1
|
Li Y, Yu H, Xiong L, Zeng K, Wei Y, Li H, Ji X. Diversity and function of viral AMGs associated with DNA biosynthesis in the Napahai plateau wetland. ENVIRONMENTAL TECHNOLOGY 2024; 45:5521-5535. [PMID: 38126212 DOI: 10.1080/09593330.2023.2296531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Viruses play an important role in microbial community structure and biodiversity by lysing host cells, and can also affect host metabolic pathways by expressing auxiliary metabolic genes (AMGs). As a unique low-latitude, high-altitude seasonal plateau wetland in China, Napahai has high research value. However, studies on the genetic diversity of AMGs and viruses associated with DNA biosynthesis have not been reported. Based on metagenomics, with the phylogenetic tree, PCoA, and α diversity analysis, we found that three DNA biosynthesis-related viral AMGs (cobS, mazG, and purM) in the Napahai plateau wetland were rich in genetic diversity, uniqueness, and differences compared with other habitats and host sources. Through the KEGG metabolic pathway and metabolic flow analysis of Pseudomonas mandelii (SW-3) and phage (VSW-3), the AMGs (cobS, mazG, and purM) genes of the three related viruses involved in DNA biosynthesis were upregulated and their expression increased significantly. In general, we systematically described the genetic diversity of AMGs associated with DNA biosynthesis in plateau wetland ecosystems and clarified the contribution of viral AMGs in the Napahai plateau wetland to DNA biosynthesis, as well as the changes of metabolites and genes. It further expands the understanding of phage-host interactions, which is of great significance for further revealing the role of viral AMGs in the biological evolution and biogeochemical cycle of wetland ecosystems.
Collapse
Affiliation(s)
- Yanmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Hang Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Lingling Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Kun Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| |
Collapse
|
2
|
Rahimian M, Panahi B. Metagenome sequence data mining for viral interaction studies: Review on progress and prospects. Virus Res 2024; 349:199450. [PMID: 39151562 PMCID: PMC11388672 DOI: 10.1016/j.virusres.2024.199450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Metagenomics has been greatly accelerated by the development of next-generation sequencing (NGS) technologies, which allow scientists to discover and describe novel microorganisms without the need for conventional culture techniques. Examining integrative bioinformatics methods used in viral interaction research, this study highlights metagenomic data from various contexts. Accurate viral identification depends on high-purity genetic material extraction, appropriate NGS platform selection, and sophisticated bioinformatics tools like VirPipe and VirFinder. The efficiency and precision of metagenomic analysis are further improved with the advent of AI-based techniques. The diversity and dynamics of viral communities are demonstrated by case studies from a variety of environments, emphasizing the seasonal and geographical variations that influence viral populations. In addition to speeding up the discovery of new viruses, metagenomics offers thorough understanding of virus-host interactions and their ecological effects. This review provides a promising framework for comprehending the complexity of viral communities and their interactions with hosts, highlighting the transformational potential of metagenomics and bioinformatics in viral research.
Collapse
Affiliation(s)
- Mohammadreza Rahimian
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
3
|
Shen S, Tominaga K, Tsuchiya K, Matsuda T, Yoshida T, Shimizu Y. Virus-prokaryote infection pairs associated with prokaryotic production in a freshwater lake. mSystems 2024; 9:e0090623. [PMID: 38193708 PMCID: PMC10878036 DOI: 10.1128/msystems.00906-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Viruses infect and kill prokaryotic populations in a density- or frequency-dependent manner and affect carbon cycling. However, the effects of the stratification transition, including the stratified and de-stratified periods, on the changes in prokaryotic and viral communities and their interactions remain unclear. We conducted a monthly survey of the surface and deep layers of a large and deep freshwater lake (Lake Biwa, Japan) for a year and analyzed the prokaryotic production and prokaryotic and viral community composition. Our analysis revealed that, in the surface layer, 19 prokaryotic species, accounting for approximately 40% of the total prokaryotic abundance, could potentially contribute to the majority of prokaryotic production, which is the highest during the summer and is suppressed by viruses. This suggests that a small fraction of prokaryotes and phages were the key infection pairs during the peak period of prokaryotic activity in the freshwater lake. We also found that approximately 50% of the dominant prokaryotic and viral species in the deep layer were present throughout the study period. This suggests that the "kill the winner" model could explain the viral impact on prokaryotes in the surface layer, but other dynamics may be at play in the deep layer. Furthermore, we found that annual vertical mixing could result in a similar rate of community change between the surface and deep layers. These findings may be valuable in understanding how communities and the interaction among them change when freshwater lake stratification is affected by global warming in the future.IMPORTANCEViral infection associated with prokaryotic production occurs in a density- or frequency-dependent manner and regulates the prokaryotic community. Stratification transition and annual vertical mixing in freshwater lakes are known to affect the prokaryotic community and the interaction between prokaryotes and viruses. By pairing measurements of virome analysis and prokaryotic production of a 1-year survey of the depths of surface and deep layers, we revealed (i) the prokaryotic infection pairs associated with prokaryotic production and (ii) the reset in prokaryotic and viral communities through annual vertical mixing in a freshwater lake. Our results provide a basis for future work into changes in stratification that may impact the biogeochemical cycling in freshwater lakes.
Collapse
Affiliation(s)
- Shang Shen
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan
- Department of Civil and Environmental Engineering, Ritsumeikan University, Kusatsu, Japan
| | - Kento Tominaga
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kenji Tsuchiya
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| | - Yoshihisa Shimizu
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan
| |
Collapse
|
4
|
Zhang L, Meng L, Fang Y, Ogata H, Okazaki Y. Spatiotemporal dynamics of giant viruses within a deep freshwater lake reveal a distinct dark-water community. THE ISME JOURNAL 2024; 18:wrae182. [PMID: 39312489 PMCID: PMC11465185 DOI: 10.1093/ismejo/wrae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Giant viruses (GVs) significantly regulate the ecological dynamics of diverse ecosystems. Although metagenomics has expanded our understanding of their diversity and ecological roles played in marine environments, little is known about GVs of freshwater ecosystems. Most previous studies have employed short-read sequencing and therefore resulted in fragmented genomes, hampering accurate assessment of genetic diversity. We sought to bridge this knowledge gap and overcome previous technical limitations. We subjected spatiotemporal (2 depths × 12 months) samples from Lake Biwa to metagenome-assembled genome reconstruction enhanced by long-read metagenomics. This yielded 293 GV metagenome-assembled genomes. Of these, 285 included previously unknown species in five orders of nucleocytoviruses and the first representatives of freshwater mirusviruses, which exhibited marked divergence from marine-derived lineages. The good performance of our long-read metagenomic assembly was demonstrated by the detection of 42 (14.3%) genomes composed of single contigs with completeness values >90%. GVs were partitioned across water depths, with most species specific to either the sunlit epilimnion or the dark hypolimnion. Epilimnion-specific members tended to be transient and exhibit short and intense abundance peaks, in line with the fact that they regulate the surface algal blooms. During the spring bloom, mirusviruses and members of three nucleocytovirus families were among the most abundant viruses. In contrast, hypolimnion-specific ones, including a mirusvirus genome, were typically more persistent in the hypolimnion throughout the water-stratified period, suggesting that they infect hosts specific to the hypolimnion and play previously unexplored ecological roles in dark water microbial ecosystems.
