1
|
Bai X, Wu J, Zhang B, Zhao H, Tian F, Wang B. Metagenomics reveals functional profiles of soil nitrogen and phosphorus cycling under different amendments in saline-alkali soil. ENVIRONMENTAL RESEARCH 2025; 267:120686. [PMID: 39716679 DOI: 10.1016/j.envres.2024.120686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
High salinity, low fertility and poor structure in saline-alkali soils led to nutrient cycling slow and microbial activity loss. The application of amendments has proven effective in enhancing soil nutrients, which significantly affects soil nitrogen and phosphorus cycling process. However, the specific impact of different amendments on the microbial functional potential related to nutrient cycling in saline-alkali soils remains unclear. Hence, metagenomics sequencing was used to investigate soil microbial communities and nitrogen and phosphorus cycling genes in response to different amendments, and to examine the influence of soil physicochemical properties on functional genes in the Hetao irrigation district of China. The results showed that amendments application enriched the Proteobacteria abundance, while inhibiting oligotrophic groups such as Chloroflexi. Compared to the control (CK), the combined application of desulfurization gypsum and cattle manure (DC) notably increased nasA (assimilatory nitrate reduction) and nirB (dissimilatory nitrate reduction), as well as phoD and phoA genes (organic P mineralization). Furthermore, soil AK and AP were primary factors affecting microbial communities and N and P cycling genes. Overall, this study offers valuable insights into soil nitrogen and phosphorus cycling genes and their interactions in response to different amendments, where the application of amendments affects nitrogen and phosphorus cycling by altering soil nutrient availability.
Collapse
Affiliation(s)
- Xiaolong Bai
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Jinmin Wu
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Bangyan Zhang
- College of Forestry and Pratacuture, Ningxia University, Yinchuan, 750021, China
| | - Hui Zhao
- Tumote Right Banner Agricultural Technology Extension Center, Baotou, 014100, China
| | - Feng Tian
- Tumote Right Banner Agricultural Technology Extension Center, Baotou, 014100, China
| | - Bin Wang
- College of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
2
|
O'Rourke JA, Vincent SA, Williams IEI, Gascoyne EL, Devlin PF. Phytochrome-mediated shade avoidance responses impact the structure and composition of the bacterial phyllosphere microbiome of Arabidopsis. ENVIRONMENTAL MICROBIOME 2025; 20:20. [PMID: 39915883 PMCID: PMC11800596 DOI: 10.1186/s40793-025-00679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
The shade avoidance response triggers a dramatic promotion of elongation growth, accompanied by a significant reprogramming of metabolic pathways as plants seek to prevent overtopping and adapt to vegetative shade. Here we demonstrate that simulated vegetative shade results in significant changes in the structure and composition of the phyllosphere bacterial microbiome. Our study uncovered significant shifts in the diversity, occurrence, abundance and activity of bacteria within the phyllosphere microbiome. A comparison of responses in both wild-type plants and phytochrome mutants, which inherently exhibit a shade-avoidance phenotype, revealed both indirect responses to host plant physiology and direct responses to light among the microbiota. Hierarchical clustering of response patterns further suggested that over a third of the taxa constituting the core phyllosphere microbiome in our assay show some degree of response to vegetative shade. Bacteria that increased in abundance on plants with a shade-avoidance phenotype corresponded to genera associated with beneficial traits such as enhanced disease resistance and growth promotion. Our findings suggests that plants manipulate their phyllosphere microbiome under shade conditions as a strategy to optimise fitness when competing for light. We discuss the implications of our findings in terms of furthering our understanding of plant-microbe signalling in the shaping of the phyllosphere microbiome and the possibility of manipulating the phyllosphere microbiome for plant health in an agricultural setting at high planting densities.
Collapse
Affiliation(s)
- James A O'Rourke
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Stacey A Vincent
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Isabel E I Williams
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Eleanor L Gascoyne
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Paul F Devlin
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
3
|
Liu J, Yu Z, Gong Y, Chen J, Zhou L, Zhang W, Jia L. Fertilization Induced Soil Microbial Shifts Show Minor Effects on Sapindus mukorossi Yield. Microorganisms 2025; 13:173. [PMID: 39858941 PMCID: PMC11767780 DOI: 10.3390/microorganisms13010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Fertilization can improve soil nutrition and increase the yield of Sapindus mukorossi, but the response of soil microbial communities to fertilization treatments and their correlation with soil nutrition and Sapindus mukorossi yield are unclear. In order to investigate the characteristics of soil physicochemical qualities and the bacterial community, we carried out a field experiment comparing various quantities of nitrogen (N), phosphorus (P), and potassium (K) fertilizers to the unfertilized control treatments and the yield of Sapindus mukorossi in raw material forests in response to different applications of fertilizers and to try to clarify the interrelation among the three. Results showed that (1) there are significant differences in the effects of different fertilization treatments on the soil properties of Sapindus mukorossi raw material forests. The increase in the application rates of nitrogen or phosphorus fertilizers significantly reduced the soil pH value. (2) Compared with control, the α-diversity of bacterial communities was significantly lower in N3P2K2 and N1P1K2 treatments. Among the dominant groups of soil bacteria at the phylum level, the relative abundance of Chloroflexi showed an increase and then a decrease trend with the increase in N application. The relative abundance of Firmicutes, Bacteroidota, and Fusobacteriota was positively correlated with the application of P and K fertilizers, while the relative abundance of Acidobacteriota and Verrucomicrobiota decreased with the increase in P and K fertilizers. (3) The N2P2K2 treatment produced the highest sapindus yield (1464.58 kg/ha), which increased by 258.67% above the control. (4) Redundancy analysis (RDA) showed that the primary determinants of bacterial community structure were soil pH, total K, and effective P concentration. (5) Structural equation modeling (SEM) showed that soil nutrient content was the main direct factor driving the yield of Sapindus mukorossi, whereas the bacterial community attributes (e.g., diversity and structure) had minor effects on the yield. In summary, the rational use of formulated fertilization can change the bacterial community structure, improve the bacterial diversity, and increase the soil nutrient content, with the latter exerting a significant effect on the improvement of the yield of Sapindus mukorossi.
Collapse
Affiliation(s)
- Juntao Liu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (J.L.); (Z.Y.); (Y.G.); (L.Z.)
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Zhexiu Yu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (J.L.); (Z.Y.); (Y.G.); (L.Z.)
| | - Yingyun Gong
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (J.L.); (Z.Y.); (Y.G.); (L.Z.)
| | - Jie Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China;
| | - Ling Zhou
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (J.L.); (Z.Y.); (Y.G.); (L.Z.)
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Liming Jia
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (J.L.); (Z.Y.); (Y.G.); (L.Z.)
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Yang K, Zi S, Ouyang C. Effects of the tobacco-maize relay intercropping pattern on soil nutrients and soil microbial diversity. Front Microbiol 2025; 15:1389156. [PMID: 39867492 PMCID: PMC11757017 DOI: 10.3389/fmicb.2024.1389156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/10/2024] [Indexed: 01/28/2025] Open
Abstract
The imbalanced soil nutrient status caused by the long-term monoculture of flue-cured tobacco are a concern. The tobacco-maize relay intercropping, widely used in Yunnan, may improve soil nutrients by enhancing the soil microbial community, but this remains unexplored. This study employed high-throughput sequencing technology to examine soil microbial diversity under tobacco monoculture and tobacco-maize relay intercropping, using the varieties Hongda and K326, respectively. The results indicated that tobacco-maize relay intercropping significantly enhanced root biomass compared to tobacco monoculture, with no significant effect on aboveground biomass. This intercropping treatment also significantly improved soil physicochemical properties, including soil pH, total phosphorus, available phosphorus, and available potassium, which was associated with an increase in the soil microbial community (as indicated by the Chao1 and Shannon indices). Specifically, the abundance of arbuscular mycorrhizal fungi, Nitrospira, and Acidobacteria increased, but the abundance of Chloroflexi decreased. Therefore, these findings suggest that tobacco-maize relay intercropping can improve soil physicochemical properties and enhance soil nutrient supply.
Collapse
Affiliation(s)
| | - Shuhui Zi
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chengren Ouyang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Du L, Zhong H, Guo X, Li H, Xia J, Chen Q. Nitrogen fertilization and soil nitrogen cycling: Unraveling the links among multiple environmental factors, functional genes, and transformation rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175561. [PMID: 39153640 DOI: 10.1016/j.scitotenv.2024.175561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Anthropogenic nitrogen (N) inputs substantially influence the N cycle in agricultural ecosystems. However, the potential links among various environmental factors, nitrogen functional genes, and transformation rates under N fertilization remain poorly understood. Here, we conducted a five-year field experiment and collected 54 soil samples from three 0-4 m boreholes across different treatments: control, N-addition (nitrogen fertilizer) and NPK-addition (combined application of nitrogen, phosphorus and potassium fertilizers) treatments. Our results revealed pronounced variations in soil physiochemical parameters, metal concentrations and antibiotic levels under both N and NPK treatments. These alternations induced significant shifts in bacterial and fungal communities, altered NFG abundance and composition, and greatly enhanced rates of nitrate reduction processes. Notably, nutrients, antibiotics and bacteria exerted a more pronounced influence on NFGs and nitrate reduction under N treatment, whereas nutrients, metals, bacteria and fungi had a significant impact under NPK treatment. Furthermore, we established multidimensional correlations between nitrate reduction gene profiles and the activity rates under N and NPK treatments, contrasting with the absence of significant relationships in the control treatment. These findings shed light on the intricate relationships between microbial genetics and ecosystem functions in agricultural ecosystem, which is of significance for predicting and managing metabolic processes effectively.
Collapse
Affiliation(s)
- Lei Du
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China
| | - Haohui Zhong
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China
| | - Xinnian Guo
- Institute of Agricultural Resources and Environment/Ningxia Academy of Agriculture and Forestry Sciences, Ningxia 750002, PR China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianxin Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China.
| | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China.
| |
Collapse
|
6
|
Duan Y, Wang C, Li L, Han R, Shen X, Han G, Wang J, Nie M, Zhou X, Du H, Yuan X, Dong S. Effect of Compound Fertilizer on Foxtail Millet Productivity and Soil Environment. PLANTS (BASEL, SWITZERLAND) 2024; 13:3167. [PMID: 39599375 PMCID: PMC11597965 DOI: 10.3390/plants13223167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/26/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The effects of balanced fertilization with nitrogen, phosphorus, and potassium (NPK) on foxtail millet productivity and the soil environment under the same conditions of total nutrients have received limited research attention. Therefore, in this study, three balanced fertilization patterns of 27-14-10 (T1), 27-17-7 (T2), and 30-10-11 (T3), and one no fertilization treatment (CK), a total of four treatments, were set up through a two-year field experiment to study the effects of balanced fertilization patterns on foxtail millet yield and soil environment. Mantel analysis was conducted to reveal the correlation between soil environmental factors and the community and their contribution to productivity. The results showed that: (1) all balanced fertilization treatments significantly increased foxtail millet yield, with the highest yield in the T1 treatment. (2) The contents of EC, available K, available P, and alkaline-hydrolyzable nitrogen in the soil of the two-year TI treatments were higher than those of the other treatments and increased by 7.20-9.36%, 24.87-52.35%, 55.83-56.38%, and 21.05-43.95%, respectively, compared with CK. (3) Soil urease activity in the T1 treatment increased significantly by 26.67% and 9.00% compared with the control over the two years. Sucrase activity increased by 36.27% and 23.88% in the T1 treatment compared to CK, and glutaminase activity increased by 33.33% and 19.23% in the T1 treatment compared to CK. (4) T1 treatment significantly increased the OUT number and diversity index of the soil bacterial community. (5) Mantel analysis and principal component analysis showed that available soil nutrients and soil enzymes were positively correlated, and soil enzymes and soil nutrients contributed more to foxtail millet productivity. In this study, the 27-14-10 balanced fertilization pattern was more effective, providing a theoretical basis for the research and development of special fertilizers for foxtail millet and offering technical guidance for realizing the light simplified cultivation of foxtail millet and sustainable development of cost-saving and increased efficiency.
