1
|
Liu Z, Guo Z, Zhou J, Guo X, Chen Y. Biotic interactions and environmental modifications determine symbiotic microbial diversity and stability. Comput Struct Biotechnol J 2024; 23:2717-2726. [PMID: 39040687 PMCID: PMC11260581 DOI: 10.1016/j.csbj.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Taking amphibians as island models, we examined the effects of interspecific interaction on the diversity and stability of microbial ecological. As skin area increased, the diversity and stability of skin microbes decreased, but the strength of negative interactions increased significantly. In contrast, as gut area increased, the diversity and stability of gut microbes increased, but the strength of interactions remained constant. These results indicate that microbial interactions are affected by habitat properties. When living in fluctuating environments without strong filtering, microorganisms can enhance their negative interactions with other taxa by changing the pH of their surroundings. In contrast, the pH of the gut is relatively stable, and colonized microorganisms cannot alter the gut pH and inhibit other colonizers. This study demonstrates that in the field of microbiology, diversity and stability are predominantly influenced by the intensity of interspecies interactions. The findings in this study deepen our understanding of microbial diversity and stability and provide a mechanistic link between species interactions, biodiversity, and stability in microbial ecosystems.
Collapse
Affiliation(s)
- Zhidong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuecheng Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
2
|
Zhou J, Liu J, Wang D, Ruan Y, Gong S, Gou J, Zou X. Fungal communities are more sensitive to mildew than bacterial communities during tobacco storage processes. Appl Microbiol Biotechnol 2024; 108:88. [PMID: 38194134 DOI: 10.1007/s00253-023-12882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Mildew poses a significant threat to tobacco production; however, there is limited information on the structure of the abundant and rare microbial subcommunities in moldy tobacco leaves. In this study, we employed high-throughput sequencing technology to discern the disparities in the composition, diversity, and co-occurrence patterns of abundant and rare fungal and bacterial subcommunities between moldy and normal tobacco leaves collected from Guizhou, Shanghai, and Jilin provinces, China. Furthermore, we explored the correlation between microorganisms and metabolites by integrating the metabolic profiles of moldy and normal tobacco leaves. The results showed that the fungi are more sensitive to mildew than bacteria, and that the fungal abundant taxa exhibit greater resistance and environmental adaptability than the rare taxa. The loss of rare taxa results in irreversible changes in the diversity, richness, and composition of the fungal community. Moreover, rare fungal taxa and abundant bacterial taxa played crucial roles in maintaining the stability and functionality of the tobacco microecosystem. In moldy tobacco, however, the disappearance of rare taxa as key nodes resulted in reduced connectivity and stability within the fungal network. In addition, metabolomic analysis showed that the contents of indoles, pyridines, polyketones, phenols, and peptides were significantly enriched in the moldy tobacco leaves, while the contents of amino acids, carbohydrates, lipids, and other compounds were significantly reduced in these leaves. Most metabolites showed negative correlations with Dothideomycetes, Alphaproteobacteria, and Gammaproteobacteria, but showed positive correlations with Eurotiales and Bacilli. This study has demonstrated that abundant fungal taxa are the predominant biological agents responsible for tobacco mildew, while bacteria may indirectly contribute to this process through the production and degradation of metabolites. KEY POINTS: • Fungi exhibited greater sensitivity to mildew of tobacco leaf compared to bacteria • Rare fungal taxa underwent significant damage during the mildew process • Mildew may damage the defense system of the tobacco leaf microecosystem.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Ecology / Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
- Postdoctoral Research Workstation of China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Jing Liu
- Guizhou Tobacco Company Zunyi Branch, Zunyi, China
| | - Dongfei Wang
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Yibin Ruan
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Shuang Gong
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Jianyu Gou
- Guizhou Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiao Zou
- Department of Ecology / Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China.
| |
Collapse
|
3
|
Liao X, Hou L, Zhang L, Grossart HP, Liu K, Liu J, Chen Y, Liu Y, Hu A. Distinct influences of altitude on microbiome and antibiotic resistome assembly in a glacial river ecosystem of Mount Everest. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135675. [PMID: 39216241 DOI: 10.1016/j.jhazmat.2024.135675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The profound influences of altitude on aquatic microbiome were well documented. However, differences in the responses of different life domains (bacteria, microeukaryotes, viruses) and antibiotics resistance genes (ARGs) in glacier river ecosystems to altitude remain unknown. Here, we employed shotgun metagenomic and amplicon sequencing to characterize the altitudinal variations of microbiome and ARGs in the Rongbu River, Mount Everest. Our results indicated the relative influences of stochastic processes on microbiome and ARGs assembly in water and sediment were in the following order: microeukaryotes < ARGs < viruses < bacteria. Moreover, distinct assembly patterns of the microbiome and ARGs were found in response to differences in altitude, the latter of which shift from deterministic to stochastic processes with increasing differences in altitude. Partial least squares path modeling revealed that mobile genetic elements (MGEs) and viral β-diversity were the major factors influencing the ARG abundances. Taken together, our work revealed that altitude-caused environmental changes led to significant changes in the composition and assembly processes of the microbiome and ARGs, while ARGs had a unique response pattern to altitude. Our findings provide novel insights into the impacts of altitude on the biogeographic distribution of microbiome and ARGs, and the associated driving forces in glacier river ecosystems.
Collapse
Affiliation(s)
- Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, United States; Utah Water Research Laboratory, 1600 Canyon Road, Logan, UT 84321, United States
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Junzhi Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Yuying Chen
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China.
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Wu H, Zhou J, Zhang S, Gao Y, Wang C, Cong H, Feng S. Contributions of the bacterial communities to the microcystin degradation and nutrient transformations during aerobic composting of algal sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122559. [PMID: 39340886 DOI: 10.1016/j.jenvman.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Aerobic composting is a useful method for managing and disposing of salvaged algal sludge. To optimize the composting process and improve compost quality, it is necessary to understand the functions and responses of microbial communities therein. This work studied the degradation process of organic matter and the assemblage of bacterial communities in algal sludge composting via 16S rRNA amplicon sequencing. The results showed that 77.08% of the microcystin was degraded during the thermophilic stage of composting, which was the main period for microcystin degradation. Bacterial community composition and diversity changed significantly during the composting, and gradually stabilized as the compost matured. Different composting stages may be dominated by different module groups separately, as shown in the co-occurrence networks of composting bacterial communities. In the networks, all bacteria associated with microcystin degradation were identified as connectors between different module groups. The algal sludge composting process was driven primarily by deterministic processes, and the main driving forces for bacterial community assembly were temperature, dissolved organic carbon, ammonium, and microcystin. At last, by applying the structural equation modeling method, the bacterial communities under influences of physiochemical properties were proved as the main mediators for the microcystin degradation. This study provides valuable insights into the optimization of bacterial communities in composting to improve the efficiency of microcystin degradation and the quality of the compost product.
Collapse
Affiliation(s)
- Hainan Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Jiahui Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Sen Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Yu Gao
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan, 430010, PR China
| | - Chengkai Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Haibing Cong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China.
| | - Shaoyuan Feng
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| |
Collapse
|
5
|
Zhou H, Timalsina H, Tang S, Circenis S, Kandume J, Cooke R, Si B, Bhattarai R, Zheng W. Simultaneous removal of nutrients and pharmaceuticals and personal care products using two-stage woodchip bioreactor-biochar treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135882. [PMID: 39298967 DOI: 10.1016/j.jhazmat.2024.135882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The co-occurrence of nutrients and pharmaceuticals and personal care products (PPCPs) in sewage effluent can degrade water quality of the receiving watersheds. This study investigated the simultaneous removal of excess nutrients and PPCP contaminants by developing a novel woodchip bioreactor and biochar (B2) treatment system. The result revealed that woodchip bioreactors could effectively remove nitrate via a denitrification process and adsorb some PPCPs. Biochar as a secondary treatment system significantly reduced the concentrations of PPCPs and dissolved reactive phosphorus (DRP) (p < 0.05), compared to the woodchip bioreactor. The removal efficiencies of all targeted contaminants by the B2 system were evaluated using various hydraulic retention times (HRTs) and biochar types (pelletized versus granular biochar). Longer HRTs and smaller biochar particles (granular biochar) could enhance the removal efficiencies of targeted contaminants. Average contaminant removals were 77.25 % for nitrate-N, 99.03 % for DRP, 69.51 % for ibuprofen, 73.65 % for naproxen, 91.09 % for sitagliptin, and 96.96 % for estrone, with woodchip bioreactor HRTs of 12 ± 1.4 h and granular biochar HRTs of 2.1 ± 0.1 h. Notably, the second-stage biochar systems effectively mitigated by-products leaching from woodchip bioreactors. The presence of PPCPs in the woodchip bioreactors enriched certain species, such as Methylophilus (69.6 %), while inhibiting other microorganisms and reducing microbial community diversity. Furthermore, a scaled-up B2 system was analyzed and assessed, indicating that the proposed engineering treatment system could provide decades of service in real-world applications. Overall, this study suggests that the B2 system has promising applications for addressing emerging and conventional contaminants.
Collapse
Affiliation(s)
- Hongxu Zhou
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Haribansha Timalsina
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Shuai Tang
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Sophie Circenis
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Jason Kandume
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Richard Cooke
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Buchun Si
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Rabin Bhattarai
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA.
| | - Wei Zheng
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| |
Collapse
|
6
|
Li X, Cheng X, Xu J, Wu J, Chan LL, Cai Z, Zhou J. Dynamic patterns of carbohydrate metabolism genes in bacterioplankton during marine algal blooms. Microbiol Res 2024; 286:127785. [PMID: 38851011 DOI: 10.1016/j.micres.2024.127785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/01/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Carbohydrates play a pivotal role in nutrient recycling and regulation of algal-bacterial interactions. Despite their ecological significance, the intricate molecular mechanisms governing regulation of phycosphere carbohydrates by bacterial taxa linked with natural algal bloom have yet to be fully elucidated. Here, a comprehensive temporal metagenomic analysis was conducted to explore the carbohydrate-active enzyme (CAZyme) genes in two discrete algal bloom microorganisms (Gymnodinium catenatum and Phaeocystis globosa) across three distinct bloom stages: pre-bloom, peak bloom, and post-bloom. Elevated levels of extracellular carbohydrates, primarily rhamnose, galactose, glucose, and arabinose, were observed during the initial and post-peak stages. The prominent CAZyme families identified-glycoside hydrolases (GH) and carbohydrate-binding modules (CBMs)-were present in both algal bloom occurrences. In the G. catenatum bloom, GH23/24 and CBM13/14 were prevalent during the pre-bloom and peak bloom stages, whereas GH2/3/30 and CBM12/24 exhibited increased prevalence during the post-bloom phase. In contrast, the P. globosa bloom had a dominance of GH13/23 and CBM19 in the initial phase, and this was succeeded by GH3/19/24/30 and CBM54 in the later stages. This gene pool variation-observed distinctly in specific genera-highlighted the dynamic structural shifts in functional resources driven by temporal alterations in available substrates. Additionally, ecological linkage analysis underscored a correlation between carbohydrates (or their related genes) and phycospheric bacteria, hinting at a pattern of bottom-up control. These findings contribute to understanding of the dynamic nature of CAZymes, emphasizing the substantial influence of substrate availability on the metabolic capabilities of algal symbiotic bacteria, especially in terms of carbohydrates.
