1
|
Yan Y, Twible LE, Liu FYL, Arrey JLS, Colenbrander Nelson TE, Warren LA. Cascading sulfur cycling in simulated oil sands pit lake water cap mesocosms transitioning from oxic to euxinic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175272. [PMID: 39111438 DOI: 10.1016/j.scitotenv.2024.175272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Base Mine Lake (BML), the first full-scale demonstration of oil sands tailings pit lake reclamation technology, is experiencing expansive, episodic hypolimnetic euxinia resulting in greater sulfur biogeochemical cycling within the water cap. Here, Fluid Fine Tailings (FFT)-water mesocosm experiments simulating the in situ BML summer hypolimnetic oxic-euxinic transition determined sulfur biogeochemical processes and their controlling factors. While mesocosm water caps without FFT amendments experienced limited geochemical and microbial changes during the experimental period, FFT-amended mesocosm water caps evidenced three successive stages of S speciation in ∼30 days: (S1) rising expansion of water cap euxinia from FFT to water surface; enabling (S2) rapid sulfate (SO42-) reduction and sulfide production directly within the water column; fostering (S3) generation and subsequent consumption of sulfur oxidation intermediate compounds (SOI). Identified key SOI, elemental S and thiosulfate, support subsequent SOI oxidation, reduction, and/or disproportionation processes in the system. Dominant water cap microbes shifted from methanotrophs and denitrifying/iron-reducing bacteria to functionally versatile sulfur-reducing bacteria (SRB) comprising sulfate-reducing bacteria (Desulfovibrionales) and SOI-reducing/disproportionating bacteria (Campylobacterales and Desulfobulbales). The observed microbial shift is driven by decreasing [SO42-] and organic aromaticity, with putative hydrocarbon-degrading bacteria providing electron donors for SRB. Comparison between unsterile and sterile water treatments further underscores the biogeochemical readiness of the in situ water cap to enhance oxidant depletion, euxinia expansion and establishment of water cap SRB communities aided by FFT migration of anaerobes. Results here identify the collective influence of FFT and water cap microbial communities on water cap euxinia expansion associated with sequential S reactions that are controlled by concentrations of oxidants, labile organic substrates and S species. This emphasizes the necessity of understanding this complex S cycling in assessing BML water cap O2 persistence.
Collapse
Affiliation(s)
- Yunyun Yan
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Lauren E Twible
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Felicia Y L Liu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - James L S Arrey
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Tara E Colenbrander Nelson
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
2
|
Quan Q, Liu J, Xia X, Zhang S, Ke Z, Wang M, Tan Y. Cold seep nitrogen fixation and its potential relationship with sulfur cycling. Microbiol Spectr 2024; 12:e0053624. [PMID: 39171911 PMCID: PMC11448218 DOI: 10.1128/spectrum.00536-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024] Open
Abstract
Dinitrogen (N2) fixation is a crucial source of bioavailable nitrogen in carbon-dominated cold seep systems. Previous studies have shown that diazotrophy is not necessarily dependent on sulfate-dependent anaerobic oxidation of methane for energy, and diverse catabolism can fuel the high-energy-demanding process in sediments. However, it remains unclear whether diazotroph can obtain energy by sulfur oxidation in sulfur-rich cold seep water column. Here, field investigations and in situ experiments were conducted in Haima cold seep to examine the effects of diverse sources of dissolved organic matter (DOM) on N2 fixation, specifically containing sulfur, carbon, nitrogen, and phosphorus. We found that active N2 fixation occurred in the water column above the Haima cold seep, with the Dechloromonas genus dominating the diazotroph community as revealed by nifH gene using high-throughput sequencing. In situ experiments showed an increased rate of N2 fixation (1.15- to 12.70-fold compared to that in control group) and a greater relative abundance of the Dechloromonas genus following enrichment with sulfur-containing organic matter. Furthermore, metagenomic assembly and binning revealed that Dechloromonas sp. carried genes related to N2 fixation (nifDHK) and sulfur compound oxidation (fccAB and soxABCXYZ), implying that the genus potentially serves as a multifunctional mediator for N2 fixation and sulfur cycling. Our results provide new insights regarding potential coupling mechanism associated with sulfur-driven N2 fixation in methane- and sulfide-rich environments. IMPORTANCE N2 fixation is an important source of biologically available in carbon-dominated cold seep systems as little nitrogen is released by hydrocarbon seepage, thereby promoting biological productivity and the degradation of non-nitrogenous organic matter. Cold seeps are rich in diverse sources of dissolved organic matter (DOM) derived from the sinking of photosynthetic products in euphotic layer and the release of chemosynthesis products on the seafloor. However, it remains unclear whether N2 fixation is coupled to the metabolic processes of DOM, as determined by e.g., carbon, nitrogen, phosphorus, and sulfur content, for energy acquisition in sulfur-rich cold seeps. In this study, diazotroph community structure and its response to DOM compositions were revealed. Moreover, the metagenomics analysis suggested that Dechloromonas genus plays a dominant role in potential coupling N2 fixation and sulfur oxidation. Our study highlighted that sulfur oxidation in deep-sea cold seeps may serve as an energy source to drive N2 fixation.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaomin Xia
