1
|
Liu Q, Lei S, Zhao M, Li M, Cong Y, Fang K, Gao X, Zhang L, Zhu C, Zheng L, Liu J. Potential to reduce methane production of using cultivated seaweeds supplementation to reshape the community structure of rumen microorganisms. ENVIRONMENTAL RESEARCH 2024; 259:119458. [PMID: 38925466 DOI: 10.1016/j.envres.2024.119458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/19/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Methane is a short-lived greenhouse gas but has a far greater warming effect than carbon dioxide. At the same time, the livestock sector serves as a large contributor to global emissions of anthropogenic methane. Herein, this work aimed to use cultivated seaweed supplementation to reduce methane emissions and investigate the potential influencing mechanism. To evaluate the feasibility, two cultivated seaweeds, Laminaria japonica Aresch, and Porphyra tenera, along with the enzymatic hydrolysates derived from L. japonica, underwent in vitro trials, and they were both added into corn silage feed (CSF) with different concentrations (1%, 5%, and 10% of CSF) for methane reduction evaluation. The results indicated that >75% and 50% reductions in methane production were observed for the seaweeds and seaweed enzymatic hydrolysates in 9- and 30-day, respectively. Combined high-throughput sequencing and multivariate analysis revealed that supplementation with seaweed and seaweed enzymatic hydrolysates had a notable impact on the prokaryotic community structure. Mantel tests further revealed that significant correlations between the prokaryotic community and methane accumulation (P < 0.05), implying the prokaryotic community plays a role in reducing methane emissions within the rumen. Correspondingly, the networks within the prokaryotic community unveiled the crucial role of propionate/butyrate-producing bacteria in regulating methane emissions through microbial interactions. The predicted function of the prokaryotic community exhibited a significant reduction in the presence of the narB gene in seaweed-supplemented treatments. This reduction may facilitate an increased rate of electron flow toward the nitrate reduction pathway while decreasing the conversion of H2 to methane. These results indicated the supplementation of cultivated seaweeds and the enzymatic hydrolysates has the potential to reshape the community structure of rumen microbial communities, and this alteration appears to be a key factor contributing to their methane production-reduction capability.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266003, China; Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - Shize Lei
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266003, China; Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - Mingbo Zhao
- Institute of Blue Economic Research in Weihai Co., Ltd., Weihai, 264400, China
| | - Mingtan Li
- Weihai Shidai Marine Biotechnology Co., Ltd., Weihai, 264400, China
| | - Yongping Cong
- Institute of Blue Economic Research in Weihai Co., Ltd., Weihai, 264400, China
| | - Kaili Fang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266003, China; Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - XuXu Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266003, China; Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - Lianbao Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266003, China; Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - Chenba Zhu
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, 361005, China; Global Ocean Negative Carbon Emissions (ONCE) Program Alliance, China
| | - Liwen Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266003, China; Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China.
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266003, China; Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China; Global Ocean Negative Carbon Emissions (ONCE) Program Alliance, China.
| |
Collapse
|
2
|
Li B, Mao Z, Xue J, Xing P, Wu QL. Metabolic versatility of aerobic methane-oxidizing bacteria under anoxia in aquatic ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70002. [PMID: 39232853 PMCID: PMC11374530 DOI: 10.1111/1758-2229.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The potential positive feedback between global aquatic deoxygenation and methane (CH4) emission emphasizes the importance of understanding CH4 cycling under O2-limited conditions. Increasing observations for aerobic CH4-oxidizing bacteria (MOB) under anoxia have updated the prevailing paradigm that MOB are O2-dependent; thus, clarification on the metabolic mechanisms of MOB under anoxia is critical and timely. Here, we mapped the global distribution of MOB under anoxic aquatic zones and summarized four underlying metabolic strategies for MOB under anoxia: (a) forming a consortium with oxygenic microorganisms; (b) self-generation/storage of O2 by MOB; (c) forming a consortium with non-oxygenic heterotrophic bacteria that use other electron acceptors; and (d) utilizing alternative electron acceptors other than O2. Finally, we proposed directions for future research. This study calls for improved understanding of MOB under anoxia, and underscores the importance of this overlooked CH4 sink amidst global aquatic deoxygenation.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhendu Mao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jingya Xue
- School of Geographical Sciences, Nanjing Normal University, Nanjing, China
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi, China
| |
Collapse
|
3
|
Chu Y, Wang H, Chen F, He R. Intermittent aeration mitigating carbon emission from landfills with gas-water joint regulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122347. [PMID: 39236606 DOI: 10.1016/j.jenvman.2024.122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Landfill is a significant source of atmospheric CH4 and CO2 emissions. In this study, four landfill reactor systems were constructed to investigate the effects of different ventilation methods, including continuous aeration (20 h d-1) and intermittent aeration (continuous aeration for 4 h d-1 and 2 h of aeration every 12 h, twice a day), on properties of landfilled waste and emissions of CH4 and CO2, in comparison to a traditional landfill. Compared with continuous aeration, intermittent aeration could reduce the potential global warming effect of the CH4 and CO2 emissions, especially multiple intermittent aeration. The CH4 and CO2 emissions could be predicted by the multiple linear regression model based on the contents of carbon, sulfur and/or pH during landfill stabilization. Both intermittent and continuous aeration could enhance the methane oxidation activity of landfilled waste. The aerobic methane oxidation activity of landfilled waste reached the maximums of 50.77-73.78 μg g-1 h-1 after aeration for 5 or 15 d, which was higher than the anaerobic methane oxidation activity (0.45-1.27 μg g-1 h-1). CO2 was the predominant form of organic carbon loss in the bioreactor landfills. Candidatus Methylomirabilis, Methylobacter, Methylomonas and Crenothrix were the main methane-oxidating microorganisms (MOM) in the landfills. Total, NO2--N, pH and Fe3+ were the main environmental variables influencing the MOM community, among which NO2--N and pH had the significant impact on the MOM community. Partial least squares path modelling indicated that aeration modes mainly influenced the emissions of CH4 and CO2 by affecting the degradation of landfilled waste, environmental variables and microbial activities. The results would be helpful for designing aeration systems to reduce the emissions of CH4 and CO2, and the cost during landfill stabilization.
Collapse
Affiliation(s)
- Yixuan Chu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou, 310023, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou, 310023, China
| | - Fengxian Chen
- Hangzhou Wodian Environmental Protection Technology Co., Ltd, Hangzhou, 310023, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
4
|
Schorn S, Graf JS, Littmann S, Hach PF, Lavik G, Speth DR, Schubert CJ, Kuypers MMM, Milucka J. Persistent activity of aerobic methane-oxidizing bacteria in anoxic lake waters due to metabolic versatility. Nat Commun 2024; 15:5293. [PMID: 38906896 PMCID: PMC11192741 DOI: 10.1038/s41467-024-49602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Lacustrine methane emissions are strongly mitigated by aerobic methane-oxidizing bacteria (MOB) that are typically most active at the oxic-anoxic interface. Although oxygen is required by the MOB for the first step of methane oxidation, their occurrence in anoxic lake waters has raised the possibility that they are capable of oxidizing methane further anaerobically. Here, we investigate the activity and growth of MOB in Lake Zug, a permanently stratified freshwater lake. The rates of anaerobic methane oxidation in the anoxic hypolimnion reached up to 0.2 µM d-1. Single-cell nanoSIMS measurements, together with metagenomic and metatranscriptomic analyses, linked the measured rates to MOB of the order Methylococcales. Interestingly, their methane assimilation activity was similar under hypoxic and anoxic conditions. Our data suggest that these MOB use fermentation-based methanotrophy as well as denitrification under anoxic conditions, thus offering an explanation for their widespread presence in anoxic habitats such as stratified water columns. Thus, the methane sink capacity of anoxic basins may have been underestimated by not accounting for the anaerobic MOB activity.
Collapse
Affiliation(s)
- Sina Schorn
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Jon S Graf
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Philipp F Hach
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Gaute Lavik
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Daan R Speth
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Carsten J Schubert
- Department of Surface Waters, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | | | - Jana Milucka
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
5
|
Reis PCJ, Tsuji JM, Weiblen C, Schiff SL, Scott M, Stein LY, Neufeld JD. Enigmatic persistence of aerobic methanotrophs in oxygen-limiting freshwater habitats. THE ISME JOURNAL 2024; 18:wrae041. [PMID: 38470309 PMCID: PMC11008690 DOI: 10.1093/ismejo/wrae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 03/13/2024] [Indexed: 03/13/2024]
Abstract
Methanotrophic bacteria mitigate emissions of the potent greenhouse gas methane (CH4) from a variety of anthropogenic and natural sources, including freshwater lakes, which are large sources of CH4 on a global scale. Despite a dependence on dioxygen (O2) for CH4 oxidation, abundant populations of putatively aerobic methanotrophs have been detected within microoxic and anoxic waters and sediments of lakes. Experimental work has demonstrated active aerobic methanotrophs under those conditions, but how they are able to persist and oxidize CH4 under O2 deficiency remains enigmatic. In this review, we discuss possible mechanisms that underpin the persistence and activity of aerobic methanotrophs under O2-limiting conditions in freshwater habitats, particularly lakes, summarize experimental evidence for microbial oxidation of CH4 by aerobic bacteria under low or no O2, and suggest future research directions to further explore the ecology and metabolism of aerobic methanotrophs in O2-limiting environments.