Collapse
Affiliation(s)
- Liwen Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yue Fang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Nishimura Y, Yamada K, Okazaki Y, Ogata H. DiGAlign: Versatile and Interactive Visualization of Sequence Alignment for Comparative Genomics. Microbes Environ 2024; 39:ME23061. [PMID: 38508742 PMCID: PMC10982109 DOI: 10.1264/jsme2.me23061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/08/2024] [Indexed: 03/22/2024] Open
Abstract
With the explosion of available genomic information, comparative genomics has become a central approach to understanding microbial ecology and evolution. We developed DiGAlign (https://www.genome.jp/digalign/), a web server that provides versatile functionality for comparative genomics with an intuitive interface. It allows the user to perform the highly customizable visualization of a synteny map by simply uploading nucleotide sequences of interest, ranging from a specific region to the whole genome landscape of microorganisms and viruses. DiGAlign will serve a wide range of biological researchers, particularly experimental biologists, with multifaceted features that allow the rapid characterization of genomic sequences of interest and the generation of a publication-ready figure.
Collapse
Affiliation(s)
- Yosuke Nishimura
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237–0061, Japan
| | - Kohei Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| |
Collapse
|
6
|
Wong HL, Bulzu PA, Ghai R, Chiriac MC, Salcher MM. Ubiquitous genome streamlined Acidobacteriota in freshwater environments. ISME COMMUNICATIONS 2024; 4:ycae124. [PMID: 39544963 PMCID: PMC11561045 DOI: 10.1093/ismeco/ycae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Acidobacteriota are abundant in soil, peatlands, and sediments, but their ecology in freshwater environments remains understudied. UBA12189, an Acidobacteriota genus, is an uncultivated, genome-streamlined lineage with a small genome size found in aquatic environments where detailed genomic analyses are lacking. Here, we analyzed 66 MAGs of UBA12189 (including one complete genome) from freshwater lakes and rivers in Europe, North America, and Asia. UBA12189 has small genome sizes (<1.4 Mbp), low GC content, and a highly diverse pangenome. In freshwater lakes, this bacterial lineage is abundant from the surface waters (epilimnion) down to a 300-m depth (hypolimnion). UBA12189 appears to be free-living from CARD-FISH analysis. When compared to other genome-streamlined bacteria such as Nanopelagicales and Methylopumilus, genome reduction has caused UBA12189 to have a more limited metabolic repertoire in carbon, sulfur, and nitrogen metabolisms, limited numbers of membrane transporters, as well as a higher degree of auxotrophy for various amino acids, vitamins, and reduced sulfur. Despite having reduced genomes, UBA12189 encodes proteorhodopsin, complete biosynthesis pathways for heme and vitamin K2, cbb3-type cytochrome c oxidases, and heme-requiring enzymes. These genes may give a selective advantage during the genome streamlining process. We propose the new genus Acidiparvus, with two new species named "A. lacustris" and "A. fluvialis". Acidiparvus is the first described genome-streamlined lineage under the phylum Acidobacteriota, which is a free-living, slow-growing scavenger in freshwater environments.
Collapse
Affiliation(s)
- Hon Lun Wong
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| | - Maria-Cecilia Chiriac
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| |
Collapse
|
7
|
Cai H, Zhou Y, Li X, Xu T, Ni Y, Wu S, Yu Y, Wang Y. Genomic Analysis and Taxonomic Characterization of Seven Bacteriophage Genomes Metagenomic-Assembled from the Dishui Lake. Viruses 2023; 15:2038. [PMID: 37896815 PMCID: PMC10611076 DOI: 10.3390/v15102038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Viruses in aquatic ecosystems exhibit remarkable abundance and diversity. However, scattered studies have been conducted to mine uncultured viruses and identify them taxonomically in lake water. Here, whole genomes (29-173 kbp) of seven uncultured dsDNA bacteriophages were discovered in Dishui Lake, the largest artificial lake in Shanghai. We analyzed their genomic signatures and found a series of viral auxiliary metabolic genes closely associated with protein synthesis and host metabolism. Dishui Lake phages shared more genes with uncultivated environmental viruses than with reference viruses based on the gene-sharing network classification. Phylogeny of proteomes and comparative genomics delineated three new genera within two known viral families of Kyanoviridae and Autographiviridae, and four new families in Caudoviricetes for these seven novel phages. Their potential hosts appeared to be from the dominant bacterial phyla in Dishui Lake. Altogether, our study provides initial insights into the composition and diversity of bacteriophage communities in Dishui Lake, contributing valuable knowledge to the ongoing research on the roles played by viruses in freshwater ecosystems.
Collapse
Affiliation(s)
- Haoyun Cai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Yifan Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Xiefei Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Tianqi Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Yimin Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Shuang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (Y.Z.); (X.L.); (T.X.); (Y.N.); (S.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
8
|
Du S, Tong X, Lai ACK, Chan CK, Mason CE, Lee PKH. Highly host-linked viromes in the built environment possess habitat-dependent diversity and functions for potential virus-host coevolution. Nat Commun 2023; 14:2676. [PMID: 37160974 PMCID: PMC10169181 DOI: 10.1038/s41467-023-38400-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Viruses in built environments (BEs) raise public health concerns, yet they are generally less studied than bacteria. To better understand viral dynamics in BEs, this study assesses viromes from 11 habitats across four types of BEs with low to high occupancy. The diversity, composition, metabolic functions, and lifestyles of the viromes are found to be habitat dependent. Caudoviricetes species are ubiquitous on surface habitats in the BEs, and some of them are distinct from those present in other environments. Antimicrobial resistance genes are identified in viruses inhabiting surfaces frequently touched by occupants and in viruses inhabiting occupants' skin. Diverse CRISPR/Cas immunity systems and anti-CRISPR proteins are found in bacterial hosts and viruses, respectively, consistent with the strongly coupled virus-host links. Evidence of viruses potentially aiding host adaptation in a specific-habitat manner is identified through a unique gene insertion. This work illustrates that virus-host interactions occur frequently in BEs and that viruses are integral members of BE microbiomes.
Collapse
Affiliation(s)
- Shicong Du
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, P. R. China
| | - Alvin C K Lai
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
10
|
Tundra Soil Viruses Mediate Responses of Microbial Communities to Climate Warming. mBio 2023; 14:e0300922. [PMID: 36786571 PMCID: PMC10127799 DOI: 10.1128/mbio.03009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The rise of global temperature causes the degradation of the substantial reserves of carbon (C) stored in tundra soils, in which microbial processes play critical roles. Viruses are known to influence the soil C cycle by encoding auxiliary metabolic genes and infecting key microorganisms, but their regulation of microbial communities under climate warming remains unexplored. In this study, we evaluated the responses of viral communities for about 5 years of experimental warming at two depths (15 to 25 cm and 45 to 55 cm) in the Alaskan permafrost region. Our results showed that the viral community and functional gene composition and abundances (including viral functional genes related to replication, structure, infection, and lysis) were significantly influenced by environmental conditions such as total nitrogen (N), total C, and soil thawing duration. Although long-term warming did not impact the viral community composition at the two depths, some glycoside hydrolases encoded by viruses were more abundant at both depths of the warmed plots. With the continuous reduction of total C, viruses may alleviate methane release by altering infection strategies on methanogens. Importantly, viruses can adopt lysogenic and lytic lifestyles to manipulate microbial communities at different soil depths, respectively, which could be one of the major factors causing the differences in microbial responses to warming. This study provides a new ecological perspective on how viruses regulate the responses of microbes to warming at community and functional scales. IMPORTANCE Permafrost thawing causes microbial release of greenhouse gases, exacerbating climate warming. Some previous studies examined the responses of the microbial communities and functions to warming in permafrost region, but the roles of viruses in mediating the responses of microbial communities to warming are poorly understood. This study revealed that warming induced changes in some viral functional classes and in the virus/microbe ratios for specific lineages, which might influence the entire microbial community. Furthermore, differences in viral communities and functions, along with soil depths, are important factors influencing microbial responses to warming. Collectively, our study revealed the regulation of microbial communities by viruses and demonstrated the importance of viruses in the microbial ecology research.