Collapse
Affiliation(s)
- Yanyan Duan
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Chenyang Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Lizhi Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Ruihua Han
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Xiao Shen
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Genlan Han
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Jiang Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Mengen Nie
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Xinlei Zhou
- Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Huiling Du
- Shanxi Institute of Functional Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| |
Collapse
|
7
|
Jiao G, Huang Y, Tang H, Chen Y, Zhou D, Yu D, Ma Z, Ni S. Unveiling the hidden impact: How human disturbances threaten aquatic microorganisms in cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175305. [PMID: 39117200 DOI: 10.1016/j.scitotenv.2024.175305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Urban activity emissions have important ecological significance to bacterial communities' spatial and temporal distribution and the mechanism of bacterial community construction. The mechanism of bacterial community construction is the key to community structure and lifestyle, and the influence of this aspect has not been thoroughly studied. This study analyzed the response of bacteria in water and sediment in different seasons to urban activities in Jinsha River. The results showed that the influence of urban activities on bacterial community structure in sediment was greater than that in water. The input of pollution in different regions changed the diversity and abundance of water and sediments bacteria and promoted bacterial community reconstruction to a certain extent. Co-network analysis found that many metal-mediated species are core species within the same module and can be used to mitigate pollution caused by metal or organic pollutants due to interspecific solid interactions. Different potential pollution sources around urban rivers affect the metabolic function of bacteria in aquatic ecosystems and promote the detoxification function of bacteria in different media. The results of this study supplement our understanding of the characteristics of microbial communities in urban river systems and provide clues for understanding the maintenance mechanism of microbial diversity in multi-pollution environments.
Collapse
Affiliation(s)
- Ganghui Jiao
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China; Yunnan Earthquake Agency, Yunnan 650000, China; Observation Station for Field Scientific Research of Crustal Tectonic Activity in Northwest Yunnan, Dali 671000, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China.
| | - Hua Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ying Chen
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| | - Dan Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Daming Yu
- Pangang Group Company Limited, Sichuan 617050, China
| | - Zhongjian Ma
- Pangang Group Company Limited, Sichuan 617050, China
| | - Shijun Ni
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| |
Collapse
|
8
|
Yepes-García J, Falquet L. Metagenome quality metrics and taxonomical annotation visualization through the integration of MAGFlow and BIgMAG. F1000Res 2024; 13:640. [PMID: 39360247 PMCID: PMC11445639 DOI: 10.12688/f1000research.152290.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Background Building Metagenome-Assembled Genomes (MAGs) from highly complex metagenomics datasets encompasses a series of steps covering from cleaning the sequences, assembling them to finally group them into bins. Along the process, multiple tools aimed to assess the quality and integrity of each MAG are implemented. Nonetheless, even when incorporated within end-to-end pipelines, the outputs of these pieces of software must be visualized and analyzed manually lacking integration in a complete framework. Methods We developed a Nextflow pipeline (MAGFlow) for estimating the quality of MAGs through a wide variety of approaches (BUSCO, CheckM2, GUNC and QUAST), as well as for annotating taxonomically the metagenomes using GTDB-Tk2. MAGFlow is coupled to a Python-Dash application (BIgMAG) that displays the concatenated outcomes from the tools included by MAGFlow, highlighting the most important metrics in a single interactive environment along with a comparison/clustering of the input data. Results By using MAGFlow/BIgMAG, the user will be able to benchmark the MAGs obtained through different workflows or establish the quality of the MAGs belonging to different samples following the divide and rule methodology. Conclusions MAGFlow/BIgMAG represents a unique tool that integrates state-of-the-art tools to study different quality metrics and extract visually as much information as possible from a wide range of genome features.
Collapse
Affiliation(s)
- Jeferyd Yepes-García
- Swiss Institute of Bioinformatics, Lausanne, Vaud, 1015, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Canton of Fribourg, 1700, Switzerland
| | - Laurent Falquet
- Swiss Institute of Bioinformatics, Lausanne, Vaud, 1015, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Canton of Fribourg, 1700, Switzerland
| |
Collapse
|
9
|
Zhang X, Zhang H, Wang Z, Tian Y, Tian W, Liu Z. Diversity of Microbial Functional Genes Promotes Soil Nitrogen Mineralization in Boreal Forests. Microorganisms 2024; 12:1577. [PMID: 39203419 PMCID: PMC11355967 DOI: 10.3390/microorganisms12081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Soil nitrogen (N) mineralization typically governs the availability and movement of soil N. Understanding how factors, especially functional genes, affect N transformations is essential for the protection and restoration of forest ecosystems. To uncover the underlying mechanisms driving soil N mineralization, this study investigated the effects of edaphic environments, substrates, and soil microbial assemblages on net soil N mineralization in boreal forests. Field studies were conducted in five representative forests: Larix principis-rupprechtii forest (LF), Betula platyphylla forest (BF), mixed forest of Larix principis-rupprechtii and Betula platyphylla (MF), Picea asperata forest (SF), and Pinus sylvestris var. mongolica forest (MPF). Results showed that soil N mineralization rates (Rmin) differed significantly among forests, with the highest rate in BF (p < 0.05). Soil properties and microbial assemblages accounted for over 50% of the variability in N mineralization. This study indicated that soil environmental factors influenced N mineralization through their regulatory impact on microbial assemblages. Compared with microbial community assemblages (α-diversity, Shannon and Richness), functional genes assemblages were the most important indexes to regulate N mineralization. It was thus determined that microbial functional genes controlled N mineralization in boreal forests. This study clarified the mechanisms of N mineralization and provided a mechanistic understanding to enhance biogeochemical models for forecasting soil N availability, alongside aiding species diversity conservation and fragile ecosystem revitalization in boreal forests.
Collapse
Affiliation(s)
- Xiumin Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
- Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Zhao Liu
- Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
10
|
Pu T, Zhang N, Wang J, Zhao Z, Tan W, Li C, Song Y. Organic management pattern improves microbial community diversity and alters microbial network structure in karst tea plantation. Heliyon 2024; 10:e31528. [PMID: 38826734 PMCID: PMC11141352 DOI: 10.1016/j.heliyon.2024.e31528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Soil microbiomes play a crucial role in enhancing plant growth, health, and overall agricultural productivity. Nevertheless, the influence of distinct agricultural management practices on the microbial diversity and community structure within tea (Camellia sinensis) plantations has remained enigmatic. This study postulates that organic agricultural management models can enhance microbial diversity and optimise the microbial community structure within tea plantations, indirectly augmenting soil fertility and tea quality. We employed metagenome technology and conducted molecular ecological network analysis to explore the impact of organic management, pollution-free management, and conventional management on the microbial network structure of tea plantation soil in Weng'an County in the southwestern karst region. Soils subjected to organic management exhibited a higher relative abundance of soil microbial and carbohydrate-active enzyme functional genes than those subjected to other management regimes. Additionally, the relative abundance and diversity of dominant bacteria and keystone species were notably higher under organic management than under the other management regimes. Correlation analysis showed that soil microorganisms were closely related to soil fertility and tea quality, respectively. One-way analysis of variance and the structural equation modelling results showed significant variability in soil fertility under the three agricultural management modes and that soil fertility and soil microbial diversity had a direct impact on tea quality (P > 0.05). In conclusion, this study underscores the profound impact of management modes on microbial diversity and community structure within tea plantations. These management practices alter the soil microbial network structure and potential function, ultimately regulating the microecological dynamics of the soil community in tea plantations.
Collapse
Affiliation(s)
- Tianyi Pu
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, Guizhou, 550001, China
| | - Ni Zhang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Jinqiu Wang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, Guizhou, 550001, China
| | - Zhibing Zhao
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Weiwen Tan
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, Guizhou, 550001, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, Guizhou, 550001, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| |
Collapse
|
11
|
Masuda Y, Mise K, Xu Z, Zhang Z, Shiratori Y, Senoo K, Itoh H. Global soil metagenomics reveals distribution and predominance of Deltaproteobacteria in nitrogen-fixing microbiome. MICROBIOME 2024; 12:95. [PMID: 38790049 PMCID: PMC11127431 DOI: 10.1186/s40168-024-01812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/09/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Biological nitrogen fixation is a fundamental process sustaining all life on earth. While distribution and diversity of N2-fixing soil microbes have been investigated by numerous PCR amplicon sequencing of nitrogenase genes, their comprehensive understanding has been hindered by lack of de facto standard protocols for amplicon surveys and possible PCR biases. Here, by fully leveraging the planetary collections of soil shotgun metagenomes along with recently expanded culture collections, we evaluated the global distribution and diversity of terrestrial diazotrophic microbiome. RESULTS After the extensive analysis of 1,451 soil metagenomic samples, we revealed that the Anaeromyxobacteraceae and Geobacteraceae within Deltaproteobacteria are ubiquitous groups of diazotrophic microbiome in the soils with different geographic origins and land usage types, with particular predominance in anaerobic soils (paddy soils and sediments). CONCLUSION Our results indicate that Deltaproteobacteria is a core bacterial taxon in the potential soil nitrogen fixation population, especially in anaerobic environments, which encourages a careful consideration on deltaproteobacterial diazotrophs in understanding terrestrial nitrogen cycling. Video Abstract.
Collapse
Affiliation(s)
- Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kazumori Mise
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, 2-17-2-1 Tsukisamu-higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.
| | - Zhenxing Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Zhengcheng Zhang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaka Shiratori
- Niigata Agricultural Research Institute, 857 Nagakura-machi, Nagaoka, Niigata, 940-0826, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hideomi Itoh
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, 2-17-2-1 Tsukisamu-higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.
| |
Collapse
|
12
|
Tian S, Xia Y, Yu Z, Zhou H, Wu S, Zhang N, Yue X, Deng Y, Xia Y. Improvement and the relationship between chemical properties and microbial communities in secondary salinization of soils induced by rotating vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171019. [PMID: 38382605 DOI: 10.1016/j.scitotenv.2024.171019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Choosing a good crop rotation plan helps maintain soil fertility and creates a healthy soil ecosystem. However, excessive fertilization and continuous cultivation of vegetables in a greenhouse results in secondary salinization of the soil. It remains unclear how crop rotation affects Yunnan's main place for vegetable growing in the greenhouse. Six plant cultivation patterns were chosen to determine how different rotation patterns affect the chemical properties and the soil microbial communities with secondary salinization, including lettuce monoculture, lettuce-large leaf mustard, lettuce-red leaf beet, lettuce-cabbage, lettuce-romaine lettuce, and lettuce-cilantro (DZ, A1, A2, A3, A4, and A5). The results showed that all treatments increased the proportion of nutrients available in the soil, and the effect of the A1 treatment was the most significant compared to the monoculture mode. The high-throughput sequencing findings revealed that distinct crop rotation patterns exerted varying effects on the microbial communities. Microbial community diversity was significantly lower in the monoculture than in the other treatments. The number of microbial operational taxonomic units OTUs was significantly higher in the crop rotation modes (P < 0.05), and the A1 treatment had larger numbers and diversity of bacterial and fungal OTUs (Shannon's and Simpson's) than other treatments (P < 0.05). Prominent bacterial and fungal communities were readily observable in the soils planted with rotational crops. Proteobacteria had the highest relative abundance of bacteria, whereas Ascomycota was the most abundant fungus. The principal coordinate analysis at the OTU level separated soil bacterial and fungal growth communities under the different treatments. Among the six treatments, The first two axes (PC1 and PC2) described 46.44 % and 42.42 % of the bacterial and fungal communities, respectively. Network-based analysis showed that Bacteroidota and Gemmatimonadota members of the genus Bacteroidota were positively correlated with Proteobacteria. Members of Ascomycota and Chytridiomycota exhibited positive relationships. These results extend the theoretical understanding of how various crop rotation patterns affect soil chemical properties, microbial community diversity, and metabolic functions. They reveal the beneficial effects of crop rotation patterns on enhanced soil quality. This study provides theoretical guidance for the future enhancement of sustainable agriculture and soil management planning.