Collapse
Affiliation(s)
- Paula C J Reis
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jackson M Tsuji
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Cerrise Weiblen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sherry L Schiff
- Department of Earth & Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Matthew Scott
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
6
|
Carratalà A, Chappelier C, Selmoni O, Guillaume AS, Chmiel HE, Pasche N, Weil C, Kohn T, Joost S. Vertical distribution and seasonal dynamics of planktonic cyanobacteria communities in a water column of deep mesotrophic Lake Geneva. Front Microbiol 2023; 14:1295193. [PMID: 38169808 PMCID: PMC10758419 DOI: 10.3389/fmicb.2023.1295193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background Temperate subalpine lakes recovering from eutrophication in central Europe are experiencing harmful blooms due to the proliferation of Planktothrix rubescens, a potentially toxic cyanobacteria. To optimize the management of cyanobacteria blooms there is the need to better comprehend the combination of factors influencing the diversity and dominance of cyanobacteria and their impact on the lake's ecology. The goal of this study was to characterize the diversity and seasonal dynamics of cyanobacteria communities found in a water column of Lake Geneva, as well as the associated changes on bacterioplankton abundance and composition. Methods We used 16S rRNA amplicon high throughput sequencing on more than 200 water samples collected from surface to 100 meters deep monthly over 18 months. Bacterioplankton abundance was determined by quantitative PCR and PICRUSt predictions were used to explore the functional pathways present in the community and to calculate functional diversity indices. Results The obtained results confirmed that the most dominant cyanobacteria in Lake Geneva during autumn and winter was Planktothrix (corresponding to P. rubescens). Our data also showed an unexpectedly high relative abundance of picocyanobacterial genus Cyanobium, particularly during summertime. Multidimensional scaling of Bray Curtis dissimilarity revealed that the dominance of P. rubescens was coincident with a shift in the bacterioplankton community composition and a significant decline in bacterioplankton abundance, as well as a temporary reduction in the taxonomic and PICRUSt2 predicted functional diversity. Conclusion Overall, this study expands our fundamental understanding of the seasonal dynamics of cyanobacteria communities along a vertical column in Lake Geneva and the ecology of P. rubescens, ultimately contributing to improve our preparedness against the potential occurrence of toxic blooms in the largest lake of western Europe.
Collapse
Affiliation(s)
- Anna Carratalà
- Environmental Chemistry Laboratory, ENAC, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Coralie Chappelier
- Environmental Chemistry Laboratory, ENAC, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Oliver Selmoni
- Department of Embryology, Department of Plant Biology, Carnegie Institution for Science, Washington, DC, United States
- Laboratory for Biological Geochemistry (LGB), Geospatial Molecular Epidemiology Group (GEOME), ENAC Faculty, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Annie S. Guillaume
- Laboratory for Biological Geochemistry (LGB), Geospatial Molecular Epidemiology Group (GEOME), ENAC Faculty, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hannah E. Chmiel
- Eusserthal Ecosystem Research Station (EERES), Institute for Environmental Sciences (iES), University of Kaiserslautern-Landau, Landau, Germany
- Limnology Center, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Natacha Pasche
- Limnology Center, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Weil
- ENAC-IT4R, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, ENAC, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Joost
- Laboratory for Biological Geochemistry (LGB), Geospatial Molecular Epidemiology Group (GEOME), ENAC Faculty, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
7
|
Khanongnuch R, Mangayil R, Rissanen AJ. Conversion of methane to organic acids is a widely found trait among gammaproteobacterial methanotrophs of freshwater lake and pond ecosystems. Microbiol Spectr 2023; 11:e0174223. [PMID: 37861333 PMCID: PMC10715148 DOI: 10.1128/spectrum.01742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/09/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Aerobic gammaproteobacterial methanotrophic bacteria (gMOB) play an important role in reducing methane emissions from freshwater ecosystems. In hypoxic conditions prevalent near oxic-anoxic interfaces, gMOB potentially shift their metabolism to fermentation, resulting in the conversion of methane to extracellular organic acids, which would serve as substrates for non-methanotrophic microbes. We intended to assess the prevalence of fermentation traits among freshwater gMOB. Therefore, we isolated two strains representing relevant freshwater gMOB genera, i.e., Methylovulum and Methylomonas, from boreal lakes, experimentally showed that they convert methane to organic acids and demonstrated via metagenomics that the fermentation potential is widely dispersed among lake and pond representatives of these genera. Combined with our recent study showing coherent results from another relevant freshwater gMOB genus, i.e., Methylobacter, we conclude that the conversion of methane to organic acids is a widely found trait among freshwater gMOB, highlighting their role as pivotal mediators of methane carbon into microbial food webs.
Collapse
Affiliation(s)
- Ramita Khanongnuch
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Rahul Mangayil
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Antti Juhani Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
- Natural Resources Institute Finland, Helsinki, Finland
| |
Collapse
|
8
|
Grégoire DS, George NA, Hug LA. Microbial methane cycling in a landfill on a decadal time scale. Nat Commun 2023; 14:7402. [PMID: 37973978 PMCID: PMC10654671 DOI: 10.1038/s41467-023-43129-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Landfills generate outsized environmental footprints due to microbial degradation of organic matter in municipal solid waste, which produces the potent greenhouse gas methane. With global solid waste production predicted to increase substantially in the next few decades, there is a pressing need to better understand the temporal dynamics of biogeochemical processes that control methane cycling in landfills. Here, we use metagenomic approaches to characterize microbial methane cycling in waste that was landfilled over 39 years. Our analyses indicate that newer waste supports more diverse communities with similar composition compared to older waste, which contains lower diversity and more varied communities. Older waste contains primarily autotrophic organisms with versatile redox metabolisms, whereas newer waste is dominated by anaerobic fermenters. Methane-producing microbes are more abundant, diverse, and metabolically versatile in new waste compared to old waste. Our findings indicate that predictive models for methane emission in landfills overlook methane oxidation in the absence of oxygen, as well as certain microbial lineages that can potentially contribute to methane sinks in diverse habitats.
Collapse
Affiliation(s)
- Daniel S Grégoire
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Nikhil A George
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
9
|
Venetz J, Żygadłowska OM, Lenstra WK, van Helmond NAGM, Nuijten GHL, Wallenius AJ, Dalcin Martins P, Slomp CP, Jetten MSM, Veraart AJ. Versatile methanotrophs form an active methane biofilter in the oxycline of a seasonally stratified coastal basin. Environ Microbiol 2023; 25:2277-2288. [PMID: 37381163 DOI: 10.1111/1462-2920.16448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
The potential and drivers of microbial methane removal in the water column of seasonally stratified coastal ecosystems and the importance of the methanotrophic community composition for ecosystem functioning are not well explored. Here, we combined depth profiles of oxygen and methane with 16S rRNA gene amplicon sequencing, metagenomics and methane oxidation rates at discrete depths in a stratified coastal marine system (Lake Grevelingen, The Netherlands). Three amplicon sequence variants (ASVs) belonging to different genera of aerobic Methylomonadaceae and the corresponding three methanotrophic metagenome-assembled genomes (MOB-MAGs) were retrieved by 16S rRNA sequencing and metagenomic analysis, respectively. The abundances of the different methanotrophic ASVs and MOB-MAGs peaked at different depths along the methane oxygen counter-gradient and the MOB-MAGs show a quite diverse genomic potential regarding oxygen metabolism, partial denitrification and sulphur metabolism. Moreover, potential aerobic methane oxidation rates indicated high methanotrophic activity throughout the methane oxygen counter-gradient, even at depths with low in situ methane or oxygen concentration. This suggests that niche-partitioning with high genomic versatility of the present Methylomonadaceae might contribute to the functional resilience of the methanotrophic community and ultimately the efficiency of methane removal in the stratified water column of a marine basin.