Collapse
Affiliation(s)
- Xinyang Li
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Xueyu Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Junjie Xu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China.
| |
Collapse
|
7
|
Xin G, Xiaohong S, Yujiao S, Wenbao L, Yanjun W, Zhimou C, Arvolab L. Characterization of bacterial community dynamics dominated by salinity in lakes of the Inner Mongolian Plateau, China. Front Microbiol 2024; 15:1448919. [PMID: 39234542 PMCID: PMC11371557 DOI: 10.3389/fmicb.2024.1448919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Microorganisms in lakes are sensitive to salinity fluctuations. Despite extensive prior research on bacterial communities, our understanding of their characteristics and assembly mechanisms in lakes, especially in desert lakes with different salinities. To address this issue, we collected three samples from freshwater lakes, six from brackish lakes, and five from salt lakes in the Badanjilin Desert. The 16S rRNA gene sequencing was applied to investigate the bacterial interactions with rising salinity, community coexistence patterns, and assembly mechanisms. Our findings suggested that the increased lake salinity significantly reduces the bacterial community diversity and enhanced the community differentiation. Significant variations were observed in the contribution of biomarkers from Cyanobacteria, Chloroflexi, and Halobacterota to the composition of the lake bacterial communities. The bacterial communities in the salt lakes exhibited a higher susceptibility to salinity limitations than those in the freshwater and brackish lakes. In addition, the null modeling analyses confirmed the quantitative biases in the stochastic assembly processes of bacterial communities across freshwater, brackish, and saline lakes. With the increasing lake salinity, the significance of undominated and diffusion limitation decreased slightly, and the influence of homogenizing dispersal on community assembly increased. However, the stochasticity remained the dominant process across all lakes in the Badanjilin Desert. The analysis of co-occurring networks revealed that the rising salinity reduced the complexity of bacterial network structures and altered the interspecific interactions, resulting in the increased interspecies collaboration with increasing salinity levels. Under the influence of salinity stress, the key taxon Cyanobacteria in freshwater lakes (Schizothrix_LEGE_07164) was replaced by Proteobacteria (Thalassobaculum and Polycyclovorans) in brackish lakes, and Thermotogota (SC103) in salt lakes. The results indicated the symbiotic patterns of bacterial communities across varying salinity gradients in lakes and offer insights into potential mechanisms of community aggregation, thereby enhancing our understanding of bacterial distribution in response to salinity changes.
Collapse
Affiliation(s)
- Guo Xin
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Shi Xiaohong
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur, China
| | - Shi Yujiao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Li Wenbao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Wang Yanjun
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Cui Zhimou
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Lauri Arvolab
- Lammi Biological Station, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland
| |
Collapse
|
8
|
Jagadesh M, Dash M, Kumari A, Singh SK, Verma KK, Kumar P, Bhatt R, Sharma SK. Revealing the hidden world of soil microbes: Metagenomic insights into plant, bacteria, and fungi interactions for sustainable agriculture and ecosystem restoration. Microbiol Res 2024; 285:127764. [PMID: 38805978 DOI: 10.1016/j.micres.2024.127764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/10/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
The future of agriculture is questionable under the current climate change scenario. Climate change and climate-related calamities directly influence biotic and abiotic factors that control agroecosystems, endangering the safety of the world's food supply. The intricate interactions between soil microorganisms, including plants, bacteria, and fungi, play a pivotal role in promoting sustainable agriculture and ecosystem restoration. Soil microbes play a major part in nutrient cycling, including soil organic carbon (SOC), and play a pivotal function in the emission and depletion of greenhouse gases, including CH4, CO2, and N2O, which can impact the climate. At this juncture, developing a triumphant metagenomics approach has greatly increased our knowledge of the makeup, functionality, and dynamics of the soil microbiome. Currently, the involvement of plants in climate change indicates that they can interact with the microbial communities in their environment to relieve various stresses through the innate microbiome assortment of focused strains, a phenomenon dubbed "Cry for Help." The metagenomics method has lately appeared as a new platform to adjust and encourage beneficial communications between plants and microbes and improve plant fitness. The metagenomics of soil microbes can provide a powerful tool for designing and evaluating ecosystem restoration strategies that promote sustainable agriculture under a changing climate. By identifying the specific functions and activities of soil microbes, we can develop restoration programs that support these critical components of healthy ecosystems while providing economic benefits through ecosystem services. In the current review, we highlight the innate functions of microbiomes to maintain the sustainability of agriculture and ecosystem restoration. Through this insight study of soil microbe metagenomics, we pave the way for innovative strategies to address the pressing challenges of food security and environmental conservation. The present article elucidates the mechanisms through which plants and microbes communicate to enhance plant resilience and ecosystem restoration and to leverage metagenomics to identify and promote beneficial plant-microbe interactions. Key findings reveal that soil microbes are pivotal in nutrient cycling, greenhouse gas modulation, and overall ecosystem health, offering novel insights into designing ecosystem restoration strategies that bolster sustainable agriculture. As this is a topic many are grappling with, hope these musings will provide people alike with some food for thought.
Collapse
Affiliation(s)
- M Jagadesh
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Munmun Dash
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Aradhna Kumari
- College of Agriculture, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Ganj Basoda, Vidisha, Madhya Pradesh, India.
| | - Santosh Kumar Singh
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India.
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi 530007, China.
| | - Prasann Kumar
- Department of Agronomy, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rajan Bhatt
- Krishi Vigyan Kendra, Amritsar, Punjab Agricultural University (PAU), Ludhiana, Punjab 144601, India
| | - Satish Kumar Sharma
- College of Agriculture, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Ganj Basoda, Vidisha, Madhya Pradesh, India
| |
Collapse
|
9
|
Hu W, Zheng N, Zhang Y, Li S, Bartlam M, Wang Y. Metagenomics analysis reveals effects of salinity fluctuation on diversity and ecological functions of high and low nucleic acid content bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173186. [PMID: 38744390 DOI: 10.1016/j.scitotenv.2024.173186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Salinity is a critical environmental factor in marine ecosystems and has complex and wide-ranging biological effects. However, the effects of changing salinity on diversity and ecological functions of high nucleic acid (HNA) and low nucleic acid (LNA) bacteria are not well understood. In this study, we used 16S rRNA sequencing and metagenomic sequencing analysis to reveal the response of HNA and LNA bacterial communities and their ecological functions to salinity, which was decreased from 26 ‰ to 16 ‰. The results showed that salinity changes had significant effects on the community composition of HNA and LNA bacteria. Among LNA bacteria, 14 classes showed a significant correlation between relative abundance and salinity. Salinity changes can lead to the transfer of some bacteria from HNA bacteria to LNA bacteria. In the network topology relationship, the complexity of the network between HNA and LNA bacterial communities gradually decreased with decreased salinity. The abundance of some carbon and nitrogen cycling genes in HNA and LNA bacteria varied with salinity. Overall, this study demonstrates the effects of salinity on diversity and ecological functions and suggests the importance of salinity in regulating HNA and LNA bacterial communities and functions.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ningning Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Shuhan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.
| |
Collapse
|
10
|
Fan Y, Chen K, Dai Z, Peng J, Wang F, Liu H, Xu W, Huang Q, Yang S, Cao W. Land use/cover drive functional patterns of bacterial communities in sediments of a subtropical river, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174564. [PMID: 38972401 DOI: 10.1016/j.scitotenv.2024.174564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The bacterial community in sediment serves as an important indicator for assessing the environmental health of river ecosystems. However, the response of bacterial community structure and function in river basin sediment to different land use/cover changes has not been widely studied. To characterize changes in the structure, composition, and function of bacterial communities under different types of land use/cover, we studied the bacterial communities and physicochemical properties of the surface sediments of rivers. Surface sediment in cropland and built-up areas was moderately polluted with cadmium and had high nitrogen and phosphorus levels, which disrupted the stability of bacterial communities. Significant differences in the α-diversity of bacterial communities were observed among different types of land use/cover. Bacterial α-diversity and energy sources were greater in woodlands than in cropland and built-up areas. The functional patterns of bacterial communities were shown that phosphorus levels and abundances of pathogenic bacteria and parasites were higher in cropland than in the other land use/cover types; Urban activities have resulted in the loss of the denitrification function and the accumulation of nitrogen in built-up areas, and bacteria in forested and agricultural areas play an important role in nitrogen degradation. Differences in heavy metal and nutrient inputs driven by land use/cover result in variation in the composition, structure, and function of bacterial communities.
Collapse
Affiliation(s)
- Yifei Fan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Kan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zetao Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiarui Peng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Feifei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Huibo Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenfeng Xu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen, Fujian 361102, China
| | - Quanjia Huang
- Xiamen Environmental Monitoring Station, Xiamen, Fujian 361102, China
| | - Shengchang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
11
|
Du W, Li J, Zhang G, Yu K, Liu S. Spatiotemporal Variations in Co-Occurrence Patterns of Planktonic Prokaryotic Microorganisms along the Yangtze River. Microorganisms 2024; 12:1282. [PMID: 39065051 PMCID: PMC11278652 DOI: 10.3390/microorganisms12071282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Bacteria and archaea are foundational life forms on Earth and play crucial roles in the development of our planet's biological hierarchy. Their interactions influence various aspects of life, including eukaryotic cell biology, molecular biology, and ecological dynamics. However, the coexistence network patterns of these microorganisms within natural river ecosystems, vital for nutrient cycling and environmental health, are not well understood. To address this knowledge gap, we systematically explored the non-random coexistence patterns of planktonic bacteria and archaea in the 6000-km stretch of the Yangtze River by using high-throughput sequencing technology. By analyzing the O/R ratio, representing the divergence between observed (O%) and random (R%) co-existence incidences, and the module composition, we found a preference of both bacteria and archaea for intradomain associations over interdomain associations. Seasons notably influenced the co-existence of bacteria and archaea, and archaea played a more crucial role in spring as evidenced by their predominant presence of interphyla co-existence and more species as keystone ones. The autumn network was characterized by a higher node or edge number, greater graph density, node degree, degree centralization, and nearest neighbor degree, indicating a more complex and interconnected structure. Landforms markedly affected microbial associations, with more complex networks and more core species found in plain and non-source areas. Distance-decay analysis suggested the importance of geographical distance in shaping bacteria and archaea co-existence patterns (more pronounced in spring). Natural, nutrient, and metal factors, including water temperature, NH4+-N, Fe, Al, and Ni were identified as crucial determinants shaping the co-occurrence patterns. Overall, these findings revealed the dynamics of prokaryotic taxa coexistence patterns in response to varying environmental conditions and further contributed to a broader understanding of microbial ecology in freshwater biogeochemical cycling.
Collapse
Affiliation(s)
- Wenran Du
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Jiacheng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guohua Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shufeng Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Liu W, Guo S, Zhang H, Chen Y, Shao Y, Yuan Z. Effect of Altitude Gradients on the Spatial Distribution Mechanism of Soil Bacteria in Temperate Deciduous Broad-Leaved Forests. Microorganisms 2024; 12:1034. [PMID: 38930416 PMCID: PMC11206066 DOI: 10.3390/microorganisms12061034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Soil bacteria are an important part of the forest ecosystem, and they play a crucial role in driving energy flow and material circulation. Currently, many uncertainties remain about how the composition and distribution patterns of bacterial communities change along altitude gradients, especially in forest ecosystems with strong altitude gradients in climate, vegetation, and soil properties. Based on dynamic site monitoring of the Baiyun Mountain Forest National Park (33°38'-33°42' N, 111°47'-111°51' E), this study used Illumina technology to sequence 120 soil samples at the site and explored the spatial distribution mechanisms and ecological processes of soil bacteria under different altitude gradients. Our results showed that the composition of soil bacterial communities varied significantly between different altitude gradients, affecting soil bacterial community building by influencing the balance between deterministic and stochastic processes; in addition, bacterial communities exhibited broader ecological niche widths and a greater degree of stochasticity under low-altitude conditions, implying that, at lower altitudes, community assembly is predominantly influenced by stochastic processes. Light was the dominant environmental factor that influenced variation in the entire bacterial community as well as other taxa across different altitude gradients. Moreover, changes in the altitude gradient could cause significant differences in the diversity and community composition of bacterial taxa. Our study revealed significant differences in bacterial community composition in the soil under different altitude gradients. The bacterial communities at low elevation gradients were mainly controlled by stochasticity processes, and bacterial community assembly was strongly influenced by deterministic processes at middle altitudes. Furthermore, light was an important environmental factor that affects differences. This study revealed that the change of altitude gradient had an important effect on the development of the soil bacterial community and provided a theoretical basis for the sustainable development and management of soil bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Yizhen Shao
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China; (W.L.); (S.G.); (H.Z.); (Y.C.)
| | - Zhiliang Yuan
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China; (W.L.); (S.G.); (H.Z.); (Y.C.)
| |
Collapse
|
13
|
Zhao M, Jiang M, Qin L, Hu N, Meng J, Wang M, Wang G. The recovery of soil eukaryotic alpha and beta diversity after wetland restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171814. [PMID: 38508279 DOI: 10.1016/j.scitotenv.2024.171814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Soil eukaryotes play an important role in regulating the ecological processes and ecosystem functioning. However, the recovery potential of soil eukaryotic diversity during wetland restoration is largely unknown. We compared the alpha and beta diversity of soil eukaryotes of farmlands and natural and restored wetlands to explore the underlying abiotic and biotic driving forces in the Sanjiang Plain, China. We found that there was no significant difference of the alpha diversity of soil eukaryotes, while the beta diversity of soil eukaryotes differed significantly between the three land use types, with the mean values in the restored wetlands in between those in the natural wetlands and farmlands. The composition of soil eukaryotic communities were less diverse in farmlands compared to restored and natural wetlands. Network property of soil eukaryotes community (positive: negative edges) increased from farmlands to restored wetlands to natural wetlands, indicating enhanced species positive: negative interactions during restoration. The structural equation modeling indicated that species positive: negative interactions and soil nutrients directly affected soil eukaryotic beta diversity. Soil pH and soil water content indirectly affected soil eukaryotic beta diversity by directly affecting species interactions. Our findings suggest that wetland restoration could change soil environment, strengthen microbial cooperation, and increase eukaryotic beta diversity. However, it may take a very long time to reach the original level of soil eukaryotic structure and diversity.