Collapse
Affiliation(s)
- Shihan Tian
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Xia
- College of Tropical Crops, Yunnan Agricultural University, Pu'er 665099, China
| | - Zhong Yu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; Huazhi Biotechnology Co. Ltd, Changsha 410000, China
| | - Hongyin Zhou
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Sirui Wu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Naiming Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; Yunnan Engineering Research Center of Soil Fertility and Pollution Remediation,Kunming 650201, China
| | - Xianrong Yue
- Yunnan Engineering Research Center of Soil Fertility and Pollution Remediation,Kunming 650201, China
| | - Yishu Deng
- Yunnan Engineering Research Center of Soil Fertility and Pollution Remediation,Kunming 650201, China
| | - Yunsheng Xia
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; Yunnan Engineering Research Center of Soil Fertility and Pollution Remediation,Kunming 650201, China.
| |
Collapse
|
13
|
Ye R, Huo W, Shao Y, Wang H, Lu W, Zhang H. Fungal community diversity and their contribution to nitrogen cycling in in-situ aerated landfills: Insights from field and laboratory studies. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:1-11. [PMID: 38442433 DOI: 10.1016/j.wasman.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The application of in-situ aeration technology in landfills has been reported to promote fungal growth, but the community diversity and function of fungi in the aerated landfill system remain unknown. This study firstly investigated an in-situ aerated remediation landfill site to characterize the fungal community diversity in refuse. And to further reveal the fungal involvement in the nitrogen cycling system, laboratory-scale simulated aerated landfill reactors were then constructed. The results in the aerated landfill site showed a significant correlation between fungal community structure and ammonia nitrogen content in the refuse. Dominant fungi in the fungal community included commonly found environmental fungi such as Fusarium, Aspergillus, Gibberella, as well as unique fungi in the aerated system like Chaetomium. In the laboratory-scale aerated landfill simulation experiments, the fungal system was constructed using bacterial inhibitor, and nitrogen balance analysis confirmed the significant role of fungal nitrification in the nitrogen cycling process. When ammonia nitrogen was not readily available, fungi converted organic nitrogen to nitrate, serving as the main nitrification mechanism in the system, with a contribution rate ranging from 62.71 % to 100 % of total nitrification. However, when ammonia nitrogen was present in the system, autotrophic nitrification became the main mechanism, and the contribution of fungal nitrification to total nitrification was only 15.96 %. Additionally, fungi were capable of directly utilizing nitrite for nitrate production with a rate of 4.65 mg L-1 d-1. This research article contributes to the understanding of the importance of fungi in the aerated landfill systems, filling a gap in knowledge.
Collapse
Affiliation(s)
- Rong Ye
- School of Environment, Tsinghua University, Beijing 100084, China; Nanjing Institute of Environment Sciences, Ministry of Ecology & Environment, Nanjing 210042, China
| | - Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Houhu Zhang
- Nanjing Institute of Environment Sciences, Ministry of Ecology & Environment, Nanjing 210042, China
| |
Collapse
|
14
|
Wei W, Shi X, Wang M, Zhou Z. Manure application maintained the CO 2 fixation activity of soil autotrophic bacteria but changed its ecological characteristics in an entisol of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169630. [PMID: 38154636 DOI: 10.1016/j.scitotenv.2023.169630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
The response of soil autotrophs to anthropogenic activities has attracted increasing attention against the background of global change. Here, three entisol plots under different fertilizing regimes, including no fertilization (CK), manure (M), and a combined application of chemical fertilizer and manure (NPKM) were selected, and then the soil RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) activity and cbbl (gene encoding the large subunit of RubisCO) composition were measured to indicate the activity and community of autotrophic bacteria, respectively. The results revealed that the RubisCO activity of CK showed no difference from that of M but was significantly higher than that of NPKM. The CK and M had the lowest and highest soil cbbl abundance, respectively. The α-diversity of soil cbbl-carrying bacteria showed no significant difference among these treatments, whereas they showed significantly different community structures of cbbl-carrying bacteria. Meanwhile, compared with CK, M had significantly lower abundances of bacterial species with the functions of nitrogen fixation (Azoarcus sp.KH32C) or detoxification (Methylibium petroleiphilum), indicating that manure application might have an inhibiting potential to some beneficial autotrophic bacterial species in this entisol.
Collapse
Affiliation(s)
- Wanling Wei
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400715, China; The National Monitoring Base for Purple Soil Fertility and Fertilizer Efficiency, Southwest University, Chongqing 400715, China
| | - Mingxia Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhifeng Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Wang Y, Cai J, Chen X, Guo B, Liu J, Qiu G, Li H. The connection between the antibiotic resistome and nitrogen-cycling microorganisms in paddy soil is enhanced by application of chemical and plant-derived organic fertilizers. ENVIRONMENTAL RESEARCH 2024; 243:117880. [PMID: 38070858 DOI: 10.1016/j.envres.2023.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
Antibiotic resistant genes (ARGs) present significant risks to environments and public health. In particular, there is increasing awareness of the role of soil nitrogen in ARG dissemination. Here, we investigated the connections between antibiotic resistome and nitrogen-cycling microbes in paddy soil by performing five-year field experiments with the treatments of no nitrogen fertilization (CK), reduced chemical nitrogen fertilization (LN), conventional chemical nitrogen fertilization (CN) and plant-derived organic nitrogen fertilization (ON). Compared with CK treatment, CN and ON treatments significantly increased soil NH4+ and TN concentrations by 25.4%-56.5% and 10.4%-20.1%, respectively. Redundancy analysis revealed significantly positive correlation of NH4+ with most ARGs, including tetA, macB and barA. Correspondingly, CN and ON treatments enhanced ARG abundances by 21.9%-23.2%. Moreover, CN and ON treatments promoted nitrate/nitrite-reducing bacteria and linked the corresponding N-cycling functional genes (narG, narH, nirK and nrfA) with most ARGs. Metagenomic binning was performed and identified Gemmatimonadaceae, Caulobacteraceae, Ilumatobacteraceae and Anaerolineaceae as hosts for both ARGs and nitrate/nitrite reduction genes that were enriched by CN and ON treatments. Soil resistome risk score analysis indicated that, although there was increased relation of ARG to nitrogen-cycling microorganisms with nitrogen fertilizer application, the environmental risk of ARGs was not increased due to the lower distribution of ARGs in pathogens. This study contributed to a deeper understanding of the role of soil nitrogen in shaping ARG profiles and controlling soil resistome risk.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jingjing Cai
- Zhejiang Sino-Geo Clean-Soil Company Limited, Zhuji, 311800, China
| | - Xiaodong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Gaoyang Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
16
|
Sun P, Silvano E, Chen Y, Wu Y. Imbalanced intracellular nutrient stoichiometries drive the regional structural variation of microeukaryotic communities in paddy fields. ISME COMMUNICATIONS 2024; 4:ycae119. [PMID: 39464510 PMCID: PMC11512751 DOI: 10.1093/ismeco/ycae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Periphytons serve as critical microbial nutrient sinks at the soil-water interface, influencing biogeochemical cycles and nutrient migration in paddy fields. Despite their importance, the impact of accumulated intracellular nutrients on the spatial dynamics and community assembly of periphytons, particularly their microeukaryote communities, remains unclear. To address this gap, we examined the nutrient accumulation potential and its effects on microeukaryotes in periphytons from 220 paddy fields spanning up to 3469 km across three temperature zones. Our study reveals that the periphytons exhibit varying capacities to accumulate carbon, nitrogen, and phosphorus, leading to imbalanced intracellular nutrient stoichiometries (carbon-to-nitrogen ratio = 10.3 ± 2.1, carbon-to-phosphorus ratio = 30.9 ± 13.1, nitrogen-to-phosphorus ratio = 3.1 ± 1.3). This stoichiometric imbalance induces intracellular environmental heterogeneity, which partially influences the local species richness of microeukaryotic communities and their regional structural variations on a large scale. Contrary to the typical latitudinal diversity gradient theory, local microeukaryotic species richness follows a distance-decay model, with both deterministic and stochastic processes contributing to community assembly. These results underscore the complex interplay of environmental filtering, species interactions, and dispersal dynamics in shaping the structure and adaptability of microeukaryotic communities within periphytons. This study contributes to a broader understanding of the factors driving regional structural variations of microeukaryotes at the soil-water interface in agricultural landscapes.
Collapse
Affiliation(s)
- Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Yin Chen
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
- University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| |
Collapse
|
17
|
Wei J, Huang X, Wang H, Wang F, Liu X, Yan Y, Qu Y. Insight into biofilm formation of wastewater treatment processes: Nitrogen removal performance and biological mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166550. [PMID: 37633400 DOI: 10.1016/j.scitotenv.2023.166550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Biofilm formation affects biological nitrogen (N) removal, and a sequencing batch biofilm reactor (SBBR) was set up to evaluate the changes in N removal and microbial characteristics during biofilm formation. The results indicated that the average effluent concentration of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) in the SBBR were 27.48, 1.41, and 13.52 mg L-1, respectively after biofilm formation. Furthermore, this process increased microbial richness, but reduced microbial diversity. Patescibacteria, Proteobacteria, and Bacteroides were the dominant phyla that did not change after biofilm formation. After biofilm formation, Firmicutes was eliminated while Spirochaetes involved in the interspecies relationship. Biofilm increased the nitrification and denitrification relating coding genes abundance (hao, narG, narZ, nxrA, narH, narY, nxrB, napA, napB, norB, norC and nosZ), and enhanced the processes of N respiration and denitrification, carbohydrate metabolism, amino acid metabolism and membrane transport. Meanwhile, correlation analysis between genera and transcriptome reflected that Zooglea, Micropruina, Aeromonas and Tessaracoccus played essential roles in biofilm formation and N removal. The key enzyme abundance of EC:1.7.99.1, EC:1.7.2.4, and EC:1.1.1.42 of N and tricarboxylic acid (TCA) cycle increased after biofilm formation. This study can reveal the effect of biofilm formation on biological N removal and provide a theoretical foundation for the application of biofilm process.
