1
|
Nair GR, Kooverjee BB, de Scally S, Cowan DA, Makhalanyane TP. Changes in nutrient availability substantially alter bacteria and extracellular enzymatic activities in Antarctic soils. FEMS Microbiol Ecol 2024; 100:fiae071. [PMID: 38697936 PMCID: PMC11107947 DOI: 10.1093/femsec/fiae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/07/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024] Open
Abstract
In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.
Collapse
Affiliation(s)
- Girish R Nair
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Bhaveni B Kooverjee
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Storme de Scally
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
2
|
Simon E, Guseva K, Darcy S, Alteio L, Pjevac P, Schmidt H, Jenab K, Ranits C, Kaiser C. Distinct microbial communities are linked to organic matter properties in millimetre-sized soil aggregates. THE ISME JOURNAL 2024; 18:wrae156. [PMID: 39105276 PMCID: PMC11325450 DOI: 10.1093/ismejo/wrae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Soils provide essential ecosystem services and represent the most diverse habitat on Earth. It has been suggested that the presence of various physico-chemically heterogeneous microhabitats supports the enormous diversity of microbial communities in soil. However, little is known about the relationship between microbial communities and their immediate environment at the micro- to millimetre scale. In this study, we examined whether bacteria, archaea, and fungi organize into distinct communities in individual 2-mm-sized soil aggregates and compared them to communities of homogenized bulk soil samples. Furthermore, we investigated their relationship to their local environment by concomitantly determining microbial community structure and physico-chemical properties from the same individual aggregates. Aggregate communities displayed exceptionally high beta-diversity, with 3-4 aggregates collectively capturing more diversity than their homogenized parent soil core. Up to 20%-30% of ASVs (particularly rare ones) were unique to individual aggregates selected within a few centimetres. Aggregates and bulk soil samples showed partly different dominant phyla, indicating that taxa that are potentially driving biogeochemical processes at the small scale may not be recognized when analysing larger soil volumes. Microbial community composition and richness of individual aggregates were closely related to aggregate-specific carbon and nitrogen content, carbon stable-isotope composition, and soil moisture, indicating that aggregates provide a stable environment for sufficient time to allow co-development of communities and their environment. We conclude that the soil microbiome is a metacommunity of variable subcommunities. Our study highlights the necessity to study small, spatially coherent soil samples to better understand controls of community structure and community-mediated processes in soils.
Collapse
Affiliation(s)
- Eva Simon
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Ksenia Guseva
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Sean Darcy
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Lauren Alteio
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, 3430 Tulln, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Kian Jenab
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Christian Ranits
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
3
|
Ren K, Mo Y, Xiao P, Rønn R, Xu Z, Xue Y, Chen H, Rivera WL, Rensing C, Yang J. Microeukaryotic plankton evolutionary constraints in a subtropical river explained by environment and bacteria along differing taxonomic resolutions. ISME COMMUNICATIONS 2024; 4:ycae026. [PMID: 38559570 PMCID: PMC10980835 DOI: 10.1093/ismeco/ycae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Microeukaryotic plankton communities are keystone components for keeping aquatic primary productivity. Currently, variations in microeukaryotic plankton diversity have often been explained by local ecological factors but not by evolutionary constraints. We used amplicon sequencing of 100 water samples across five years to investigate the ecological preferences of the microeukaryotic plankton community in a subtropical riverine ecosystem. We found that microeukaryotic plankton diversity was less associated with bacterial abundance (16S rRNA gene copy number) than bacterial diversity. Further, environmental effects exhibited a larger influence on microeukaryotic plankton community composition than bacterial community composition, especially at fine taxonomic levels. The evolutionary constraints of microeukaryotic plankton community increased with decreasing taxonomic resolution (from 97% to 91% similarity levels), but not significant change from 85% to 70% similarity levels. However, compared with the bacterial community, the evolutionary constraints were shown to be more affected by environmental variables. This study illustrated possible controlling environmental and bacterial drivers of microeukaryotic diversity and community assembly in a subtropical river, thereby indirectly reflecting on the quality status of the water environment by providing new clues on the microeukaryotic community assembly.