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Doni L, Azzola A, Oliveri C, Bosi E, Auguste M, Morri C, Bianchi CN, Montefalcone M, Vezzulli L. Genome-resolved metagenomics revealed novel microbial taxa with ancient metabolism from macroscopic microbial mat structures inhabiting anoxic deep reefs of a Maldivian Blue Hole. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13315. [PMID: 39267241 PMCID: PMC11392830 DOI: 10.1111/1758-2229.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/12/2024] [Indexed: 09/17/2024]
Abstract
Blue holes are vertical water-filled openings in carbonate rock that exhibit complex morphology, ecology, and water chemistry. In this study, macroscopic microbial mat structures found in complete anoxic conditions in the Faanu Mudugau Blue Hole (Maldives) were studied by metagenomic methods. Such communities have likely been evolutionary isolated from the surrounding marine environment for more than 10,000 years since the Blue Hole formation during the last Ice Age. A total of 48 high-quality metagenome-assembled genomes (MAGs) were recovered, predominantly composed of the phyla Chloroflexota, Proteobacteria and Desulfobacterota. None of these MAGs have been classified to species level (<95% ANI), suggesting the discovery of several new microbial taxa. In particular, MAGs belonging to novel bacterial genera within the order Dehalococcoidales accounted for 20% of the macroscopic mat community. Genome-resolved metabolic analysis of this dominant microbial fraction revealed a mixotrophic lifestyle based on energy conservation via fermentation, hydrogen metabolism and anaerobic CO2 fixation through the Wood-Ljungdahl pathway. Interestingly, these bacteria showed a high proportion of ancestral genes in their genomes providing intriguing perspectives on mechanisms driving microbial evolution in this peculiar environment. Overall, our results provide new knowledge for understanding microbial life under extreme conditions in blue hole environments.
Collapse
Affiliation(s)
- Lapo Doni
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Annalisa Azzola
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
| | - Emanuele Bosi
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Carla Morri
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre (GMC), Genoa, Italy
| | - Carlo Nike Bianchi
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre (GMC), Genoa, Italy
| | - Monica Montefalcone
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
4
|
Tao Y, Zeng Z, Deng Y, Zhang M, Wang F, Wang Y. Phylogeny and evolution of dissimilatory sulfite reduction in prokaryotes. Mol Phylogenet Evol 2024; 201:108208. [PMID: 39343112 DOI: 10.1016/j.ympev.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sulfate is the second most common nonmetallic ion in modern oceans, as its concentration dramatically increased alongside tectonic activity and atmospheric oxidation in the Proterozoic. Microbial sulfate/sulfite metabolism, involving organic carbon or hydrogen oxidation, is linked to sulfur and carbon biogeochemical cycles. However, the coevolution of microbial sulfate/sulfite metabolism and Earth's history remains unclear. Here, we conducted a comprehensive phylogenetic analysis to explore the evolutionary history of the dissimilatory sulfite reduction (Dsr) pathway. The phylogenies of the Dsr-related genes presented similar branching patterns but also some incongruencies, indicating the complex origin and evolution of Dsr. Among these genes, dsrAB is the hallmark of sulfur-metabolizing prokaryotes. Our detailed analyses suggested that the evolution of dsrAB was shaped by vertical inheritance and multiple horizontal gene transfer events and that selection pressure varied across distinct lineages. Dated phylogenetic trees indicated that key evolutionary events of dissimilatory sulfur-metabolizing prokaryotes were related to the Great Oxygenation Event (2.4-2.0 Ga) and several geological events in the "Boring Billion" (1.8-0.8 Ga), including the fragmentation of the Columbia supercontinent (approximately 1.6 Ga), the rapid increase in marine sulfate (1.3-1.2 Ga), and the Neoproterozoic glaciation event (approximately 1.0 Ga). We also proposed that the voluminous iron formations (approximately 1.88 Ga) might have induced the metabolic innovation of iron reduction. In summary, our study provides new insights into Dsr evolution and a systematic view of the coevolution of dissimilatory sulfur-metabolizing prokaryotes and the Earth's environment.