Collapse
Affiliation(s)
- Jun Wei
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Hongjie Wang
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fupeng Wang
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin 130021, China
| | - Xueyong Liu
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin 130021, China; Urban and Rural Water Environment Technology R&D Center, China Communications Construction Co. Ltd, Jilin 130021, China
| | - Yu Yan
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin 130021, China; Urban and Rural Water Environment Technology R&D Center, China Communications Construction Co. Ltd, Jilin 130021, China
| | - Yanhui Qu
- China Urban and Rural Holdings Group Co. Ltd, Beijing 100029, China
| |
Collapse
|
18
|
Wang Y, Li X, Quan X, Liang H, Wang L, Yan X. Effects of nitrogen stress and nitrogen form ratios on the bacterial community and diversity in the root surface and rhizosphere of Cunninghamia lanceolata and Schima superba. FRONTIERS IN PLANT SCIENCE 2023; 14:1240675. [PMID: 37920713 PMCID: PMC10619737 DOI: 10.3389/fpls.2023.1240675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
Background The bacterial communities of the root surface and rhizosphere play a crucial role in the decomposition and transformation of soil nitrogen (N) and are also affected by soil N levels and distribution, especially the composition and diversity, which are sensitive to changes in the environment with high spatial and temporal heterogeneity of ammonium N (NH4 +-N) and nitrate N (NO3 --N). Methods One-year-old seedlings of Cunninghamia lanceolata and Schima superba were subjected to N stress (0.5 mmol L-1) and normal N supply (2 mmol L-1), and five different N form ratios (NH4 +-N to NO3 --N ratio of 10:0, 0:10, 8:2, 2:8, and 5:5) were created. We analyze the changes in composition and diversity of bacteria in the root surface and rhizosphere of two tree species by high-throughput sequencing. Results Differences in the composition of the major bacteria in the root surface and rhizosphere of C.lanceolata and S. superba under N stress and N form ratios were not significant. The dominant bacterial phyla shared by two tree species included Proteobacteria and Bacteroidota. Compared to normal N supply, the patterns of diversity in the root surface and rhizosphere of two tree species under N stress were distinct for each at five N form ratios. Under N stress, the bacterial diversity in the root surface was highest at NH4 +-N to NO3 --N ratio of 10:0 of C. lanceolata, whereas in the root surface, it was highest at the NH4 +-N to NO3 --N ratio of 0:10 of S. superba. The NH4 +-N to NO3 --N ratio of 5:5 reduced the bacterial diversity in the rhizosphere of two tree species, and the stability of the bacterial community in the rhizosphere was decreased in C. lanceolata. In addition, the bacterial diversity in the root surface was higher than in the rhizosphere under the N stress of two tree species. Conclusion The bacterial compositions were relatively conserved, but abundance and diversity changed in the root surface and rhizosphere of C. lanceolata and S. superba under N stress and different N form ratios. The heterogeneity of ammonium and nitrate N addition should be considered for N-stressed environments to improve bacterial diversity in the rhizosphere of two tree species.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoli Yan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Li R, Ren C, Wu L, Zhang X, Mao X, Fan Z, Cui W, Zhang W, Wei G, Shu D. Fertilizing-induced alterations of microbial functional profiles in soil nitrogen cycling closely associate with crop yield. ENVIRONMENTAL RESEARCH 2023; 231:116194. [PMID: 37217131 DOI: 10.1016/j.envres.2023.116194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Fertilization and rhizosphere selection are key regulators for soil nitrogen (N) cycling and microbiome. Thus, clarifying how the overall N cycling processes and soil microbiome respond to these factors is a prerequisite for understanding the consequences of high inputs of fertilizers, enhancing crop yields, and formulating reasonable nitrogen management strategies under agricultural intensification scenarios. To do this, we applied shotgun metagenomics sequencing to reconstruct N cycling pathways on the basis of abundance and distribution of related gene families, as well as explored the microbial diversity and interaction via high throughput sequencing based on a two-decade fertilization experiment in Loess Plateau of China semiarid area. We found that bacteria and fungi respond divergent to fertilization regimes and rhizosphere selection, in terms of community diversity, niche breadth, and microbial co-occurrence networks. Moreover, organic fertilization decreased the complexity of bacterial networks but increased the complexity and stability of fungal networks. Most importantly, rhizosphere selection exerted more strongly influences on the soil overall nitrogen cycling than the application of fertilizers, accompanied by the increase in the abundance of nifH, NIT-6, and narI genes and the decrease in the abundance of amoC, norC, and gdhA genes in the rhizosphere soil. Furthermore, keystone families screening from soil microbiome (e.g., Sphingomonadaceae, Sporichthyaceae, and Mortierellaceae), which were affected by the edaphic variables, contributed greatly to crop yield. Collectively, our findings emphasize the pivotal roles of rhizosphere selection interacting with fertilization regimes in sustaining soil nitrogen cycling processes in response to decades-long fertilization, as well as the potential importance of keystone taxa in maintaining crop yield. These findings significantly facilitate our understanding of nitrogen cycling in diverse agricultural soils and lay a foundation for manipulating specific microorganisms to regulate N cycling and promote agroecosystem sustainability.
Collapse
Affiliation(s)
- Ruochen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Chengyao Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Likun Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinxin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinyi Mao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Zhen Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Weili Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Wu Zhang
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe, Heilongjiang, 150086, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
20
|
Kraut-Cohen J, Zolti A, Rotbart N, Bar-Tal A, Laor Y, Medina S, Shawahna R, Saadi I, Raviv M, Green SJ, Yermiyahu U, Minz D. Short- and long-term effects of continuous compost amendment on soil microbiome community. Comput Struct Biotechnol J 2023; 21:3280-3292. [PMID: 38213903 PMCID: PMC10781717 DOI: 10.1016/j.csbj.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 01/13/2024] Open
Abstract
Organic amendment, and especially the use of composts, is a well-accepted sustainable agricultural practice. Compost increases soil carbon and microbial biomass, changes enzymatic activity, and enriches soil carbon and nitrogen stocks. However, relatively little is known about the immediate and long-term temporal dynamics of agricultural soil microbial communities following repeated compost applications. Our study was conducted at two field sites: Newe Ya'ar (NY, Mediterranean climate) and Gilat (G, semi-arid climate), both managed organically over 4 years under either conventional fertilization (0, zero compost) or three levels of compost amendment (20, 40 and 60 m3/ha or 2, 4, 6 L/m2). Microbial community dynamics in the soils was examined by high- and low-time-resolution analyses. Annual community composition in compost-amended soils was significantly affected by compost amendment levels in G (first, second and third years) and in NY (third year). Repeated sampling at high resolution (9-10 times over 1 year) showed that at both sites, compost application initially induced a strong shift in microbial communities, lasting for up to 1 month, followed by a milder response. Compost application significantly elevated alpha diversity at both sites, but differed in the compost-dose correlation effect. We demonstrate higher abundance of taxa putatively involved in organic decomposition and characterized compost-related indicator taxa and a compost-derived core microbiome at both sites. Overall, this study describes temporal changes in the ecology of soil microbiomes in response to compost vs. conventional fertilization.
Collapse
Affiliation(s)
- Judith Kraut-Cohen
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Avihai Zolti
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nativ Rotbart
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
- Shamir Research Institute, University of Haifa, Qatzrin, Israel
| | - Asher Bar-Tal
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Yael Laor
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization - Volcani Institute, Newe Ya’ar Research Center, Ramat Yishai 30095, Israel
| | - Shlomit Medina
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization - Volcani Institute, Newe Ya’ar Research Center, Ramat Yishai 30095, Israel
| | - Raneen Shawahna
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Ibrahim Saadi
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization - Volcani Institute, Newe Ya’ar Research Center, Ramat Yishai 30095, Israel
| | - Michael Raviv
- Institute of Plant Science, Agricultural Research Organization - Volcani Institute, Newe Ya’ar Research Center, Ramat Yishai 30095, Israel
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, USA
| | - Uri Yermiyahu
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Gilat Research Center, Israel
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
21
|
Cui W, Li R, Fan Z, Wu L, Zhao X, Wei G, Shu D. Weak environmental adaptation of rare phylotypes sustaining soil multi-element cycles in response to decades-long fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162063. [PMID: 36746286 DOI: 10.1016/j.scitotenv.2023.162063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Deciphering the ecological role of soil communities in the maintenance of multiple ecosystem functions is pivotal for the conservation and sustainability of soil biodiversity. However, few studies have investigated niche differentiation of abundant and rare microbiota, as well as their contributions to multiple soil elemental cycles, particularly in agroecosystems that have received decades of intense fertilization. Here, we characterized the environmental thresholds and phylogenetic signals for the environmental adaptation of both abundant and rare microbial subcommunities via amplicon sequencing and metagenomic sequencing and explored their importance in sustaining soil multiple nutrient cycling in agricultural fields that were fertilized for two decades. The results showed that rare taxa exhibited narrower niche breadths and weaker phylogenetic signals than abundant species. The assembly of abundant subcommunity was shaped predominantly by dispersal limitation (explained 71.1 % of the variation in bacteria) and undominated processes (explained 75 % of the variation in fungi), whereas the assembly of rare subcommunity was dominated by homogeneous selection process (explained 100 % of the variation in bacteria and 60 % of the variation in fungi). Soil ammonia nitrogen was the leading factor mediating the balance between stochastic and deterministic processes in both abundant (R2 = 0.15, P < 0.001) and rare (R2 = 0.08, P < 0.001) bacterial communities. Notably, the rare biosphere largely contributed to key soil processes such as carbon (R2bacteria = 0.03, P < 0.05; R2fungi = 0.05, P < 0.05) and nitrogen (R2bacteria = 0.03, P < 0.05; R2fungi = 0.17, P < 0.001) cycling. Collectively, these findings facilitate our understanding of the maintenance of rhizosphere bacterial and fungal diversity in response to agricultural fertilization and highlight the key role of rare taxa in sustaining agricultural ecosystem functions.
Collapse
Affiliation(s)
- Weili Cui
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruochen Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Fan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Likun Wu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xining Zhao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, Shaanxi, China; Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Gehong Wei
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Duntao Shu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Quiza L, Tremblay J, Pagé AP, Greer CW, Pozniak CJ, Li R, Haug B, Hemmingsen SM, St-Arnaud M, Yergeau E. The effect of wheat genotype on the microbiome is more evident in roots and varies through time. ISME COMMUNICATIONS 2023; 3:32. [PMID: 37076737 PMCID: PMC10115884 DOI: 10.1038/s43705-023-00238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Crop breeding has traditionally ignored the plant-associated microbial communities. Considering the interactions between plant genotype and associated microbiota is of value since different genotypes of the same crop often harbor distinct microbial communities which can influence the plant phenotype. However, recent studies have reported contrasting results, which led us to hypothesize that the effect of genotype is constrained by growth stages, sampling year and plant compartment. To test this hypothesis, we sampled bulk soil, rhizosphere soil and roots of 10 field-grown wheat genotypes, twice per year, for 4 years. DNA was extracted and regions of the bacterial 16 S rRNA and CPN60 genes and the fungal ITS region were amplified and sequenced. The effect of genotype was highly contingent on the time of sampling and on the plant compartment sampled. Only for a few sampling dates, were the microbial communities significantly different across genotypes. The effect of genotype was most often significant for root microbial communities. The three marker genes used provided a highly coherent picture of the effect of genotype. Taken together, our results confirm that microbial communities in the plant environment strongly vary across compartments, growth stages, and years, and that this can mask the effect of genotype.
Collapse
Affiliation(s)
- Liliana Quiza
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Julien Tremblay
- Energy, Mining, and Environment Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Antoine P Pagé
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Charles W Greer
- Energy, Mining, and Environment Research Centre, National Research Council Canada, Montréal, QC, Canada
| | | | - Rong Li
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Brenda Haug
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Sean M Hemmingsen
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, 4101 rue Sherbrooke E., Montréal, QC, Canada
| | - Etienne Yergeau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada.
| |
Collapse
|
23
|
Ni H, Wu Y, Zong R, Ren S, Pan D, Yu L, Li J, Qu Z, Wang Q, Zhao G, Zhao J, Liu L, Li T, Zhang Y, Tu Q. Combination of Aspergillus niger MJ1 with Pseudomonas stutzeri DSM4166 or mutant Pseudomonas fluorescens CHA0- nif improved crop quality, soil properties, and microbial communities in barrier soil. Front Microbiol 2023; 14:1064358. [PMID: 36819023 PMCID: PMC9932699 DOI: 10.3389/fmicb.2023.1064358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Soil salinization and acidification seriously damage soil health and restricts the sustainable development of planting. Excessive application of chemical fertilizer and other reasons will lead to soil acidification and salinization. This study focus on acid and salinized soil, investigated the effect of phosphate-solubilizing bacteria, Aspergillus niger MJ1 combined with nitrogen-fixing bacteria Pseudomonas stutzeri DSM4166 or mutant Pseudomonas fluorescens CHA0-nif on crop quality, soil physicochemical properties, and microbial communities. A total of 5 treatments were set: regular fertilization (T1), regular fertilization with MJ1 and DSM4166 (T2), regular fertilization with MJ1 and CHA0-nif (T3), 30%-reducing fertilization with MJ1 and DSM4166 (T4), and 30%-reducing fertilization with MJ1 and CHA0-nif (T5). It was found that the soil properties (OM, HN, TN, AP, AK, and SS) and crop quality of cucumber (yield production, protein, and vitamin C) and lettuce (yield production, vitamin C, nitrate, soluble protein, and crude fiber) showed a significant response to the inoculated strains. The combination of MJ1 with DSM4166 or CHA0-nif influenced the diversity and richness of bacterial community in the lettuce-grown soil. The organismal system-, cellular process-, and metabolism-correlated bacteria and saprophytic fungi were enriched, which were speculated to mediate the response to inoculated strains. pH, OM, HN, and TN were identified to be the major factors correlated with the soil microbial community. The inoculation of MJ1 with DSM4166 and CHA0-nif could meet the requirement of lettuce and cucumber growth after reducing fertilization in acid and salinized soil, which provides a novel candidate for the eco-friendly technique to meet the carbon-neutral topic.
