCID: PMC9009311 DOI: 10.3389/fmicb.2022.825193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial communities display biogeographical patterns that are driven by local environmental conditions and dispersal limitation, but the relative importance of underlying dispersal mechanisms and their consequences on community structure are not well described. High dispersal rates can cause soil microbial communities to become more homogenous across space and therefore it is important to identify factors that promote dispersal. This study experimentally manipulated microbial dispersal within different land management treatments at a native tallgrass prairie site, by changing the relative openness of soil to dispersal and by simulating vector dispersal via bison dung addition. We deployed experimental soil bags with mesh open or closed to dispersal, and placed bison dung over a subset of these bags, to areas with three different land managements: active bison grazing and annual fire, annual fire but no bison grazing, and no bison grazing with infrequent fire. We expected microbial dispersal to be highest in grazed and burned environments, and that the addition of dung would consistently increase overall microbial richness and lead to homogenization of communities over time. Results show that dispersal rates, as the accumulation of taxa over the course of the 3-month experiment, increase taxonomic richness similarly in all land management treatments. Additionally, bison dung seems to be serving as a dispersal and homogenization vector, based on the consistently higher taxon richness and increased community similarity across contrasting grazing and fire treatments when dung is added. This finding also points to microbial dispersal as an important function that herbivores perform in grassland ecosystems, and in turn, as a function that was lost at a continental scale following bison extermination across the Great Plains of North America in the nineteenth century. This study is the first to detect that dispersal and vector dispersal by grazing mammals promote grassland soil microbial diversity and affect microbial community composition.
Collapse
Affiliation(s)
| | - Lydia H. Zeglin
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
14
|
Contos P, Wood JL, Murphy NP, Gibb H. Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecol Evol 2021; 11:7187-7200. [PMID: 34188805 PMCID: PMC8216958 DOI: 10.1002/ece3.7597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022] Open
Abstract
Restoration ecology has historically focused on reconstructing communities of highly visible taxa while less visible taxa, such as invertebrates and microbes, are ignored. This is problematic as invertebrates and microbes make up the vast bulk of biodiversity and drive many key ecosystem processes, yet they are rarely actively reintroduced following restoration, potentially limiting ecosystem function and biodiversity in these areas.In this review, we discuss the current (limited) incorporation of invertebrates and microbes in restoration and rewilding projects. We argue that these groups should be actively rewilded during restoration to improve biodiversity, ecosystem function outcomes, and highlight how they can be used to greater effect in the future. For example, invertebrates and microbes are easily manipulated, meaning whole communities can potentially be rewilded through habitat transplants in a practice that we refer to as "whole-of-community" rewilding.We provide a framework for whole-of-community rewilding and describe empirical case studies as practical applications of this under-researched restoration tool that land managers can use to improve restoration outcomes.We hope this new perspective on whole-of-community restoration will promote applied research into restoration that incorporates all biota, irrespective of size, while also enabling a better understanding of fundamental ecological theory, such as colonization and competition trade-offs. This may be a necessary consideration as invertebrates that are important in providing ecosystem services are declining globally; targeting invertebrate communities during restoration may be crucial in stemming this decline.