Collapse
Affiliation(s)
- Yuxin Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai 200438, China
| | - Zichao Zeng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhui Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Menghan Zhang
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200438, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Twible LE, Whaley-Martin K, Chen LX, Colenbrander Nelson T, Arrey JL, Jarolimek CV, King JJ, Ramilo L, Sonnenberg H, Banfield JF, Apte SC, Warren LA. pH and thiosulfate dependent microbial sulfur oxidation strategies across diverse environments. Front Microbiol 2024; 15:1426584. [PMID: 39101034 PMCID: PMC11294248 DOI: 10.3389/fmicb.2024.1426584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Sulfur oxidizing bacteria (SOB) play a key role in sulfur cycling in mine tailings impoundment (TI) waters, where sulfur concentrations are typically high. However, our understanding of SOB sulfur cycling via potential S oxidation pathways (sox, rdsr, and S4I) in these globally ubiquitous contexts, remains limited. Here, we identified TI water column SOB community composition, metagenomics derived metabolic repertoires, physicochemistry, and aqueous sulfur concentration and speciation in four Canadian base metal mine, circumneutral-alkaline TIs over four years (2016 - 2019). Identification and examination of genomes from nine SOB genera occurring in these TI waters revealed two pH partitioned, metabolically distinct groups, which differentially influenced acid generation and sulfur speciation. Complete sox (csox) dominant SOB (e.g., Halothiobacillus spp., Thiomonas spp.) drove acidity generation and S2O3 2- consumption via the csox pathway at lower pH (pH ~5 to ~6.5). At circumneutral pH conditions (pH ~6.5 to ~8.5), the presence of non-csox dominant SOB (hosting the incomplete sox, rdsr, and/or other S oxidation reactions; e.g. Thiobacillus spp., Sulfuriferula spp.) were associated with higher [S2O3 2-] and limited acidity generation. The S4I pathway part 1 (tsdA; S2O3 2- to S4O6 2-), was not constrained by pH, while S4I pathway part 2 (S4O6 2- disproportionation via tetH) was limited to Thiobacillus spp. and thus circumneutral pH values. Comparative analysis of low, natural (e.g., hydrothermal vents and sulfur hot springs) and high (e.g., Zn, Cu, Pb/Zn, and Ni tailings) sulfur systems literature data with these TI results, reveals a distinct TI SOB mining microbiome, characterized by elevated abundances of csox dominant SOB, likely sustained by continuous replenishment of sulfur species through tailings or mining impacted water additions. Our results indicate that under the primarily oxic conditions in these systems, S2O3 2- availability plays a key role in determining the dominant sulfur oxidation pathways and associated geochemical and physicochemical outcomes, highlighting the potential for biological management of mining impacted waters via pH and [S2O3 2-] manipulation.
Collapse
Affiliation(s)
- Lauren E. Twible
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Kelly Whaley-Martin
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | | | - James L.S. Arrey
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Chad V. Jarolimek
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Josh J. King
- Commonwealth Scientific Industrial and Research Organization, Black Mountain, ACT, Australia
| | | | | | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | - Simon C. Apte
- Commonwealth Scientific Industrial and Research Organization, Clayton, VIC, Australia
| | - Lesley A. Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Kushkevych I, Procházka V, Vítězová M, Dordević D, Abd El-Salam M, Rittmann SKMR. Anoxygenic photosynthesis with emphasis on green sulfur bacteria and a perspective for hydrogen sulfide detoxification of anoxic environments. Front Microbiol 2024; 15:1417714. [PMID: 39056005 PMCID: PMC11269200 DOI: 10.3389/fmicb.2024.1417714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
The bacterial light-dependent energy metabolism can be divided into two types: oxygenic and anoxygenic photosynthesis. Bacterial oxygenic photosynthesis is similar to plants and is characteristic for cyanobacteria. Bacterial anoxygenic photosynthesis is performed by anoxygenic phototrophs, especially green sulfur bacteria (GSB; family Chlorobiaceae) and purple sulfur bacteria (PSB; family Chromatiaceae). In anoxygenic photosynthesis, hydrogen sulfide (H2S) is used as the main electron donor, which differs from plants or cyanobacteria where water is the main source of electrons. This review mainly focuses on the microbiology of GSB, which may be found in water or soil ecosystems where H2S is abundant. GSB oxidize H2S to elemental sulfur. GSB possess special structures-chlorosomes-wherein photosynthetic pigments are located. Chlorosomes are vesicles that are surrounded by a lipid monolayer that serve as light-collecting antennas. The carbon source of GSB is carbon dioxide, which is assimilated through the reverse tricarboxylic acid cycle. Our review provides a thorough introduction to the comparative eco-physiology of GSB and discusses selected application possibilities of anoxygenic phototrophs in the fields of environmental management, bioremediation, and biotechnology.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vít Procházka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czechia
| | - Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| |
Collapse
|
7
|
Zhong X, Liu F, Liang T, Lu R, Shi M, Zhou X, Yang M. The two-component system TtrRS boosts Vibrio parahaemolyticus colonization by exploiting sulfur compounds in host gut. PLoS Pathog 2024; 20:e1012410. [PMID: 39038066 PMCID: PMC11293645 DOI: 10.1371/journal.ppat.1012410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
One of the greatest challenges encountered by enteric pathogens is responding to rapid changes of nutrient availability in host. However, the mechanisms by which pathogens sense gastrointestinal signals and exploit available host nutrients for proliferation remain largely unknown. Here, we identified a two-component system in Vibrio parahaemolyticus, TtrRS, which senses environmental tetrathionate and subsequently activates the transcription of the ttrRS-ttrBCA-tsdBA gene cluster to promote V. parahaemolyticus colonization of adult mice. We demonstrated that TsdBA confers the ability of thiosulfate oxidation to produce tetrathionate which is sensed by TtrRS. TtrRS autoregulates and directly activates the transcription of the ttrBCA and tsdBA gene clusters. Activated TtrBCA promotes bacterial growth under micro-aerobic conditions by inducing the reduction of both tetrathionate and thiosulfate. TtrBCA and TsdBA activation by TtrRS is important for V. parahaemolyticus to colonize adult mice. Therefore, TtrRS and their target genes constitute a tetrathionate-responsive genetic circuit to exploit the host available sulfur compounds, which further contributes to the intestinal colonization of V. parahaemolyticus.