Collapse
Affiliation(s)
- Meiling Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Jiang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Qin
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Nanlin Hu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingci Meng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ming Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Guodong Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
14
|
Mukherjee I, Grujčić V, Salcher MM, Znachor P, Seďa J, Devetter M, Rychtecký P, Šimek K, Shabarova T. Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. ENVIRONMENTAL MICROBIOME 2024; 19:31. [PMID: 38720385 PMCID: PMC11080224 DOI: 10.1186/s40793-024-00574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Protists are essential contributors to eukaryotic diversity and exert profound influence on carbon fluxes and energy transfer in freshwaters. Despite their significance, there is a notable gap in research on protistan dynamics, particularly in the deeper strata of temperate lakes. This study aimed to address this gap by integrating protists into the well-described spring dynamics of Římov reservoir, Czech Republic. Over a 2-month period covering transition from mixing to established stratification, we collected water samples from three reservoir depths (0.5, 10 and 30 m) with a frequency of up to three times per week. Microbial eukaryotic and prokaryotic communities were analysed using SSU rRNA gene amplicon sequencing and dominant protistan groups were enumerated by Catalysed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). Additionally, we collected samples for water chemistry, phyto- and zooplankton composition analyses. RESULTS Following the rapid changes in environmental and biotic parameters during spring, protistan and bacterial communities displayed swift transitions from a homogeneous community to distinct strata-specific communities. A prevalence of auto- and mixotrophic protists dominated by cryptophytes was associated with spring algal bloom-specialized bacteria in the epilimnion. In contrast, the meta- and hypolimnion showcased a development of a protist community dominated by putative parasitic Perkinsozoa, detritus or particle-associated ciliates, cercozoans, telonemids and excavate protists (Kinetoplastida), co-occurring with bacteria associated with lake snow. CONCLUSIONS Our high-resolution sampling matching the typical doubling time of microbes along with the combined microscopic and molecular approach and inclusion of all main components of the microbial food web allowed us to unveil depth-specific populations' successions and interactions in a deep lentic ecosystem.
Collapse
Affiliation(s)
- Indranil Mukherjee
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| | - Vesna Grujčić
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Michaela M Salcher
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Petr Znachor
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Jaromír Seďa
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Pavel Rychtecký
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Karel Šimek
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Tanja Shabarova
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
15
|
Li Y, Zhang R, Ma G, Shi M, Xi Y, Li X, Wang S, Zeng X, Jia Y. Bacterial community in the metal(loid)-contaminated marine vertical sediments of Jinzhou Bay: Impacts and adaptations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171180. [PMID: 38402990 DOI: 10.1016/j.scitotenv.2024.171180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Metal(loid) discharge has led to severe coastal contamination; however, there remains a significant knowledge gap regarding its impact on sediment profiles and depth-resolved bacterial communities. In this study, geochemical measurements (pH, nutrient elements, total and bioavailable metal(loid) content) consistently revealed decreasing nitrogen, phosphorus, and metal(loid) levels with sediment depth, accompanied by reduced alpha diversity. Principal coordinate analysis indicated distinct community compositions with varying sediment depths, suggesting a geochemical influence on diversity. Ecological niche width expanded with depth, favoring specialists over generalists, but both groups decreased in abundance. Taxonomic shifts emerged, particularly in phyla and families, correlated with sediment depth. Microbe-microbe interactions displayed intricate dynamics, with keystone taxa varying by sediment layer. Zinc and arsenic emerged as key factors impacting community diversity and composition using random forest, network analysis, and Mantel tests. Functional predictions revealed shifts in potential phenotypes related to mobile elements, biofilm formation, pathogenicity, N/P/S cycles, and metal(loid) resistance along sediment profiles. Neutral and null models demonstrated a transition from deterministic to stochastic processes with sediment layers. This study provides insights into the interplay between sediment geochemistry and bacterial communities across sediment depths, illuminating the factors shaping these ecosystems.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Rui Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guoqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingyi Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| |
Collapse
|
16
|
Tian R, Posselt M, Miaz LT, Fenner K, McLachlan MS. Influence of Season on Biodegradation Rates in Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7144-7153. [PMID: 38527158 PMCID: PMC11044578 DOI: 10.1021/acs.est.3c10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Biodegradation plays a key role in the fate of chemicals in the environment. The variability of biodegradation in time can cause uncertainty in evaluating the environmental persistence and risk of chemicals. However, the seasonality of biodegradation in rivers has not yet been the subject of environmentally relevant testing and systematic investigation for large numbers of chemicals. In this work, we studied the biodegradation of 96 compounds during four seasons at four locations (up- and downstream of WWTPs located on two Swedish rivers). Significant seasonality (ANOVA, p < 0.05) of the first-order rate constant for primary biodegradation was observed for most compounds. Variations in pH and total bacterial cell count were not the major factors explaining the seasonality of biodegradation. Deviation from the classical Arrhenius-type behavior was observed for most of the studied compounds, which calls into question the application of this relationship to correct biodegradation rate constants for differences in environmental temperature. Similarities in magnitude and seasonality of biodegradation rate constants were observed for some groups of chemicals possessing the same functional groups. Moreover, reduced seasonality of biodegradation was observed downstream of WWTPs, while biodegradation rates of most compounds were not significantly different between up- and downstream.
Collapse
Affiliation(s)
- Run Tian
- Department
of Environmental Science (ACES), Stockholm
University, Stockholm 10691, Sweden
| | - Malte Posselt
- Department
of Environmental Science (ACES), Stockholm
University, Stockholm 10691, Sweden
| | - Luc T. Miaz
- Department
of Environmental Science (ACES), Stockholm
University, Stockholm 10691, Sweden
| | - Kathrin Fenner
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Department
of Chemistry, University of Zürich, Zürich 8057, Switzerland
| | - Michael S. McLachlan
- Department
of Environmental Science (ACES), Stockholm
University, Stockholm 10691, Sweden
| |
Collapse
|
17
|
Wang T, Liu R, Huang G, Tian X, Zhang Y, He M, Wang C. Assembly dynamics of eukaryotic plankton and bacterioplankton in the Yangtze River estuary: A hybrid community perspective. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106414. [PMID: 38394975 DOI: 10.1016/j.marenvres.2024.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Estuaries, acting as transitional habitats receiving species introductions from both freshwater and marine sources, undergo significant impacts from global climate changes. Planktonic microorganisms contribute significantly to estuarine biodiversity and ecological stability. These microorganisms primarily fall into three groups: eukaryotic plankton, particle-associated bacteria, and free-living bacteria. Understanding the structural characteristics and interactions within these subcommunities is crucial for comprehending estuarine dynamics. We collected samples from three distinct locations (< 0.1 PSU, 6.6 PSU, and 19 PSU) within the Yangtze River estuary. Samples underwent analysis for physicochemical indicators, while microbial communities were subjected to 16S/18S rRNA amplicon sequencing. Additionally, simulated mixing experiments were conducted using samples of varying salinities. Estuary samples, combined with simulated experiments, were employed to collectively examine the structural characteristics and assembly processes of estuarine microbes. Our research highlights the considerable impact of phylogenetic classification on prokaryotic behavior in these communities. We observed a transition in assembly processes from primarily stochastic for particle-associated bacteria to a predominant influence of homogeneous selection as salinity increased. Particle-associated bacterial communities exhibited a greater influence of stochastic processes compared to free-living bacteria, showcasing higher stability in diversity. The variations in composition and structure of estuarine microbial subcommunities were influenced by diverse environmental factors. Particle-associated bacteria displayed elevated network characterization values and established closer interactions with eukaryotic plankton. Structural equation modeling (SEM) analysis revealed that free-living bacteria displayed a heightened sensitivity to environmental factors and exerted a more significant influence on assembly processes and network characteristics. Simulated mixing in these environments resulted in the loss of species with similar microbial taxonomic relationships. The functioning of bacterioplankton is influenced by salinity and the processes governing their assembly, particularly in relation to different living states. These findings significantly contribute to our understanding of the intricate interplay between prokaryotic and eukaryotic plankton microorganisms in highly dynamic environments, laying a robust foundation for further exploration into the ecological mechanisms governing microbial dynamics in estuaries.
Collapse
Affiliation(s)
- Tong Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruiqing Liu
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guolin Huang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Tian
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Zhang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang, 222005, China
| |
Collapse
|
18
|
Zhang M, Zhou Y, Cui X, Zhu L. The Potential of Co-Evolution and Interactions of Gut Bacteria-Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis. Microorganisms 2024; 12:713. [PMID: 38674657 PMCID: PMC11051890 DOI: 10.3390/microorganisms12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.
Collapse
Affiliation(s)
| | | | | | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210098, China; (M.Z.); (Y.Z.); (X.C.)
| |
Collapse
|
19
|
Wei F, Xie T, Su C, He B, Shu Z, Zhang Y, Xiao Z, Hao J. Stability and Assembly Mechanisms of Butterfly Communities across Environmental Gradients of a Subtropical Mountain. INSECTS 2024; 15:230. [PMID: 38667360 PMCID: PMC11050375 DOI: 10.3390/insects15040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Mountain ecosystems harbor evolutionarily unique and exceptionally rich biodiversity, particularly in insects. In this study, we characterized the diversity, community stability, and assembly mechanisms of butterflies on a subtropical mountain in the Chebaling National Nature Reserve, Guangdong Province, China, using grid-based monitoring across the entire region for two years. The results showed that species richness, abundance, and Faith's phylogenetic diversity decreased with increasing elevation; taxonomic diversity played a considerable role in mediating the effects of environmental changes on stability. Moreover, our results showed that stochastic processes are dominant in governing the assembly of butterfly communities across all elevational gradients, with habitats at an elevation of 416-580 m subjected to the strongest stochastic processes, whereas heterogeneous selection processes displayed stronger effects on the assembly of butterfly communities at 744-908 m, 580-744 m, and 908-1072 m, with abiotic factors inferred as the main driving forces. In addition, significant differences were detected between the barcode tree and the placement tree for the calculated β-NTI values at 416-580 m. Overall, this study provides new insights into the effects of environmental change on the stability and assembly of butterflies in Chebaling, which will be beneficial for biodiversity conservation and policy development.