Collapse
Affiliation(s)
- Haiping Ni
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yuxia Wu
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rui Zong
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Shiai Ren
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Deng Pan
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lei Yu
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Jianwei Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Zhuling Qu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Qiyao Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Gengxing Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Jianzhong Zhao
- Shandong Rural Economic Management and Service Center, Jinan, China
| | - Lumin Liu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Tao Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Youming Zhang, ✉
| | - Qiang Tu
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Qiang Tu, ✉
| |
Collapse
|
24
|
Li Y, Zou N, Liang X, Zhou X, Guo S, Wang Y, Qin X, Tian Y, Lin J. Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L. Front Microbiol 2023; 13:1070817. [PMID: 36704567 PMCID: PMC9871820 DOI: 10.3389/fmicb.2022.1070817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Lycium barbarum L., goji berry, is a precious traditional Chinese medicine and it is homology of medicine and food. Its growth is heavily dependent on nitrogen. The use of chemical fertilizers has significantly promoted the yield of goji berry and the development of the L. barbarum L. industry. However, crop plants are inefficient in the acquisition and utilization of applied nitrogen, it often leads to excessive application of nitrogen fertilizers by producers, which cause negatively impact to the environment ultimately. The exploration of an interaction model which deals with crops, chemical fertilizers, and rhizosphere microbes to improve nitrogen use efficiency, is, therefore, an important research objective to achieve sustainable development of agriculture greatly. In our study, we explored the effects of nitrogen input on soil microbial community structure, soil nitrogen cycling, and the contents of nutrients in L. barbarum fruits. The structure and composition of the bacterial community in the rhizosphere soil of L. barbarum were significantly different under different nitrogen supply conditions, and high nitrogen addition inhibited the diversity and stability of bacterial communities. Low nitrogen input stimulated the relative abundance of ammonia-oxidizing bacteria (AOB), such as Nitrosospira, catalyzing the first step of the ammonia oxidation process. The results of the GLMM model showed that the level of nitrogen fertilizer (urea) input, the relative abundance of AOB, the relative abundance of Bradyrhizobium, and their combinations had significant effects on the soil nitrogen cycling and contents of nutrients in L. barbarum fruits. Therefore, we believe that moderately reducing the use of urea and other nitrogen fertilizers is more conducive to improving soil nitrogen use efficiency and Goji berry fruit quality by increasing the nitrogen cycling potential of soil microorganisms.
Collapse
Affiliation(s)
- Yuekun Li
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China,*Correspondence: Yuekun Li, ✉
| | - Nan Zou
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xuan Zhou
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Shuhan Guo
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yajun Wang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xiaoya Qin
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yehan Tian
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, China,Jin Lin, ✉
| |
Collapse
|
25
|
The neglected role of micronutrients in predicting soil microbial structure. NPJ Biofilms Microbiomes 2022; 8:103. [PMID: 36575178 PMCID: PMC9794713 DOI: 10.1038/s41522-022-00363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Predicting the distribution patterns of soil microbial communities requires consideration of more environmental drivers. The effects of soil micronutrients on composition of microbial communities are largely unknown despite micronutrients closely relating to soil fertility and plant communities. Here we used data from 228 agricultural fields to identify the importance of micronutrients (iron, zinc, copper and manganese) in shaping structure of soil microbial communities (bacteria, fungi and protist) along latitudinal gradient over 3400 km, across diverse edaphic conditions and climatic gradients. We found that micronutrients explained more variations in the structure of microbial communities than macronutrients in maize soils. Moreover, micronutrients, particularly iron and copper, explained a unique percentage of the variation in structure of microbial communities in maize soils even after controlling for climate, soil physicochemical properties and macronutrients, but these effects were stronger for fungi and protist than for bacteria. The ability of micronutrients to predict the structure of soil microbial communities declined greatly in paddy soils. Machine learning approach showed that the addition of micronutrients substantially increased the predictive power by 9-17% in predicting the structure of soil microbial communities with up to 69-78% accuracy. These results highlighted the considerable contributions of soil micronutrients to microbial community structure, and advocated that soil micronutrients should be considered when predicting the structure of microbial communities in a changing world.
Collapse
|
26
|
Soil microbes and associated extracellular enzymes largely impact nutrient bioavailability in acidic and nutrient poor grassland ecosystem soils. Sci Rep 2022; 12:12601. [PMID: 35871260 PMCID: PMC9308775 DOI: 10.1038/s41598-022-16949-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Understanding the role of soil microbes and their associated extracellular enzymes in long-term grassland experiments presents an opportunity for testing relevant ecological questions on grassland nutrient dynamics and functioning. Veld fertilizer trials initiated in 1951 in South Africa were used to assess soil functional microbial diversity and their metabolic activities in the nutrient-poor grassland soils. Phosphorus and liming trials used for this specific study comprised of superphosphate (336 kg ha−1) and dolomitic lime (2250 kg ha−1) (P + L), superphosphate (336 kg ha−1) (+ P) and control trials. These soils were analyzed for their nutrient concentrations, pH, total cations and exchange acidity, microflora and extracellular enzyme activities. The analysed soil characteristics showed significant differences except nitrogen (N) and organic carbon (C) concentrations showing no significant differences. P-solubilizing, N-cycling and N-fixing microbial diversity varied among the different soil treatments. β-glucosaminidase enzyme activity was high in control soils compared to P-fertilized and limed soils. Alkaline phosphatase showed increased activity in P-fertilized soils, whereas acid phosphatase showed increased activity in control soils. Therefore, the application of superphosphate and liming influences the relative abundance of bacterial communities with nutrient cycling and fixing functions which account for nutrient bioavailability in acidic and nutrient stressed grassland ecosystem soils.
Collapse
|
27
|
Yang H, Zhang R, Li Y, Meng F, Ma J. Impact of Drip Irrigation and Nitrogen Fertilization on Soil Microbial Diversity of Spring Maize. PLANTS (BASEL, SWITZERLAND) 2022; 11:3206. [PMID: 36501245 PMCID: PMC9736923 DOI: 10.3390/plants11233206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Given the shortage of water resources and excessive application of nitrogen fertilizers in irrigated areas, we explored the effect of water−nitrogen coupling on soil microbial diversity in maize fields irrigated using shallow buried droppers. A field experiment (split-plot design) was used with irrigation amounts set at 40%, 50%, and 60% of the conventional amount; furthermore, 13 water and nitrogen coupling treatments were designed. The secondary area was the nitrogen application level, corresponding to 50%, 70%, and the original conventional application amounts. The results showed that the effect of irrigation amount on bacterial community composition was greater than that of nitrogen, whereas the effect of nitrogen on fungi was greater than that on bacteria. No significant difference was detected in the α diversity index or species richness of bacteria and fungi. Available phosphorus and organic carbon contents significantly correlated with the community structure of soil bacteria (p < 0.05). The relative abundances of bacteria and fungi were stable with the decrease of nitrogen application rate at the irrigation rate of 2000 m3 ha−1. With the decrease of irrigation amount, the relative abundance of bacteria and fungi was stable under the treatment of 210 kg ha−1 nitrogen fertilizer. Moreover, the relative abundance of nitrogen-fixing bacteria related to the nitrogen cycle was increased by irrigation of 2000 m3 ha−1 and nitrogen application of 210 kg ha−1. Moderate reduction of subsequent N supply should be as a prior soil management option in a high N input agroecosystem.
Collapse
Affiliation(s)
- Hengshan Yang
- College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, China
- Research Center of Forage Crop Engineering Technology, Tongliao 028042, China
| | - Ruifu Zhang
- College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, China
- Research Center of Forage Crop Engineering Technology, Tongliao 028042, China
| | - Yuanyuan Li
- College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, China
- Research Center of Forage Crop Engineering Technology, Tongliao 028042, China
| | - Fanhao Meng
- College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, China
- Research Center of Forage Crop Engineering Technology, Tongliao 028042, China
| | - Jinhui Ma
- College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
28
|
Tremblay J, Schreiber L, Greer CW. High-resolution shotgun metagenomics: the more data, the better? Brief Bioinform 2022; 23:6780270. [PMID: 36352504 DOI: 10.1093/bib/bbac443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
In shotgun metagenomics (SM), the state-of-the-art bioinformatic workflows are referred to as high-resolution shotgun metagenomics (HRSM) and require intensive computing and disk storage resources. While the increase in data output of the latest iteration of high-throughput DNA sequencing systems can allow for unprecedented sequencing depth at a minimal cost, adjustments in HRSM workflows will be needed to properly process these ever-increasing sequence datasets. One potential adaptation is to generate so-called shallow SM datasets that contain fewer sequencing data per sample as compared with the more classic high coverage sequencing. While shallow sequencing is a promising avenue for SM data analysis, detailed benchmarks using real-data are lacking. In this case study, we took four public SM datasets, one massive and the others moderate in size and subsampled each dataset at various levels to mimic shallow sequencing datasets of various sequencing depths. Our results suggest that shallow SM sequencing is a viable avenue to obtain sound results regarding microbial community structures and that high-depth sequencing does not bring additional elements for ecological interpretation. More specifically, results obtained by subsampling as little as 0.5 M sequencing clusters per sample were similar to the results obtained with the largest subsampled dataset for human gut and agricultural soil datasets. For an Antarctic dataset, which contained only a few samples, 4 M sequencing clusters per sample was found to generate comparable results to the full dataset. One area where ultra-deep sequencing and maximizing the usage of all data was undeniably beneficial was in the generation of metagenome-assembled genomes.
Collapse
Affiliation(s)
- Julien Tremblay
- Energy Mining and Environment Research Centre, National Research Council Canada, Montreal, QC, Canada H4P-2R2
| | - Lars Schreiber
- Energy Mining and Environment Research Centre, National Research Council Canada, Montreal, QC, Canada H4P-2R2
| | - Charles W Greer
- Energy Mining and Environment Research Centre, National Research Council Canada, Montreal, QC, Canada H4P-2R2
| |
Collapse
|
29
|
May-Mutul CG, López-Garrido MA, O’Connor-Sánchez A, Peña-Ramírez YJ, Labrín-Sotomayor NY, Estrada-Medina H, Ferrer MM. Hidden Tenants: Microbiota of the Rhizosphere and Phyllosphere of Cordia dodecandra Trees in Mayan Forests and Homegardens. PLANTS (BASEL, SWITZERLAND) 2022; 11:3098. [PMID: 36432829 PMCID: PMC9699097 DOI: 10.3390/plants11223098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
During domestication, the selection of cultivated plants often reduces microbiota diversity compared with their wild ancestors. Microbiota in compartments such as the phyllosphere or rhizosphere can promote fruit tree health, growth, and development. Cordia dodecandra is a deciduous tree used by Maya people for its fruit and wood, growing, to date, in remnant forest fragments and homegardens (traditional agroforestry systems) in Yucatán. In this work, we evaluated the microbiota's alpha and beta diversity per compartment (phyllosphere and rhizosphere) and per population (forest and homegarden) in the Northeast and Southwest Yucatán regions. Eight composite DNA samples (per compartment/population/region combination) were amplified for 16S-RNA (bacteria) and ITS1-2 (fungi) and sequenced by Illumina MiSeq. Bioinformatic analyses were performed with QIIME and phyloseq. For bacteria and fungi, from 107,947 and 128,786 assembled sequences, 618 and 1092 operating taxonomic units (OTUs) were assigned, respectively. The alpha diversity of bacteria and fungi was highly variable among samples and was similar among compartments and populations. A significant species turnover among populations and regions was observed in the rhizosphere. The core microbiota from the phyllosphere was similar among populations and regions. Forests and homegarden populations are reservoirs of the C. dodecandra phyllosphere core microbiome and significant rhizosphere biodiversity.