Collapse
Affiliation(s)
- Xiaojun Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Fuwen Liu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Tianqi Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Ranran Lu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Mengting Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xiujuan Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| |
Collapse
|
8
|
Liu LY, Wang X, Dang CC, Zhao ZC, Xing DF, Liu BF, Ren NQ, Xie GJ. Anaerobic ammonium oxidation coupled with sulfate reduction links nitrogen with sulfur cycle. BIORESOURCE TECHNOLOGY 2024; 403:130903. [PMID: 38801958 DOI: 10.1016/j.biortech.2024.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Sulfate-dependent ammonium oxidation (Sulfammox) is a critical process linking nitrogen and sulfur cycles. However, the metabolic pathway of microbes driven Sulfammox is still in suspense. The study demonstrated that ammonium was not consumed with sulfate as the sole electron acceptor during long-term enrichment, probably due to inhibition from sulfide accumulation, while ammonium was removed at ∼ 10 mg N/L/d with sulfate and nitrate as electron acceptors. Ammonium and sulfate were converted into nitrogen gas, sulfide, and elemental sulfur. Sulfammox was mainly performed by Candidatus Brocadia sapporoensis and Candidatus Brocadia fulgida, both of which encoded ammonium oxidation pathway and dissimilatory sulfate reduction pathway. Not sulfide-driven autotrophic denitrifiers but Candidatus Kuenenia stuttgartiensis converted nitrate to nitrite with sulfide. The results of this study reveal the specialized metabolism of Sulfammox bacteria (Candidatus Brocadia sapporoensis and Candidatus Brocadia fulgida) and provide insight into microbial relationships during the nitrogen and sulfur cycles.
Collapse
Affiliation(s)
- Lu-Yao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Cheng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Zhuang X, Wang S, Wu S. Electron Transfer in the Biogeochemical Sulfur Cycle. Life (Basel) 2024; 14:591. [PMID: 38792612 PMCID: PMC11123123 DOI: 10.3390/life14050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing their crucial roles in ecological processes. In this review, we delve into the electron transfer process between sulfate-reducing bacteria and anaerobic alkane-oxidizing archaea, which facilitates growth within syntrophic communities. Furthermore, we review the phenomenon of long-distance electron transfer and potential extracellular electron transfer in multicellular filamentous sulfur-oxidizing bacteria. These bacteria, with their vast application prospects and ecological significance, play a pivotal role in various ecological processes. Subsequently, we discuss the important role of the pili/cytochrome for electron transfer and presented cutting-edge approaches for exploring and studying electroactive microorganisms. This review provides a comprehensive overview of electroactive microorganisms participating in the biogeochemical sulfur cycle. By examining their electron transfer mechanisms, and the potential ecological and applied implications, we offer novel insights into microbial sulfur metabolism, thereby advancing applications in the development of sustainable bioelectronics materials and bioremediation technologies.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhao H, He Y, Wang Y, He X, Zhao R, Liu B. Analysis of microbial community evolution, autolysis phenomena, and energy metabolism pathways in Pholiota nameko endophytes. Front Microbiol 2024; 15:1319886. [PMID: 38690362 PMCID: PMC11059008 DOI: 10.3389/fmicb.2024.1319886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Pholiota nameko is a widely consumed edible fungus. This study focuses on two crucial developmental stages of Pholiota nameko, namely, mycelium and ascospores. The objectives of this research were to investigate changes in microbial diversity and community structure during the growth of Pholiota nameko and to analyze the adaptability of the dominant strains to their respective habitats through metabolic. Methods Specifically, we conducted second-generation sequencing of the 16S rRNA gene (Illumina) on samples obtained from these stages. In addition, we isolated and characterized endophytes present in Pholiota nameko, focusing on examining the impact of dominant endophyte genera on autolysis. We also conducted a metabolic pathway analysis. Results and discussion The results unveiled 578,414 valid sequences of Pholiota nameko endophytic fungi. At the phylum level, the dominant taxa were Basidiomycota, Ascomycota, Zoopagomycota, and Mucoromycota. At the genus level, the dominant taxa observed were Pholiota, Inocybe, Fusarium, and Hortiboletus. For endophytic bacteria, we obtained 458,475 valid sequences. The dominant phyla were Proteobacteria, TM6, Firmicutes, and Bacteroidetes, while the dominant genera were Edaphobacter, Xanthomonas, Burkholderia, and Pseudomonas. Moreover, we identified the isolated strains in Pholiota nameko using 16S rDNA, and most of them were found to belong to the genus Pseudomonas, with Pseudomonas putida being the most prevalent strain. The findings revealed that the Pseudomonas putida strain has the ability to slow down the breakdown of soluble proteins and partially suppress the metabolic processes that generate superoxide anion radicals in Pholiota nameko, thereby reducing autolysis. Additionally, our results demonstrated that molybdenum enzyme-mediated anaerobic oxidative phosphorylation reactions were the primary energy metabolism pathway in the Pseudomonas putida strain. This suggests that the molybdenum cofactor synthesis pathway might be the main mechanism through which Pholiota nameko adapts to its complex and diverse habitats.