Collapse
Affiliation(s)
- Fanyu Wei
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (F.W.); (T.X.); (C.S.); (B.H.)
| | - Tingting Xie
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (F.W.); (T.X.); (C.S.); (B.H.)
- Key Laboratory of Zoological and Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100045, China
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (F.W.); (T.X.); (C.S.); (B.H.)
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (F.W.); (T.X.); (C.S.); (B.H.)
| | - Zufei Shu
- Guangdong Chebaling National Nature Reserve Administration Bureau, Shaoguan 512500, China; (Z.S.); (Y.Z.)
| | - Yingming Zhang
- Guangdong Chebaling National Nature Reserve Administration Bureau, Shaoguan 512500, China; (Z.S.); (Y.Z.)
| | - Zhishu Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100045, China
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (F.W.); (T.X.); (C.S.); (B.H.)
| |
Collapse
|
20
|
Li Y, Ma G, Xi Y, Wang S, Zeng X, Jia Y. Divergent adaptation strategies of abundant and rare bacteria to salinity stress and metal stress in polluted Jinzhou Bay. ENVIRONMENTAL RESEARCH 2024; 245:118030. [PMID: 38151148 DOI: 10.1016/j.envres.2023.118030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Understanding how abundant (AT) and rare (RT) taxa adapt to diverse environmental stresses is vital for assessing ecological processes, yet remains understudied. We collected sediment samples from Liaoning Province, China, representing rivers (upstream of wastewater outlet), estuaries (wastewater outlets), and Jinzhou Bay (downstream of wastewater outlets), to comprehensively evaluate AT and RT adaptation strategies to both natural stressors (salinity stress) and anthropogenic stressors (metal stress). Generally, RT displayed higher α- and β-diversities and taxonomic groups compared to AT. Metal and salinity stresses induced distinct α-diversity responses in AT and RT, while β-diversity remained consistent. Both subcommunities were dominated by Woeseia genus. Metal stress emerged as the primary driver of diversity and compositional discrepancies in AT and RT. Notably, AT responded more sensitively to salinity stress than RT. Stress increased topological parameters in the biotic network of AT subcommunities while decreasing values in RT subcommunities, concurrently loosening interactions of AT with other taxa and strengthening interactions of RT with others in biotic networks. RT generally exhibited greater diversity of metal resistance genes compared to AT. Greater numbers of genes related to salinity tolerance was observed for the RT than for AT. Compared to AT, RT demonstrated higher diversity of metal resistance genes and a greater abundance of genes associated with salinity tolerance. Additionally, deterministic processes governed AT community assembly, reinforced by salinity stress. However, the opposite trend was observed in the RT, where the importance of stochastic process gradually increased with metal stresses. The study is centered on exploring the adaptation strategies of both AT and RT to environmental stress. It underscores the importance of future research incorporating diverse ecosystems and a range of environmental stressors to draw broader and more reliable conclusions. This comprehensive approach is essential for gaining a thorough understanding of the adaptive mechanisms employed by these microorganisms.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Guoqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| |
Collapse
|
21
|
Wu H, Bertilsson S, Li Y, Zhang W, Niu L, Cai W, Cong H, Zhang C. Influence of rapid vertical mixing on bacterial community assembly in stratified water columns. ENVIRONMENTAL RESEARCH 2024; 243:117886. [PMID: 38081344 DOI: 10.1016/j.envres.2023.117886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
Water column mixing homogenizes thermal and chemical gradients which are known to define distribution of microbial communities and influence the prevailing biogeochemical processes. Little is however known about the effects of rapid water column mixing on the vertical distribution of microbial communities in stratified reservoirs. To address this knowledge gap, physicochemical properties and microbial community composition from 16 S rRNA amplicon sequencing were analyzed before and after mixing of vertically stratified water-column bioreactors. Our results showed that α-diversity of bacterial communities decreased from bottom to surface during periods of thermal stratification. After an experimental mixing event, bacterial community diversity experienced a significant decrease throughout the water column and network connectivity was disrupted, followed by slow recovery. Significant differences in composition were seen for both total (DNA) and active (RNA) bacterial communities when comparing surface and bottom layer during periods of stratification, and when comparing samples collected before mixing and after re-stratification. The dominant predicted community assembly processes for stratified conditions were deterministic while such processes were less important during recovery from episodic mixing. Water quality characteristics of stratified water were significantly correlated with bacterial community diversity and structure. Furthermore, structural equation modeling analyses showed that changes in sulfur may have the greatest direct effect on bacterial community composition. Our results imply that rapid vertical mixing caused by episodic weather extremes and hydrological operations may have a long-term effect on microbial communities and biogeochemical processes.
Collapse
Affiliation(s)
- Hainan Wu
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou, 225009, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Wei Cai
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou, 225009, PR China
| | - Haibing Cong
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou, 225009, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|
22
|
Gad M, Cao M, Qin D, Sun Q, Yu CP, Hu A. Development, validation, and application of a microbial community-based index of biotic integrity for assessing the ecological status of a peri-urban watershed in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168659. [PMID: 37979863 DOI: 10.1016/j.scitotenv.2023.168659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
This study represents the pioneering effort in employing 16S rRNA-bacteria and 18S rRNA-microeukaryotes to construct the microbial community-based index of biotic integrity (MC-IBI) for assessing the ecological health of riverine ecosystems. The MC-IBI was developed, validated, and implemented using water samples from the Changle River watershed, encompassing both wet and dry seasons. A total of 205 metrics, containing microbial diversity, composition, pollution tolerance/sensitivity, and functional categories, were selected as candidates for evaluation. Following a rigorous screening process, five core metrics were identified as key indicators, namely Pielou's evenness of microeukaryotes, %Cryptophyceae, %Proteobacteria, %Oxyphotobacteria, and % 16S rRNA gene-human pathogens. Moreover, redundancy analysis revealed three metrics (i.e., Pielou's evenness, % 16S rRNA gene-human pathogens, and % Proteobacteria) were positively correlated with impairment conditions. In contrast, two metrics (i.e., %Oxyphotobacteria and %Cryptophyceae) were associated positively with reference conditions. Notably, the developed MC-IBI demonstrates clear discrimination between reference and impaired sites and significantly correlates with environmental parameters and land use patterns. A path model analysis revealed that land use patterns (i.e., build-up land, cropland) negatively impacted the MC-IBI scores. The application of the MC-IBI method yielded an assessment of the ecological conditions at the 73 sampling locations within the Changle River watershed, assigning them into categories of "Very good" (4.1 %), "Good" (4.1 %), "Moderate" (5.5 %), "Poor" (21.9 %), and "Very poor" (64.4 %). This bioassessment framework presents an innovative approach toward the preservation, maintenance, and management of riverine ecosystems.
Collapse
Affiliation(s)
- Mahmoud Gad
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Meixian Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Jiang R, Wang D, Jia S, Li Q, Liu S, Zhang XX. Dynamics of bacterioplankton communities in the estuary areas of the Taihu Lake: Distinct ecological mechanisms of abundant and rare communities. ENVIRONMENTAL RESEARCH 2024; 242:117782. [PMID: 38036201 DOI: 10.1016/j.envres.2023.117782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
As the crucial confluences of rivers and lakes, the estuary areas with varied hydrodynamic exchanges intensively affect the bacterioplankton communities, whereas the ecological characteristics of the bacterioplankton in the areas have not been well understood. Here, the distribution patterns and assembly mechanisms of bacterioplankton communities in the estuary areas of the Taihu Lake were investigated using high-throughput sequencing and multivariate statistical analyses. Our results showed obvious seasonal variations in bacterioplankton diversity and community composition, which had significant correlations with water temperature. Neutral and null models together revealed that stochastic processes (especially dispersal limitation) were the major processes in shaping the communities across different seasons. By contrast, heterogeneous selection in deterministic processes exhibited increased impacts on community assembly during summer and autumn, which was significantly related to the comprehensive water quality index (WQI) rather than any single factor. In this study, rare communities displayed more pronounced seasonal dynamics compared to abundant communities, likely due to their sensitivity towards environmental factors. Accordingly, the heterogeneous selection of deterministic processes largely shaped the rare communities. These results enriched our understanding of the assembly mechanisms of bacterioplankton communities in estuary areas and emphasized the specific co-occurrence patterns of abundant and rare communities.
Collapse
Affiliation(s)
- Ruiming Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qisheng Li
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of Environment, Nanjing University, Nanjing, 210023, China; China Three Gorges Construction Engineering Corporation, Beijing, 100048, China
| | - Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Zhang L, Adyari B, Hou L, Yang X, Gad M, Wang Y, Ma C, Sun Q, Tang Q, Zhang Y, Yu CP, Hu A. Mass-immigration shapes the antibiotic resistome of wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168193. [PMID: 37914134 DOI: 10.1016/j.scitotenv.2023.168193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Wastewater treatment plants (WWTPs) are the hotspots for the spread of antibiotic resistance genes (ARGs) into the environment. Nevertheless, a comprehensive assessment of the city-level and short-term daily (inter-day) variations of ARG profiles in the whole process (influent-INF, activated sludge-AS and effluent-EF) of WWTPs is still lacking. Here, 285 ARGs and ten mobile gene elements were monitored in seven WWTPs in Xiamen for seven days via high-throughput qPCR. The average daily load of ARGs to WWTPs was about 1.32 × 1020 copies/d, and a total of 1.56 × 1018 copies/d was discharged to the environment across the entire city. Stochastic processes were the main force determining the assembly of ARG communities during sampling campaign, with their relative importance ranked in the order of INF > EFF > AS. There're little daily variations in ARG richness, abundance, β-diversity composition as well as assembly mechanisms. The results of SourceTracker, variation partitioning analysis, and hierarchical partitioning analysis indicated that bacteria and ARGs from upstream treatment processes played an increasingly dominant role in shaping ARG communities in AS and EFF, respectively, suggesting the importance of mass-immigration of bacteria and ARGs from the source on ARG transport in wastewater treatment processes. This emphasizes the need to revise the way we mitigate ARG contamination but focus on the source of ARGs in urban wastewater.
Collapse
Affiliation(s)
- Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84322, USA
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Mahmoud Gad
- Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Yuwen Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Cong Ma
- Xiamen Municipal Environmental Technology Co., Ltd., Xiamen 361001, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiang Tang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
25
|
Li Y, Sun X, Zhang M, Khan A, Sun W. Dominant role of rare bacterial taxa rather than abundant taxa in driving the tailing primary succession. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132807. [PMID: 37879275 DOI: 10.1016/j.jhazmat.2023.132807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Primary ecological succession is imperative for tailing vegetation, driven notably by microbes that enhance tailing nutrient status. Yet, the roles of abundant and rare taxa in tailing primary succession remain underexplored. This study investigates these subcommunities across three succession stages (i.e., original tailing, biological crusts, grasslands). Throughout primary succession, alpha diversity and functional gene abundances of the rare taxa (RT) group consistently rise from bare tailings to grasslands. Conversely, the abundant taxa (AT) group displays an opposing trend. Intriguingly, employing co-occurrence networks, keystone taxa, mantel tests, similarity percentage analysis, and structural equation model, the study uncovers that RT wields a more pivotal role than AT in driving tailing primary succession. Community assembly analysis reveals stochastic control of AT and deterministic control of RT. Additionally, primary succession reinforces stochastic processes in AT, while RT's deterministic process remains unaffected. By unveiling these dynamics, the research enriches our understanding of primary ecological succession in tailings. Recognition of unique diversity patterns and community assembly mechanisms for rare and abundant subcommunities advances tailing ecosystem comprehension and informs ecological restoration strategies. This study thus contributes valuable insights to the complex interplay of microbial taxa during tailing primary succession.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Miaomiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ajmal Khan
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
26
|
Bao Y, Ruan Y, Wu J, Wang WX, Leung KMY, Lee PKH. Metagenomics-Based Microbial Ecological Community Threshold and Indicators of Anthropogenic Disturbances in Estuarine Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:780-794. [PMID: 38118133 DOI: 10.1021/acs.est.3c08076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Assessing the impacts of cumulative anthropogenic disturbances on estuarine ecosystem health is challenging. Using spatially distributed sediments from the Pearl River Estuary (PRE) in southern China, which are significantly influenced by anthropogenic activities, we demonstrated that metagenomics-based surveillance of benthic microbial communities is a robust approach to assess anthropogenic impacts on estuarine benthic ecosystems. Correlational and threshold analyses between microbial compositions and environmental conditions indicated that anthropogenic disturbances in the PRE sediments drove the taxonomic and functional variations in the benthic microbial communities. An ecological community threshold of anthropogenic disturbances was identified, which delineated the PRE sediments into two groups (H and L) with distinct taxa and functional traits. Group H, located nearshore and subjected to a higher level of anthropogenic disturbances, was enriched with pollutant degraders, putative human pathogens, fecal pollution indicators, and functional traits related to stress tolerance. In contrast, Group L, located offshore and subjected to a lower level of anthropogenic disturbances, was enriched with halotolerant and oligotrophic taxa and functional traits related to growth and resource acquisition. The machine learning random forest model identified a number of taxonomic and functional indicators that could differentiate PRE sediments between Groups H and L. The identified ecological community threshold and microbial indicators highlight the utility of metagenomics-based microbial surveillance in assessing the adverse impacts of anthropogenic disturbances in estuarine sediments, which can assist environmental management to better protect ecosystem health.