Collapse
|
11
|
Ngugi DK, Salcher MM, Andrei AS, Ghai R, Klotz F, Chiriac MC, Ionescu D, Büsing P, Grossart HP, Xing P, Priscu JC, Alymkulov S, Pester M. Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes. SCIENCE ADVANCES 2023; 9:eadc9392. [PMID: 36724220 PMCID: PMC9891703 DOI: 10.1126/sciadv.adc9392] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ammonia-oxidizing archaea (AOA) play a key role in the aquatic nitrogen cycle. Their genetic diversity is viewed as the outcome of evolutionary processes that shaped ancestral transition from terrestrial to marine habitats. However, current genome-wide insights into AOA evolution rarely consider brackish and freshwater representatives or provide their divergence timeline in lacustrine systems. An unbiased global assessment of lacustrine AOA diversity is critical for understanding their origins, dispersal mechanisms, and ecosystem roles. Here, we leveraged continental-scale metagenomics to document that AOA species diversity in freshwater systems is remarkably low compared to marine environments. We show that the uncultured freshwater AOA, "Candidatus Nitrosopumilus limneticus," is ubiquitous and genotypically static in various large European lakes where it evolved 13 million years ago. We find that extensive proteome remodeling was a key innovation for freshwater colonization of AOA. These findings reveal the genetic diversity and adaptive mechanisms of a keystone species that has survived clonally in lakes for millennia.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
- Corresponding author.
| | - Michaela M. Salcher
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Adrian-Stefan Andrei
- Microbial Evogenomics Lab, Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Franziska Klotz
- Department of Biology, University of Konstanz, D-78457 Constance, Germany
| | - Maria-Cecilia Chiriac
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Danny Ionescu
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, D-12587 Stechlin, Germany
| | - Petra Büsing
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, D-12587 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, D-14469 Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Free University, D-14195 Berlin, Germany
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - John C. Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - Salmor Alymkulov
- Institute of Physics, National Academy of Sciences of Kyrgyz Republic, Chui Avenue, 265-a, Bishkek 720071, Kyrgyzstan
| | - Michael Pester
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
- Institute of Microbiology, Technical University of Braunschweig, D-38108 Braunschweig, Germany
| |
Collapse
|
12
|
Jaffe AL, Bardot C, Le Jeune AH, Liu J, Colombet J, Perrière F, Billard H, Castelle CJ, Lehours AC, Banfield JF. Variable impact of geochemical gradients on the functional potential of bacteria, archaea, and phages from the permanently stratified Lac Pavin. MICROBIOME 2023; 11:14. [PMID: 36694212 PMCID: PMC9875498 DOI: 10.1186/s40168-022-01416-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Permanently stratified lakes contain diverse microbial communities that vary with depth and so serve as useful models for studying the relationships between microbial community structure and geochemistry. Recent work has shown that these lakes can also harbor numerous bacteria and archaea from novel lineages, including those from the Candidate Phyla Radiation (CPR). However, the extent to which geochemical stratification differentially impacts carbon metabolism and overall genetic potential in CPR bacteria compared to other organisms is not well defined. RESULTS Here, we determine the distribution of microbial lineages along an oxygen gradient in Lac Pavin, a deep, stratified lake in central France, and examine the influence of this gradient on their metabolism. Genome-based analyses revealed an enrichment of distinct C1 and CO2 fixation pathways in the oxic lake interface and anoxic zone/sediments, suggesting that oxygen likely plays a role in structuring metabolic strategies in non-CPR bacteria and archaea. Notably, we find that the oxidation of methane and its byproducts is largely spatially separated from methane production, which is mediated by diverse communities of sediment methanogens that vary on the centimeter scale. In contrast, we detected evidence for RuBisCO throughout the water column and sediments, including form II/III and form III-related enzymes encoded by CPR bacteria in the water column and DPANN archaea in the sediments. On the whole, though, CPR bacteria and phages did not show strong signals of gene content differentiation by depth, despite the fact that distinct species groups populate different lake and sediment compartments. CONCLUSIONS Overall, our analyses suggest that environmental gradients in Lac Pavin select for capacities of CPR bacteria and phages to a lesser extent than for other bacteria and archaea. This may be due to the fact that selection in the former groups is indirect and depends primarily on host characteristics. Video Abstract.
Collapse
Affiliation(s)
- Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Corinne Bardot
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Anne-Hélène Le Jeune
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Jett Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jonathan Colombet
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Fanny Perrière
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Hermine Billard
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Cindy J Castelle
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Anne-Catherine Lehours
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
13
|
Okazaki Y, Nakano SI, Toyoda A, Tamaki H. Long-Read-Resolved, Ecosystem-Wide Exploration of Nucleotide and Structural Microdiversity of Lake Bacterioplankton Genomes. mSystems 2022; 7:e0043322. [PMID: 35938717 PMCID: PMC9426551 DOI: 10.1128/msystems.00433-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
Reconstruction of metagenome-assembled genomes (MAGs) has become a fundamental approach in microbial ecology. However, a MAG is hardly complete and overlooks genomic microdiversity because metagenomic assembly fails to resolve microvariants among closely related genotypes. Aiming at understanding the universal factors that drive or constrain prokaryotic genome diversification, we performed an ecosystem-wide high-resolution metagenomic exploration of microdiversity by combining spatiotemporal (2 depths × 12 months) sampling from a pelagic freshwater system, high-quality MAG reconstruction using long- and short-read metagenomic sequences, and profiling of single nucleotide variants (SNVs) and structural variants (SVs) through mapping of short and long reads to the MAGs, respectively. We reconstructed 575 MAGs, including 29 circular assemblies, providing high-quality reference genomes of freshwater bacterioplankton. Read mapping against these MAGs identified 100 to 101,781 SNVs/Mb and 0 to 305 insertions, 0 to 467 deletions, 0 to 41 duplications, and 0 to 6 inversions for each MAG. Nonsynonymous SNVs were accumulated in genes potentially involved in cell surface structural modification to evade phage recognition. Most (80.2%) deletions overlapped with a gene coding region, and genes of prokaryotic defense systems were most frequently (>8% of the genes) overlapped with a deletion. Some such deletions exhibited a monthly shift in their allele frequency, suggesting a rapid turnover of genotypes in response to phage predation. MAGs with extremely low microdiversity were either rare or opportunistic bloomers, suggesting that population persistency is key to their genomic diversification. The results concluded that prokaryotic genomic diversification is driven primarily by viral load and constrained by a population bottleneck. IMPORTANCE Identifying intraspecies genomic diversity (microdiversity) is crucial to understanding microbial ecology and evolution. However, microdiversity among environmental assemblages is not well investigated, because most microbes are difficult to culture. In this study, we performed cultivation-independent exploration of bacterial genomic microdiversity in a lake ecosystem using a combination of short- and long-read metagenomic analyses. The results revealed the broad spectrum of genomic microdiversity among the diverse bacterial species in the ecosystem, which has been overlooked by conventional approaches. Our ecosystem-wide exploration further allowed comparative analysis among the genomes and genes and revealed factors behind microbial genomic diversification, namely, that diversification is driven primarily by resistance against viral infection and constrained by the population size.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Shin-ichi Nakano
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima City, Shizuoka, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Kieft K, Adams A, Salamzade R, Kalan L, Anantharaman K. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res 2022; 50:e83. [PMID: 35544285 PMCID: PMC9371927 DOI: 10.1093/nar/gkac341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 01/11/2023] Open
Abstract
Genome binning has been essential for characterization of bacteria, archaea, and even eukaryotes from metagenomes. Yet, few approaches exist for viruses. We developed vRhyme, a fast and precise software for construction of viral metagenome-assembled genomes (vMAGs). vRhyme utilizes single- or multi-sample coverage effect size comparisons between scaffolds and employs supervised machine learning to identify nucleotide feature similarities, which are compiled into iterations of weighted networks and refined bins. To refine bins, vRhyme utilizes unique features of viral genomes, namely a protein redundancy scoring mechanism based on the observation that viruses seldom encode redundant genes. Using simulated viromes, we displayed superior performance of vRhyme compared to available binning tools in constructing more complete and uncontaminated vMAGs. When applied to 10,601 viral scaffolds from human skin, vRhyme advanced our understanding of resident viruses, highlighted by identification of a Herelleviridae vMAG comprised of 22 scaffolds, and another vMAG encoding a nitrate reductase metabolic gene, representing near-complete genomes post-binning. vRhyme will enable a convention of binning uncultivated viral genomes and has the potential to transform metagenome-based viral ecology.