Collapse
Affiliation(s)
| | | | | | - Xiaolong He
- College of Life Sciences, Yan’an University, Yan’an, China
| | | | | |
Collapse
|
11
|
Kop LFM, Koch H, Jetten MSM, Daims H, Lücker S. Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses. ISME COMMUNICATIONS 2024; 4:ycad017. [PMID: 38317822 PMCID: PMC10839748 DOI: 10.1093/ismeco/ycad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
The most abundant known nitrite-oxidizing bacteria in the marine water column belong to the phylum Nitrospinota. Despite their importance in marine nitrogen cycling and primary production, there are only few cultured representatives that all belong to the class Nitrospinia. Moreover, although Nitrospinota were traditionally thought to be restricted to marine environments, metagenome-assembled genomes have also been recovered from groundwater. Over the recent years, metagenomic sequencing has led to the discovery of several novel classes of Nitrospinota (UBA9942, UBA7883, 2-12-FULL-45-22, JACRGO01, JADGAW01), which remain uncultivated and have not been analyzed in detail. Here, we analyzed a nonredundant set of 98 Nitrospinota genomes with focus on these understudied Nitrospinota classes and compared their metabolic profiles to get insights into their potential role in biogeochemical element cycling. Based on phylogenomic analysis and average amino acid identities, the highly diverse phylum Nitrospinota could be divided into at least 33 different genera, partly with quite distinct metabolic capacities. Our analysis shows that not all Nitrospinota are nitrite oxidizers and that members of this phylum have the genomic potential to use sulfide and hydrogen for energy conservation. This study expands our knowledge of the phylogeny and potential ecophysiology of the phylum Nitrospinota and offers new avenues for the isolation and cultivation of these elusive bacteria.
Collapse
Affiliation(s)
- Linnea F M Kop
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
12
|
Lyu Y, Zhang J, Chen Y, Li Q, Ke Z, Zhang S, Li J. Distinct diversity patterns and assembly mechanisms of prokaryotic microbial sub-community in the water column of deep-sea cold seeps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119240. [PMID: 37837767 DOI: 10.1016/j.jenvman.2023.119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Methane leakage from deep-sea cold seeps has a major impact on marine ecosystems. Microbes sequester methane in the water column of cold seeps and can be divided into abundant and rare groups. Both abundant and rare groups play an important role in cold seep ecosystems, and the environmental heterogeneity in cold seeps may enhance conversion between taxa with different abundances. Yet, the environmental stratification and assembly mechanisms of these microbial sub-communities remain unclear. We investigated the diversities and assembly mechanisms in microbial sub-communities with distinct abundance in the deep-sea cold seep water column, from 400 m to 1400 m. We found that bacterial β-diversity, as measured by Sørensen dissimilarities, exhibited a significant species turnover pattern that was influenced by several environmental factors including depth, temperature, SiO32-, and salinity. In contrast, archaeal β-diversity showed a relatively high percentage of nestedness pattern, which was driven by the levels of soluble reactive phosphate and SiO32-. During the abundance dependency test, abundant taxa of both bacteria and archaea showed a significant species turnover, while the rare taxa possessed a higher percentage of nestedness. Stochastic processes were prominent in shaping the prokaryotic community, but deterministic processes were more pronounced for the abundant taxa than rare ones. Furthermore, the metagenomics results revealed that the abundances of methane oxidation, sulfur oxidation, and nitrogen fixation-related genes and related microbial groups were significantly higher in the bottom water. Our results implied that the carbon, sulfur, and nitrogen cycles were potentially strongly coupled in the bottom water. Overall, the results obtained in this study highlight taxonomic and abundance-dependent microbial community diversity patterns and assembly mechanisms in the water column of cold seeps, which will help understand the impacts of fluid seepage from the sea floor on the microbial community in the water column and further provide guidance for the management of cold seep ecosystem under future environmental pressures.