Collapse
Affiliation(s)
- Yingyu Bao
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Jiaxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
27
|
Chen Q, Long C, Bao Y, Men X, Zhang Y, Cheng X. The dominant genera of nitrogenase (nifH) affects soil biological nitrogen fixation along an elevational gradient in the Hengduan mountains. CHEMOSPHERE 2024; 347:140722. [PMID: 37972867 DOI: 10.1016/j.chemosphere.2023.140722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Biological nitrogen (N) fixation by diazotrophic microbes is an essential process for the N input. However, the patterns of biological N fixation and its biological or environmental mechanism along an elevational gradient in mountain ecosystems are not fully understood. In this study, a field experiment was conducted in the Hengduan Mountains to investigate the biological N fixation associated with the diversity and abundance of the nifH gene. Our results showed that both the abundance of the nifH gene and the biological N fixation displayed hump-shaped trends along an elevation gradient in the wet and dry seasons. However, the diversity of the nifH gene showed an inverse unimodal trend along an elevation gradient. We observed that biological N fixation was jointly associated with the abundance of the nifH gene, especially dominant genera, as well as soil chartacteristics. Among them, clay content played a preeminent role in the regulation of N fixation potentially through the formation of microaggregates and microenvironments. In general, our results revealed that biological N fixation was correlated with the abundance of microorganisms, especially dominant genera, and soil texture. These results highlighted the importance of dominant genera, which should be considered in the modeling and forecasting of N cycling under future environmental change.
Collapse
Affiliation(s)
- Qiong Chen
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Chunyan Long
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Bao
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Xiuxian Men
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Zhang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
28
|
Xu W, Wang W, Deng B, Liu Q. A review of the formation conditions and assessment methods of black and odorous water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:42. [PMID: 38102303 DOI: 10.1007/s10661-023-12222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Black and odorous water is an extreme pollution phenomenon. This article reviews the formation process, formation conditions, and evaluation methods of black and odorous water. The results indicate that N, P, and TOC are the key nutrients inducing black and odorous water while S, Fe, and Mn are key elements forming blackening and odorizing pollutants. In addition, Cyanobacteria, Proteobacteria, Firmicutes, Verrucomicrobia, Planctomycetes, and Actinobacteria participate in the biogeochemistry cycles of key elements and play important roles in the blackening and odorizing process of water. The black and odorous thresholds that need further verification are as follows: 1.0 g/L of organic matrix, 2.0-8.0 mg/L of NH3-N, 0.6-1.2 mg/L of TP, 0.05 mg/L of Fe2+, 0.3 mg/L of Mn2+, 1.2-2.0 mg/L of DO, and -50 to 50 mV of the ORP. In order to propose a universal assessment method, it is suggested that NH3-N, DO, COD, BOD, and TP serve as the assessment indicators, and the levels of pollutions are I (not black odor), II (mild black odor), III (moderate black odor), IV (severe black odor), and inferior IV (extremely black odor).
Collapse
Affiliation(s)
- Weihao Xu
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Weiwei Wang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Binbin Deng
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Qiuxin Liu
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, 510611, China.
| |
Collapse
|
29
|
Lu Y, Cheung S, Koh XP, Xia X, Jing H, Lee P, Kao SJ, Gan J, Dai M, Liu H. Active degradation-nitrification microbial assemblages in the hypoxic zone in a subtropical estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166694. [PMID: 37660824 DOI: 10.1016/j.scitotenv.2023.166694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
In 2017 summer, we observed widespread bottom hypoxia at the lower estuary of the Pearl River estuary (PRE). Our previous study noticed that AOA and bacteria were highly abundant and clustered within the hypoxia zone. Moreover, nitrification and respiration rates were also evidently higher in these hypoxic waters. These observations prompt us to investigate whether these two oxygen-consuming microorganisms have symbiotic relationships and whether specific groups consistently coexist and form ecological-meaningful associations. In this study, we use network analysis to investigate the presence and active communities (DNA-RNA) based on bacterial and AOA communities sequencing (inferred from the 16S rRNA and amoA gene, respectively) to gain more insight into ecological-meaningful associations. We observed a highly diverse and active bacterial community in the hypoxia zone. The RNA networks were more modulized than the corresponding DNA networks, indicating that the active communities were better parsed into functional microbial assemblages. The network topology revealed that Gammaproteobacteria, Bacteroidetes (Flavobacteriales), Alphaproteobacteria (Rhodobacterales and Rhodospirillales), Marinimicrobia, Cyanobacteria (Synechococcales), and AOA sublineages were module hubs and connectors, indicating that they were the keystone taxa of the microbial communities. The hub-subnetwork further showed robust co-occurrence between Gammaproteobacteria, Bacteroidetes (Flavobacteriales), Alphaproteobacteria (Rhodobacterales and Rhodospirillales), Marinimicrobia with AOA sublineages, and Nitrospinae (presumably NOB) reflecting the formation of Degradation-Nitrification (sequential oxidation of Organic matter degradation to ammonia, then nitrate) microbial assemblage in the hypoxia zone. The subnetworks revealed AOA ecotype-specific modularization and niche partitioning of different AOA sublineages. Interestingly, the recurring co-occurrence of nitrifiers assemblage in the RNA subnetworks (SCM1-like-II (AOA) and Nitrospinae OTUs (NOB) suggests an active interaction via nitrite exchange. The Degradation-Nitrification microbial assemblage may contribute substantially to the oxygen consumption in the hypoxia formation in PRE. Our results provide new insight into the functional microbial assemblages, which is worth further investigation on their ecological implication in estuarine waters.
Collapse
Affiliation(s)
- Yanhong Lu
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, Guangdong; Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong; Shenzhen Marine Development and Promotion Center, Shenzhen, Guangdong.
| | - Shunyan Cheung
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Xiu Pei Koh
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan
| | - Puiyin Lee
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian
| | - Jianping Gan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Minhan Dai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
30
|
Huang Z, Pan B, Zhao X, Liu X, Liu X, Zhao G. Hydrological disturbances enhance stochastic assembly processes and decrease network stability of algae communities in a highland floodplain system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166207. [PMID: 37567295 DOI: 10.1016/j.scitotenv.2023.166207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Floodplains are hotspots for biodiversity research and conservation worldwide. Hydrological disturbances can profoundly influence the ecological processes and functions of floodplain systems by altering key biological groups such as algae communities. However, the impacts of flood disturbance on the assembly processes and co-occurrence patterns of algae communities in floodplain ecosystems are still unclear. To ascertain the response patterns of algae communities to flood disturbance, we characterized planktonic and benthic algae communities in 144 water and sediment samples collected from the Tibetan floodplain during non-flood and flood periods based on 23S ribosomal RNA gene sequencing. Results showed that planktonic algae exhibited higher diversity and greater compositional variations compared with benthic communities after flood disturbance. Flooding promoted algae community homogenization at horizontal (rivers vs. oxbow lakes) and vertical levels (water vs. sediment). Stochastic processes governed the assembly of distinct algae communities, and their ecological impacts were enhanced in response to flooding. In the non-flood period, dispersal limitation (81.78 %) was the primary ecological process driving algae community assembly. In the flood period, the relative contribution of ecological drift (72.91 %) to algae community assembly markedly increased, with dispersal limitation (22.61 %) being less important. Flooding reduced the interactions among algae taxa, resulting in lower network complexity and stability. Compared with the planktonic algae subnetworks, the benthic subnetworks showed greater stability in the face of flooding. Findings of this study broaden our understanding of how algae communities respond to hydrological disturbances from an ecological perspective and could be useful for the management of highland floodplain ecosystems.
Collapse
Affiliation(s)
- Zhenyu Huang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xiaohui Zhao
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xing Liu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xinyuan Liu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Gengnan Zhao
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| |
Collapse
|
31
|
Liu S, Lin Y, Liu T, Xu X, Wang J, Chen Q, Sun W, Dang C, Ni J. Planktonic/benthic Bathyarchaeota as a "gatekeeper" enhance archaeal nonrandom co-existence and deterministic assembling in the Yangtze River. WATER RESEARCH 2023; 247:120829. [PMID: 37976624 DOI: 10.1016/j.watres.2023.120829] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Archaea, the third proposed domain of life, mediate carbon and nutrient cycling in global natural habitats. Compared with bacteria, our knowledge about archaeal ecological modes in large freshwater environments subject to varying natural and human factors is limited. By metabarcoding analysis of 303 samples, we provided the first integrate biogeography about archaeal compositions, co-existence networks, and assembling processes within a 6000 km continuum of the Yangtze River. Our study revealed that, among the major phyla, water samples owned a higher proportion of Thaumarchaeota (62.8%), while sediments had higher proportions of Euryarchaeota (33.4%) and Bathyarchaeota (18.8%). A decline of polarization in phylum abundance profile was observed from plateau/mountain/hill to basin/plain areas, which was attributed to the increase of nutrients and metals. Planktonic and benthic Bathyarchaeota tended to co-occur with both major (e.g., methanogens or Thermoplasmata) and minor (e.g., Asgard or DPANN) taxa in the non-random networks, harboring the highest richness and abundances of keystone species and contributing the most positively to edge number, node degree, and nearest neighbor degree. Furthermore, we noted significantly positive contributions of Bathyarchaeota abundance and network complexity to the dominance of deterministic process in archaeal assembly (water: 65.3%; sediments: 92.6%), since higher carbon metabolic versatility of Bathyarchaeota would benefit archaeal symbiotic relations. Stronger deterministic assembling was identified at the lower-reach plain, and higher concentrations of ammonium and aluminum separately functioning as nutrition and agglomerator were the main environmental drivers. We lastly found that the Three Gorges Dam caused a simultaneous drop of benthic Bathyarchaeota abundance, network co-existence, and deterministic effects immediately downstream due to riverbed erosion as a local interference. These findings highlight that Bathyarchaeota are a "gatekeeper" to promote fluvial archaeal diversity, stability, and predictability under varying macroscopic and microscopic factors, expanding our knowledge about microbial ecology in freshwater biogeochemical cycling globally.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China; College of Resources and Environmental Sciences, China Agricultural University, Beijing, PR China
| | - Yahsuan Lin
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Tang Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, PR China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Jiawen Wang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China.
| |
Collapse
|
32
|
Liu B, Tian Z, Xie P, Guo F, Zhang W, Zhang J, Wu J, Zhu X, Song Z, Hu H, Zhu Y. Temporal and spatial dynamic changes of planktonic bacteria community structure in Li River, China: a seasonal survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111244-111255. [PMID: 37814045 DOI: 10.1007/s11356-023-30166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A combined temporal and spatial research approach helps us to evaluate the ecological status of a river scientifically and comprehensively. To understand the response mechanisms of bacteria in the Li River to different environments, we conducted a 1-year study (2020-2021) and collected water samples from 18 sections of the river in October, January, April, and August. 16S sequencing was used to study the composition and structure of bacterial communities in Li River at different temporal and spatial scales. The results showed that NO3--N, TP, T, pH, and DO were significantly different on spatial and temporal scales. Alpha diversity of planktonic bacteria in Li River fluctuated significantly with the season, reaching its highest in summer. Proteobacteria remained the most dominant phylum in all seasons, but the differential microorganisms varied between seasons. Although the abundance of metabolic functions of planktonic bacteria did not show significant differences between seasons, we found that DO, TP, T, and COD were the key environmental factors affecting bacterial metabolism. In addition, the co-occurrence network analysis showed that the autumn network had a higher number of nodes and edges and exhibited a high degree of complexity, while the summer network had the highest degree of modularity and exhibited greater stability. These results deepen our knowledge of the response mechanisms of river microorganisms to temporal and spatial changes and provide a scientific reference for the study of river ecosystems.