Collapse
Affiliation(s)
- Kristopher Kieft
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - Alyssa Adams
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Rauf Salamzade
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, USA
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | | |
Collapse
|
15
|
Chu Y, Zhao Z, Cai L, Zhang G. Viral diversity and biogeochemical potential revealed in different prawn-culture sediments by virus-enriched metagenome analysis. ENVIRONMENTAL RESEARCH 2022; 210:112901. [PMID: 35227678 DOI: 10.1016/j.envres.2022.112901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
As the most numerous biological entities on Earth, viruses affect the microbial dynamics, metabolism and biogeochemical cycles in the aquatic ecosystems. Viral diversity and functions in ocean have been relatively well studied, but our understanding of viruses in mariculture systems is limited. To fill this knowledge gap, we studied viral diversity and potential biogeochemical impacts of sediments from four different prawn-mariculture ecosystems (mono-culture of prawn and poly-culture of prawn with jellyfish, sea cucumber, and clam) using a metagenomic approach with prior virus-like particles (VLPs) separation. We found that the order Caudovirales was the predominant viral category and accounted for the most volume (78.39% of classified viruses). Sediment viruses were verified to have a high diversity by using the construct phylogenetic tree of terL gene, with three potential novel clades being identified. Meanwhile, compared with viruses inhabiting other ecosystems based on gene-sharing network, our results revealed that mariculture sediments harbored considerable unexplored viral diversity and that maricultural species were potentially important drivers of the viral community structure. Notably, viral auxiliary metabolic genes were identified and suggested that viruses influence carbon and sulfur cycling, as well as cofactors/vitamins and amino acid metabolism, which indirectly participate in biogeochemical cycling. Overall, our findings revealed the genomic diversity and ecological function of viral communities in prawn mariculture sediments, and suggested the role of viruses in microbial ecology and biogeochemistry.
Collapse
Affiliation(s)
- Yunmeng Chu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd., Shanghai, 201800, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China; Faculty of Basic Medicine, Putian University, Putian, 351100, Fujian, China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
16
|
Chiriac MC, Bulzu PA, Andrei AS, Okazaki Y, Nakano SI, Haber M, Kavagutti VS, Layoun P, Ghai R, Salcher MM. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. MICROBIOME 2022; 10:84. [PMID: 35659305 PMCID: PMC9166423 DOI: 10.1186/s40168-022-01274-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND The increased use of metagenomics and single-cell genomics led to the discovery of organisms from phyla with no cultivated representatives and proposed new microbial lineages such as the candidate phyla radiation (CPR or Patescibacteria). These bacteria have peculiar ribosomal structures, reduced metabolic capacities, small genome, and cell sizes, and a general host-associated lifestyle was proposed for the radiation. So far, most CPR genomes were obtained from groundwaters; however, their diversity, abundance, and role in surface freshwaters is largely unexplored. Here, we attempt to close these knowledge gaps by deep metagenomic sequencing of 119 samples of 17 different freshwater lakes located in Europe and Asia. Moreover, we applied Fluorescence in situ Hybridization followed by Catalyzed Reporter Deposition (CARD-FISH) for a first visualization of distinct CPR lineages in freshwater samples. RESULTS A total of 174 dereplicated metagenome-assembled genomes (MAGs) of diverse CPR lineages were recovered from the investigated lakes, with a higher prevalence from hypolimnion samples (162 MAGs). They have reduced genomes (median size 1 Mbp) and were generally found in low abundances (0.02-14.36 coverage/Gb) and with estimated slow replication rates. The analysis of genomic traits and CARD-FISH results showed that the radiation is an eclectic group in terms of metabolic capabilities and potential lifestyles, ranging from what appear to be free-living lineages to host- or particle-associated groups. Although some complexes of the electron transport chain were present in the CPR MAGs, together with ion-pumping rhodopsins and heliorhodopsins, we believe that they most probably adopt a fermentative metabolism. Terminal oxidases might function in O2 scavenging, while heliorhodopsins could be involved in mitigation against oxidative stress. CONCLUSIONS A high diversity of CPR MAGs was recovered, and distinct CPR lineages did not seem to be limited to lakes with specific trophic states. Their reduced metabolic capacities resemble the ones described for genomes in groundwater and animal-associated samples, apart from Gracilibacteria that possesses more complete metabolic pathways. Even though this radiation is mostly host-associated, we also observed organisms from different clades (ABY1, Paceibacteria, Saccharimonadia) that appear to be unattached to any other organisms or were associated with 'lake snow' particles (ABY1, Gracilibacteria), suggesting a broad range of potential life-strategies in this phylum. Video Abstract.
Collapse
Affiliation(s)
- Maria-Cecilia Chiriac
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Shin-ichi Nakano
- Center of Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga Japan
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Vinicius Silva Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Paul Layoun
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Michaela M. Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
17
|
Shi LD, Dong X, Liu Z, Yang Y, Lin JG, Li M, Gu JD, Zhu LZ, Zhao HP. A mixed blessing of viruses in wastewater treatment plants. WATER RESEARCH 2022; 215:118237. [PMID: 35245718 DOI: 10.1016/j.watres.2022.118237] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Activated sludge of wastewater treatment plants harbors a very high diversity of both microorganisms and viruses, wherein the latter control microbial dynamics and metabolisms by infection and lysis of cells. However, it remains poorly understood how viruses impact the biochemical processes of activated sludge, for example in terms of treatment efficiency and pollutant removal. Using metagenomic and metatranscriptomic deep sequencing, the present study recovered thousands of viral sequences from activated sludge samples of three conventional wastewater treatment plants. Gene-sharing network indicated that most of viruses could not be assigned to known viral genera, implying activated sludge as an underexplored reservoir for new viruses and viral diversity. In silico predictions of virus-host linkages demonstrated that infected microbial hosts, mostly belonging to bacteria, were transcriptionally active and able to hydrolyze polymers including starches, celluloses, and proteins. Some viruses encode auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and sulfur cycling, and antibiotic resistance genes (ARGs) for resistance to multiple drugs. The virus-encoded AMGs may enhance the biodegradation of contaminants like starches and celluloses, suggesting a positive role for viruses in strengthening the performance of activated sludge. However, ARGs would be disseminated to different microorganisms using viruses as gene shuttles, demonstrating the possibility for viruses to facilitate the spread of antibiotic resistance in the environment. Collectively, this study highlights the mixed blessing of viruses in wastewater treatment plants, and deciphers how they manipulate the biochemical processes in the activated sludge, with implications for both environmental protection and ecosystem security.