Collapse
Affiliation(s)
- Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhixin Ke
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
13
|
Diao M, Dyksma S, Koeksoy E, Ngugi DK, Anantharaman K, Loy A, Pester M. Global diversity and inferred ecophysiology of microorganisms with the potential for dissimilatory sulfate/sulfite reduction. FEMS Microbiol Rev 2023; 47:fuad058. [PMID: 37796897 PMCID: PMC10591310 DOI: 10.1093/femsre/fuad058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Sulfate/sulfite-reducing microorganisms (SRM) are ubiquitous in nature, driving the global sulfur cycle. A hallmark of SRM is the dissimilatory sulfite reductase encoded by the genes dsrAB. Based on analysis of 950 mainly metagenome-derived dsrAB-carrying genomes, we redefine the global diversity of microorganisms with the potential for dissimilatory sulfate/sulfite reduction and uncover genetic repertoires that challenge earlier generalizations regarding their mode of energy metabolism. We show: (i) 19 out of 23 bacterial and 2 out of 4 archaeal phyla harbor uncharacterized SRM, (ii) four phyla including the Desulfobacterota harbor microorganisms with the genetic potential to switch between sulfate/sulfite reduction and sulfur oxidation, and (iii) the combination as well as presence/absence of different dsrAB-types, dsrL-types and dsrD provides guidance on the inferred direction of dissimilatory sulfur metabolism. We further provide an updated dsrAB database including > 60% taxonomically resolved, uncultured family-level lineages and recommendations on existing dsrAB-targeted primers for environmental surveys. Our work summarizes insights into the inferred ecophysiology of newly discovered SRM, puts SRM diversity into context of the major recent changes in bacterial and archaeal taxonomy, and provides an up-to-date framework to study SRM in a global context.
Collapse
Affiliation(s)
- Muhe Diao
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - Stefan Dyksma
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - Elif Koeksoy
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - David Kamanda Ngugi
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna A-1030, Austria
| | - Michael Pester
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
- Technical University of Braunschweig, Institute of Microbiology, Braunschweig D-38106, Germany
| |
Collapse
|
14
|
Elizabeth George S, Wan Y. Microbial functionalities and immobilization of environmental lead: Biogeochemical and molecular mechanisms and implications for bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131738. [PMID: 37285788 PMCID: PMC11249206 DOI: 10.1016/j.jhazmat.2023.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
The increasing environmental and human health concerns about lead in the environment have stimulated scientists to search for microbial processes as innovative bioremediation strategies for a suite of different contaminated media. In this paper, we provide a compressive synthesis of existing research on microbial mediated biogeochemical processes that transform lead into recalcitrant precipitates of phosphate, sulfide, and carbonate, in a genetic, metabolic, and systematics context as they relate to application in both laboratory and field immobilization of environmental lead. Specifically, we focus on microbial functionalities of phosphate solubilization, sulfate reduction, and carbonate synthesis related to their respective mechanisms that immobilize lead through biomineralization and biosorption. The contributions of specific microbes, both single isolates or consortia, to actual or potential applications in environmental remediation are discussed. While many of the approaches are successful under carefully controlled laboratory conditions, field application requires optimization for a host of variables, including microbial competitiveness, soil physical and chemical parameters, metal concentrations, and co-contaminants. This review challenges the reader to consider bioremediation approaches that maximize microbial competitiveness, metabolism, and the associated molecular mechanisms for future engineering applications. Ultimately, we outline important research directions to bridge future scientific research activities with practical applications for bioremediation of lead and other toxic metals in environmental systems.
Collapse
Affiliation(s)
- S Elizabeth George
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA
| | - Yongshan Wan
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA.
| |
Collapse
|
15
|
Sun YL, Zhai SY, Qian ZM, Yi S, Zhuang WQ, Cheng HY, Zhang XN, Wang AJ. Managing microbial sulfur disproportionation for optimal sulfur autotrophic denitrification in a pilot-scale elemental sulfur packed-bed bioreactor. WATER RESEARCH 2023; 243:120356. [PMID: 37516076 DOI: 10.1016/j.watres.2023.120356] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
Elemental sulfur packed-bed (S0PB) bioreactors for autotrophic denitrification have gained more attention in wastewater treatment due to their organic carbon-free operation, low operating cost, and minimal carbon emissions. However, the rapid development of microbial S0-disproportionation (MS0D) in S0PB reactor during deep denitrification poses a significant drawback to this new technology. MS0D, the process in which sulfur is used as both an electron donor and acceptor by bacteria, plays a crucial role in the microbial-driven sulfur cycle but remains poorly understood in wastewater treatment setups. In this study, we induced MS0D in a pilot-scale S0PB reactor capable of denitrifying over 1000 m3/d nitrate-containing wastewater. Initially, the S0PB reactor stably removed 6.6 mg-NO3--N/L nitrate at an empty bed contact time (EBCT) of 20 mins, which was designated the S0-denitrification stage. To induce MS0D, we reduced the influent nitrate concentrations to allow deep nitrate removal, resulted in the production of large quantities of sulfate and sulfide (SO42-:S2- 3.2 w/w). Meanwhile, other sulfur-heterologous electron acceptors (SHEAs), e.g., nitrite and DO, were also kept at trace levels. The negative correlations between the SHEAs concentrations and the sulfide productions indicated that the absence of SHEAs was a primary inducing factor to MS0D. The microbial community drastically diverged in response to the depletion of SHEAs during the switch from S0-denitrification to S0-disproportionation. An evident enrichment of sulfur-disproportionating bacteria (SDBs) was found at the S0-disproportionation stage, accompanied by the decline of sulfur-oxidizing bacteria (SOBs). In the end, we discovered that shortening the EBCT and increasing the reflux ratio could inhibit sulfide production by reducing it from 43.9 mg/L to 3.2 mg/L or 25.5 mg/L. In conclusion, our study highlights the importance of considering MS0D when designing and optimizing S0PB reactors for sustainable autotrophic sulfur denitrification in real-life applications.