Collapse
Affiliation(s)
- Kexin Ren
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Peng Xiao
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Regin Rønn
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Biology, University of Copenhagen, Copenhagen DK2100, Denmark
| | - Zijie Xu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Christopher Rensing
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Institute of Environmental Microbiology, College of Resources and the Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
4
|
Bonthond G, Beermann J, Gutow L, Neumann A, Barboza FR, Desiderato A, Fofonova V, Helber SB, Khodami S, Kraan C, Neumann H, Rohde S, Schupp PJ. Benthic microbial biogeographic trends in the North Sea are shaped by an interplay of environmental drivers and bottom trawling effort. ISME COMMUNICATIONS 2023; 3:132. [PMID: 38102238 PMCID: PMC10724143 DOI: 10.1038/s43705-023-00336-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Microbial composition and diversity in marine sediments are shaped by environmental, biological, and anthropogenic processes operating at different scales. However, our understanding of benthic microbial biogeography remains limited. Here, we used 16S rDNA amplicon sequencing to characterize benthic microbiota in the North Sea from the top centimeter of 339 sediment samples. We utilized spatially explicit statistical models, to disentangle the effects of the different predictors, including bottom trawling intensity, a prevalent industrial fishing practice which heavily impacts benthic ecosystems. Fitted models demonstrate how the geographic interplay of different environmental and anthropogenic drivers shapes the diversity, structure and potential metabolism of benthic microbial communities. Sediment properties were the primary determinants, with diversity increasing with sediment permeability but also with mud content, highlighting different underlying processes. Additionally, diversity and structure varied with total organic matter content, temperature, bottom shear stress and bottom trawling. Changes in diversity associated with bottom trawling intensity were accompanied by shifts in predicted energy metabolism. Specifically, with increasing trawling intensity, we observed a transition toward more aerobic heterotrophic and less denitrifying predicted metabolism. Our findings provide first insights into benthic microbial biogeographic patterns on a large spatial scale and illustrate how anthropogenic activity such as bottom trawling may influence the distribution and abundances of microbes and potential metabolism at macroecological scales.
Collapse
Affiliation(s)
- Guido Bonthond
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany.
| | - Jan Beermann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Lars Gutow
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | | | | | - Andrea Desiderato
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 90-136, Lodz, Poland
| | - Vera Fofonova
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Stephanie B Helber
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| | - Sahar Khodami
- Senckenberg am Meer Wilhelmshaven, German Centre for Marine Biodiversity Research, Südstrand 44, 26382, Wilhelmshaven, Germany
| | - Casper Kraan
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Hermann Neumann
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, D-26129, Oldenburg, Germany
| |
Collapse
|
5
|
Criado Monleon AJ, Knappe J, Somlai C, Betancourth CO, Ali M, Curtis TP, Gill LW. Spatial Variation of the Microbial Community Structure of On-Site Soil Treatment Units in a Temperate Climate, and the Role of Pre-treatment of Domestic Effluent in the Development of the Biomat Community. Front Microbiol 2022; 13:915856. [PMID: 35814661 PMCID: PMC9263727 DOI: 10.3389/fmicb.2022.915856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
The growth of microbial mats or "biomats" has been identified as an essential component in the attenuation of pollutants within the soil treatment unit (STU) of conventional on-site wastewater treatment systems (OWTSs). This study aimed to characterize the microbial community which colonizes these niches and to determine the influence of the pre-treatment of raw-domestic wastewater on these communities. This was achieved through a detailed sampling campaign of two OWTSs. At each site, the STU areas were split whereby half received effluent directly from septic tanks, and half received more highly treated effluents from packaged aerobic treatment systems [a coconut husk media filter on one site, and a rotating biodisc contactor (RBC) on the other site]. Effluents from the RBC had a higher level of pre-treatment [~90% Total Organic Carbon (TOC) removal], compared to the media filter (~60% TOC removal). A total of 92 samples were obtained from both STU locations and characterized by 16S rRNA gene sequencing analysis. The fully treated effluent from the RBC resulted in greater microbial community richness and diversity within the STUs compared to the STUs receiving partially treated effluents. The microbial community structure found within the STU receiving fully treated effluents was significantly different from its septic tank, primary effluent counterpart. Moreover, the distance along each STU appears to have a greater impact on the community structure than the depth in each STU. Our findings highlight the spatial variability of diversity, Phylum- and Genus-level taxa, and functional groups within the STUs, which supports the assumption that specialized biomes develop around the application of effluents under different degrees of treatment and distance from the source. This research indicates that the application of pre-treated effluents infers significant changes in the microbial community structure, which in turn has important implications for the functionality of the STU, and consequently the potential risks to public health and the environment.