Collapse
Affiliation(s)
- Biao Liu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Zeyuan Tian
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Penghao Xie
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Feng Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Wenjun Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junxia Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zhongxian Song
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hongwei Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yichun Zhu
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
33
|
Li Z, Sun L, Liu S, Lei P, Wang R, Li S, Gu Y. Interkingdom network analyses reveal microalgae and protostomes as keystone taxa involved in nutrient cycling in large freshwater lake sediment. FEMS Microbiol Ecol 2023; 99:fiad111. [PMID: 37715306 DOI: 10.1093/femsec/fiad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Few studies have explored the role of interkingdom interactions between bacteria and microeukaryotes in nutrient cycling in lake ecosystems. We conducted sediment sampling from 40 locations covering Hongze Lake and analyzed their chemical properties. Intra- and interkingdom networks were constructed using 16S and 18S rRNA gene amplicon sequencing. Microeukaryotic intranetworks were more complex in spring than in autumn, while no clear variation in the complexity of bacterial intranetworks was found between autumn and spring. Larger and more complex bacterial-microeukaryotic bipartite networks emerged in spring than in autumn, correlated with lower carbon, nitrogen, and phosphorus levels in spring, likely resulting in intense microbial competition. Bacteria and microeukaryotes played different topological roles in interkingdom networks, with microeukaryotes contributing to the networks' greater complexity. Seven keystone modules were identified in spring and autumn nutrient cycling. Importantly, keystone taxa in these modules belonged to photoautotrophic microalgae or predatory protostomes, indicating that these organisms are key drivers in lake sediment nutrient cycling. Our results suggested that nutrient content variation in autumn and spring changes interkingdom networks' topological structure between bacteria and microeukaryotes. Microalgae and protostomes are essential in freshwater lake nutrient cycling and may be targeted to modulate nutrient cycling in large freshwater ecosystems.
Collapse
Affiliation(s)
- Zhidan Li
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Sijie Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yian Gu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
34
|
Zhao Z, Zhang L, Zhang G, Gao H, Chen X, Li L, Ju F. Hydrodynamic and anthropogenic disturbances co-shape microbiota rhythmicity and community assembly within intertidal groundwater-surface water continuum. WATER RESEARCH 2023; 242:120236. [PMID: 37356162 DOI: 10.1016/j.watres.2023.120236] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Tidal hydrodynamics drive the groundwater-seawater exchange and shifts in microbiota structure in the coastal zone. However, how the coastal water microbiota structure and assembly patterns respond to periodic tidal fluctuations and anthropogenic disturbance remains unexplored in the intertidal groundwater-surface water (GW-SW) continuum, although it affects biogeochemical cycles and coastal water quality therein. Here, through hourly time-series sampling in the saltmarsh tidal creek, rhythmic patterns of microbiota structure in response to daily and monthly tidal fluctuations in intertidal surface water are disentangled for the first time. The similarity in archaeal community structures between groundwater and ebb-tide surface water (R2=0.06, p = 0.2) demonstrated archaeal transport through groundwater discharge, whereas multi-source transport mechanisms led to unique bacterial biota in ebb-tide water. Homogeneous selection (58.6%-69.3%) dominated microbiota assembly in the natural intertidal GW-SW continuum and the presence of 157 rhythmic ASVs identified at ebb tide and 141 at flood tide could be attributed to the difference in environmental selection between groundwater and seawater. For intertidal groundwater in the tidal creek affected by anthropogenically contaminated riverine inputs, higher microbial diversity and shift in community structure were primarily controlled by increased co-contribution of dispersal limitation and drift (jointly 57.8%) and enhanced microbial interactions. Overall, this study fills the knowledge gaps in the tide-driven water microbial dynamics in coastal transition zone and the response of intertidal groundwater microbiota to anthropogenic pollution of overlying waters. It also highlights the potential of microbiome analysis in enhancing coastal water quality monitoring and identifying anthropogenic pollution sources (e.g., pathogenic Vibrio in aquaculture) through the detection of rhythmic microbial variances associated with intertidal groundwater discharge and seawater intrusion.
Collapse
Affiliation(s)
- Ze Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Guoqing Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Han Gao
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Xiaogang Chen
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Wang J, Wang C, Wu X, Zhang J, Zhao G, Hou Y, Sun H. Effects of moderate drought extension on bacterial network structure in the rhizosphere soil of Leymus chinensis in semi-arid grasslands. Front Microbiol 2023; 14:1217557. [PMID: 37637130 PMCID: PMC10448527 DOI: 10.3389/fmicb.2023.1217557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Grasslands are home to complex bacterial communities whose dynamic interactions play a crucial role in organic matter and nutrient cycling. However, there is limited understanding regarding the impact of changes in rainfall amount and the duration of dry intervals on bacterial interactions. Methods To assess the impact of changes in precipitation volume and dry intervals on bacterial co-occurrence networks, we carried out precipitation manipulation experiments in the Eastern Eurasian Steppe of China. Results and Discussion We found that alterations in precipitation and dry intervals did not significantly affect bacterial alpha and beta diversity. However, we observed significant changes in the co-occurrence network structure of bacteria in the rhizosphere ecosystem, with the 12-day dry interval showing the most notable reduction in the number of degrees, edges, and clustering coefficient. Additionally, the study identified putative keystone taxa and observed that the moderately prolonged dry intervals between precipitation events had a major effect on the robustness of bacterial networks. The complexity and stability of the network were found to be positively correlated, and were primarily influenced by soil water content, phosphorous, and aboveground biomass, followed by available phosphorus (AP) and total biomass. These findings have the potential to enhance our comprehension of how bacterial co-occurrence pattern react to variations in dry intervals, by regulating their interactions in water-limited ecosystems. This, in turn, could aid in predicting the impact of precipitation regime alterations on ecosystem nutrient cycling, as well as the feedback between ecosystem processes and global climate change.
Collapse
Affiliation(s)
- Jinlong Wang
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin, China
| | - Chunjuan Wang
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin, China
| | - Xuefeng Wu
- Chongqing Institute of Quality and Standardization, Chongqing, China
| | - Jinwei Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guiyun Zhao
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin, China
| | - Yu Hou
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin, China
| | - Haiming Sun
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin, China
| |
Collapse
|
36
|
Hu W, Zheng N, Zhang Y, Bartlam M, Wang Y. Spatiotemporal dynamics of high and low nucleic acid-content bacterial communities in Chinese coastal seawater: assembly process, co-occurrence relationship and the ecological functions. Front Microbiol 2023; 14:1219655. [PMID: 37601370 PMCID: PMC10433394 DOI: 10.3389/fmicb.2023.1219655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Studies of high nucleic acid-content (HNA) and low nucleic acid-content (LNA) bacterial communities are updating our view of their distributions and taxonomic composition. However, there are still large gaps in our knowledge of the composition, assembly processes, co-occurrence relationships and ecological functions of HNA and LNA bacterial communities. Here, using 16S rRNA gene amplicon sequencing, we investigated the spatiotemporal dynamics, assembly processes, co-occurrence relationships and ecological functions of HNA and LNA bacterial communities in the samples collected in summer and winter in Chinese coastal seas. The communities of HNA and LNA bacteria had clear spatiotemporal patterns and LNA bacteria was phylogenetically less diverse than HNA bacteria in both seasons. The distribution of HNA and LNA bacteria were significantly affected by the environmental factors and a significant seasonal-consistent distance-decay patterns were found in HNA and LNA bacteria. Furthermore, a quantitative assessment of ecological processes revealed that dispersal limitation, homogeneous selection exerted important roles in the community assembly of HNA and LNA bacteria. More importantly, we observed seasonality in the co-occurrence relationships: closer inter-taxa connections of HNA bacterial communities in winter than in summer and the opposite is true in the LNA bacterial communities. Some ecological functions, such as: phototrophy, photoautotrophy, oxygenic photoautotrophy, were different between HNA and LNA bacteria. These results provide a better understanding of spatiotemporal patterns, processes, and the ecological functions of HNA and LNA bacterial communities in Chinese coastal seawater.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ningning Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yadi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| |
Collapse
|
37
|
Wongkiew S, Polprasert C, Noophan PL, Koottatep T, Kanokkantapong V, Surendra KC, Khanal SK. Effects of vermicompost leachate on nitrogen, phosphorus, and microbiome in a food waste bioponic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117860. [PMID: 37086642 DOI: 10.1016/j.jenvman.2023.117860] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Food waste is rich in nutrients, such as nitrogen and phosphorus, and can be integrated with bioponics, a closed-loop agricultural system that combines hydroponics with biological nutrient recovery. Vermicompost leachate (VCL) supplementation has been shown to improve the co-composting of organic waste (i.e., compost quality) and the biodegradation of organic compounds. Thus, VCL has high potential for enhancing nutrient availability in bioponics from food waste. However, the understanding of nitrogen and phosphorus availability in food waste-based bioponics is limited, both with and without VCL. In this study, food waste derived from cafeteria vegetable waste was used as the substrate (500 g dry wt./system) in bioponics to grow lettuce (Lactuca sativa L.) for two consecutive cycles (35 days/cycle) without substrate replacement. VCL was applied weekly (1-5% v/v) and compared to the control without VCL. The results showed that the food waste in bioponics provided nitrogen and phosphorus for plant growth (15.5-65.8 g/lettuce head). Organic-degrading and nutrient-transforming bacteria (Hydrogenispora, Clostridium_sensu_stricto_1, Ruminiclostridium_1, Cellvibrio, Thauera, Hydrogenophaga, and Bacillus) were predominantly found in plant roots and residual food waste. VCL addition significantly increased nitrate, phosphate, and chemical oxygen demand levels in bioponics, owing to the nutrients in VCL and the enhancement of keystone microorganisms responsible for organic degradation and nutrient cycling (e.g., Ellin6067, Actinomyces, and Pirellula). These findings suggest that nitrogen, phosphorus, and organic carbon concentrations in an ecosystem of nutrient-transforming and organic-degrading microbes are key in managing nutrient recovery from food waste in bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pongsak Lek Noophan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Global Institute for Interdisciplinary Studies, 44600, Kathmandu, Nepal
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
38
|
Kong H, Yang EJ, Jiao N, Lee Y, Jung J, Cho KH, Moon JK, Kim JH, Xu D. RNA outperforms DNA-based metabarcoding in assessing the diversity and response of microeukaryotes to environmental variables in the Arctic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162608. [PMID: 36871742 DOI: 10.1016/j.scitotenv.2023.162608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The Arctic Ocean (AO) has a harsh environment characterized by low temperatures, extensive ice coverage, and periodic freezing and melting of sea ice, which has provided diverse habitats for microorganisms. Prior studies primarily focused on microeukaryote communities in the upper water or sea ice based on environmental DNA, leaving the composition of active microeukaryotes in the diverse AO environments largely unknown. This study provided a vertical assessment of microeukaryote communities in the AO from snow and ice to sea water at a depth of 1670 m using high-throughput sequencing of co-extracted DNA and RNA. RNA extracts depicted microeukaryote community structure and intergroup correlations more accurately and responded more sensitively to environmental conditions than those derived from DNA. Using RNA:DNA ratios as a proxy for relative activity of major taxonomic groups, the metabolic activities of major microeukaryote groups were determined along depth. Analysis of co-occurrence networks showed that parasitism between Syndiniales and dinoflagellates/ciliates in the deep ocean may be significant. This study increased our knowledge of the diversity of active microeukaryote communities and highlighted the importance of using RNA-based sequencing over DNA-based sequencing to examine the relationship between microeukaryote assemblages and the responses of microeukaryotes to environmental variables in the AO.