Collapse
Affiliation(s)
- Peter Contos
- Department of EcologyEnvironment and Evolution, and Centre for Future LandscapesSchool of Life SciencesLa Trobe UniversityMelbourneVic.Australia
| | - Jennifer L. Wood
- Department of EcologyEnvironment and Evolution, and Centre for Future LandscapesSchool of Life SciencesLa Trobe UniversityMelbourneVic.Australia
| | - Nicholas P. Murphy
- Department of EcologyEnvironment and Evolution, and Centre for Future LandscapesSchool of Life SciencesLa Trobe UniversityMelbourneVic.Australia
| | - Heloise Gibb
- Department of EcologyEnvironment and Evolution, and Centre for Future LandscapesSchool of Life SciencesLa Trobe UniversityMelbourneVic.Australia
| |
Collapse
|
15
|
Large ecosystem-scale effects of restoration fail to mitigate impacts of land-use legacies in longleaf pine savannas. Proc Natl Acad Sci U S A 2021; 118:2020935118. [PMID: 33875596 DOI: 10.1073/pnas.2020935118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ecological restoration is a global priority, with potential to reverse biodiversity declines and promote ecosystem functioning. Yet, successful restoration is challenged by lingering legacies of past land-use activities, which are pervasive on lands available for restoration. Although legacies can persist for centuries following cessation of human land uses such as agriculture, we currently lack understanding of how land-use legacies affect entire ecosystems, how they influence restoration outcomes, or whether restoration can mitigate legacy effects. Using a large-scale experiment, we evaluated how restoration by tree thinning and land-use legacies from prior cultivation and subsequent conversion to pine plantations affect fire-suppressed longleaf pine savannas. We evaluated 45 ecological properties across four categories: 1) abiotic attributes, 2) organism abundances, 3) species diversity, and 4) species interactions. The effects of restoration and land-use legacies were pervasive, shaping all categories of properties, with restoration effects roughly twice the magnitude of legacy effects. Restoration effects were of comparable magnitude in savannas with and without a history of intensive human land use; however, restoration did not mitigate numerous legacy effects present prior to restoration. As a result, savannas with a history of intensive human land use supported altered properties, especially related to soils, even after restoration. The signature of past human land-use activities can be remarkably persistent in the face of intensive restoration, influencing the outcome of restoration across diverse ecological properties. Understanding and mitigating land-use legacies will maximize the potential to restore degraded ecosystems.
Collapse
|
16
|
Abstract
Riparian forests were frequently cleared and converted to agricultural pastures, but in recent times these pastures are often revegetated in an effort to return riparian forest structure and function. We tested if there is a change in the soil bacterial taxonomy and function in areas of riparian forest cleared for agricultural pasture then revegetated, and if soil bacterial taxonomy and function is related to vegetation and soil physicochemical properties. The study was conducted in six riparian areas in south-eastern Australia, each comprising of three land-use types: remnant riparian forest, cleared forest converted to pasture, and revegetated pastures. We surveyed three strata of vegetation and sampled surface soil and subsoil to characterize physicochemical properties. Taxonomic and functional composition of soil bacterial communities were assessed using 16S rRNA gene sequences and community level physiological profiles, respectively. Few soil physiochemical properties differed with land use despite distinct vegetation in pasture relative to remnant and revegetated areas. Overall bacterial taxonomic and functional composition of remnant forest and revegetated soils were distinct from pasture soil. Land-use differences were not consistent for all bacterial phyla, as Acidobacteria were more abundant in remnant soils; conversely, Actinobacteria were more abundant in pasture soils. Overall, bacterial metabolic activity and soil carbon and nitrogen content decreased with soil depth, while bacterial metabolic diversity and evenness increased with soil depth. Soil bacterial taxonomic composition was related to soil texture and soil fertility, but functional composition was only related to soil texture. Our results suggest that the conversion of riparian forests to pasture is associated with significant changes in the soil bacterial community, and that revegetation contributes to reversing such changes. Nevertheless, the observed changes in bacterial community composition (taxonomic and functional) were not directly related to changes in vegetation but were more closely related to soil attributes.