Collapse
Affiliation(s)
- Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Si-Yuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zhi-Min Qian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Shan Yi
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland 1010, New Zealand
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China.
| |
Collapse
|
16
|
Cabrol L, Capo E, van Vliet DM, von Meijenfeldt FAB, Bertilsson S, Villanueva L, Sánchez-Andrea I, Björn E, G. Bravo A, Heimburger Boavida LE. Redox gradient shapes the abundance and diversity of mercury-methylating microorganisms along the water column of the Black Sea. mSystems 2023; 8:e0053723. [PMID: 37578240 PMCID: PMC10469668 DOI: 10.1128/msystems.00537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 08/15/2023] Open
Abstract
In the global context of seawater deoxygenation triggered by climate change and anthropogenic activities, changes in redox gradients impacting biogeochemical transformations of pollutants, such as mercury, become more likely. Being the largest anoxic basin worldwide, with high concentrations of the potent neurotoxic methylmercury (MeHg), the Black Sea is an ideal natural laboratory to provide new insights about the link between dissolved oxygen concentration and hgcAB gene-carrying (hgc+) microorganisms involved in the formation of MeHg. We combined geochemical and microbial approaches to assess the effect of vertical redox gradients on abundance, diversity, and metabolic potential of hgc+ microorganisms in the Black Sea water column. The abundance of hgcA genes [congruently estimated by quantitative PCR (qPCR) and metagenomics] correlated with MeHg concentration, both maximal in the upper part of the anoxic water. Besides the predominant Desulfobacterales, hgc+ microorganisms belonged to a unique assemblage of diverse-previously underappreciated-anaerobic fermenters from Anaerolineales, Phycisphaerae (characteristic of the anoxic and sulfidic zone), Kiritimatiellales, and Bacteroidales (characteristic of the suboxic zone). The metabolic versatility of Desulfobacterota differed from strict sulfate reduction in the anoxic water to reduction of various electron acceptors in the suboxic water. Linking microbial activity and contaminant concentration in environmental studies is rare due to the complexity of biological pathways. In this study, we disentangle the role of oxygen in shaping the distribution of Hg-methylating microorganisms consistently with MeHg concentration, and we highlight their taxonomic and metabolic niche partitioning across redox gradients, improving the prediction of the response of marine communities to the expansion of oxygen-deficient zones. IMPORTANCE Methylmercury (MeHg) is a neurotoxin detected at high concentrations in certain marine ecosystems, posing a threat to human health. MeHg production is mainly mediated by hgcAB gene-carrying (hgc+) microorganisms. Oxygen is one of the main factors controlling Hg methylation; however, its effect on the diversity and ecology of hgc+ microorganisms remains unknown. Under the current context of seawater deoxygenation, mercury cycling is expected to be disturbed. Here, we show the strong effect of oxygen gradients on the distribution of potential Hg methylators. In addition, we show for the first time the significant contribution of a unique assemblage of potential fermenters from Anaerolineales, Phycisphaerae, and Kiritimatiellales to Hg methylation, stratified in different redox niches along the Black Sea gradient. Our results considerably expand the known taxonomic diversity and ecological niches prone to the formation of MeHg and contribute to better apprehend the consequences of oxygen depletion in seawater.