Collapse
Affiliation(s)
- Jessica Venetz
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Olga M Żygadłowska
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Wytze K Lenstra
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Niels A G M van Helmond
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Guylaine H L Nuijten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Anna J Wallenius
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Paula Dalcin Martins
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Caroline P Slomp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Annelies J Veraart
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Huang J, Zhao W, Ju J, Liu S, Ye J, Long Y. The existence of ferric hydroxide links the carbon and nitrogen cycles by promoting nitrite-coupled methane anaerobic oxidation. WATER RESEARCH 2023; 243:120192. [PMID: 37454463 DOI: 10.1016/j.watres.2023.120192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
Microorganism-mediated anaerobic oxidation of methane can efficiently mitigate methane atmospheric emissions and is a key process linking the biogeochemical cycles of carbon, nitrogen, and iron. The results showed that methane oxidation and nitrite removal rates in the CF were 1.12 and 1.28 times higher than those in CK, respectively, suggesting that ferric hydroxide can enhance nitrite-driven AOM. The biochemical process was mediated by the enrichment of methanogens, methanotrophs, and denitrifiers. Methanobacterium and Methanosarcina were positively correlated with Fe3+ and Fe2+, whereas Methylocystis and Methylocaldum were positively correlated with methane, and denitrifiers were positively correlated with nitrite. Metagenomic analysis revealed that the genes related to methane oxidation, nitrogen reduction, and heme c-type cytochrome were upregulated in CF, indicating that a synergistic action of bacteria and methanogens drove AOM via diverse metabolic pathways, within which ferric hydroxide played a crucial role. This study provides novel insights into the synergistic mechanism of ferric iron and nitrite-driven AOM.
Collapse
Affiliation(s)
- Juan Huang
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Wurong Zhao
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinwei Ju
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Suifen Liu
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinshao Ye
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yan Long
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Vigderovich H, Eckert W, Elvert M, Gafni A, Rubin-Blum M, Bergman O, Sivan O. Aerobic methanotrophy increases the net iron reduction in methanogenic lake sediments. Front Microbiol 2023; 14:1206414. [PMID: 37577416 PMCID: PMC10415106 DOI: 10.3389/fmicb.2023.1206414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
In methane (CH4) generating sediments, methane oxidation coupled with iron reduction was suggested to be catalyzed by archaea and bacterial methanotrophs of the order Methylococcales. However, the co-existence of these aerobic and anaerobic microbes, the link between the processes, and the oxygen requirement for the bacterial methanotrophs have remained unclear. Here, we show how stimulation of aerobic methane oxidation at an energetically low experimental environment influences net iron reduction, accompanied by distinct microbial community changes and lipid biomarker patterns. We performed incubation experiments (between 30 and 120 days long) with methane generating lake sediments amended with 13C-labeled methane, following the additions of hematite and different oxygen levels in nitrogen headspace, and monitored methane turnover by 13C-DIC measurements. Increasing oxygen exposure (up to 1%) promoted aerobic methanotrophy, considerable net iron reduction, and the increase of microbes, such as Methylomonas, Geobacter, and Desulfuromonas, with the latter two being likely candidates for iron recycling. Amendments of 13C-labeled methanol as a potential substrate for the methanotrophs under hypoxia instead of methane indicate that this substrate primarily fuels methylotrophic methanogenesis, identified by high methane concentrations, strongly positive δ13CDIC values, and archaeal lipid stable isotope data. In contrast, the inhibition of methanogenesis by 2-bromoethanesulfonate (BES) led to increased methanol turnover, as suggested by similar 13C enrichment in DIC and high amounts of newly produced bacterial fatty acids, probably derived from heterotrophic bacteria. Our experiments show a complex link between aerobic methanotrophy and iron reduction, which indicates iron recycling as a survival mechanism for microbes under hypoxia.
Collapse
Affiliation(s)
- Hanni Vigderovich
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Werner Eckert
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Marcus Elvert
- MARUM—Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Almog Gafni
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Oded Bergman
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
12
|
Yang J, Zou L, Zheng L, Yuan Z, Huang K, Gustave W, Shi L, Tang X, Liu X, Xu J. Iron-based passivator mitigates the coupling process of anaerobic methane oxidation and arsenate reduction in paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120182. [PMID: 36152707 DOI: 10.1016/j.envpol.2022.120182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) is a toxic metalloid that is ubiquitous in paddy soils, where passivation is the most widely used method for remediating As contamination. Recently, anaerobic methane oxidation coupled with arsenate (As(V)) reduction (AOM-AsR) has been shown to act as a critical driver for As release in paddy fields. However, the effect and mechanism of the passivators on the AOM-AsR process remain unclear. In this study, we incubated arsenate-contaminated paddy soils under anaerobic conditions. Using isotopically labelled methane and different passivators, we found that an iron-based passivator containing calcium sulfate and iron oxide (9:1, m/m) named IBP showed a much better performance than the other passivators. Adding IBP decreased the arsenite (As(III)) concentration in the soil solution by 78% and increased the AOM rate by 55%. Furthermore, we employed high-throughput sequencing and real-time quantitative polymerase chain reaction (qPCR) to investigate the ability of IBP to control As release mediated by AOM-AsR in paddy fields, as well as its underlying mechanism. Our results showed that IBP addition significantly increased anaerobic methanotrophic (ANME) archaea (ANME-2a-c, ANME-2d, and ANME-3) by 91%, and increased the methane-oxidizing bacterium Methylobacter by 262%. Similarly, IBP addition significantly increased the Fe(III) concentration in soil solution by 39% and increased the absolute abundance of Fe(III)-reducing bacteria (Geobacteraceae) by 21 times in soil. Adding IBP may significantly promote AOM coupled with Fe(III) reduction, significantly reducing electron transfer from AOM to As(V) reduction. Hence, IBP may be used as an efficient passivator to remediate As-contaminated soil using an active AOM-AsR process. These results provide a novel insight into controlling soil As release by regulating an active and critical As mobilization pathway in the environment.
Collapse
Affiliation(s)
- Jingxuan Yang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lina Zou
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, China
| | - Lei Zheng
- Jinhua Meixi Watershed Management Center, Jinhua, 321000, China
| | - Zhaofeng Yuan
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ketan Huang
- Jinhua Meixi Watershed Management Center, Jinhua, 321000, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of The Bahamas, New Providence, Nassau, Bahamas
| | - Lanxia Shi
- Jinhua Meixi Watershed Management Center, Jinhua, 321000, China
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xingmei Liu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
Khanongnuch R, Mangayil R, Svenning MM, Rissanen AJ. Characterization and genome analysis of a psychrophilic methanotroph representing a ubiquitous Methylobacter spp. cluster in boreal lake ecosystems. ISME COMMUNICATIONS 2022; 2:85. [PMID: 37938755 PMCID: PMC9723741 DOI: 10.1038/s43705-022-00172-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 10/21/2023]
Abstract
Lakes and ponds are considered as a major natural source of CH4 emissions, particularly during the ice-free period in boreal ecosystems. Aerobic methane-oxidizing bacteria (MOB), which utilize CH4 using oxygen as an electron acceptor, are one of the dominant microorganisms in the CH4-rich water columns. Metagenome-assembled genomes (MAGs) have revealed the genetic potential of MOB from boreal aquatic ecosystems for various microaerobic/anaerobic metabolic functions. However, experimental proof of these functions, i.e., organic acid production via fermentation, by lake MOB is lacking. In addition, psychrophilic (i.e., cold-loving) MOB and their CH4-oxidizing process have rarely been investigated. In this study, we isolated, provided a taxonomic description, and analyzed the genome of Methylobacter sp. S3L5C, a psychrophilic MOB, from a boreal lake in Finland. Based on phylogenomic comparisons to MAGs, Methylobacter sp. S3L5C represented a ubiquitous cluster of Methylobacter spp. in boreal aquatic ecosystems. At optimal temperatures (3-12 °C) and pH (6.8-8.3), the specific growth rates (µ) and CH4 utilization rate were in the range of 0.018-0.022 h-1 and 0.66-1.52 mmol l-1 d-1, respectively. In batch cultivation, the isolate could produce organic acids, and the concentrations were elevated after replenishing CH4 and air into the headspace. Up to 4.1 mM acetate, 0.02 mM malate, and 0.07 mM propionate were observed at the end of the test under optimal operational conditions. The results herein highlight the key role of Methylobacter spp. in regulating CH4 emissions and their potential to provide CH4-derived organic carbon compounds to surrounding heterotrophic microorganisms in cold ecosystems.
Collapse
Affiliation(s)
- Ramita Khanongnuch
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland.
| | - Rahul Mangayil
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland
| | - Mette Marianne Svenning
- Department of Arctic and Marine Biology, UiT, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Antti Juhani Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland.