Collapse
|
17
|
Galatowitsch S, Bohnen J. Predicting restoration outcomes based on organizational and ecological factors. Restor Ecol 2020. [DOI: 10.1111/rec.13187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Susan Galatowitsch
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota 2003 Upper Buford Circle, Saint Paul MN 55108 U.S.A
| | - Julia Bohnen
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota 2003 Upper Buford Circle, Saint Paul MN 55108 U.S.A
| |
Collapse
|
18
|
Rassokhina II, Platonov AV, Laptev GY, Bolshakov VN. Morphophysical reaction of Hordeum vulgare to the influence of microbial preparations. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bacterial preparations contribute to the digestion of mineral nutrition, have antifungicidal activity, increase the grain productivity and biomass of cultivated crops. We studied the influence of microbiological preparations developed on the basis of microorganisms Bacillus subtilis and Lactobacillus buchneri on the growth processes, photosynthetic parameters and grain productivity of barley (Hordeum vulgare L.) of Sonet variety. The experiments were performed in 2019 in the North-West of the Russian Federation. The biological preparations were introduced by soaking seeds and treatment of the plants in the phase of third leaf with solutions of the preparations in the concentration of 1 mL/L. The laboratory surveys revealed the positive effect of the biological preparations on germination rate and energy of germination of seeds. Field trials were conducted on micro plots in six replications. During field experiments, we determined that introduction of biological preparations led to significant increase in the leaf area in the experimental plants (to 64.5%), increase in average daily growth gains (to 82.9%) and accumulation of biomass (to 73.1%). Somewhat higher efficiency was exerted by the biological preparation developed on the basis of a strain of L. buchneri. Perhaps, such effect takes place due to higher activity of pigment units of phytohormones of the auxin group. In our opinion, biological preparations accelerate the completion of the ontogenesis phases, thus the plants more rapidly achieve their genetically programmed sizes and transform to the stage of ear-formation. The studied biological preparations increased the coefficient of agricultural use of plants, and grain productivity of barley by up to 15.8%, and nutritional value remained. Microbial preparations on the basis of B. subtilis and L. buchneri exhibited efficiency, and their trials shall be continued on other crops on industrial scales.
Collapse
|
19
|
Howard MM, Kao-Kniffin J, Kessler A. Shifts in plant-microbe interactions over community succession and their effects on plant resistance to herbivores. THE NEW PHYTOLOGIST 2020; 226:1144-1157. [PMID: 31943213 DOI: 10.1111/nph.16430] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 05/23/2023]
Abstract
Soil microorganisms can influence the development of complex plant phenotypes, including resistance to herbivores. This microbiome-mediated plasticity may be particularly important for plant species that persist in environments with drastically changing herbivore pressure, for example over community succession. We established a 15-yr gradient of old-field succession to examine the herbivore resistance and rhizosphere microbial communities of Solidago altissima plants in a large-scale field experiment. To assess the functional effects of these successional microbial shifts, we inoculated S. altissima plants with microbiomes from the 2nd , 6th and 15th successional years in a glasshouse and compared their herbivore resistance. The resistance of S. altissima plants to herbivores changed over succession, with concomitant shifts in the rhizosphere microbiome. Late succession microbiomes conferred the strongest herbivore resistance to S. altissima plants in a glasshouse experiment, paralleling the low levels of herbivory observed in the oldest communities in the field. While many factors change over succession and may contribute to the shifts in rhizosphere communities and herbivore resistance we observed, our results indicated that soil microbial shifts alone can alter plants' interactions with herbivores. Our findings suggest that changes in soil microbial communities over succession can play an important role in enhancing plant resistance to herbivores.
Collapse
Affiliation(s)
- Mia M Howard
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jenny Kao-Kniffin
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
20
|
Turley NE, Bell‐Dereske L, Evans SE, Brudvig LA. Agricultural land‐use history and restoration impact soil microbial biodiversity. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13591] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nash E. Turley