Collapse
Affiliation(s)
- Ling-Dong Shi
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zongbao Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Ji-Dong Gu
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Li-Zhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Genome Streamlining, Proteorhodopsin, and Organic Nitrogen Metabolism in Freshwater Nitrifiers. mBio 2022; 13:e0237921. [PMID: 35435701 PMCID: PMC9239080 DOI: 10.1128/mbio.02379-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Microbial nitrification is a critical process governing nitrogen availability in aquatic systems. Freshwater nitrifiers have received little attention, leaving many unanswered questions about their taxonomic distribution, functional potential, and ecological interactions. Here, we reconstructed genomes to infer the metabolism and ecology of free-living picoplanktonic nitrifiers across the Laurentian Great Lakes, a connected series of five of Earth’s largest lakes. Surprisingly, ammonia-oxidizing bacteria (AOB) related to Nitrosospira dominated over ammonia-oxidizing archaea (AOA) at nearly all stations, with distinct ecotypes prevailing in the transparent, oligotrophic upper lakes compared to Lakes Erie and Ontario. Unexpectedly, one ecotype of Nitrosospira encodes proteorhodopsin, which could enhance survival under conditions where ammonia oxidation is inhibited or substrate limited. Nitrite-oxidizing bacteria (NOB) “Candidatus Nitrotoga” and Nitrospira fluctuated in dominance, with the latter prevailing in deeper, less-productive basins. Genome reconstructions reveal highly reduced genomes and features consistent with genome streamlining, along with diverse adaptations to sunlight and oxidative stress and widespread capacity for organic nitrogen use. Our findings expand the known functional diversity of nitrifiers and establish their ecological genomics in large lake ecosystems. By elucidating links between microbial biodiversity and biogeochemical cycling, our work also informs ecosystem models of the Laurentian Great Lakes, a critical freshwater resource experiencing rapid environmental change.
Collapse
|
19
|
McKay LJ, Nigro OD, Dlakić M, Luttrell KM, Rusch DB, Fields MW, Inskeep WP. Sulfur cycling and host-virus interactions in Aquificales-dominated biofilms from Yellowstone's hottest ecosystems. THE ISME JOURNAL 2022; 16:842-855. [PMID: 34650231 PMCID: PMC8857204 DOI: 10.1038/s41396-021-01132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
Modern linkages among magmatic, geochemical, and geobiological processes provide clues about the importance of thermophiles in the origin of biogeochemical cycles. The aim of this study was to identify the primary chemoautotrophs and host-virus interactions involved in microbial colonization and biogeochemical cycling at sublacustrine, vapor-dominated vents that represent the hottest measured ecosystems in Yellowstone National Park (~140 °C). Filamentous microbial communities exposed to extreme thermal and geochemical gradients were sampled using a remotely operated vehicle and subjected to random metagenome sequencing and microscopic analyses. Sulfurihydrogenibium (phylum Aquificae) was the predominant lineage (up to 84% relative abundance) detected at vents that discharged high levels of dissolved H2, H2S, and CO2. Metabolic analyses indicated carbon fixation by Sulfurihydrogenibium spp. was powered by the oxidation of reduced sulfur and H2, which provides organic carbon for heterotrophic community members. Highly variable Sulfurihydrogenibium genomes suggested the importance of intra-population diversity under extreme environmental and viral pressures. Numerous lytic viruses (primarily unclassified taxa) were associated with diverse archaea and bacteria in the vent community. Five circular dsDNA uncultivated virus genomes (UViGs) of ~40 kbp length were linked to the Sulfurihydrogenibium metagenome-assembled genome (MAG) by CRISPR spacer matches. Four UViGs contained consistent genome architecture and formed a monophyletic cluster with the recently proposed Pyrovirus genus within the Caudovirales. Sulfurihydrogenibium spp. also contained CRISPR arrays linked to plasmid DNA with genes for a novel type IV filament system and a highly expressed β-barrel porin. A diverse suite of transcribed secretion systems was consistent with direct microscopic analyses, which revealed an extensive extracellular matrix likely critical to community structure and function. We hypothesize these attributes are fundamental to the establishment and survival of microbial communities in highly turbulent, extreme-gradient environments.
Collapse
Affiliation(s)
- Luke J. McKay
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Olivia D. Nigro
- grid.256872.c0000 0000 8741 0387Department of Natural Science, Hawaii Pacific University, Honolulu, HI 96813 USA
| | - Mensur Dlakić
- grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - Karen M. Luttrell
- grid.64337.350000 0001 0662 7451Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Douglas B. Rusch
- grid.411377.70000 0001 0790 959XCenter for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405 USA
| | - Matthew W. Fields
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - William P. Inskeep
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
20
|
Potapov SA, Tikhonova IV, Krasnopeev AY, Suslova MY, Zhuchenko NA, Drucker VV, Belykh OI. Communities of T4-like bacteriophages associated with bacteria in Lake Baikal: diversity and biogeography. PeerJ 2022. [DOI: 10.7717/peerj.12748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lake Baikal phage communities are important for lake ecosystem functioning. Here we describe the diversity of T4-bacteriophage associated with the bacterial fraction of filtered water samples collected from the pelagic zone, coastal zone and shallow bays. Although the study of the diversity of phages for the g23 gene has been carried out at Lake Baikal for more than ten years, shallow bays that comprise a significant part of the lake’s area have been neglected, and this gene has not previously been studied in the bacterial fraction. Phage communities were probed using amplicon sequencing methods targeting the gene of major capsid protein (g23) and compared phylogenetically across sample locations and with sequences previously retrieved from non-bacterial fractions (<0.2 um) and biofilms (non-fractionated). In this study, we examined six water samples, in which 24 to 74 viral OTUs were obtained. The sequences from shallow bays largely differed from those in the pelagic and coastal samples and formed individual subcluster in the UPGMA tree that was obtained from the comparison of phylogenetic distances of g23 sequence sets from various ecosystems, reflecting differences in viral communities depending on the productivity of various sites of Lake Baikal. According to the RefSeq database, from 58.3 to 73% of sequences of each sample had cultivated closest relatives belonging to cyanophages. In this study, for phylogenetic analysis, we chose the closest relatives not only from the RefSeq and GenBank NR databases but also from two marine and one freshwater viromes: eutrophic Osaka Bay (Japan), oligotrophic area of the Pacific Ocean (Station ALOHA) and mesotrophic and ancient Lake Biwa (Japan), which allowed us to more fully compare the diversity of marine and freshwater phages. The identity with marine sequences at the amino acid level ranged from 35 to 80%, and with the sequences from the viral fraction and bacterial one from Lake Biwa—from 35.3 to 98% and from 33.9 to 89.1%, respectively. Therefore, the sequences from marine viromes had a greater difference than those from freshwater viromes, which may indicate a close relationship between freshwater viruses and differences from marine viruses.