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland.
| |
Collapse
|
14
|
Qin Y, Xi B, Sun X, Zhang H, Xue C, Wu B. Methane Emission Reduction and Biological Characteristics of Landfill Cover Soil Amended With Hydrophobic Biochar. Front Bioeng Biotechnol 2022; 10:905466. [PMID: 35757810 PMCID: PMC9213677 DOI: 10.3389/fbioe.2022.905466] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biochar-amended landfill cover soil (BLCS) can promote CH4 and O2 diffusion, but it increases rainwater entry in the rainy season, which is not conducive to CH4 emission reduction. Hydrophobic biochar–amended landfill cover soil (HLCS) was prepared to investigate the changes in CH4 emission reduction and biological characteristics, and BLCS was prepared as control. Results showed that rainwater retention time in HLCS was reduced by half. HLCS had a higher CH4 reduction potential, achieving 100% CH4 removal at 25% CH4 content of landfill gas, and its main contributors to CH4 reduction were found to be at depths of 10–30 cm (upper layer) and 50–60 cm (lower layer). The relative abundances of methane-oxidizing bacteria (MOB) in the upper and lower layers of HLCS were 55.93% and 46.93%, respectively, higher than those of BLCS (50.80% and 31.40%, respectively). Hydrophobic biochar amended to the landfill cover soil can realize waterproofing, ventilation, MOB growth promotion, and efficient CH4 reduction.
Collapse
Affiliation(s)
- Yongli Qin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Hongxia Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Chennan Xue
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beibei Wu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| |
Collapse
|
15
|
Steinsdóttir HGR, Schauberger C, Mhatre S, Thamdrup B, Bristow LA. Aerobic and anaerobic methane oxidation in a seasonally anoxic basin. LIMNOLOGY AND OCEANOGRAPHY 2022; 67:1257-1273. [PMID: 36248250 PMCID: PMC9540798 DOI: 10.1002/lno.12074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 06/16/2023]
Abstract
Shallow coastal waters are dynamic environments that dominate global marine methane emissions. Particularly high methane concentrations are found in seasonally anoxic waters, which are spreading in eutrophic coastal systems, potentially leading to increased methane emissions to the atmosphere. Here we explore how the seasonal development of anoxia influenced methane concentrations, rates of methane oxidation, and the community composition of methanotrophs in the shallow eutrophic water column of Mariager Fjord, Denmark. Our results show the development of steep concentration gradients toward the oxic-anoxic interface as methane accumulated to 1.4 μM in anoxic bottom waters. Yet, the fjord possessed an efficient microbial methane filter near the oxic-anoxic interface that responded to the increasing methane flux. In experimental incubations, methane oxidation near the oxic-anoxic interface proceeded both aerobically and anaerobically with nearly equal efficiency reaching turnover rates as high as 0.6 and 0.8 d-1, respectively, and was seemingly mediated by members of the Methylococcales belonging to the Deep Sea-1 clade. Throughout the period, both aerobic and anaerobic methane oxidation rates were high enough to consume the estimated methane flux. Thus, our results indicate that seasonal anoxia did not increase methane emissions.
Collapse
Affiliation(s)
| | | | - Snehit Mhatre
- Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Bo Thamdrup
- Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Laura A. Bristow
- Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
16
|
Cerbin S, Pérez G, Rybak M, Wejnerowski Ł, Konowalczyk A, Helmsing N, Naus-Wiezer S, Meima-Franke M, Pytlak Ł, Raaijmakers C, Nowak W, Bodelier PLE. Methane-Derived Carbon as a Driver for Cyanobacterial Growth. Front Microbiol 2022; 13:837198. [PMID: 35432228 PMCID: PMC9010870 DOI: 10.3389/fmicb.2022.837198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Methane, a potent greenhouse gas produced in freshwater ecosystems, can be used by methane-oxidizing bacteria (MOB) and can therefore subsidize the pelagic food web with energy and carbon. Consortia of MOB and photoautotrophs have been described in aquatic ecosystems and MOB can benefit from photoautotrophs which produce oxygen, thereby enhancing CH4 oxidation. Methane oxidation can account for accumulation of inorganic carbon (i.e., CO2) and the release of exometabolites that may both be important factors influencing the structure of phytoplankton communities. The consortium of MOB and phototroph has been mainly studied for methane-removing biotechnologies, but there is still little information on the role of these interactions in freshwater ecosystems especially in the context of cyanobacterial growth and bloom development. We hypothesized that MOB could be an alternative C source to support cyanobacterial growth in freshwater systems. We detected low δ13C values in cyanobacterial blooms (the lowest detected value −59.97‰ for Planktothrix rubescens) what could be the result of the use of methane-derived carbon by cyanobacteria and/or MOB attached to their cells. We further proved the presence of metabolically active MOB on cyanobacterial filaments using the fluorescein isothiocyanate (FITC) based activity assay. The PCR results also proved the presence of the pmoA gene in several non-axenic cultures of cyanobacteria. Finally, experiments comprising the co-culture of the cyanobacterium Aphanizomenon gracile with the methanotroph Methylosinus sporium proved that cyanobacterial growth was significantly improved in the presence of MOB, presumably through utilizing CO2 released by MOB. On the other hand, 13C-CH4 labeled incubations showed the uptake and assimilation of MOB-derived metabolites by the cyanobacterium. We also observed a higher growth of MOB in the presence of cyanobacteria under a higher irradiance regime, then when grown alone, underpinning the bidirectional influence with as of yet unknown environmental consequences.
Collapse
Affiliation(s)
- Slawek Cerbin
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- *Correspondence: Slawek Cerbin,
| | - Germán Pérez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Michał Rybak
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Wejnerowski
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Adam Konowalczyk
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Nico Helmsing
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Suzanne Naus-Wiezer
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Marion Meima-Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Łukasz Pytlak
- Montanuniversität Leoben, Applied Geosciences and Geophysics, Leoben, Austria
| | - Ciska Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
17
|
Yang Y, Chen J, Pratscher J, Xie S. DNA-SIP reveals an overlooked methanotroph, Crenothrix sp., involved in methane consumption in shallow lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152742. [PMID: 34974014 DOI: 10.1016/j.scitotenv.2021.152742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Methanotrophs are the main consumers of methane produced in lake sediments. In shallow lakes suffering from eutrophication, methanogenesis is accelerated by the excess organic carbon input, and thus methanotrophs play a key role in regulating this methane flux as well as carbon cycling. Here, we applied nucleic acid stable isotope probing (SIP) to investigate the active methanotrophic microbial community in sediments of several shallow lakes affected by eutrophication. Our results showed that an active methanotrophic community dominated by gamma-proteobacterial methanotrophs, as well as abundant beta-proteobacterial methanol-utilizers, was involved in methane-derived carbon assimilation. Crenothrix, a filamentous methanotroph, was found to be a key methane consumer in all studied lakes. The ecological role of Crenothrix in lacustrine ecosystems is so far poorly understood, with only limited information on its existence in the water column of stratified lakes. Our results provide a novel ecological insight into this group by revealing a wide distribution of Crenothrix in lake sediments. The active methane assimilation by Crenothrix also suggested that it might represent a so far overlooked but crucial biological sink of methane in shallow lakes.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Lyell Centre, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Research Avenue South, Edinburgh EH14 4AP, UK
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jennifer Pratscher
- The Lyell Centre, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Research Avenue South, Edinburgh EH14 4AP, UK
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Stimulated Organic Carbon Cycling and Microbial Community Shift Driven by a Simulated Cold-Seep Eruption. mBio 2022; 13:e0008722. [PMID: 35229641 PMCID: PMC8941925 DOI: 10.1128/mbio.00087-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cold seeps are a major methane source in marine systems, and microbe-mediated anaerobic oxidation of methane (AOM) serves as an effective barrier for preventing methane emissions from sediment to water. However, how the periodic eruption of cold seeps drives the microbial community shift and further affects carbon cycling has been largely neglected, mainly due to the technical challenge of analyzing the in situ communities undergoing such geological events. Using a continuously running high-pressure bioreactor to simulate these events, we found that under the condition of simulated eruptions, the abundance of AOM-related species decreased, and some methane was oxidized to methyl compounds to feed heterotrophs. The methanogenic archaeon Methanolobus replaced ANME-2a as the dominant archaeal group; moreover, the levels of methylotrophic bacteria, such as Pseudomonas, Halomonas, and Methylobacter, quickly increased, while those of sulfate-reducing bacteria decreased. According to the genomic analysis, Methylobacter played an important role in incomplete methane oxidation during eruptions; this process was catalyzed by the genes pmoABC under anaerobic conditions when the methane pressure was high, possibly generating organic carbon. Additionally, the findings showed that methyl compounds can also be released to the environment during methanogenesis and AOM under eruption conditions when the methane pressure is high.