- Department of Plant Biology Michigan State University East Lansing MI USA
- Program in Ecology Evolutionary Biology, and Behavior Michigan State University East Lansing MI USA
| | - Lukas Bell‐Dereske
- Kellogg Biological Station Michigan State University East Lansing MI USA
| | - Sarah E. Evans
- Program in Ecology Evolutionary Biology, and Behavior Michigan State University East Lansing MI USA
- Kellogg Biological Station Michigan State University East Lansing MI USA
- Department of Integrative Biology Michigan State University East Lansing MI USA
| | - Lars A. Brudvig
- Department of Plant Biology Michigan State University East Lansing MI USA
- Program in Ecology Evolutionary Biology, and Behavior Michigan State University East Lansing MI USA
| |
Collapse
|
21
|
Grman E, Allen J, Galloway E, McBride J, Bauer JT, Price PA. Inoculation with remnant prairie soils increased the growth of three native prairie legumes but not necessarily their associations with beneficial soil microbes. Restor Ecol 2020. [DOI: 10.1111/rec.13126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emily Grman
- Department of Biology Eastern Michigan University 441 Mark Jefferson Science Complex Ypsilanti MI 48197 U.S.A
| | - Jamie Allen
- Department of Biology Eastern Michigan University 441 Mark Jefferson Science Complex Ypsilanti MI 48197 U.S.A
| | - Emily Galloway
- Department of Biology Eastern Michigan University 441 Mark Jefferson Science Complex Ypsilanti MI 48197 U.S.A
| | - Justin McBride
- Department of Biology Eastern Michigan University 441 Mark Jefferson Science Complex Ypsilanti MI 48197 U.S.A
| | - Jonathan T. Bauer
- Department of Biology Miami University 212 Pearson Hall Oxford OH 45056 U.S.A
- Institute for the Environment and Sustainability Miami University 118 Shideler Hall Oxford OH 45056 U.S.A
| | - Paul A. Price
- Department of Biology Eastern Michigan University 441 Mark Jefferson Science Complex Ypsilanti MI 48197 U.S.A
| |
Collapse
|
22
|
Core Rhizosphere Microbiomes of Dryland Wheat Are Influenced by Location and Land Use History. Appl Environ Microbiol 2020; 86:AEM.02135-19. [PMID: 31862727 DOI: 10.1128/aem.02135-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 01/22/2023] Open
Abstract
The Inland Pacific Northwest is one of the most productive dryland wheat production areas in the United States. We explored the bacterial and fungal communities associated with wheat in a controlled greenhouse experiment using soils from multiple locations to identify core taxa consistently associated with wheat roots and how land use history influences wheat-associated communities. Further, we examined microbial co-occurrence networks from wheat rhizospheres to identify candidate hub taxa. Location of origin and land use history (long-term no-till versus noncropped Conservation Reserve Program [CRP]) of soils were the strongest drivers of bacterial and fungal communities. Wheat rhizospheres were especially enriched in many bacterial families, while only a few fungal taxa were enriched in the rhizosphere. There was a core set of bacteria and fungi that was found in >95% of rhizosphere or bulk soil samples, including members of Bradyrhizobium, Sphingomonadaceae, Massilia, Variovorax, Oxalobacteraceae, and Caulobacteraceae Core fungal taxa in the rhizosphere included Nectriaceae, Ulocladium, Alternaria, Mortierella, and Microdochium Overall, there were fewer core fungal taxa, and the rhizosphere effect was not as pronounced as with bacteria. Cross-domain co-occurrence networks were used to identify hub taxa in the wheat rhizosphere, which included bacterial and fungal taxa (e.g., Sphingomonas, Massilia, Knufia, and Microdochium). Our results suggest that there is a relatively small group of core rhizosphere bacteria that were highly abundant on wheat roots regardless of soil origin and land use history. These core communities may play important roles in nutrient uptake, suppressing fungal pathogens, and other plant health functions.IMPORTANCE Plant-associated microbiomes are critical for plant health and other important agroecosystem processes. We assessed the bacterial and fungal microbiomes of wheat grown in soils from across a dryland wheat cropping systems in eastern Washington to identify the core microbiome on wheat roots that is consistent across soils from different locations and land use histories. Moreover, cross-domain co-occurrence network analysis identified core and hub taxa that may play important roles in microbial community assembly. Candidate core and hub taxa provide a starting point for targeting microbiome components likely to be critical to plant health and for constructing synthetic microbial communities for further experimentation. This work is one of the first examples of identifying a core microbiome on a major field crop grown across hundreds of square kilometers over a wide range of biogeographical zones.