Collapse
Affiliation(s)
- Carla G. May-Mutul
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida 97313, Mexico
| | - Miguel A. López-Garrido
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida 97313, Mexico
| | - Aileen O’Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico
| | - Yuri J. Peña-Ramírez
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Campeche, Lerma 24500, Mexico
| | - Natalia Y. Labrín-Sotomayor
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Campeche, Lerma 24500, Mexico
| | - Héctor Estrada-Medina
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida 97313, Mexico
| | - Miriam M. Ferrer
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida 97313, Mexico
| |
Collapse
|
30
|
Yang Y, Shen L, Bai Y, Zhao X, Wang S, Liu J, Liu X, Tian M, Yang W, Jin J, Huang H, Wu H. Response of potential activity, abundance and community composition of nitrite-dependent anaerobic methanotrophs to long-term fertilization in paddy soils. Environ Microbiol 2022; 24:5005-5018. [PMID: 35799420 DOI: 10.1111/1462-2920.16102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022]
Abstract
The process of nitrite-dependent anaerobic methane oxidation (n-damo) catalysed by Candidatus Methylomirabilis oxyfera (M. oxyfera)-like bacteria is a novel pathway in regulating methane (CH4 ) emissions from paddy fields. Nitrogen fertilization is essential to improve rice yields and soil fertility; however, its effect on the n-damo process is largely unknown. Here, the potential n-damo activity, abundance and community composition of M. oxyfera-like bacteria were investigated in paddy fields under three long-term (32 years) fertilization treatments, i.e. unfertilized control (CK), chemical fertilization (NPK) and straw incorporation with chemical fertilization (SNPK). Relative to the CK, both NPK and SNPK treatments significantly (p < 0.05) increased the potential n-damo activity (88%-110%) and the abundance (52%-105%) of M. oxyfera-like bacteria. The variation of soil organic carbon (OrgC) content and inorganic nitrogen content caused by the input of chemical fertilizers and straw returning were identified as the key factors affecting the potential n-damo activity and the abundance of M. oxyfera-like bacteria. However, the community composition and diversity of M. oxyfera-like bacteria did not change significantly by the input of fertilizers. Overall, our results provide the first evidence that long-term fertilization greatly stimulates the n-damo process, indicating its active role in controlling CH4 emissions from paddy fields.
Collapse
Affiliation(s)
- Yuling Yang
- Jiangsu Key Laboratory of Agricultural Meteorology, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lidong Shen
- Jiangsu Key Laboratory of Agricultural Meteorology, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yanan Bai
- Jiangsu Key Laboratory of Agricultural Meteorology, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xu Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shuwei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory of Agricultural Meteorology, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xin Liu
- Jiangsu Key Laboratory of Agricultural Meteorology, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Maohui Tian
- Jiangsu Key Laboratory of Agricultural Meteorology, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Wangting Yang
- Jiangsu Key Laboratory of Agricultural Meteorology, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Jinghao Jin
- Jiangsu Key Laboratory of Agricultural Meteorology, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Hechen Huang
- Jiangsu Key Laboratory of Agricultural Meteorology, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Hongsheng Wu
- Department of Agricultural Resources and Environment, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|
31
|
Landscape Composition and Soil Physical-Chemical Properties Drive the Assemblages of Bacteria and Fungi in Conventional Vegetable Fields. Microorganisms 2022; 10:microorganisms10061202. [PMID: 35744721 PMCID: PMC9229475 DOI: 10.3390/microorganisms10061202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
The soil microbiome is crucial for improving the services and functioning of agroecosystems. Numerous studies have demonstrated the potential of soil physical–chemical properties in driving the belowground microbial assemblages in different agroecosystems. However, not much is known about the assemblage of bacteria and fungi in response to soil physical–chemical properties and the surrounding landscape composition in different vegetable fields of a highly intensive agricultural system. Here, we investigated the effects of soil physical–chemical properties and landscape composition on the community trends of bacteria and fungi in two different soil compartments (bulk and rhizospheric soils) of two different brassica crop types (Chinese cabbage and flower cabbage). The results revealed that bulk soil had a higher alpha diversity of both bacteria and fungi than rhizospheric soil. Each of the soil physical–chemical properties and landscape compositions contributed differently to driving the community structure of distinct bacterial and fungal taxa in both soil compartments and crop types. The higher proportions of forest, grassland, and cultivated land, along with the higher amount of soil calcium in flower cabbage fields, promote the assemblage of Gammaproteobacteria, Actinobacteria, Oxyophotobacteria, Agaricomycetes, and Eurotiomycetes. On the other hand, in Chinese cabbage fields, the increased amounts of iron, zinc, and manganese in the soil together with higher proportions of non-brassica crops in the surrounding landscape strongly support the assemblage of Deltaproteobacteria, Gemmatimonadetes, Bacilli, Clostridia, Alphaproteobacteria, an unknown bacterial species Subgroup-6, Mortierellomycetes, Rhizophlyctidomycetes, and Chytridiomycetes. The findings of this study provide the most comprehensive, comparative, and novel insights related to the bacterial and fungal responses in a highly intensive vegetable growing system for the improvement of the soil fertility and structure. These are important clues for the identification of key bacteria and fungi contributing to the plant–environment interactions and are of a practical significance for landscape-based ecological pest management.
Collapse
|
32
|
Kim N, Riggins CW, Zabaloy MC, Rodriguez-Zas SL, Villamil MB. Limited Impacts of Cover Cropping on Soil N-Cycling Microbial Communities of Long-Term Corn Monocultures. Front Microbiol 2022; 13:926592. [PMID: 35755999 PMCID: PMC9226624 DOI: 10.3389/fmicb.2022.926592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cover cropping (CC) is a promising in-field practice to mitigate soil health degradation and nitrogen (N) losses from excessive N fertilization. Soil N-cycling microbial communities are the fundamental drivers of these processes, but how they respond to CC under field conditions is poorly documented for typical agricultural systems. Our objective was to investigate this relationship for a long-term (36 years) corn [Zea mays L.] monocultures under three N fertilizer rates (N0, N202, and N269; kg N/ha), where a mixture of cereal rye [Secale cereale L.] and hairy vetch [Vicia villosa Roth.] was introduced for two consecutive years, using winter fallows as controls (BF). A 3 × 2 split-plot arrangement of N rates and CC treatments in a randomized complete block design with three replications was deployed. Soil chemical and physical properties and potential nitrification (PNR) and denitrification (PDR) rates were measured along with functional genes, including nifH, archaeal and bacterial amoA, nirK, nirS, and nosZ-I, sequenced in Illumina MiSeq system and quantified in high-throughput quantitative polymerase chain reaction (qPCR). The abundances of nifH, archaeal amoA, and nirS decreased with N fertilization (by 7.9, 4.8, and 38.9 times, respectively), and correlated positively with soil pH. Bacterial amoA increased by 2.4 times with CC within N269 and correlated positively with soil nitrate. CC increased the abundance of nirK by 1.5 times when fertilized. For both bacterial amoA and nirK, N202 and N269 did not differ from N0 within BF. Treatments had no significant effects on nosZ-I. The reported changes did not translate into differences in functionality as PNR and PDR did not respond to treatments. These results suggested that N fertilization disrupts the soil N-cycling communities of this system primarily through soil acidification and high nutrient availability. Two years of CC may not be enough to change the N-cycling communities that adapted to decades of disruption from N fertilization in corn monoculture. This is valuable primary information to understand the potentials and limitations of CC when introduced into long-term agricultural systems.
Collapse
Affiliation(s)
- Nakian Kim
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Chance W. Riggins
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - María C. Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida, UNS-CONICET, Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | | - María B. Villamil
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
33
|
Phosphorus Fertilizers from Sewage Sludge Ash and Animal Blood as an Example of Biobased Environment-Friendly Agrochemicals: Findings from Field Experiments. Molecules 2022; 27:molecules27092769. [PMID: 35566125 PMCID: PMC9100326 DOI: 10.3390/molecules27092769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Wastes of biological origin from wastewater treatment systems and slaughterhouses contain substantial amounts of phosphorus (P) with high recovery potential and can contribute to alleviating the global P supply problem. This paper presents the performance of fertilizer (AF) and biofertilizer (BF) from sewage sludge ash and animal blood under field conditions. BF is AF incorporated with lyophilized cells of P-solubilizing bacteria, Bacillus megaterium. In the experiments with spring or winter wheat, the biobased fertilizers were compared to commercial P fertilizer, superphosphate (SP). No P fertilization provided an additional reference. Fertilizer effects on wheat productivity and on selected properties of soil were studied. BF showed the same yield-forming efficiency as SP, and under poorer habitat conditions, performed slightly better than AF in increasing yield and soil available P. Biobased fertilizers applied at the P rate up to 35.2 kg ha-1 did not affect the soil pH, did not increase As, Cd, Cr, Ni, and Pb content, and did not alter the abundance of heterotrophic bacteria and fungi in the soil. The findings indicate that biobased fertilizers could at least partially replace conventional P fertilizers. Research into strain selection and the proportion of P-solubilizing microorganisms introduced into fertilizers should be continued.
Collapse
|
34
|
Wang JL, Liu KL, Zhao XQ, Gao GF, Wu YH, Shen RF. Microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152342. [PMID: 34919922 DOI: 10.1016/j.scitotenv.2021.152342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Unbalanced fertilization of nutritional elements is a potential threat to environmental quality and agricultural productivity in acid soil. Harnessing keystone taxa in soil microbiome represents a promising strategy to enhance crop productivity as well as reducing the adverse environmental effects of fertilizers, with the goal of agricultural sustainability. However, there is a lack of information on which and how soil microbial keystone taxa contribute to sustainable crop productivity in acid soil. Here, we examined soil microbial communities (including bacteria, fungi, and archaea) and soil nutrients, and the mineral nutrition and yield of maize subjected to different inorganic and organic fertilization treatments over 35 years in acid soil. The application of organic fertilizer alone or in combination with inorganic fertilizers sustained high maize yield when compared with the other fertilization treatments. Microbial abundances and community structures rather than their alpha diversities explained the main variation in maize yield among different treatments. Sixteen soil keystone taxa (a fungal operational taxonomic unit and 15 bacterial operational taxonomic units) were identified from the microbial co-occurrence network. Among them, five keystone taxa (in Hypocreales, Bryobacter, Solirubrobacterales, Thermomicrobiales, and Roseiflexaceae) contributed to high maize yield through increasing phosphorus flow and inhibiting toxic aluminum and manganese flow from soils to plants. However, the remaining eleven keystone taxa (in Conexibacter, Acidothermus, Ktedonobacteraceae, Deltaproteobacteria, Actinobacteria, Elsterales, Ktedonobacterales, and WPS-2) exerted the opposite effects. As a result, maize productivity varied among different fertilization treatments because of the altered maize mineral element flows by microbial keystone taxa. We conclude that microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows in acid soil. This study highlights the importance of microbial keystone taxa for sustainable crop productivity in acid soil and provides deep insights into the relationships between soil microbial keystone taxa, crop mineral nutrition, and productivity.
Collapse
Affiliation(s)
- Jia Lin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Lou Liu
- National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Institute of Red Soil, Nanchang 331717, China.
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong Hong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Hernández-Guzmán M, Pérez-Hernández V, Navarro-Noya YE, Luna-Guido ML, Verhulst N, Govaerts B, Dendooven L. Application of ammonium to a N limited arable soil enriches a succession of bacteria typically found in the rhizosphere. Sci Rep 2022; 12:4110. [PMID: 35260645 PMCID: PMC8904580 DOI: 10.1038/s41598-022-07623-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Crop residue management and tillage are known to affect the soil bacterial community, but when and which bacterial groups are enriched by application of ammonium in soil under different agricultural practices from a semi-arid ecosystem is still poorly understood. Soil was sampled from a long-term agronomic experiment with conventional tilled beds and crop residue retention (CT treatment), permanent beds with crop residue burned (PBB treatment) or retained (PBC) left unfertilized or fertilized with 300 kg urea-N ha−1 and cultivated with wheat (Triticum durum L.)/maize (Zea mays L.) rotation. Soil samples, fertilized or unfertilized, were amended or not (control) with a solution of (NH4)2SO4 (300 kg N ha−1) and were incubated aerobically at 25 ± 2 °C for 56 days, while CO2 emission, mineral N and the bacterial community were monitored. Application of NH4+ significantly increased the C mineralization independent of tillage-residue management or N fertilizer. Oxidation of NH4+ and NO2− was faster in the fertilized soil than in the unfertilized soil. The relative abundance of Nitrosovibrio, the sole ammonium oxidizer detected, was higher in the fertilized than in the unfertilized soil; and similarly, that of Nitrospira, the sole nitrite oxidizer. Application of NH4+ enriched Pseudomonas, Flavisolibacter, Enterobacter and Pseudoxanthomonas in the first week and Rheinheimera, Acinetobacter and Achromobacter between day 7 and 28. The application of ammonium to a soil cultivated with wheat and maize enriched a sequence of bacterial genera characterized as rhizospheric and/or endophytic independent of the application of urea, retention or burning of the crop residue, or tillage.