Collapse
|
19
|
Zhang X, Yuan Z, Hu S. Anaerobic oxidation of methane mediated by microbial extracellular respiration. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:790-804. [PMID: 34523810 DOI: 10.1111/1758-2229.13008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic oxidation of methane (AOM) can be microbially mediated by the reduction of different terminal electron acceptors. AOM coupled to reduction of sulfate, manganese/iron oxides, humic substances, selenate, arsenic and other artificial extracellular electron acceptors are recognized as processes associated with microbial extracellular respiration. In these processes, methane-oxidizing archaea transfer electrons to external electron acceptors or to interdependent microbial species, which are mechanistically dependent on versatile extracellular electron transfer (EET) pathways. This review compiles recent progress in the research of electromicrobiology of AOM based on the catalogue of different electron acceptors. Naturally distributed and artificially constructed EET-mediated AOM is summarized, with the discussion of their environmental importance and application potentials. The diversity of responsible microorganisms involved in EET-mediated AOM is discussed with both methane-oxidizing archaea and their putative bacterial partners. More importantly, the review highlights progress and deficiencies in our understanding of EET pathways in EET-mediated AOM, raising open research questions for future research.
Collapse
Affiliation(s)
- Xueqin Zhang
- Advanced Water Management Centre, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
20
|
Bussmann I, Horn F, Hoppert M, Klings KW, Saborowski A, Warnstedt J, Liebner S. Methylomonas albis sp. nov. and Methylomonas fluvii sp. nov.: Two cold-adapted methanotrophs from the river Elbe and emended description of the species Methylovulum psychrotolerans. Syst Appl Microbiol 2021; 44:126248. [PMID: 34624710 DOI: 10.1016/j.syapm.2021.126248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Three strains of methanotrophic bacteria (EbAT, EbBT and Eb1) were isolated from the River Elbe, Germany. These Gram-negative, rod-shaped or coccoid cells contain intracytoplasmic membranes perpendicular to the cell surface. Colonies and liquid cultures appeared bright-pink. The major cellular fatty acids were 12:0 and 14:0, in addition in Eb1 the FA 16:1ω5t was also dominant. Methane and methanol were utilized as sole carbon sources by EbBT and Eb1, while EbAT could not use methanol. All strains oxidize methane using the particulate methane monooxygenase. Both strains contain an additional soluble methane monooxygenase. The strains grew optimally at 15-25 °C and at pH 6 and 8. Based on 16S rRNA gene analysis recovered from the full genome, the phylogenetic position of EbAT is robustly outside any species clade with its closest relatives being Methylomonas sp. MK1 (98.24%) and Methylomonas sp. 11b (98.11%). Its closest type strain is Methylomonas methanica NCIMB11130 (97.91%). The 16S rRNA genes of EbBT are highly similar to Methylomonas methanica strains with Methylomonas methanica R-45371 as the closest relative (99.87% sequence identity). However, average nucleotide identity (ANI) and digital DNA-DNA-hybridization (dDDH) values reveal it as distinct species. The DNA G + C contents were 51.07 mol% and 51.5 mol% for EbAT and EbBT, and 50.7 mol% for Eb1, respectively. Strains EbAT and EbBT are representing two novel species within the genus Methylomonas. For strain EbAT we propose the name Methylomonas albis sp. nov (LMG 29958, JCM 32282) and for EbBT, we propose the name Methylomonas fluvii sp. nov (LMG 29959, JCM 32283). Eco-physiological descriptions for both strains are provided. Strain Eb1 (LMG 30323, JCM 32281) is a member of the species Methylovulum psychrotolerans. This genus is so far only represented by two isolates but Eb1 is the first isolate from a temperate environment; so, an emended description of the species is given.
Collapse
Affiliation(s)
- Ingeborg Bussmann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Station Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Michael Hoppert
- University of Göttingen, Institute of Microbiology and Genetics, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Karl-Walter Klings
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Station Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Anke Saborowski
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Julia Warnstedt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Station Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; University of Potsdam, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| |
Collapse
|
21
|
Courchesne B, Schindler M, Mykytczuk NCS. Relationships Between the Microbial Composition and the Geochemistry and Mineralogy of the Cobalt-Bearing Legacy Mine Tailings in Northeastern Ontario. Front Microbiol 2021; 12:660190. [PMID: 34603222 PMCID: PMC8485068 DOI: 10.3389/fmicb.2021.660190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
Mine tailings host dynamic biogeochemical processes that can mobilize a range of elements from the host material and release them into the environment through acidic, neutral, or alkaline mine drainage. Here we use a combination of mineralogical, geochemical, and microbiological techniques that provide a better understanding of biogeochemical processes within the surficial layers of neutral cobalt and arsenic-rich tailings material at Cobalt, ON, Canada. Tailings material within 30-cm depth profiles from three tailings sites (sites A, B, and C) were characterized for their mineralogical, chemical and microbial community compositions. The tailings material at all sites contains (sulf)arsenides (safflorite, arsenopyrite), and arsenates (erythrite and annabergite). Site A contained a higher and lower amount of (sulf)arsenides and arsenates than site B, respectively. Contrary to site A and B, site C depicted a distinct zoning with (sulf)arsenides found in the deeper reduced zone, and arsenates occurring in the shallow oxidized zone. Variations in the abundance of Co+As+Sb+Zn (Co#), Fe (Fe#), total S (S#), and average valence of As indicated differences in the mineralogical composition of the tailings material. For example, material with a high Co#, lo Fe# and high average valence of As commonly have a higher proportion of secondary arsenate to primary (sulf)arsenide minerals. Microbial community profiling indicated that the Cobalt tailings are primarily composed of Actinobacteria and Proteobacteria, and known N, S, Fe, methane, and possible As-cycling bacteria. The tailings from sites B and C had a larger abundance of Fe and S-cycling bacteria (e.g., Sulfurifustis and Thiobacillus), which are more abundant at greater depths, whereas the tailings of site A had a higher proportion of potential As-cycling and -resistant genera (e.g., Methylocystis and Sphingomonas). A multi-variate statistical analysis showed that (1) distinct site-specific groupings occur for the Co # vs. Fe #, Co# vs. S#'s and for the microbial community structure and (2) microbial communities are statistically highly correlated to depth, S#, Fe#, pH and the average valence of As. The variation in As valence correlated well with the abundance of N, S, Fe, and methane-cycling bacteria. The results of this study provide insights into the complex interplay between minerals containing the critical element cobalt, arsenic, and microbial community structure in the Cobalt Mining Camp tailings.
Collapse
Affiliation(s)
| | - Michael Schindler
- Department of Geological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
22
|
Li C, Hambright KD, Bowen HG, Trammell MA, Grossart HP, Burford MA, Hamilton DP, Jiang H, Latour D, Meyer EI, Padisák J, Zamor RM, Krumholz LR. Global co-occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates. Environ Microbiol 2021; 23:6503-6519. [PMID: 34327792 DOI: 10.1111/1462-2920.15691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%-90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis-aggregate-associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co-occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.
Collapse
Affiliation(s)
- Chuang Li
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, The University of Oklahoma, Norman, Ok, USA
| | - K David Hambright
- Plankton Ecology and Limnology Laboratory, Program in Ecology and Evolutionary Biology, and the Geographical Ecology Group, Department of Biology, The University of Oklahoma, Norman, OK, USA
| | - Hannah G Bowen
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Majoi A Trammell
- Biomedical Research Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Stechlin, and Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Michele A Burford
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan, Qld, Australia
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, Nathan, Qld, Australia
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Delphine Latour
- Université Clermont Auvergne CNRS, LMGE, Aubière Cedex, France
| | - Elisabeth I Meyer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Judit Padisák
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, Veszprém, Hungary
| | | | - Lee R Krumholz
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, The University of Oklahoma, Norman, Ok, USA
| |
Collapse
|
23
|
Guerrero-Cruz S, Vaksmaa A, Horn MA, Niemann H, Pijuan M, Ho A. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front Microbiol 2021; 12:678057. [PMID: 34054786 PMCID: PMC8163242 DOI: 10.3389/fmicb.2021.678057] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Methane is the final product of the anaerobic decomposition of organic matter. The conversion of organic matter to methane (methanogenesis) as a mechanism for energy conservation is exclusively attributed to the archaeal domain. Methane is oxidized by methanotrophic microorganisms using oxygen or alternative terminal electron acceptors. Aerobic methanotrophic bacteria belong to the phyla Proteobacteria and Verrucomicrobia, while anaerobic methane oxidation is also mediated by more recently discovered anaerobic methanotrophs with representatives in both the bacteria and the archaea domains. The anaerobic oxidation of methane is coupled to the reduction of nitrate, nitrite, iron, manganese, sulfate, and organic electron acceptors (e.g., humic substances) as terminal electron acceptors. This review highlights the relevance of methanotrophy in natural and anthropogenically influenced ecosystems, emphasizing the environmental conditions, distribution, function, co-existence, interactions, and the availability of electron acceptors that likely play a key role in regulating their function. A systematic overview of key aspects of ecology, physiology, metabolism, and genomics is crucial to understand the contribution of methanotrophs in the mitigation of methane efflux to the atmosphere. We give significance to the processes under microaerophilic and anaerobic conditions for both aerobic and anaerobic methane oxidizers. In the context of anthropogenically influenced ecosystems, we emphasize the current and potential future applications of methanotrophs from two different angles, namely methane mitigation in wastewater treatment through the application of anaerobic methanotrophs, and the biotechnological applications of aerobic methanotrophs in resource recovery from methane waste streams. Finally, we identify knowledge gaps that may lead to opportunities to harness further the biotechnological benefits of methanotrophs in methane mitigation and for the production of valuable bioproducts enabling a bio-based and circular economy.