Collapse
|
23
|
Iliev I, Marhova M, Kostadinova S, Gochev V, Tsankova M, Ivanova A, Yahubyan G, Baev V. Metagenomic analysis of the microbial community structure in protected wetlands in the Maritza River Basin. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1697364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Ivan Iliev
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Plovdiv, Bulgaria
| | - Mariana Marhova
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Plovdiv, Bulgaria
| | - Sonya Kostadinova
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Plovdiv, Bulgaria
| | - Velizar Gochev
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Plovdiv, Bulgaria
| | - Marinela Tsankova
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Plovdiv, Bulgaria
| | - Angelina Ivanova
- Institute of Fisheries and Aquaculture, Agriculture Academy, Plovdiv, Bulgaria
| | - Galina Yahubyan
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Vesselin Baev
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
24
|
Soil bacterial communities in the Brazilian Cerrado: Response to vegetation type and management. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2019. [DOI: 10.1016/j.actao.2019.103463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Diamond S, Andeer PF, Li Z, Crits-Christoph A, Burstein D, Anantharaman K, Lane KR, Thomas BC, Pan C, Northen TR, Banfield JF. Mediterranean grassland soil C-N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nat Microbiol 2019; 4:1356-1367. [PMID: 31110364 PMCID: PMC6784897 DOI: 10.1038/s41564-019-0449-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Soil microbial activity drives the carbon and nitrogen cycles and is an important determinant of atmospheric trace gas turnover, yet most soils are dominated by microorganisms with unknown metabolic capacities. Even Acidobacteria, among the most abundant bacteria in soil, remain poorly characterized, and functions across groups such as Verrucomicrobia, Gemmatimonadetes, Chloroflexi and Rokubacteria are understudied. Here, we have resolved 60 metagenomic and 20 proteomic data sets from a Mediterranean grassland soil ecosystem and recovered 793 near-complete microbial genomes from 18 phyla, representing around one-third of all microorganisms detected. Importantly, this enabled extensive genomics-based metabolic predictions for these communities. Acidobacteria from multiple previously unstudied classes have genomes that encode large enzyme complements for complex carbohydrate degradation. Alternatively, most microorganisms encode carbohydrate esterases that strip readily accessible methyl and acetyl groups from polymers like pectin and xylan, forming methanol and acetate, the availability of which could explain the high prevalence of C1 metabolism and acetate utilization in genomes. Microorganism abundances among samples collected at three soil depths and under natural and amended rainfall regimes indicate statistically higher associations of inorganic nitrogen metabolism and carbon degradation in deep and shallow soils, respectively. This partitioning decreased in samples under extended spring rainfall, indicating that long-term climate alteration can affect both carbon and nitrogen cycling. Overall, by leveraging natural and experimental gradients with genome-resolved metabolic profiles, we link microorganisms lacking prior genomic characterization to specific roles in complex carbon, C1, nitrate and ammonia transformations, and constrain factors that impact their distributions in soil.
Collapse
Affiliation(s)
- Spencer Diamond
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Peter F Andeer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhou Li
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - David Burstein
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Karthik Anantharaman
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Katherine R Lane
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Chongle Pan
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
- School of Computer Science and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
26
|
Deng N, Wang H, Hu S, Jiao J. Effects of Afforestation Restoration on Soil Potential N 2O Emission and Denitrifying Bacteria After Farmland Abandonment in the Chinese Loess Plateau. Front Microbiol 2019; 10:262. [PMID: 30837976 PMCID: PMC6389719 DOI: 10.3389/fmicb.2019.00262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/31/2019] [Indexed: 12/04/2022] Open
Abstract
Denitrification is a critical component of soil nitrogen (N) cycling, including its role in the production and loss of nitrous oxide (N2O) from the soil system. However, restoration effects on the contribution of denitrification to soil N2O emissions, the abundance and diversity of denitrifying bacteria, and relationships among N2O emissions, soil properties, and denitrifying bacterial community composition remains poorly known. This is particularly true for fragile semiarid ecosystems. In order to address this knowledge gap, we utilized 42-year chronosequence of Robinia pseudoacacia plantations in the Chinese hilly gullied Loess Plateau. Soil potential N2O emission rates were measured using anaerobic incubation experiments. Quantitative polymerase chain reaction (Q-PCR) and Illumina MiSeq high-throughput sequencing were used to reveal the abundance and community composition of denitrifying bacteria. In this study, the afforestation practices following farmland abandonment had a strong negative effect on soil potential N2O emission rates during the first 33 years. However, potential N2O emission rates steadily increased in 42 years of restoration, leading to enhanced potential risk of greenhouse gas emissions. Furthermore, active afforestation increased the abundance of denitrifying functional genes, and enhanced microbial biomass. Actinobacteria and Proteobacteria were the dominant denitrifying bacterial phyla in the 0 to 33-years old sites, while the 42-years sites were dominated by Planctomycetes and Actinobacteria, implying that the restoration performed at these sites promoted soil microbial succession. Finally, correlation analyses revealed that soil organic carbon concentrations had the strongest relationship with potential N2O emission rates, followed by the abundance of the nosZ functional gene, bulk density, and the abundance of Bradyrhizobium and Variovorax across restoration stages. Taken together, our data suggest above-ground restoration of plant communities results in microbial community succession, improved soil quality, and significantly altered N2O emissions.