Collapse
Affiliation(s)
- Mario Hernández-Guzmán
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico
| | - Valentín Pérez-Hernández
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico.,Department of Chemistry and Biochemistry, Instituto Tecnológico de Tuxtla-Gutiérrez, Tuxtla Gutiérrez, Mexico
| | - Yendi E Navarro-Noya
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Marco L Luna-Guido
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico
| | - Nele Verhulst
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Bram Govaerts
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico.,Cornell University, Ithaca, USA
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico.
| |
Collapse
|
36
|
Impacts of corn stover management and fertilizer application on soil nutrient availability and enzymatic activity. Sci Rep 2022; 12:1985. [PMID: 35132132 PMCID: PMC8821671 DOI: 10.1038/s41598-022-06042-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Corn stover is a global resource used in many industrial sectors including bioenergy, fuel, and livestock operations. However, stover removal can negatively impact soil nutrient availability, especially nitrogen (N) and phosphorus (P), biological activity, and soil health. We evaluated the effects of corn stover management combined with N and P fertilization on soil quality, using soil chemical (nitrate, ammonium and Bray-1 P) and biological parameters (β-glucosidase, alkaline phosphatase, arylsulfatase activities and fluorescein diacetate hydrolysis—FDA). The experiment was performed on a Mollisol (Typic Endoaquoll) in a continuous corn system from 2013 to 2015 in Minnesota, USA. The treatments tested included six N rates (0 to 200 kg N ha−1), five P rates (0 to 100 kg P2O5 ha−1), and two residue management strategies (residue removed or incorporated) totalling 60 treatments. Corn stover management significantly impacted soil mineral-N forms and enzyme activity. In general, plots where residue was incorporated were found to have high NH4+ and enzyme activity compared to plots where residue was removed. In contrast, fields where residue was removed showed higher NO3− than plots where residue was incorporated. Residue management had little effect on soil available P. Soil enzyme activity was affected by both nutrient and residue management. In most cases, activity of the enzymes measured in plots where residue was removed frequently showed a positive response to added N and P. In contrast, soil enzyme responses to applied N and P in plots where residue was incorporated were less evident. Soil available nutrients tended to decrease in plots where residue was removed compared with plots where residue was incorporated. In conclusion, stover removal was found to have significant potential to change soil chemical and biological properties and caution should be taken when significant amounts of stover are removed from continuous corn fields. The residue removal could decrease different enzymes related to C-cycle (β-glucosidase) and soil microbial activity (FDA) over continuous cropping seasons, impairing soil health.
Collapse
|
37
|
Aloo BN, Mbega ER, Makumba BA, Tumuhairwe JB. Effects of agrochemicals on the beneficial plant rhizobacteria in agricultural systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60406-60424. [PMID: 34535866 DOI: 10.1007/s11356-021-16191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Conventional agriculture relies heavily on chemical pesticides and fertilizers to control plant pests and diseases and improve production. Nevertheless, the intensive and prolonged use of agrochemicals may have undesirable consequences on the structure, diversity, and activities of soil microbiomes, including the beneficial plant rhizobacteria in agricultural systems. Although literature continues to mount regarding the effects of these chemicals on the beneficial plant rhizobacteria in agricultural systems, our understanding of them is still limited, and a proper account is required. With the renewed efforts and focus on agricultural and environmental sustainability, understanding the effects of different agrochemicals on the beneficial plant rhizobacteria in agricultural systems is both urgent and important to deduce practical solutions towards agricultural sustainability. This review critically evaluates the effects of various agrochemicals on the structure, diversity, and functions of the beneficial plant rhizobacteria in agricultural systems and propounds on the prospects and general solutions that can be considered to realize sustainable agricultural systems. This can be useful in understanding the anthropogenic effects of common and constantly applied agrochemicals on symbiotic systems in agricultural soils and shed light on the need for more environmentally friendly and sustainable agricultural practices.
Collapse
Affiliation(s)
- Becky Nancy Aloo
- Department of Biological Sciences, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya.
| | - Ernest Rashid Mbega
- Department of Sustainable Agriculture and Biodiversity Conservation, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Billy Amendi Makumba
- Department of Biological Sciences, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - John Baptist Tumuhairwe
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box, 7062, Kampala, Uganda
| |
Collapse
|
38
|
Corrochano-Monsalve M, González-Murua C, Estavillo JM, Estonba A, Zarraonaindia I. Impact of dimethylpyrazole-based nitrification inhibitors on soil-borne bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148374. [PMID: 34153750 DOI: 10.1016/j.scitotenv.2021.148374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/03/2021] [Accepted: 06/03/2021] [Indexed: 05/25/2023]
Abstract
Nitrogen (N) input from fertilizers modifies the properties of agricultural soils as well as bacterial community diversity, composition and relationships. This can lead to negative impacts such as the deterioration of system multifunctionality, whose maintenance is critical to normal nutrient cycling. Synthetic nitrification inhibitors (NIs) can be combined with fertilizers to improve the efficiency of N use by reducing N losses. However, analysis of their effects on non-target bacteria are scarce. This study aimed to analyze the effect of applying the NIs DMPP and DMPSA on the whole bacterial community. Through 16S rRNA amplicon sequencing we determined the differences between samples in terms of microbial diversity, composition and co-occurrence networks. The application of DMPP and DMPSA exerted little impact on the abundance of the dominant phyla. Nevertheless, several significant shifts were detected in bacterial diversity, co-occurrence networks, and the abundance of particular taxa, where soil water content played a key role. For instance, the application of NIs intensified the negative impact of N fertilization on bacterial diversity under high water-filled pore spaces (WFPS) (>64%), reducing community diversity, whereas alpha-diversity was not affected at low WFPS (<55%). Interestingly, despite NIs are known to inhibit ammonia monooxygenase (AMO) enzyme, both NIs almost exclusively inhibited Nitrosomonas genera among AMO holding nitrifiers. Thus, Nitrosomonas showed abundance reductions of up to 47% (DMPP) and 66% (DMPSA). Nonetheless, non-target bacterial abundances also shifted with NI application. Notably, DMPSA application partially alleviated the negative effect of fertilization on soil multifunctionality. A remarkable increase in populations related to system multifunctionality, such as Armatimonadetes (up to +21%), Cyanobacteria (up to +30%) and Fibrobacteres (up to +25%) was observed when DMPSA was applied. NI application substantially influenced microbial associations by decreasing the complexity of co-occurrence networks, decreasing the total edges and node connectivity, and increasing path distances.
Collapse
Affiliation(s)
- Mario Corrochano-Monsalve
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - José-María Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Andone Estonba
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iratxe Zarraonaindia
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
39
|
Comparative Effect of Fertilization Practices on Soil Microbial Diversity and Activity: An Overview. Curr Microbiol 2021; 78:3644-3655. [PMID: 34480627 DOI: 10.1007/s00284-021-02634-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Continuously increasing human population demands increased food production, which needs greater fertilizer's input in agricultural lands to enhance crop yield. In this respect, different fertilization practices gained acceptance among farmers. We reviewed effect of three main fertilization practices (Conventional-, Organic-, and Bio-fertilization) on soil microbial diversity, activity, and community composition. Studies reported that over application of inorganic fertilizers decline soil pH, change soil osmolarity, cause soil degradation, disturb taxonomic diversity and metabolism of soil microbes and cause accumulation of extra nutrients into the soil such as phosphorous (P) accumulation. On the contrary, organic fertilizers increase organic carbon (OC) input in the soil, which strongly encourage growth of heterotrophic microbes. Organic fertilizer vermicompost application provides readily available nutrients to both plants as well as microbes and encourage overall microbial number in the soil. Most recently, role of beneficial bacteria in long-term sustainable agriculture attracted attention of scientists towards their use as biofertilizer in the soil. Studies documented favorable effect of biofertilization on microbial Shannon, Chao and ACE diversity indices in the soil. It is concluded from intensive review of literature that all the three fertilization practices have their own way to benefit the soil with nutrients, but biofertilization provides long-term sustainability to crop lands. When it is used in integration with organic fertilizers, it makes the soil best for microbial growth and activity and increase microbial diversity, providing nutrients to soil for a longer time, thus improving crop productivity.
Collapse
|
40
|
Li L, Konkel J, Jin VL, Schaeffer SM. Conservation management improves agroecosystem function and resilience of soil nitrogen cycling in response to seasonal changes in climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146457. [PMID: 34030284 DOI: 10.1016/j.scitotenv.2021.146457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Understanding how conservation agricultural management improves soil nitrogen (N) stability in the face of climate change can help increase agroecosystem productivity and mitigate runoff, leaching and downstream water quality issues. We conducted a 2-year field study in a 36-year-old rain-fed cotton production system to evaluate the impacts of changing climatic factors (temperature and precipitation) on soil N under conservation management, including moderate inorganic N fertilizer application (0 and 67 kg N ha-1), winter cover crops (fallow; winter wheat, Triticum aestivum L.; hairy vetch, Vicia villosa Roth), and reduced tillage (no-till; disk tillage). Structural equation modeling (SEM) was used to quantify and compare the effects of conservation management and climatic factors on soil N concentrations. Fertilizer and vetch cover crops increased soil total N concentration by 16% and 18%, respectively, and also increased microbial N transformation rate by 41% and 168%. In addition, vetch cover crops also increased soil labile N concentrations by 57%, 21%, and 79%, i.e., extractable organic N, ammonium, and nitrate, respectively. The highest soil δ15N value (6.4 ± 0.3‰) was observed under the 67 kg N ha-1 fertilizer-wheat-disk tillage treatment, and the lowest value (4.8 ± 0.3‰) under the zero-fertilizer-wheat-no-till treatment, indicating fertilizer and tillage might accelerate microbial N transformation. The SEM showed positive effects of temperature and precipitation on labile N concentrations, suggesting destabilization of soil N and the potential for soil N loss under increased temperature and intensified precipitation. Fertilizer and vetch use might mitigate some of the effects of temperature by accelerating microbial N transformations, with vetch having a larger effect than fertilizer (0.35 vs. 0.15, Table 1). No-till can reduce some of the effects of precipitation on soil labile N by maintaining soil structure. Our study suggests that fertilizer, vetch cover crop, and no-till might help improve function and resilience of agroecosystems in relation to soil N cycling. Soil N stabilization in cropping systems can be enhanced by adjusting agricultural management.