Collapse
Affiliation(s)
- Simon Guerrero-Cruz
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Annika Vaksmaa
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, ’t Horntje, Netherlands
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, ’t Horntje, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
- Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Adrian Ho
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
24
|
Fischer PQ, Sánchez‐Andrea I, Stams AJM, Villanueva L, Sousa DZ. Anaerobic microbial methanol conversion in marine sediments. Environ Microbiol 2021; 23:1348-1362. [PMID: 33587796 PMCID: PMC8048578 DOI: 10.1111/1462-2920.15434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/15/2023]
Abstract
Methanol is an ubiquitous compound that plays a role in microbial processes as a carbon and energy source, intermediate in metabolic processes or as end product in fermentation. In anoxic environments, methanol can act as the sole carbon and energy source for several guilds of microorganisms: sulfate-reducing microorganisms, nitrate-reducing microorganisms, acetogens and methanogens. In marine sediments, these guilds compete for methanol as their common substrate, employing different biochemical pathways. In this review, we will give an overview of current knowledge of the various ways in which methanol reaches marine sediments, the ecology of microorganisms capable of utilizing methanol and their metabolism. Furthermore, through a metagenomic analysis, we shed light on the unknown diversity of methanol utilizers in marine sediments which is yet to be explored.
Collapse
Affiliation(s)
- Peter Q. Fischer
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, P.O. Box 59Den BurgTexel7197 ABThe Netherlands
| | - Irene Sánchez‐Andrea
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de GualtarBraga4710‐057Portugal
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, P.O. Box 59Den BurgTexel7197 ABThe Netherlands
- Faculty of GeosciencesUtrecht University, Princetonlaan 8aUtrecht3584 CBThe Netherlands
| | - Diana Z. Sousa
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
| |
Collapse
|
25
|
Rissanen AJ, Saarela T, Jäntti H, Buck M, Peura S, Aalto SL, Ojala A, Pumpanen J, Tiirola M, Elvert M, Nykänen H. Vertical stratification patterns of methanotrophs and their genetic controllers in water columns of oxygen-stratified boreal lakes. FEMS Microbiol Ecol 2021; 97:fiaa252. [PMID: 33316049 PMCID: PMC7840105 DOI: 10.1093/femsec/fiaa252] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
The vertical structuring of methanotrophic communities and its genetic controllers remain understudied in the water columns of oxygen-stratified lakes. Therefore, we used 16S rRNA gene sequencing to study the vertical stratification patterns of methanotrophs in two boreal lakes, Lake Kuivajärvi and Lake Lovojärvi. Furthermore, metagenomic analyses were performed to assess the genomic characteristics of methanotrophs in Lovojärvi and the previously studied Lake Alinen Mustajärvi. The methanotroph communities were vertically structured along the oxygen gradient. Alphaproteobacterial methanotrophs preferred oxic water layers, while Methylococcales methanotrophs, consisting of putative novel genera and species, thrived, especially at and below the oxic-anoxic interface and showed distinct depth variation patterns, which were not completely predictable by their taxonomic classification. Instead, genomic differences among Methylococcales methanotrophs explained their variable vertical depth patterns. Genes in clusters of orthologous groups (COG) categories L (replication, recombination and repair) and S (function unknown) were relatively high in metagenome-assembled genomes representing Methylococcales clearly thriving below the oxic-anoxic interface, suggesting genetic adaptations for increased stress tolerance enabling living in the hypoxic/anoxic conditions. By contrast, genes in COG category N (cell motility) were relatively high in metagenome-assembled genomes of Methylococcales thriving at the oxic-anoxic interface, which suggests genetic adaptations for increased motility at the vertically fluctuating oxic-anoxic interface.
Collapse
Affiliation(s)
- Antti J Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, FI-33720, Tampere, Finland
| | - Taija Saarela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, FI-70210, Kuopio, Finland
| | - Helena Jäntti
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, FI-70210, Kuopio, Finland
| | - Moritz Buck
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, box 7050, SE-75007, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Almas allé 5, SE-75651, Uppsala, Sweden
| | - Sanni L Aalto
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, FI-70210, Kuopio, Finland
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie 9 C, FI-40014, Jyväskylä, Finland
| | - Anne Ojala
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, FI-00014, Helsinki, Finland
- Institute of Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 1, FI-00014, Helsinki, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, FI-70210, Kuopio, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie 9 C, FI-40014, Jyväskylä, Finland
| | - Marcus Elvert
- MARUM - Center for Marine Environmental Sciences & Faculty of Geosciences, University of Bremen, Leobener Str. 8, D-28359, Bremen, Germany
| | - Hannu Nykänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, FI-70210, Kuopio, Finland
| |
Collapse
|
26
|
Zhang S, Zhang Z, Xia S, Ding N, Long X, Wang J, Chen M, Ye C, Chen S. Combined genome-centric metagenomics and stable isotope probing unveils the microbial pathways of aerobic methane oxidation coupled to denitrification process under hypoxic conditions. BIORESOURCE TECHNOLOGY 2020; 318:124043. [PMID: 32911364 DOI: 10.1016/j.biortech.2020.124043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Obligate aerobic methanotrophs have been proven to oxidize methane and participate in denitrification under hypoxic conditions. However, this phenomenon and its metabolic mechanism have not been investigated in detail in aerobic methane oxidation coupled to denitrification (AME-D) process. In this study, a type of hypoxic AME-D consortium was enriched and operated for a long time in a CH4-cycling bioreactor with strict anaerobic control and the nitrite removal rate reached approximately 50 mg N/L/d. Metagenomics combined with DNA stable-isotope probing demonstrated that the genus Methylomonas, which constitutes type I aerobic methanotrophs, was the dominant member and contributed to methane oxidation and partial denitrification. Metagenomic binning recovered a near-complete (98%) draft genome affiliated with the family Methylococcaceae containing essential genes that encode nitrite reductase (nirK), nitric oxide reductase (norBC) and hydroxylamine dehydrogenase (hao). Metabolic reconstruction of the selected Methylococcaceae genomes also revealed a potential link between methanotrophy and partial denitrification.