Collapse
Affiliation(s)
| | | | | | - Maria Yurjevna Suslova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | | | | | - Olga Ivanovna Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
21
|
Abstract
Viruses are ubiquitous on Earth and are keystone components of environments, ecosystems, and human health. Yet, viruses remain poorly studied because most cannot be isolated in a laboratory. In the field of biogeochemistry, which aims to understand the interactions between biology, geology, and chemistry, there is progress to be made in understanding the different roles played by viruses in nutrient cycling, food webs, and elemental transformations. In this commentary, we outline current microbial ecology frameworks for understanding biogeochemical cycling in aquatic ecosystems. Next, we review some existing experimental and computational techniques that are enabling us to study the role of viruses in biogeochemical cycling, using examples from aquatic environments. Finally, we provide a conceptual model that balances limitations of computational tools when combined with biogeochemistry and ecological data. We envision meeting the grand challenge of understanding how viruses impact biogeochemical cycling by using a multifaceted approach to viral ecology.
Collapse
|
22
|
Chen Y, Wang Y, Paez-Espino D, Polz MF, Zhang T. Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants. Nat Commun 2021; 12:5398. [PMID: 34518545 PMCID: PMC8438041 DOI: 10.1038/s41467-021-25678-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
As one of the largest biotechnological applications, activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses, with 10-1,000-fold higher concentrations than in natural environments. However, the compositional variation and host-connections of AS viruses remain poorly explored. Here, we report a catalogue of ~50,000 prokaryotic viruses from six WWTPs, increasing the number of described viral species of AS by 23-fold, and showing the very high viral diversity which is largely unknown (98.4-99.6% of total viral contigs). Most viral genera are represented in more than one AS system with 53 identified across all. Viral infection widely spans 8 archaeal and 58 bacterial phyla, linking viruses with aerobic/anaerobic heterotrophs, and other functional microorganisms controlling nitrogen/phosphorous removal. Notably, Mycobacterium, notorious for causing AS foaming, is associated with 402 viral genera. Our findings expand the current AS virus catalogue and provide reference for the phage treatment to control undesired microorganisms in WWTPs.
Collapse
Affiliation(s)
- Yiqiang Chen
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - David Paez-Espino
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Jaffe AL, Thomas AD, He C, Keren R, Valentin-Alvarado LE, Munk P, Bouma-Gregson K, Farag IF, Amano Y, Sachdeva R, West PT, Banfield JF. Patterns of Gene Content and Co-occurrence Constrain the Evolutionary Path toward Animal Association in Candidate Phyla Radiation Bacteria. mBio 2021; 12:e0052121. [PMID: 34253055 PMCID: PMC8406219 DOI: 10.1128/mbio.00521-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Candidate Phyla Radiation (CPR) bacteria are small, likely episymbiotic organisms found across Earth's ecosystems. Despite their prevalence, the distribution of CPR lineages across habitats and the genomic signatures of transitions among these habitats remain unclear. Here, we expand the genome inventory for Absconditabacteria (SR1), Gracilibacteria, and Saccharibacteria (TM7), CPR bacteria known to occur in both animal-associated and environmental microbiomes, and investigate variation in gene content with habitat of origin. By overlaying phylogeny with habitat information, we show that bacteria from these three lineages have undergone multiple transitions from environmental habitats into animal microbiomes. Based on co-occurrence analyses of hundreds of metagenomes, we extend the prior suggestion that certain Saccharibacteria have broad bacterial host ranges and constrain possible host relationships for Absconditabacteria and Gracilibacteria. Full-proteome analyses show that animal-associated Saccharibacteria have smaller gene repertoires than their environmental counterparts and are enriched in numerous protein families, including those likely functioning in amino acid metabolism, phage defense, and detoxification of peroxide. In contrast, some freshwater Saccharibacteria encode a putative rhodopsin. For protein families exhibiting the clearest patterns of differential habitat distribution, we compared protein and species phylogenies to estimate the incidence of lateral gene transfer and genomic loss occurring over the species tree. These analyses suggest that habitat transitions were likely not accompanied by large transfer or loss events but rather were associated with continuous proteome remodeling. Thus, we speculate that CPR habitat transitions were driven largely by availability of suitable host taxa and were reinforced by acquisition and loss of some capacities. IMPORTANCE Studying the genetic differences between related microorganisms from different environment types can indicate factors associated with their movement among habitats. This is particularly interesting for bacteria from the Candidate Phyla Radiation because their minimal metabolic capabilities require associations with microbial hosts. We found that shifts of Absconditabacteria, Gracilibacteria, and Saccharibacteria between environmental ecosystems and mammalian mouths/guts probably did not involve major episodes of gene gain and loss; rather, gradual genomic change likely followed habitat migration. The results inform our understanding of how little-known microorganisms establish in the human microbiota where they may ultimately impact health.
Collapse
Affiliation(s)
- Alexander L. Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Alex D. Thomas
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Christine He
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Ray Keren
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Luis E. Valentin-Alvarado
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Keith Bouma-Gregson
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| | - Ibrahim F. Farag
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Ibaraki, Japan
- Horonobe Underground Research Center, Japan Atomic Energy Agency, Hokkaido, Japan
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
| | - Patrick T. West
- Department of Medicine (Hematology & Blood and Marrow Transplantation), Stanford University, Stanford, California, USA
| | - Jillian F. Banfield
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
24
|
Li Z, Pan D, Wei G, Pi W, Zhang C, Wang JH, Peng Y, Zhang L, Wang Y, Hubert CRJ, Dong X. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. THE ISME JOURNAL 2021; 15:2366-2378. [PMID: 33649554 PMCID: PMC8319345 DOI: 10.1038/s41396-021-00932-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
In marine ecosystems, viruses exert control on the composition and metabolism of microbial communities, influencing overall biogeochemical cycling. Deep sea sediments associated with cold seeps are known to host taxonomically diverse microbial communities, but little is known about viruses infecting these microorganisms. Here, we probed metagenomes from seven geographically diverse cold seeps across global oceans to assess viral diversity, virus-host interaction, and virus-encoded auxiliary metabolic genes (AMGs). Gene-sharing network comparisons with viruses inhabiting other ecosystems reveal that cold seep sediments harbour considerable unexplored viral diversity. Most cold seep viruses display high degrees of endemism with seep fluid flux being one of the main drivers of viral community composition. In silico predictions linked 14.2% of the viruses to microbial host populations with many belonging to poorly understood candidate bacterial and archaeal phyla. Lysis was predicted to be a predominant viral lifestyle based on lineage-specific virus/host abundance ratios. Metabolic predictions of prokaryotic host genomes and viral AMGs suggest that viruses influence microbial hydrocarbon biodegradation at cold seeps, as well as other carbon, sulfur and nitrogen cycling via virus-induced mortality and/or metabolic augmentation. Overall, these findings reveal the global diversity and biogeography of cold seep viruses and indicate how viruses may manipulate seep microbial ecology and biogeochemistry.