Collapse
Affiliation(s)
- Hejun Kong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Eun-Jin Yang
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Youngju Lee
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Kyoung-Ho Cho
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jong-Kuk Moon
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jee-Hoon Kim
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.
| |
Collapse
|
39
|
Shang J, Zhang W, Li Y, Zheng J, Ma X, Wang L, Niu L. How nutrient loading leads to alternative stable states in microbially mediated N-cycle pathways: A new insight into bioavailable nitrogen removal in urban rivers. WATER RESEARCH 2023; 236:119938. [PMID: 37054605 DOI: 10.1016/j.watres.2023.119938] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Excessive nutrients have disrupted pathways of microbial-mediated nitrogen (N) cycle in urban rivers and caused bioavailable N to accumulate in sediments, while remedial actions sometimes fail to recover degraded river ecosystems even when environmental quality has been improved. It is not sufficient to revert the ecosystem to its original healthy state by restoring the pre-degradation environmental conditions, as explained by alternative stable states theory. Understanding the recovery of disrupted N-cycle pathways from the perspective of alternative stable states theory can benefit effective river remediation. Previous studies have found alternative microbiota states in rivers; however, the existence and implications of alternative stable states in microbial-mediated N-cycle pathway remain unclear. Here, high-throughput sequencing and N-related enzyme activities measurement were combined in the field investigation to provide empirical evidence for the bi-stability in microbially mediated N-cycle pathways. According to the behavior of bistable ecosystems, the existence of alternative stable states in microbial-mediated N-cycle pathway have been shown, and nutrient loading, mainly total nitrogen and total phosphorus, were identified as key driver of regime shifts. In addition, potential analysis revealed that reducing nutrient loading shifted the N-cycle pathway to a desirable state characterized by high ammonification and nitrification, probably avoiding the accumulation of ammonia and organic N. It should be noted that the improvement of microbiota status can facilitate the recovery of the desirable pathway state according to the relationship between microbiota states and N-cycle pathway states. Keystone species, including Rhizobiales and Sphingomonadales, were discerned by network analysis, and the increase in their relative abundance may facilitate the improvement of microbiota status. The obtained results suggested that the nutrient reduction should be combined with microbiota management to benefit the bioavailable N removal in urban rivers, therefore providing a new insight into alleviating adverse effects of the nutrient loading on urban rivers.
Collapse
Affiliation(s)
- Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China.
| | - Jinhai Zheng
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China
| | - Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China
| |
Collapse
|
40
|
Park H, Shabarova T, Salcher MM, Kosová L, Rychtecký P, Mukherjee I, Šimek K, Porcal P, Seďa J, Znachor P, Kasalický V. In the right place, at the right time: the integration of bacteria into the Plankton Ecology Group model. MICROBIOME 2023; 11:112. [PMID: 37210505 DOI: 10.1186/s40168-023-01522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/17/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Planktonic microbial communities have critical impacts on the pelagic food web and water quality status in freshwater ecosystems, yet no general model of bacterial community assembly linked to higher trophic levels and hydrodynamics has been assessed. In this study, we utilized a 2-year survey of planktonic communities from bacteria to zooplankton in three freshwater reservoirs to investigate their spatiotemporal dynamics. RESULTS We observed site-specific occurrence and microdiversification of bacteria in lacustrine and riverine environments, as well as in deep hypolimnia. Moreover, we determined recurrent bacterial seasonal patterns driven by both biotic and abiotic conditions, which could be integrated into the well-known Plankton Ecology Group (PEG) model describing primarily the seasonalities of larger plankton groups. Importantly, bacteria with different ecological potentials showed finely coordinated successions affiliated with four seasonal phases, including the spring bloom dominated by fast-growing opportunists, the clear-water phase associated with oligotrophic ultramicrobacteria, the summer phase characterized by phytoplankton bloom-associated bacteria, and the fall/winter phase driven by decay-specialists. CONCLUSIONS Our findings elucidate the major principles driving the spatiotemporal microbial community distribution in freshwater ecosystems. We suggest an extension to the original PEG model by integrating new findings on recurrent bacterial seasonal trends. Video Abstract.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- 20-12496X Grantová Agentura České Republiky
- 19-00113S Grantová Agentura České Republiky
- 19-23469S Grantová Agentura České Republiky
- 19-00113S Grantová Agentura České Republiky
- 22-33245S Grantová Agentura České Republiky
- 20-12496X Grantová Agentura České Republiky
Collapse
Affiliation(s)
- Hongjae Park
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Lenka Kosová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Porcal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jaromír Seďa
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
41
|
Yang Q, Li D, Chen W, Zhu L, Zou X, Hu L, Yuan Y, He S, Shi F. Dynamics of Bacterioplankton Communities during Wet and Dry Seasons in the Danjiangkou Reservoir in Hubei, China. Life (Basel) 2023; 13:life13051206. [PMID: 37240851 DOI: 10.3390/life13051206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Water quality is directly linked to drinking water safety for millions of people receiving the water. The Danjiangkou Reservoir is the main water source for the Middle Route of the South-to-North Water Diversion Project (MR-SNWDP), located in the vicinity of Henan and Hubei provinces in China. Aquatic microorganisms are key indicators of biologically assessing and monitoring the water quality of the reservoir as they are sensitive to environmental and water quality changes. This study aimed to investigate the spatiotemporal variations in bacterioplankton communities during wet (April) and dry (October) seasons at eight monitoring points in Hanku reservoir and five monitoring points in Danku reservoir. Each time point had three replicates, labeled as wet season Hanku (WH), wet season Danku (WD), dry season Hanku (DH), and dry season Danku (DD) of Danjiangkou Reservoir in 2021. High-throughput sequencing (Illumina PE250) of the 16S rRNA gene was performed, and alpha (ACE and Shannon) and beta (PCoA and NDMS) diversity indices were analyzed. The results showed that the dry season (DH and DD) had more diverse bacterioplankton communities compared to the wet season (WH and WD). Proteobacteria, Actinobacteria, and Firmicutes were the most abundant phyla, and Acinetobacter, Exiguobacterium, and Planomicrobium were abundant in the wet season, while polynucleobacter was abundant in the dry season. The functional prediction of metabolic pathways revealed six major functions including carbohydrate metabolism, membrane transport, amino acid metabolism, signal transduction, and energy metabolism. Redundancy analysis showed that environmental parameters greatly affected bacterioplankton diversity during the dry season compared to the wet season. The findings suggest that seasonality has a significant impact on bacterioplankton communities, and the dry season has more diverse communities influenced by environmental parameters. Further, the relatively high abundance of certain bacteria such as Acinetobacter deteriorated the water quality during the wet season compared to the dry season. Our findings have significant implications for water resource management in China, and other countries facing similar challenges. However, further investigations are required to elucidate the role of environmental parameters in influencing bacterioplankton diversity in order to devise potential strategies for improving water quality management in the reservoir.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Dewang Li
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Wei Chen
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Liming Zhu
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Xi Zou
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Lian Hu
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Yujie Yuan
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Shan He
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Fang Shi
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| |
Collapse
|
42
|
Li Y, Gao W, Wang C, Gao M. Distinct distribution patterns and functional potentials of rare and abundant microorganisms between plastisphere and soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162413. [PMID: 36842601 DOI: 10.1016/j.scitotenv.2023.162413] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The increasing application of plastic film has caused the "white pollution" of farmlands in greenhouses. To date, most studies on the ecology of the plastisphere have focused on the whole microbial community, with few on the rare and abundant taxa, especially in the terrestrial ecosystems. To understand the plastisphere rare and abundant taxa of bacterial and fungal communities, we collected residues of plastic film from plastic-covered soils in the greenhouse. The plastisphere was significantly different from surrounding soils in terms of alpha- and beta-diversities of abundant and rare taxa. Such discrepancies were greater in rare taxa than in abundant taxa. Besides, the enrichment of soil-borne plant pathogenic fungi in the plastisphere implied that plastic film residues can act as vectors for pathogen transmission. In the plastisphere, the stochastic process governed the assemblies of rare taxa, while deterministic assemblies dominated that of abundant taxa. However, in surrounding soils, the stochastic process played a larger role in abundant taxa as compared to rare taxa. The plastisphere showed a network of less complexity, more competitive connections, and more modules compared to surrounding soils, and rare taxa played greater roles than abundant taxa. There existed obvious discrepancies in the microbial functions between surrounding soils and plastisphere, including carbon, sulfur, nitrogen, and phosphorus cycling, and rare taxa contribute large proportions to the above cycling processes. Altogether, the findings advance our understanding of ecological mechanisms of abundant and rare taxa in the plastisphere in terrestrial ecosystems.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Wenlong Gao
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Caixia Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Miao Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
43
|
Ifon BE, Adyari B, Hou L, Ohore OE, Rashid A, Yu CP, Anyi H. Urbanization influenced the interactions between dissolved organic matter and bacterial communities in rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117986. [PMID: 37172350 DOI: 10.1016/j.jenvman.2023.117986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/14/2023]
Abstract
Increased urbanization and anthropogenic activities can alter dissolved organic matter (DOM) and complicate its interaction with bacteria in rivers' ecosystems, however, there is limited information about how bacterial communities respond to DOM components in rivers with different urbanization levels. Here, we combined spectroscopy-based DOM analysis and 16S rRNA gene amplicon sequencing to investigate the associations of bacterial taxa and DOM properties as well as the impacts of DOM on bacterial niche breadth in North River (NR) and West River (WR) of Jiulong River watershed, southern China, which had low and high urbanization levels, respectively. Spectroscopy analysis showed that hydrophilic DOM was predominant in both rivers whereas chromophoric DOM was higher in WR. Network analysis indicated that only seven bacterial genera (i.e., hg clade, chthoniobacter, Geobacter, Acidibacter, Alphal Cluster, Fluviicola, and Lacunisphaera) showed strong associations with DOM optical variables in both rivers, whereas more than 85% of DOM-bacterial genera associations were different between rivers. These results suggest that the relationship between DOM and bacterial communities had different responses in rivers with different urbanization levels. The partial least square path model indicated that the total standardized effect of physico-chemicals on bacterial niche breadth was higher in NR (0.62) than in WR (0.35), whereas humic substances showed an opposite pattern (NR: -0.42; WR: 1.67). The distinct effects of physico-chemicals and DOM on bacterial niche breadths between rivers could be due to the different effects of urbanization and human activities on the environmental conditions of riverine ecosystems. Our findings revealed a huge dissimilarity in the bacteria-DOM co-occurrence networks between rivers with different urbanization levels and provide a novel insight that urbanization may enhance DOM's importance to bacterial niche breadths.