Collapse
Affiliation(s)
- Shici Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhaoji Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ningning Ding
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xien Long
- School of Geographic Sciences, Nantong University, No. 999 Tongjing Road, Nantong 226007, China
| | - Jinsong Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Minquan Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chengsong Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
27
|
Mo Y, Qi XE, Li A, Zhang X, Jia Z. Active Methanotrophs in Suboxic Alpine Swamp Soils of the Qinghai-Tibetan Plateau. Front Microbiol 2020; 11:580866. [PMID: 33281775 PMCID: PMC7689253 DOI: 10.3389/fmicb.2020.580866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/22/2020] [Indexed: 11/29/2022] Open
Abstract
Methanotrophs are the only biofilters for reducing the flux of global methane (CH4) emissions in water-logged wetlands. However, adaptation of aerobic methanotrophs to low concentrations of oxygen and nitrogen in typical swamps, such as that of the Qinghai-Tibetan Plateau, is poorly understood. In this study, we show that Methylobacter-like methanotrophs dominate methane oxidation and nitrogen fixation under suboxic conditions in alpine swamp soils. Following incubation with 13C-CH4 and 15N-N2 for 90 days under suboxic conditions with repeated flushing using an inert gas (i.e., argon), microbial carbon and nitrogen turnover was measured in swamp soils at different depths: 0-20 cm (top), 40-60 cm (intermediate), and 60-80 cm (deep). Results show detectable methane oxidation and nitrogen fixation in all three soil depths. In particular, labeled carbon was found in CO2 enrichment (13C-CO2), and soil organic carbon (13C-SOC), whereas labeled nitrogen (15N) was detected in soil organic nitrogen (SON). The highest values of labeled isotopes were found at intermediate soil depths. High-throughput amplicon sequencing and Sanger sequencing indicated the dominance of Methylobacter-like methanotrophs in swamp soils, which comprised 21.3-24.0% of the total bacterial sequences, as measured by 13C-DNA at day 90. These results demonstrate that aerobic methanotroph Methylobacter is the key player in suboxic methane oxidation and likely catalyzes nitrogen fixation in swamp wetland soils in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Yongliang Mo
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xing-e Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Aorui Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinfang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
28
|
Tsuji JM, Tran N, Schiff SL, Venkiteswaran JJ, Molot LA, Tank M, Hanada S, Neufeld JD. Anoxygenic photosynthesis and iron-sulfur metabolic potential of Chlorobia populations from seasonally anoxic Boreal Shield lakes. THE ISME JOURNAL 2020; 14:2732-2747. [PMID: 32747714 PMCID: PMC7784702 DOI: 10.1038/s41396-020-0725-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Aquatic environments with high levels of dissolved ferrous iron and low levels of sulfate serve as an important systems for exploring biogeochemical processes relevant to the early Earth. Boreal Shield lakes, which number in the tens of millions globally, commonly develop seasonally anoxic waters that become iron rich and sulfate poor, yet the iron-sulfur microbiology of these systems has been poorly examined. Here we use genome-resolved metagenomics and enrichment cultivation to explore the metabolic diversity and ecology of anoxygenic photosynthesis and iron/sulfur cycling in the anoxic water columns of three Boreal Shield lakes. We recovered four high-completeness and low-contamination draft genome bins assigned to the class Chlorobia (formerly phylum Chlorobi) from environmental metagenome data and enriched two novel sulfide-oxidizing species, also from the Chlorobia. The sequenced genomes of both enriched species, including the novel "Candidatus Chlorobium canadense", encoded the cyc2 gene that is associated with photoferrotrophy among cultured Chlorobia members, along with genes for phototrophic sulfide oxidation. One environmental genome bin also encoded cyc2. Despite the presence of cyc2 in the corresponding draft genome, we were unable to induce photoferrotrophy in "Ca. Chlorobium canadense". Genomic potential for phototrophic sulfide oxidation was more commonly detected than cyc2 among environmental genome bins of Chlorobia, and metagenome and cultivation data suggested the potential for cryptic sulfur cycling to fuel sulfide-based growth. Overall, our results provide an important basis for further probing the functional role of cyc2 and indicate that anoxygenic photoautotrophs in Boreal Shield lakes could have underexplored photophysiology pertinent to understanding Earth's early microbial communities.
Collapse
Affiliation(s)
- J M Tsuji
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - N Tran
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - S L Schiff
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - J J Venkiteswaran
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - L A Molot
- York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - M Tank
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7B, 38124, Braunschweig, Germany
- Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - S Hanada
- Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - J D Neufeld
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
29
|
Guggenheim C, Freimann R, Mayr MJ, Beck K, Wehrli B, Bürgmann H. Environmental and Microbial Interactions Shape Methane-Oxidizing Bacterial Communities in a Stratified Lake. Front Microbiol 2020; 11:579427. [PMID: 33178162 PMCID: PMC7593551 DOI: 10.3389/fmicb.2020.579427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
In stratified lakes, methane-oxidizing bacteria (MOB) are strongly mitigating methane fluxes to the atmosphere by consuming methane entering the water column from the sediments. MOB communities in lakes are diverse and vertically structured, but their spatio-temporal dynamics along the water column as well as physico-chemical parameters and interactions with other bacterial species that drive the community assembly have so far not been explored in depth. Here, we present a detailed investigation of the MOB and bacterial community composition and a large set of physico-chemical parameters in a shallow, seasonally stratified, and sub-alpine lake. Four highly resolved vertical profiles were sampled in three different years and during various stages of development of the stratified water column. Non-randomly assembled MOB communities were detected in all compartments. We could identify methane and oxygen gradients and physico-chemical parameters like pH, light, available copper and iron, and total dissolved nitrogen as important drivers of the MOB community structure. In addition, MOB were well-integrated into a bacterial-environmental network. Partial redundancy analysis of the relevance network of physico-chemical variables and bacteria explained up to 84% of the MOB abundances. Spatio-temporal MOB community changes were 51% congruent with shifts in the total bacterial community and 22% of variance in MOB abundances could be explained exclusively by the bacterial community composition. Our results show that microbial interactions may play an important role in structuring the MOB community along the depth gradient of stratified lakes.
Collapse
Affiliation(s)
- Carole Guggenheim
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Remo Freimann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Magdalena J Mayr
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Karin Beck
- Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Bernhard Wehrli
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
30
|
Cabrol L, Thalasso F, Gandois L, Sepulveda-Jauregui A, Martinez-Cruz K, Teisserenc R, Tananaev N, Tveit A, Svenning MM, Barret M. Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139588. [PMID: 32497884 DOI: 10.1016/j.scitotenv.2020.139588] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 05/16/2023]
Abstract
Arctic lakes emit methane (CH4) to the atmosphere. The magnitude of this flux could increase with permafrost thaw but might also be mitigated by microbial CH4 oxidation. Methane oxidation in oxic water has been extensively studied, while the contribution of anaerobic oxidation of methane (AOM) to CH4 mitigation is not fully understood. We have investigated four Northern Siberian stratified lakes in an area of discontinuous permafrost nearby Igarka, Russia. Analyses of CH4 concentrations in the water column demonstrated that 60 to 100% of upward diffusing CH4 was oxidized in the anoxic layers of the four lakes. A combination of pmoA and mcrA gene qPCR and 16S rRNA gene metabarcoding showed that the same taxa, all within Methylomonadaceae and including the predominant genus Methylobacter as well as Crenothrix, could be the major methane-oxidizing bacteria (MOB) in the anoxic water of the four lakes. Correlation between Methylomonadaceae and OTUs within Methylotenera, Geothrix and Geobacter genera indicated that AOM might occur in an interaction between MOB, denitrifiers and iron-cycling partners. We conclude that MOB within Methylomonadaceae could have a crucial impact on CH4 cycling in these Siberian Arctic lakes by mitigating the majority of produced CH4 before it leaves the anoxic zone. This finding emphasizes the importance of AOM by Methylomonadaceae and extends our knowledge about CH4 cycle in lakes, a crucial component of the global CH4 cycle.
Collapse
Affiliation(s)
- Léa Cabrol
- Aix-Marseille University, Univ Toulon, CNRS, IRD, M.I.O. UM 110, Mediterranean Institute of Oceanography, Marseille, France; Institute of Ecology and Biodiversity IEB, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Escuela de Ingeniería Bioquímica, Pontificia Universidad de Valparaiso, Av Brasil 2085, Valparaiso, Chile
| | - Frédéric Thalasso
- Biotechnology and Bioengineering Department, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Laure Gandois
- Laboratory of Functional Ecology and Environment, Université de Toulouse, CNRS, Toulouse, France
| | - Armando Sepulveda-Jauregui
- ENBEELAB, University of Magallanes, Punta Arenas, Chile; Center for Climate and Resilience Research (CR)2, Santiago, Chile
| | | | - Roman Teisserenc
- Laboratory of Functional Ecology and Environment, Université de Toulouse, CNRS, Toulouse, France
| | | | - Alexander Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maialen Barret
- Laboratory of Functional Ecology and Environment, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
31
|
Yadav S, Villanueva L, Bale N, Koenen M, Hopmans EC, Damsté JSS. Physiological, chemotaxonomic and genomic characterization of two novel piezotolerant bacteria of the family Marinifilaceae isolated from sulfidic waters of the Black Sea. Syst Appl Microbiol 2020; 43:126122. [PMID: 32847788 DOI: 10.1016/j.syapm.2020.126122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022]
Abstract
Diversity analyses of microbial enrichments obtained from deep sulfidic water (2000 m) collected from the Black Sea indicated the presence of eleven novel putative lineages of bacteria affiliated to the family Marinifilaceae of the phylum Bacteroidetes. Pure cultures were obtained for four strains (i.e. M1PT, M3P, A4T and 44) of this family, which could be grouped into two different clades based on their 16S rRNA gene sequences. All four strains were Gram-negative, rod-shaped and facultative anaerobic bacteria. The genomes of all strains were sequenced and physiological analyses were performed. All strains utilized a wide range of carbon sources, which was supported by the presence of the pathways involved in carbon utilization encoded by their genomes. The strains were able to grow at elevated hydrostatic pressure (up to 50 MPa), which coincided with increased production of unsaturated and branched fatty acids, and a decrease in hydroxy fatty acids. Intact polar lipid analysis of all four strains showed the production of ornithine lipids, phosphatidylethanolamines and capnine lipids as major intact polar lipids (IPLs). Genes involved in hopanoid biosynthesis were also identified. However, bacteriohopanepolyols (BHPs) were not detected in the strains. Based on distinct physiological, chemotaxonomic, genotypic and phylogenetic differences compared to other members of the genera Ancylomarina and Labilibaculum, it was concluded that strains M1PT and A4T represented two novel species for which the names Ancylomarina euxinus sp. nov. and Labilibaculum euxinus sp. nov., respectively, are proposed.