Collapse
Affiliation(s)
- Zexin Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Donald Pan
- Department of Ecology and Environmental Studies, The Water School, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Guangshan Wei
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Weiling Pi
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Jiang-Hai Wang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Yongyi Peng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yong Wang
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China.
| |
Collapse
|
25
|
Butina TV, Bukin YS, Petrushin IS, Tupikin AE, Kabilov MR, Belikov SI. Extended Evaluation of Viral Diversity in Lake Baikal through Metagenomics. Microorganisms 2021; 9:760. [PMID: 33916464 PMCID: PMC8066274 DOI: 10.3390/microorganisms9040760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Lake Baikal is a unique oligotrophic freshwater lake with unusually cold conditions and amazing biological diversity. Studies of the lake's viral communities have begun recently, and their full diversity is not elucidated yet. Here, we performed DNA viral metagenomic analysis on integral samples from four different deep-water and shallow stations of the southern and central basins of the lake. There was a strict distinction of viral communities in areas with different environmental conditions. Comparative analysis with other freshwater lakes revealed the highest similarity of Baikal viromes with those of the Asian lakes Soyang and Biwa. Analysis of new data, together with previously published data allowed us to get a deeper insight into the diversity and functional potential of Baikal viruses; however, the true diversity of Baikal viruses in the lake ecosystem remains still unknown. The new metaviromic data will be useful for future studies of viral composition, distribution, and the dynamics associated with global climatic and anthropogenic impacts on this ecosystem.
Collapse
Affiliation(s)
- Tatyana V. Butina
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, 664033 Irkutsk, Russia; (I.S.P.); (S.I.B.)
| | - Yurij S. Bukin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, 664033 Irkutsk, Russia; (I.S.P.); (S.I.B.)
| | - Ivan S. Petrushin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, 664033 Irkutsk, Russia; (I.S.P.); (S.I.B.)
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.E.T.); (M.R.K.)
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.E.T.); (M.R.K.)
| | - Sergey I. Belikov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, 664033 Irkutsk, Russia; (I.S.P.); (S.I.B.)
| |
Collapse
|
26
|
Moon K, Cho JC. Metaviromics coupled with phage-host identification to open the viral 'black box'. J Microbiol 2021; 59:311-323. [PMID: 33624268 DOI: 10.1007/s12275-021-1016-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
Viruses are found in almost all biomes on Earth, with bacteriophages (phages) accounting for the majority of viral particles in most ecosystems. Phages have been isolated from natural environments using the plaque assay and liquid medium-based dilution culturing. However, phage cultivation is restricted by the current limitations in the number of culturable bacterial strains. Unlike prokaryotes, which possess universally conserved 16S rRNA genes, phages lack universal marker genes for viral taxonomy, thus restricting cultureindependent analyses of viral diversity. To circumvent these limitations, shotgun viral metagenome sequencing (i.e., metaviromics) has been developed to enable the extensive sequencing of a variety of viral particles present in the environment and is now widely used. Using metaviromics, numerous studies on viral communities have been conducted in oceans, lakes, rivers, and soils, resulting in many novel phage sequences. Furthermore, auxiliary metabolic genes such as ammonic monooxygenase C and β-lactamase have been discovered in viral contigs assembled from viral metagenomes. Current attempts to identify putative bacterial hosts of viral metagenome sequences based on sequence homology have been limited due to viral sequence variations. Therefore, culture-independent approaches have been developed to predict bacterial hosts using single-cell genomics and fluorescentlabeling. This review focuses on recent viral metagenome studies conducted in natural environments, especially in aquatic ecosystems, and their contributions to phage ecology. Here, we concluded that although metaviromics is a key tool for the study of viral ecology, this approach must be supplemented with phage-host identification, which in turn requires the cultivation of phage-bacteria systems.
Collapse
Affiliation(s)
- Kira Moon
- Biological Resources Utilization Division, Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
27
|
Okazaki Y, Fujinaga S, Salcher MM, Callieri C, Tanaka A, Kohzu A, Oyagi H, Tamaki H, Nakano SI. Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing. MICROBIOME 2021; 9:24. [PMID: 33482922 PMCID: PMC7825169 DOI: 10.1186/s40168-020-00974-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/07/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. RESULTS Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7-101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. CONCLUSIONS Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future. Video abstract.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shohei Fujinaga
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Zurich, Switzerland
| | - Cristiana Callieri
- CNR, IRSA Institute of Water Research, Largo Tonolli 50, 28922, Verbania, Italy
| | - Atsushi Tanaka
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Ayato Kohzu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hideo Oyagi
- Faculty of Policy Studies, Nanzan University, 18 Yamazato-cho, Showa-ku, Nagoya, Aichi, 466-8673, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
28
|
Coutinho FH, Cabello-Yeves PJ, Gonzalez-Serrano R, Rosselli R, López-Pérez M, Zemskaya TI, Zakharenko AS, Ivanov VG, Rodriguez-Valera F. New viral biogeochemical roles revealed through metagenomic analysis of Lake Baikal. MICROBIOME 2020; 8:163. [PMID: 33213521 PMCID: PMC7678222 DOI: 10.1186/s40168-020-00936-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/12/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Lake Baikal is the largest body of liquid freshwater on Earth. Previous studies have described the microbial composition of this habitat, but the viral communities from this ecosystem have not been characterized in detail. RESULTS Here, we describe the viral diversity of this habitat across depth and seasonal gradients. We discovered 19,475 bona fide viral sequences, which are derived from viruses predicted to infect abundant and ecologically important taxa that reside in Lake Baikal, such as Nitrospirota, Methylophilaceae, and Crenarchaeota. Diversity analysis revealed significant changes in viral community composition between epipelagic and bathypelagic zones. Analysis of the gene content of individual viral populations allowed us to describe one of the first bacteriophages that infect Nitrospirota, and their extensive repertoire of auxiliary metabolic genes that might enhance carbon fixation through the reductive TCA cycle. We also described bacteriophages of methylotrophic bacteria with the potential to enhance methanol oxidation and the S-adenosyl-L-methionine cycle. CONCLUSIONS These findings unraveled new ways by which viruses influence the carbon cycle in freshwater ecosystems, namely, by using auxiliary metabolic genes that act upon metabolisms of dark carbon fixation and methylotrophy. Therefore, our results shed light on the processes through which viruses can impact biogeochemical cycles of major ecological relevance. Video Abstract.
Collapse
Affiliation(s)
- F H Coutinho
- Evolutionary Genomics Group, Dpto. Producción Vegetal y Microbiología, Universidad Miguel Hernández, Aptdo. 18., Ctra. Alicante-Valencia N-332, s/n, San Juan de Alicante, 03550, Alicante, Spain.
| | - P J Cabello-Yeves
- Evolutionary Genomics Group, Dpto. Producción Vegetal y Microbiología, Universidad Miguel Hernández, Aptdo. 18., Ctra. Alicante-Valencia N-332, s/n, San Juan de Alicante, 03550, Alicante, Spain
| | - R Gonzalez-Serrano
- Evolutionary Genomics Group, Dpto. Producción Vegetal y Microbiología, Universidad Miguel Hernández, Aptdo. 18., Ctra. Alicante-Valencia N-332, s/n, San Juan de Alicante, 03550, Alicante, Spain
| | - R Rosselli
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Utrecht University, Utrecht, The Netherlands
| | - M López-Pérez
- Evolutionary Genomics Group, Dpto. Producción Vegetal y Microbiología, Universidad Miguel Hernández, Aptdo. 18., Ctra. Alicante-Valencia N-332, s/n, San Juan de Alicante, 03550, Alicante, Spain
| | - T I Zemskaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - A S Zakharenko
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - V G Ivanov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - F Rodriguez-Valera
- Evolutionary Genomics Group, Dpto. Producción Vegetal y Microbiología, Universidad Miguel Hernández, Aptdo. 18., Ctra. Alicante-Valencia N-332, s/n, San Juan de Alicante, 03550, Alicante, Spain
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
29
|
Moon K, Kim S, Kang I, Cho JC. Viral metagenomes of Lake Soyang, the largest freshwater lake in South Korea. Sci Data 2020; 7:349. [PMID: 33051444 PMCID: PMC7553992 DOI: 10.1038/s41597-020-00695-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022] Open
Abstract
A high number of viral metagenomes have revealed countless genomes of putative bacteriophages that have not yet been identified due to limitations in bacteriophage cultures. However, most virome studies have been focused on marine or gut environments, thereby leaving the viral community structure of freshwater lakes unclear. Because the lakes located around the globe have independent ecosystems with unique characteristics, viral community structures are also distinctive but comparable. Here, we present data on viral metagenomes that were seasonally collected at a depth of 1 m from Lake Soyang, the largest freshwater reservoir in South Korea. Through shotgun metagenome sequencing using the Illumina MiSeq platform, 3.08 to 5.54-Gbps of reads per virome were obtained. To predict the viral genome sequences within Lake Soyang, contigs were constructed and 648 to 1,004 putative viral contigs were obtained per sample. We expect that both viral metagenome reads and viral contigs would contribute in comparing and understanding of viral communities among different freshwater lakes depending on seasonal changes.