Collapse
Affiliation(s)
- Lidong Li
- University of Tennessee-Knoxville, Department of Biosystems Engineering and Soil Science, 2506 E. J. Chapman Drive, Knoxville, TN 37996, USA; USDA-ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL-East Campus, Lincoln, NE 68583, USA.
| | - Julie Konkel
- University of Tennessee-Knoxville, Department of Biosystems Engineering and Soil Science, 2506 E. J. Chapman Drive, Knoxville, TN 37996, USA; Blount County Soil Conservation District, 1217 McArthur Rd, Maryville, TN 37804, USA
| | - Virginia L Jin
- USDA-ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL-East Campus, Lincoln, NE 68583, USA
| | - Sean M Schaeffer
- University of Tennessee-Knoxville, Department of Biosystems Engineering and Soil Science, 2506 E. J. Chapman Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
41
|
Wang L, Huang D. Nitrogen and phosphorus losses by surface runoff and soil microbial communities in a paddy field with different irrigation and fertilization managements. PLoS One 2021; 16:e0254227. [PMID: 34242302 PMCID: PMC8274659 DOI: 10.1371/journal.pone.0254227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Rice cultivation usually involves high water and fertilizer application rates leading to the nonpoint pollution of surface waters with phosphorus (P) and nitrogen (N). Here, a 10-year field experiment was conducted to investigate N and P losses and their impact factors under different irrigation and fertilization regimes. Results indicated that T2 (Chemical fertilizer of 240 kg N ha-1, 52 kg P ha-1, and 198 kg K ha-1 combined with shallow intermittent irrigation) decreased N loss by 48.9% compared with T1 (Chemical fertilizer of 273 kg N ha-1, 59 kg P ha-1, and 112 kg K ha-1 combined with traditional flooding irrigation). The loss ratio (total N loss loading/amount of applied N) of N was 9.24-15.90%, whereas that of P was 1.13-1.31% in all treatments. Nitrate N (NO3--N) loss was the major proportion accounting for 88.30-90.65% of dissolved inorganic N loss through surface runoff. Moreover, the N runoff loss was mainly due to high fertilizer input, soil NO3--N, and ammonium N (NH4+-N) contents. In addition, the N loss was accelerated by Bacteroidetes, Proteobacteria, Planotomycetes, Nitrospirae, Firmicutes bacteria and Ascomycota fungi, but decreased by Chytridiomycota fungi whose contribution to the N transformation process. Furthermore, T2 increased agronomic N use efficiency (AEN) and rice yield by 32.81% and 7.36%, respectively, in comparison with T1. These findings demonstrated that T2 might be an effective approach to ameliorate soil chemical properties, regulate microbial community structure, increase AEN and consequently reduce N losses as well as maintaining rice yields in the present study.
Collapse
Affiliation(s)
- Limin Wang
- Soil and Fertilizer Institute, Fujian Academy of Agricultural Sciences,
Fuzhou, P. R. China
- Fujian Key Laboratory of Agro—products Quality & Safety, Fujian
Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Dongfeng Huang
- Soil and Fertilizer Institute, Fujian Academy of Agricultural Sciences,
Fuzhou, P. R. China
- Fujian Key Laboratory of Agro—products Quality & Safety, Fujian
Academy of Agricultural Sciences, Fuzhou, P. R. China
| |
Collapse
|
42
|
Llimós M, Segarra G, Sancho-Adamson M, Trillas MI, Romanyà J. Impact of Olive Saplings and Organic Amendments on Soil Microbial Communities and Effects of Mineral Fertilization. Front Microbiol 2021; 12:653027. [PMID: 34140935 PMCID: PMC8203829 DOI: 10.3389/fmicb.2021.653027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (i) to describe the changes in soil bacterial and fungal communities induced by the presence of young olive trees and their interaction with organic amendments and (ii) to compare the effects of mineral and organic fertilization. We set up two parallel experiments in pots using a previously homogenized soil collected from a commercial olive orchard: in the first one, we grew olive saplings in unamended and organically amended soils with two distinct composts and compared these two soils incubated without a plant, while in the second experiment, we comparatively tested the effects of organic and mineral fertilization. OTUs and the relative abundances of bacterial and fungal genera and phyla were analyzed by 16S rRNA and ITS1 gene amplicon using high-throughput sequencing. Basal respiration and substrate-induced respiration were measured by MicroRespTM. The effects of the different treatments were analyzed in all phyla and in the 100 most abundant genera. The presence of olive saplings increased substrate-induced respiration and bacterial and fungal richness and diversity. Organic amendments greatly affected both bacterial and fungal phyla and increased bacterial richness while not affecting fungal richness. Mineral fertilization increased the relative abundance of the less metabolically active bacterial phyla (Actinobacteria and Firmicutes), while it reduced the most metabolically active phylum, Bacteroidetes. Mineral fertilization increased the relative abundance of three N2-fixing Actinobacteria genera, while organic fertilization only increased one genus of Proteobacteria. In organically and minerally fertilized soils, high basal respiration rates were associated with low fungal diversity. Basidiomycota and Chytridiomycota relative abundances positively correlated with basal respiration and substrate-induced respiration, while Ascomycota correlated negatively. Indeed, the Ascomycota phyla comprised most of the fungal genera decreased by organic amendments. The symbiotrophic phylum Glomeromycota did not correlate with any of the C sources. The relative abundance of this phylum was promoted by the presence of plants but decreased when amending soils with composts.
Collapse
Affiliation(s)
- Miquel Llimós
- Section Environmental Health and Soil Science, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Guillem Segarra
- Section Plant Physiology, Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Marc Sancho-Adamson
- Section Plant Physiology, Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - M Isabel Trillas
- Section Plant Physiology, Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joan Romanyà
- Section Environmental Health and Soil Science, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Ray P, Lakshmanan V, Labbé JL, Craven KD. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front Microbiol 2020; 11:622926. [PMID: 33408712 PMCID: PMC7779556 DOI: 10.3389/fmicb.2020.622926] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Light, water and healthy soil are three essential natural resources required for agricultural productivity. Industrialization of agriculture has resulted in intensification of cropping practices using enormous amounts of chemical pesticides and fertilizers that damage these natural resources. Therefore, there is a need to embrace agriculture practices that do not depend on greater use of fertilizers and water to meet the growing demand of global food requirements. Plants and soil harbor millions of microorganisms, which collectively form a microbial community known as the microbiome. An effective microbiome can offer benefits to its host, including plant growth promotion, nutrient use efficiency, and control of pests and phytopathogens. Therefore, there is an immediate need to bring functional potential of plant-associated microbiome and its innovation into crop production. In addition to that, new scientific methodologies that can track the nutrient flux through the plant, its resident microbiome and surrounding soil, will offer new opportunities for the design of more efficient microbial consortia design. It is now increasingly acknowledged that the diversity of a microbial inoculum is as important as its plant growth promoting ability. Not surprisingly, outcomes from such plant and soil microbiome studies have resulted in a paradigm shift away from single, specific soil microbes to a more holistic microbiome approach for enhancing crop productivity and the restoration of soil health. Herein, we have reviewed this paradigm shift and discussed various aspects of benign microbiome-based approaches for sustainable agriculture.
Collapse
Affiliation(s)
- Prasun Ray
- Noble Research Institute, LLC, Ardmore, OK, United States
| | | | - Jessy L. Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | |
Collapse
|
44
|
Wang S, Cheng J, Li T, Liao Y. Response of soil fungal communities to continuous cropping of flue-cured tobacco. Sci Rep 2020; 10:19911. [PMID: 33199813 PMCID: PMC7669846 DOI: 10.1038/s41598-020-77044-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022] Open
Abstract
Fungal communities are considered to be critically important for crop health and soil fertility. However, our knowledge of the response of fungal community structure to the continuous cropping of flue-cured tobacco is limited, and the interaction of soil fungal communities under different cropping systems remains unclear. In this study, we comparatively investigated the fungal abundance, diversity, and community composition in the soils in which continuous cropping of flue-cured tobacco for 3 years (3ys), 5 years (5ys), and cropping for 1 year (CK) using quantitative polymerase chain reaction and high-throughput sequencing technology. The results revealed that continuous cropping of flue-cured tobacco changed the abundance of soil fungi, and caused a significant variation in fungal diversity. In particular, continuous cropping increased the relative abundance of Mortierellales, which can dissolve mineral phosphorus in soil. Unfortunately, continuous cropping also increased the risk of potential pathogens. Moreover, long-term continuous cropping had more complex and stabilize network. This study also indicated that available potassium and available phosphorous were the primary soil factors shifting the fungal community structure. These results suggested that several soil variables may affect fungal community structure. The continuous cropping of flue-cured tobacco significantly increased the abundance and diversity of soil fungal communities.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, Sichuan, China
| | - Jiangke Cheng
- School of Mathematics and Computer Science, Panzhihua University, Panzhihua, 617000, Sichuan, China
| | - Tong Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuncheng Liao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
45
|
Garnica S, Rosenstein R, Schön ME. Belowground fungal community diversity, composition and ecological functionality associated with winter wheat in conventional and organic agricultural systems. PeerJ 2020; 8:e9732. [PMID: 33083101 PMCID: PMC7566770 DOI: 10.7717/peerj.9732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022] Open
Abstract
Understanding the impacts of agricultural practices on belowground fungal communities is crucial in order to preserve biological diversity in agricultural soils and enhance their role in agroecosystem functioning. Although fungal communities are widely distributed, relatively few studies have correlated agricultural production practices. We investigated the diversity, composition and ecological functionality of fungal communities in roots of winter wheat (Triticum aestivum) growing in conventional and organic farming systems. Direct and nested polymerase chain reaction (PCR) amplifications spanning the internal transcribed spacer (ITS) region of the rDNA from pooled fine root samples were performed with two different sets of fungal specific primers. Fungal identification was carried out through similarity searches against validated reference sequences (RefSeq). The R package ‘picante’ and FUNGuild were used to analyse fungal community composition and trophic mode, respectively. Either by direct or cloning sequencing, 130 complete ITS sequences were clustered into 39 operational taxonomic units (OTUs) (25 singletons), belonging to the Ascomycota (24), the Basidiomycota (14) and to the Glomeromycota (1). Fungal communities from conventional farming sites are phylogenetically more related than expected by chance. Constrained ordination analysis identified total N, total S and Pcal that had a significant effect on the OTU’s abundance and distribution, and a further correlation with the diversity of the co-occurring vegetation could be hypothesised. The functional predictions based on FUNGuild suggested that conventional farming increased the presence of plant pathogenic fungi compared with organic farming. Based on diversity, OTU distribution, nutrition mode and the significant phylogenetic clustering of fungal communities, this study shows that fungal communities differ across sampling sites, depending on agricultural practices. Although it is not fully clear which factors determine the fungal communities, our findings suggest that organic farming systems have a positive effect on fungal communities in winter wheat crops.
Collapse
Affiliation(s)
- Sigisfredo Garnica
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Isla Teja, Chile
| | - Ronja Rosenstein
- Institute of Evolution and Ecology, Plant Evolutionary Ecology, University of Tuebingen, Tuebingen, Germany
| | - Max Emil Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Molina‐Santiago C, Matilla MA. Chemical fertilization: a short-term solution for plant productivity? Microb Biotechnol 2020; 13:1311-1313. [PMID: 31777159 PMCID: PMC7415358 DOI: 10.1111/1751-7915.13515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/27/2022] Open
Abstract
The effect of long-term chemical fertilization on plant-microorganisms and microbe-microbe interactions.
Collapse
Affiliation(s)
- Carlos Molina‐Santiago
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga ‐ Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos)29071MálagaSpain
| | - Miguel A. Matilla
- Department of Environmental ProtectionEstación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasProf. Albareda 1Granada18008Spain
| |
Collapse
|
47
|
Maurya S, Abraham JS, Somasundaram S, Toteja R, Gupta R, Makhija S. Indicators for assessment of soil quality: a mini-review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:604. [PMID: 32857216 DOI: 10.1007/s10661-020-08556-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/16/2020] [Indexed: 05/20/2023]
Abstract
Soil quality is the competence of soil to perform necessary functions that are able to maintain animal and plant productivity of the soil. Soil consists of various physical, chemical, and biological parameters, and all these parameters are involved in the critical functioning of soil. There is a need for continuous assessment of soil quality as soil is a complex and dynamic constituent of Earth's biosphere that is continuously changing by natural and anthropogenic disturbances. Any perturbations in the soil cause disturbances in the physical (soil texture, bulk density, etc.), chemical (pH, salinity, organic carbon, etc.), and biological (microbes and enzymes) parameters. These physical, chemical, and biological parameters can serve as indicators for soil quality assessment. However, soil quality assessment cannot be possible by evaluating only one parameter out of physical, chemical, or biological. So, there is an emergent need to establish a minimum dataset (MDS) which shall include physical, chemical, and biological parameters to assess the quality of the given soil. This review attempts to describe various physical, chemical, and biological parameters, combinations of which can be used in the establishment of MDS.
Collapse
Affiliation(s)
- Swati Maurya
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Jeeva Susan Abraham
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Sripoorna Somasundaram
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Ravi Toteja
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Renu Gupta
- Department of Zoology, Maitreyi College, University of Delhi, Bapu dham, Chanakyapuri, New Delhi, 110021, India
| | - Seema Makhija
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|