Collapse
Affiliation(s)
- Subhash Yadav
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology, Biogeochemistry, Utrecht University, P.O. Box 59, 1797AB Den Burg, Texel, The Netherlands.
| | - Laura Villanueva
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology, Biogeochemistry, Utrecht University, P.O. Box 59, 1797AB Den Burg, Texel, The Netherlands; Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| | - Nicole Bale
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology, Biogeochemistry, Utrecht University, P.O. Box 59, 1797AB Den Burg, Texel, The Netherlands
| | - Michel Koenen
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology, Biogeochemistry, Utrecht University, P.O. Box 59, 1797AB Den Burg, Texel, The Netherlands
| | - Ellen C Hopmans
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology, Biogeochemistry, Utrecht University, P.O. Box 59, 1797AB Den Burg, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology, Biogeochemistry, Utrecht University, P.O. Box 59, 1797AB Den Burg, Texel, The Netherlands; Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
32
|
van Grinsven S, Sinninghe Damsté JS, Harrison J, Villanueva L. Impact of Electron Acceptor Availability on Methane-Influenced Microorganisms in an Enrichment Culture Obtained From a Stratified Lake. Front Microbiol 2020; 11:715. [PMID: 32477281 PMCID: PMC7240106 DOI: 10.3389/fmicb.2020.00715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/27/2020] [Indexed: 12/26/2022] Open
Abstract
Methanotrophs are of major importance in limiting methane emissions from lakes. They are known to preferably inhabit the oxycline of stratified water columns, often assumed due to an intolerance to atmospheric oxygen concentrations, but little is known on the response of methanotrophs to different oxygen concentrations as well as their preference for different electron acceptors. In this study, we enriched a methanotroph of the Methylobacter genus from the oxycline and the anoxic water column of a stratified lake, which was also present in the oxic water column in the winter. We tested the response of this Methylobacter-dominated enrichment culture to different electron acceptors, i.e., oxygen, nitrate, sulfate, and humic substances, and found that, in contrast to earlier results with water column incubations, oxygen was the preferred electron acceptor, leading to methane oxidation rates of 45–72 pmol cell−1 day−1. Despite the general assumption of methanotrophs preferring microaerobic conditions, methane oxidation was most efficient under high oxygen concentrations (>600 μM). Low (<30 μM) oxygen concentrations still supported methane oxidation, but no methane oxidation was observed with trace oxygen concentrations (<9 μM) or under anoxic conditions. Remarkably, the presence of nitrate stimulated methane oxidation rates under oxic conditions, raising the methane oxidation rates by 50% when compared to oxic incubations with ammonium. Under anoxic conditions, no net methane consumption was observed; however, methanotroph abundances were two to three times higher in incubations with nitrate and sulfate compared to anoxic incubations with ammonium as the nitrogen source. Metagenomic sequencing revealed the absence of a complete denitrification pathway in the dominant methanotroph Methylobacter, but the most abundant methylotroph Methylotenera seemed capable of denitrification, which can possibly play a role in the enhanced methane oxidation rates under nitrate-rich conditions.
Collapse
Affiliation(s)
- Sigrid van Grinsven
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Utrecht, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Utrecht, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - John Harrison
- School of the Environment, Washington State University Vancouver, Vancouver, WA, United States
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
33
|
Faheem M, Shabbir S, Zhao J, Kerr PG, Sultana N, Jia Z. Enhanced Adsorptive Bioremediation of Heavy Metals (Cd 2+, Cr 6+, Pb 2+) by Methane-Oxidizing Epipelon. Microorganisms 2020; 8:microorganisms8040505. [PMID: 32244762 PMCID: PMC7232255 DOI: 10.3390/microorganisms8040505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/01/2022] Open
Abstract
Cadmium (Cd), chromium (Cr) and lead (Pb) are heavy metals that have been classified as priority pollutants in aqueous environment while methane-oxidizing bacteria as a biofilter arguably consume up to 90% of the produced methane in the same aqueous environment before it escapes into the atmosphere. However, the underlying kinetics and active methane oxidizers are poorly understood for the hotspot of epipelon that provides a unique micro-ecosystem containing diversified guild of microorganisms including methane oxidizers for potential bioremediation of heavy metals. In the present study, the Pb2+, Cd2+and Cr6+ bioremediation potential of epipelon biofilm was assessed under both high (120,000 ppm) and near-atmospheric (6 ppm) methane concentrations. Epipelon biofilm demonstrated a high methane oxidation activity following microcosm incubation amended with a high concentration of methane, accompanied by the complete removal of 50 mg L−1 Pb2+ and 50 mg L−1 Cd2+ (14 days) and partial (20%) removal of 50 mg L−1 Cr6+ after 20 days. High methane dose stimulated a faster (144 h earlier) heavy metal removal rate compared to near-atmospheric methane concentrations. DNA-based stable isotope probing (DNA-SIP) following 13CH4 microcosm incubation revealed the growth and activity of different phylotypes of methanotrophs during the methane oxidation and heavy metal removal process. High throughput sequencing of 13C-labelled particulate methane monooxygenase gene pmoA and 16S rRNA genes revealed that the prevalent active methane oxidizers were type I affiliated methanotrophs, i.e., Methylobacter. Type II methanotrophs including Methylosinus and Methylocystis were also labeled only under high methane concentrations. These results suggest that epipelon biofilm can serve as an important micro-environment to alleviate both methane emission and the heavy metal contamination in aqueous ecosystems with constant high methane fluxes.
Collapse
Affiliation(s)
- Muhammad Faheem
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.F.); (J.Z.); (N.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sadaf Shabbir
- College of Environment, Hohai University, Nanjing 210098, China;
| | - Jun Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.F.); (J.Z.); (N.S.)
| | - Philip G. Kerr
- School of Biomedical Science, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Nasrin Sultana
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.F.); (J.Z.); (N.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.F.); (J.Z.); (N.S.)
- Correspondence:
| |
Collapse
|
34
|
A Complex Interplay between Nitric Oxide, Quorum Sensing, and the Unique Secondary Metabolite Tundrenone Constitutes the Hypoxia Response in Methylobacter. mSystems 2020; 5:5/1/e00770-19. [PMID: 31964770 PMCID: PMC6977074 DOI: 10.1128/msystems.00770-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we describe a novel and complex hypoxia response system in a methanotrophic bacterium that involves modules of central carbon metabolism, denitrification, quorum sensing, and a secondary metabolite, tundrenone. This intricate stress response system, so far unique to Methylobacter species, may be responsible for the persistence and activity of these species across gradients of dioxygen tensions and for the cosmopolitan distribution of these organisms in freshwater and soil environments in the Northern Hemisphere, including the fast-melting permafrosts. Methylobacter species, members of the Methylococcales, have recently emerged as some of the globally widespread, cosmopolitan species that play a key role in the environmental consumption of methane across gradients of dioxygen tensions. In this work, we approached the question of how Methylobacter copes with hypoxia, via laboratory manipulation. Through comparative transcriptomics of cultures grown under high dioxygen partial pressure versus cultures exposed to hypoxia, we identified a gene cluster encoding a hybrid cluster protein along with sensing and regulatory functions. Through mutant analysis, we demonstrated that this gene cluster is involved in the hypoxia stress response. Through additional transcriptomic analyses, we uncovered a complex interconnection between the NO-mediated stress response, quorum sensing, the secondary metabolite tundrenone, and methanol dehydrogenase functions. This novel and complex hypoxia stress response system is so far unique to Methylobacter species, and it may play a role in the environmental fitness of these organisms and in their cosmopolitan environmental distribution. IMPORTANCE Here, we describe a novel and complex hypoxia response system in a methanotrophic bacterium that involves modules of central carbon metabolism, denitrification, quorum sensing, and a secondary metabolite, tundrenone. This intricate stress response system, so far unique to Methylobacter species, may be responsible for the persistence and activity of these species across gradients of dioxygen tensions and for the cosmopolitan distribution of these organisms in freshwater and soil environments in the Northern Hemisphere, including the fast-melting permafrosts.
Collapse
|