Collapse
Affiliation(s)
- Kira Moon
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Suhyun Kim
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Ilnam Kang
- Center for Molecular and Cell Biology, Inha University, Incheon, 22212, Republic of Korea.
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
30
|
Abstract
The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation. High-latitude, perennially stratified (meromictic) lakes are likely to be especially vulnerable to climate warming because of the importance of ice in maintaining their water column structure and associated distribution of microbial communities. This study aimed to characterize viral abundance, diversity, and distribution in a meromictic lake of marine origin on the far northern coast of Ellesmere Island, in the Canadian High Arctic. We collected triplicate samples for double-stranded DNA (dsDNA) viromics from five depths that encompassed the major features of the lake, as determined by limnological profiling of the water column. Viral abundance and virus-to-prokaryote ratios were highest at greater depths, while bacterial and cyanobacterial counts were greatest in the surface waters. The viral communities from each zone of the lake defined by salinity, temperature, and dissolved oxygen concentrations were markedly distinct, suggesting that there was little exchange of viral types among lake strata. Ten viral assembled genomes were obtained from our libraries, and these also segregated with depth. This well-defined structure of viral communities was consistent with that of potential hosts. Viruses from the monimolimnion, a deep layer of ancient Arctic Ocean seawater, were more diverse and relatively abundant, with few similarities to available viral sequences. The Lake A viral communities also differed from published records from the Arctic Ocean and meromictic Ace Lake in Antarctica. This first characterization of viral diversity from this sentinel environment underscores the microbial richness and complexity of an ecosystem type that is increasingly exposed to major perturbations in the fast-changing Arctic. IMPORTANCE The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation.
Collapse
|
31
|
Tominaga K, Morimoto D, Nishimura Y, Ogata H, Yoshida T. In silico Prediction of Virus-Host Interactions for Marine Bacteroidetes With the Use of Metagenome-Assembled Genomes. Front Microbiol 2020; 11:738. [PMID: 32411107 PMCID: PMC7198788 DOI: 10.3389/fmicb.2020.00738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteroidetes is one of the most abundant heterotrophic bacterial taxa in the ocean and play crucial roles in recycling phytoplankton-derived organic matter. Viruses of Bacteroidetes are also expected to have an important role in the regulation of host communities. However, knowledge on marine Bacteroidetes viruses is biased toward cultured viruses from a few species, mainly fish pathogens or Bacteroidetes not abundant in marine environments. In this study, we investigated the recently reported 1,811 marine viral genomes to identify putative Bacteroidetes viruses using various in silico host prediction techniques. Notably, we used microbial metagenome-assembled genomes (MAGs) to augment the marine Bacteroidetes reference genomic data. The examined viral genomes and MAGs were derived from simultaneously collected samples. Using nucleotide sequence similarity-based host prediction methods, we detected 31 putative Bacteroidetes viral genomes. The MAG-based method substantially enhanced the predictions (26 viruses) when compared with the method that is solely based on the reference genomes from NCBI RefSeq (7 viruses). Previously unrecognized genus-level groups of Bacteroidetes viruses were detected only by the MAG-based method. We also developed a host prediction method based on the proportion of Bacteroidetes homologs in viral genomes, which detected 321 putative Bacteroidetes virus genomes including 81 that were newly recognized as Bacteroidetes virus genomes. The majority of putative Bacteroidetes viruses were detected based on the proportion of Bacteroidetes homologs in both RefSeq and MAGs; however, some were detected in only one of the two datasets. Putative Bacteroidetes virus lineages included not only relatives of known viruses but also those phylogenetically distant from the cultured viruses, such as marine Far-T4 like viruses known to be widespread in aquatic environments. Our MAG and protein homology-based host prediction approaches enhanced the existing knowledge on the diversity of Bacteroidetes viruses and their potential interaction with their hosts in marine environments.
Collapse
Affiliation(s)
- Kento Tominaga
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daichi Morimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Hiroyuki Ogata
- Chemical Life Science, Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Abstract
SAR11 clade members are among the most abundant bacteria on Earth. Their study is complicated by their great diversity and difficulties in being grown and manipulated in the laboratory. On the other hand, and due to their extraordinary abundance, metagenomic data sets provide enormous richness of information about these microbes. Given the major role played by phages in the lifestyle and evolution of prokaryotic cells, the contribution of several new bacteriophage genomes preying on this clade opens windows into the infection strategies and life cycle of its viruses. Such strategies could provide models of attack of large-genome phages preying on streamlined aquatic microbes. The SAR11 clade is one of the most abundant bacterioplankton groups in surface waters of most of the oceans and lakes. However, only 15 SAR11 phages have been isolated thus far, and only one of them belongs to the Myoviridae family (pelagimyophages). Here, we have analyzed 26 sequences of myophages that putatively infect the SAR11 clade. They have been retrieved by mining ca. 45 Gbp aquatic assembled cellular metagenomes and viromes. Most of the myophages were obtained from the cellular fraction (0.2 μm), indicating a bias against this type of virus in viromes. We have found the first myophages that putatively infect Candidatus Fonsibacter (freshwater SAR11) and another group putatively infecting bathypelagic SAR11 phylogroup Ic. The genomes have similar sizes and maintain overall synteny in spite of low average nucleotide identity values, revealing high similarity to marine cyanomyophages. Pelagimyophages recruited metagenomic reads widely from several locations but always much more from cellular metagenomes than from viromes, opposite to what happens with pelagipodophages. Comparing the genomes resulted in the identification of a hypervariable island that is related to host recognition. Interestingly, some genes in these islands could be related to host cell wall synthesis and coinfection avoidance. A cluster of curli-related proteins was widespread among the genomes, although its function is unclear. IMPORTANCE SAR11 clade members are among the most abundant bacteria on Earth. Their study is complicated by their great diversity and difficulties in being grown and manipulated in the laboratory. On the other hand, and due to their extraordinary abundance, metagenomic data sets provide enormous richness of information about these microbes. Given the major role played by phages in the lifestyle and evolution of prokaryotic cells, the contribution of several new bacteriophage genomes preying on this clade opens windows into the infection strategies and life cycle of its viruses. Such strategies could provide models of attack of large-genome phages preying on streamlined aquatic microbes.
Collapse
|