Collapse
Affiliation(s)
| | - Honglei Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | | | - Juying Jiao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Effects of the natural restoration time of abandoned farmland in a semiarid region on the soil denitrification rates and abundance and community structure of denitrifying bacteria. Appl Microbiol Biotechnol 2019; 103:1939-1951. [DOI: 10.1007/s00253-018-09575-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
|
28
|
Mackelprang R, Grube AM, Lamendella R, Jesus EDC, Copeland A, Liang C, Jackson RD, Rice CW, Kapucija S, Parsa B, Tringe SG, Tiedje JM, Jansson JK. Microbial Community Structure and Functional Potential in Cultivated and Native Tallgrass Prairie Soils of the Midwestern United States. Front Microbiol 2018; 9:1775. [PMID: 30158906 PMCID: PMC6104126 DOI: 10.3389/fmicb.2018.01775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022] Open
Abstract
The North American prairie covered about 3.6 million-km2 of the continent prior to European contact. Only 1-2% of the original prairie remains, but the soils that developed under these prairies are some of the most productive and fertile in the world, containing over 35% of the soil carbon in the continental United States. Cultivation may alter microbial diversity and composition, influencing the metabolism of carbon, nitrogen, and other elements. Here, we explored the structure and functional potential of the soil microbiome in paired cultivated-corn (at the time of sampling) and never-cultivated native prairie soils across a three-states transect (Wisconsin, Iowa, and Kansas) using metagenomic and 16S rRNA gene sequencing and lipid analysis. At the Wisconsin site, we also sampled adjacent restored prairie and switchgrass plots. We found that agricultural practices drove differences in community composition and diversity across the transect. Microbial biomass in prairie samples was twice that of cultivated soils, but alpha diversity was higher with cultivation. Metagenome analyses revealed denitrification and starch degradation genes were abundant across all soils, as were core genes involved in response to osmotic stress, resource transport, and environmental sensing. Together, these data indicate that cultivation shifted the microbiome in consistent ways across different regions of the prairie, but also suggest that many functions are resilient to changes caused by land management practices - perhaps reflecting adaptations to conditions common to tallgrass prairie soils in the region (e.g., soil type, parent material, development under grasses, temperature and rainfall patterns, and annual freeze-thaw cycles). These findings are important for understanding the long-term consequences of land management practices to prairie soil microbial communities and their genetic potential to carry out key functions.
Collapse
Affiliation(s)
- Rachel Mackelprang
- Department of Biology, California State University, Northridge, Northridge, CA, United States
| | - Alyssa M. Grube
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Regina Lamendella
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Ederson da C. Jesus
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, U.S. Department of Energy, University of Wisconsin–Madison, Madison, WI, United States
| | - Alex Copeland
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Chao Liang
- Great Lakes Bioenergy Research Center, U.S. Department of Energy, University of Wisconsin–Madison, Madison, WI, United States
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Randall D. Jackson
- Great Lakes Bioenergy Research Center, U.S. Department of Energy, University of Wisconsin–Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin–Madison, Madison, WI, United States
| | - Charles W. Rice
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Stefanie Kapucija
- Department of Biology, California State University, Northridge, Northridge, CA, United States
| | - Bayan Parsa
- Department of Biology, California State University, Northridge, Northridge, CA, United States
| | - Susannah G. Tringe
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, U.S. Department of Energy, University of Wisconsin–Madison, Madison, WI, United States
| | - Janet K. Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|