Collapse
Affiliation(s)
- Alejandro Javier Criado Monleon
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| | - Jan Knappe
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
- Mathematics Applications Consortium for Science and Industry (MASCI), Limerick University, Limerick, Ireland
| | - Celia Somlai
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| | | | - Muhammad Ali
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas P. Curtis
- Department of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laurence William Gill
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| |
Collapse
|
6
|
Liu J, Wang C, Guo Z, Liu Y, Pan K, Xu A, Zhang F, Pan X. Linking soil bacterial diversity to satellite-derived vegetation productivity: a case study in arid and semi-arid desert areas. Environ Microbiol 2021; 23:6137-6147. [PMID: 34296506 DOI: 10.1111/1462-2920.15683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
Increasing studies have begun to focus on biodiversity-productivity relationships for soil microorganisms through molecular ecology methods. However, most of these studies involve controlled experiments, and whether the relationship remains at large spatial scales is still largely unknown. To unravel this issue, archived desert soils from long-term experiments were analysed using high-throughput sequencing, and satellite-derived vegetation datasets were acquired to quantify productivity. Most of the abundant genera were significantly different between low- and high-productivity conditions, and soil bacterial communities were strongly impacted by productivity. Soil bacterial biodiversity, including observed operational taxonomic units and the Chao1, Shannon, and Faith's PD indexes, increased rapidly with productivity at low levels and then reached a relatively stable state, and similar phenomena were observed at multiple taxonomic ranks and for most of the dominant groups. Furthermore, we discovered that the mechanisms resulting in the observed relationship might be ecosystem resource availability in large-scale regions and species competition in local regions. Collectively, these results enhance our understanding of the linkage between belowground microorganisms and aboveground vegetation in arid and semi-arid areas and confirm the potential value of satellite-derived datasets in research on soil microbial diversity at large spatial scales.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changkun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya Liu
- Jinling Institute of Technology, Nanjing, 211169, China
| | - Kai Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Earth System Science Data Center, Nanjing, 210008, China
| | - Aiai Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangfang Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianzhang Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Bastida F, Eldridge DJ, García C, Kenny Png G, Bardgett RD, Delgado-Baquerizo M. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes. THE ISME JOURNAL 2021; 15:2081-2091. [PMID: 33564112 PMCID: PMC8245509 DOI: 10.1038/s41396-021-00906-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 01/31/2023]
Abstract
The relationship between biodiversity and biomass has been a long standing debate in ecology. Soil biodiversity and biomass are essential drivers of ecosystem functions. However, unlike plant communities, little is known about how the diversity and biomass of soil microbial communities are interlinked across globally distributed biomes, and how variations in this relationship influence ecosystem function. To fill this knowledge gap, we conducted a field survey across global biomes, with contrasting vegetation and climate types. We show that soil carbon (C) content is associated to the microbial diversity-biomass relationship and ratio in soils across global biomes. This ratio provides an integrative index to identify those locations on Earth wherein diversity is much higher compared with biomass and vice versa. The soil microbial diversity-to-biomass ratio peaks in arid environments with low C content, and is very low in C-rich cold environments. Our study further advances that the reductions in soil C content associated with land use intensification and climate change could cause dramatic shifts in the microbial diversity-biomass ratio, with potential consequences for broad soil processes.
Collapse
Affiliation(s)
- Felipe Bastida
- grid.10586.3a0000 0001 2287 8496CEBAS-CSIC. Department of Soil and Water Conservation, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - David J. Eldridge
- grid.1005.40000 0004 4902 0432Centre for Ecosystem Studies, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Carlos García
- grid.10586.3a0000 0001 2287 8496CEBAS-CSIC. Department of Soil and Water Conservation, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - G. Kenny Png
- grid.5379.80000000121662407Department of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT UK ,grid.59025.3b0000 0001 2224 0361Asian School of the Environment, Nanyang Technological University, 50 Nanyang avenue, Singapore, Singapore 639798
| | - Richard D. Bardgett
- grid.5379.80000000121662407Department of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Manuel Delgado-Baquerizo
- grid.15449.3d0000 0001 2200 2355Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
8
|
Stephens BM, Opalk K, Petras D, Liu S, Comstock J, Aluwihare LI, Hansell DA, Carlson CA. Organic Matter Composition at Ocean Station Papa Affects Its Bioavailability, Bacterioplankton Growth Efficiency and the Responding Taxa. FRONTIERS IN MARINE SCIENCE 2021; 2021:10.3389/fmars.2020.590273. [PMID: 35004707 PMCID: PMC8740527 DOI: 10.3389/fmars.2020.590273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bioavailability of organic matter (OM) to marine heterotrophic bacterioplankton is determined by both the chemical composition of OM and the microbial community composition. In the current study, changes in OM bioavailability were identified at Ocean Station Papa as part of the 2018 Export Processes in the Ocean from Remote Sensing (EXPORTS) field study. Removal rates of carbon (C) in controlled experiments were significantly correlated with the initial composition of total hydrolyzable amino acids, and C removal rates were high when the amino acid degradation index suggested a more labile composition. Carbon remineralization rates averaged 0.19 ± 0.08 μmol C L-1 d-1 over 6-10 days while bacterial growth efficiencies averaged 31 ± 7%. Amino acid composition and tandem mass spectrometry analysis of compound classes also revealed transformations to a more degraded OM composition during experiments. There was a log2-fold increase in the relative abundances of 16S rDNA-resolved bacterioplankton taxa in most experiments by members of the Methylophilaceae family (OM43 genus) and KI89A order. Additionally, when OM was more bioavailable, relative abundances increased by at least threefold for the classes Bacteroidetes (Flavobacteriaceae NS2b genus), Alphaproteobacteria (Rhodobacteraceae Sulfitobacter genus), and Gammaproteobacteria (Alteromonadales and Ectothiorhodospiraceae orders). Our data suggest that a diverse group of bacterioplankton was responsible for removing organic carbon and altering the OM composition to a more degraded state. Elevated community diversity, as inferred from the Shannon-Wiener H index, may have contributed to relatively high growth efficiencies by the bacterioplankton. The data presented here shed light on the interconnections between OM bioavailability and key bacterioplankton taxa for the degradation of marine OM.
Collapse
Affiliation(s)
- Brandon M. Stephens
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Keri Opalk
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Shuting Liu
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jacqueline Comstock
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lihini I. Aluwihare
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Dennis A. Hansell
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, United States
| | - Craig A. Carlson
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|