Collapse
Affiliation(s)
- Binessi Edouard Ifon
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Laboratory of Physical Chemistry, University of Abomey-Calavi, 01 BP 4521, Cotonou, Benin, Benin
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta, 12220, Indonesia
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Utah, UT, 84322, USA
| | - Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Azhar Rashid
- Department of Environmental Sciences, The University of Haripur, Haripur, 22620, Pakistan
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Hu Anyi
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
44
|
Liu L, Zhu L, Yan R, Yang Y, Adams JM, Liu J. Abundant bacterial subcommunity is structured by a stochastic process in an agricultural system with P fertilizer inputs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162178. [PMID: 36775144 DOI: 10.1016/j.scitotenv.2023.162178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Soil microorganisms play an important role in agroecosystems and are related to ecosystem functioning. Nevertheless, little is understood about their community assembly and the major factors regulating stochastic and deterministic processes, particularly with respect to the comparison of abundant and rare bacterial subcommunities in agricultural systems. Here, we investigated the assembly of abundant and rare bacterial subcommunities in fields with different crops (maize and wheat) and phosphorus (P) fertilizer input at three different growth stages on the Loess Plateau. The high-throughput sequencing dataset was assessed using null and neutral community models. We found that abundant bacteria was governed by the stochastic process of homogenizing dispersal, but rare bacterial subcommunity was predominant by deterministic processes in maize and wheat fields due to broader niche breadths of abundant species. Soil nitrogen (N) and P also determined the assembly of abundant and rare soil subcommunities. The relative abundance and composition of the abundant and rare bacterial subcommunities were also influenced by soil nutrients (soil available P (AP) and NO3--N) and agricultural practices (P fertilization and crop cultivation). In addition, the abundant bacterial community was more susceptible to P fertilizer input than that of the rare bacteria, and a higher relative abundance of abundant bacteria was observed in the P70 treatment both in maize and wheat soils. The microbial co-occurrence network analysis indicated that the maize field and low nutrient treatment exhibited stronger associations and that the abundant bacteria showed fewer interconnections. This study provides new insights toward understanding the mechanisms for the assembly of abundant and rare bacterial taxa in dryland cropping systems, enhancing our understanding of ecosystem diversity theory in microbial ecology.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhu
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Yan
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Yang
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jonathan M Adams
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Jinshan Liu
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
45
|
Xu N, Hu H, Wang Y, Zhang Z, Zhang Q, Ke M, Lu T, Penuelas J, Qian H. Geographic patterns of microbial traits of river basins in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162070. [PMID: 36764554 DOI: 10.1016/j.scitotenv.2023.162070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
River microbiotas contribute to critical geochemical processes and ecological functions of rivers but are sensitive to variations of environmental drivers. Understanding the geographic pattern of river microbial traits in biogeochemical processes can provide important insights into river health. Many studies have characterized river microbial traits in specific situations, but the geographic patterns of these traits and environmental drivers at a large scale are unknown. We reanalyzed 4505 raw 16S rRNA sequences samples for microbiota from river basins in China. The results indicated differences in the diversity, composition, and structure of microbiotas across diverse river basins. Microbial diversity and functional potential in the river basins decreased over time in northern China and increased in southern China due to niche differentiation, e.g., the Yangtze River basin was the healthiest ecosystem. River microbiotas were mainly involved in the cycling of carbon and nitrogen in the river ecosystems and participated in potential organic metabolic functions. Anthropogenic pollutants discharge was the most critical environmental driver for the microbial traits, e.g., antibiotic discharge, followed by climate change. The prediction by machine-learning models indicated that the continuous discharge of antibiotics and climate change led to high ecological risks for the rivers. Our study provides guidelines for improving the health of river ecosystems and for the formulation of strategies to restore the rivers.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Hang Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| |
Collapse
|
46
|
Zhang M, Wang K, Shi C, Li X, Qiu Z, Shi F. Responses of Fungal Assembly and Co-Occurrence Network of Rhizosphere Soil to Amaranthus palmeri Invasion in Northern China. J Fungi (Basel) 2023; 9:509. [PMID: 37233220 PMCID: PMC10219470 DOI: 10.3390/jof9050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
The interaction between invasive plants and soil microbial communities is critical for plant establishment. However, little is known about the assembly and co-occurrence patterns of fungal communities in the rhizosphere soil of Amaranthus palmeri. The soil fungal communities and co-occurrence networks were investigated in 22 invaded patches and 22 native patches using high-throughput Illumina sequencing. Despite having little effect on alpha diversity, plant invasion significantly altered the composition of the soil fungal community (ANOSIM, p < 0.05). Fungal taxa associated with plant invasion were identified using linear discriminant analysis effect size (LEfSe). In the rhizosphere soil of A. palmeri, Basidiomycota was significantly enriched, while Ascomycota and Glomeromycota were significantly reduced when compared to native plants. At the genus level, the invasion of A. palmeri dramatically increased the abundance of beneficial fungi and potential antagonists such as Dioszegia, Tilletiopsis, Colacogloea, and Chaetomium, while it significantly decreased the abundance of pathogenic fungi such as Alternaria and Phaeosphaeria. Plant invasion reduced the average degree and average path length, and increased the modularity value, resulting in a less complex but more effective and stable network. Our findings improved the knowledge of the soil fungal communities, network co-occurrence patterns, and keystone taxa in A. palmeri-invaded ecosystems.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Kefan Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China;
| | - Xueying Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Zhenlu Qiu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Fuchen Shi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| |
Collapse
|
47
|
Li Y, Zhang C, Wang X, Liao X, Zhong Q, Zhou T, Gu F, Zou H. Pollutant impacts on bacteria in surface water and sediment: Conventional versus emerging pollutants in Taihu Lake, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121334. [PMID: 36822306 DOI: 10.1016/j.envpol.2023.121334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bacteria play a critical role in biogeochemical cycling, self-purification, and food web fueling in surface freshwater ecosystems. However, the comparison between the impacts of conventional and emerging pollutants on the bacteria in surface water and sediment remains unclear and requires for an in-depth understanding to assess ecological risk and select associated bioindicators. Taihu Lake, a typical shallow lake in China, was divided into pollutant impacted and less-impacted zones for sampling. Spatial distributions of conventional pollutants, emerging pharmaceuticals, and bacterial communities were investigated in surface water and sediment. The correlations of pollutants with bacterial communities and the variations in bacterial functions were analyzed to help assess the pollutant influences on bacteria. The results showed that the water quality index and trophic level index across the whole lake were at medium to good, and mesotropher to light eutropher grades, respectively, indicating a relatively good control on conventional pollutants in water. Target pharmaceuticals were at much higher concentrations in water of the impacted zone compared to the less-impacted zone, exhibiting close positive relationships with the bacterial phyla in the impacted water. The ratio of Firmicutes to Proteobacteria in surface water is suggested as a plausible bioindicator to evaluate the level of inflow pharmaceutical contamination and the risk of relevant bacterial resistance in the outflow. In sediment, no significant difference was observed for pharmaceuticals between the two zones, whereas total phosphorus and orthophosphate were substantially higher in the impacted zone. Phosphorus pollutants were tightly associated with the bacterial genera in the impacted sediment, likely relating to the increase in iron- or sulfate-reducing bacteria which implies the potential risk of phosphorus releasing from sediment to water.
Collapse
Affiliation(s)
- Yifei Li
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Chengnuo Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaoxuan Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaolin Liao
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Qin Zhong
- Dongzhu Ecological Environment Protection Co., Ltd., Wuxi, 214101, PR China
| | - Tao Zhou
- Dongzhu Ecological Environment Protection Co., Ltd., Wuxi, 214101, PR China
| | - Fan Gu
- Dongzhu Ecological Environment Protection Co., Ltd., Wuxi, 214101, PR China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
48
|
Li F, Mai Z, Qiu C, Long L, Hu A, Huang S. Dissemination of antibiotic resistance genes from the Pearl River Estuary to adjacent coastal areas. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105978. [PMID: 37087846 DOI: 10.1016/j.marenvres.2023.105978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The spread of antibiotic resistance genes (ARGs) is a growing concern over the world's various environments. Coastal environments may receive pollutants from land runoffs via estuaries. However, the impact of ARG contamination from estuarine regions to coastal areas is rarely reported. This study used high-throughput quantitative PCR to examine the diversity and abundance of ARGs in Pearl River Estuary (PRE) and adjacent coastal areas. We found that the distribution of ARGs in seawater exhibited the distance-decay phenomenon from the estuary to coastal areas, while the sediment samples did not exhibit an obvious distribution pattern. The estuarine water was found to be the hotspot of ARGs, with 74 ARG species detected and absolute abundance being 5.93 × 105 copies per mL, on average, while less species and lower abundance of ARGs were detected in coastal waters. Ordination analysis showed that estuarine ARG communities were significantly different from coastal ARG communities for water samples. SourceTracker analysis revealed that ARGs from the estuarine environment contributed only a minor fraction of ARG contamination to downstream coastal areas (1.5%-7.4% for water samples, and 0.7-1.8% for sediment samples), indicating the strong dilution effect of seawater. Mantel tests, redundancy analysis and random forest model analysis identified salinity, nutrients, microbial community structure and mobile genetic elements (MGEs) as important factors influencing ARG distribution. Partial least squares-path model revealed that, among all environmental factors, MGEs directly affected the distribution of ARGs, while other factors indirectly contributed by affecting the MGEs assemblage. Our study provides insight into the dissemination of ARGs from the PRE to adjacent coastal areas.
Collapse
Affiliation(s)
- Furun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Huairou, Beijing, 101400, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Chen Qiu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Huairou, Beijing, 101400, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Sijun Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
49
|
Custodio M, Peñaloza R, Ordinola-Zapata A, Peralta-Ortiz T, Sánches-Suárez H, Vieyra-Peña E, De la Cruz H, Alvarado-Ibáñez J. Diversity of enterobacterales in sediments of lagoons with fish farming activity and analysis of antibiotic resistance. Toxicol Rep 2023; 10:235-244. [PMID: 36845256 PMCID: PMC9950807 DOI: 10.1016/j.toxrep.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The use of antibiotics in fish production can induce bacterial populations to develop resistance to multiple antibiotics and transfer antibiotic resistance genes to other bacteria, including clinically relevant bacteria. This study evaluated the diversity of Enterobacterales in sediment from lagoons with fish farming activity and analyzed antibiotic resistance in the central region of Peru. Sediment samples were collected from four fish-active ponds and transported to the laboratory for analysis. Bacterial diversity was analyzed using DNA sequencing and antibiotic resistance was tested using the disk diffusion method. The results showed variability of bacterial diversity in the ponds with fish farming activity. Simpson's index indicated that the Habascocha lagoon is the most diverse in bacterial species of the order Enterobacterales (0.8), but the least dominant. The Shannon-Wiener index revealed that it is the most diverse (2.93) and the Margalef index revealed that species richness in this lagoon is high (5.72). Similarity percentage analysis (SIMPER) allowed the identification of the main Enterobacterales with the highest percentage contribution in the frequencies of individuals. In general, the Enterobacterales species isolated showed multi-resistance to the antibiotics used and Escherichia coli was the most resistant.
Collapse
Affiliation(s)
- María Custodio
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | - Richard Peñaloza
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | | | | | | | | | - Heidi De la Cruz
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | - Juan Alvarado-Ibáñez
- Universidad Nacional Intercultural “Fabiola Salazar Leguía” de Bagua, Bagua, Peru
| |
Collapse
|
50
|
Qin D, Li Y, Chen N, Hu A, Yu CP. Response and recovery mechanisms of river microorganisms to gradient concentrations of estrogen. Front Microbiol 2023; 14:1109311. [PMID: 36846800 PMCID: PMC9944024 DOI: 10.3389/fmicb.2023.1109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
As an important ecological system on the earth, rivers have been influenced by the rapid development of urbanization, industrialization, and anthropogenic activities. Increasingly more emerging contaminants, such as estrogens, are discharged into the river environment. In this study, we conducted river water microcosmic experiments using in situ water to investigate the response mechanisms of microbial community when exposed to different concentrations of target estrogen (estrone, E1). Results showed that both exposure time and concentrations shaped the diversity of microbial community when exposed to E1. Deterministic process played a vital role in influencing microbial community over the entire sampling period. The influence of E1 on microbial community could last for a longer time even after the E1 has been degraded. The microbial community structure could not be restored to the undisturbed state by E1, even if disturbed by low concentrations of E1(1 μg/L and 10 μg/L) for a short time. Our study suggests that estrogens could cause long-term disturbance to the microbial community of river water ecosystem and provides a theoretical basis for assessing the environmental risk of estrogens in rivers.
Collapse
Affiliation(s)
- Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yan Li
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|