Collapse
Affiliation(s)
- Léa Cabrol
- Aix Marseille University, Univ. Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago, Chile
| | - Eric Capo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, CSIC, Barcelona, Spain
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Daan M. van Vliet
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen, the Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, CSIC, Barcelona, Spain
| | - Lars-Eric Heimburger Boavida
- Aix Marseille University, Univ. Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| |
Collapse
|
17
|
Flores E, Mendoza U, Callbeck CM, Díaz R, Aguirre-Velarde A, Böttcher ME, Merma-Mora L, Moreira M, Saldarriaga MS, Silva-Filho EV, Albuquerque AL, Pizarro-Koch M, Graco M. Attenuation of wind intensities exacerbates anoxic conditions leading to sulfur plume development off the coast of Peru. PLoS One 2023; 18:e0287914. [PMID: 37647254 PMCID: PMC10468053 DOI: 10.1371/journal.pone.0287914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/15/2023] [Indexed: 09/01/2023] Open
Abstract
The release of vast quantities of sulfide from the sediment into the water column, known as a sulfidic event, has detrimental consequences on fish catches, including downstream effects on other linked element cycles. Despite being frequent occurrences in marine upwelling regions, our understanding of the factors that moderate sulfidic event formation and termination are still rudimentary. Here, we examined the biogeochemical and hydrodynamic conditions that underpinned the formation/termination of one of the largest sulfur plumes to be reported in the Peruvian upwelling zone. Consistent with previous research, we find that the sulfur-rich plume arose during the austral summer when anoxic conditions (i.e., oxygen and nitrate depletion) prevailed in waters overlying the upper shelf. Furthermore, the shelf sediments were organically charged and characterized by low iron-bound sulfur concentrations, further enabling the diffusion of benthic-generated sulfide into the water column. While these biogeochemical conditions provided a predicate to sulfidic event formation, we highlight that attenuations in local wind intensity served as an event trigger. Namely, interruptions in local wind speed constrained upwelling intensity, causing increased stratification over the upper shelf. Moreover, disturbances in local wind patterns likely placed additional constraints on wind-driven mesoscale eddy propagation, with feedback effects on coastal elemental sulfur plume (ESP) formation. We suggest ESP development occurs as a result of a complex interaction of biogeochemistry with regional hydrodynamics.
Collapse
Affiliation(s)
- Edgart Flores
- Programa de Maestría de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
- Department of Geological Sciences, Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, United States of America
| | - Ursula Mendoza
- Dirección General de Investigaciones en Oceanografía y Cambio Climático, Instituto del Mar del Perú, Callao, Peru
- Facultad de Ciencias Veterinarias y Biológicas, Escuela de Biología Marina, Universidad Científica del Sur, Lima, Peru
| | - Cameron M. Callbeck
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Rut Díaz
- Programa de Geoquímica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Arturo Aguirre-Velarde
- Dirección General de Investigaciones en Acuicultura, Instituto del Mar del Perú, Callao, Peru
| | - Michael E. Böttcher
- Geochemistry & Isotope Biogeochemistry Group, Department of Marine Geology, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
- Marine Geochemistry, University of Greifswald, Greifswald, Germany
- Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Lander Merma-Mora
- Programa de Maestría de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manuel Moreira
- Programa de Geoquímica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Maritza S. Saldarriaga
- Dirección General de Investigaciones de Recursos Demersales y Litorales, Instituto del Mar del Perú, Callao, Peru
| | | | - Ana L. Albuquerque
- Departamento de Geologia e Geofísica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Matias Pizarro-Koch
- Escuela de Ingeniería Civil Oceánica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus Understanding Past Coastal Upwelling Systems and Environmental Local and Lasting Impacts, Coquimbo, Chile
| | - Michelle Graco
- Programa de Maestría de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
- Dirección General de Investigaciones en Oceanografía y Cambio Climático, Instituto del Mar del Perú, Callao, Peru
| |
Collapse
|
18
|
Sun K, Yu M, Zhu XY, Xue CX, Zhang Y, Chen X, Yao P, Chen L, Fu L, Yang Z, Zhang XH. Microbial communities related to the sulfur cycle in the Sansha Yongle Blue Hole. Microbiol Spectr 2023; 11:e0114923. [PMID: 37623326 PMCID: PMC10580873 DOI: 10.1128/spectrum.01149-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
The Sansha Yongle Blue Hole (SYBH), the deepest blue hole in the world, is an excellent habitat for revealing biogeochemical cycles in the anaerobic environment. However, how sulfur cycling is mediated by microorganisms in the SYBH hasn't been fully understood. In this study, the water layers of the SYBH were divided into oxic zone, hypoxic zone, anoxic zone I and II, and microbial-mediated sulfur cycling in the SYBH was comprehensively interpreted. The 16S rRNA genes/transcripts analyses showed that the microbial community structures associated with the sulfur cycling in each zone had distinctive features. Sulfur-oxidizing bacteria were mostly constituted by Gammaproteobacteria, Alphaproteobacteria, Campylobacterota, and Chlorobia above the anoxic zone I and sulfate-reducing bacteria were dominated by Desulfobacterota in anoxic zones. Metagenomic analyses showed that the sulfide-oxidation-related gene sqr and genes encoding the Sox system were mainly distributed in the anoxic zone I, while genes related to dissimilatory sulfate reduction and sulfur intermediate metabolite reduction were mainly distributed in the anoxic zone II, indicating different sulfur metabolic processes between these two zones. Moreover, sulfur-metabolism-related genes were identified in 81 metagenome-assembled genomes (MAGs), indicating a high diversity of microbial communities involved in sulfur cycling. Among them, three MAGs from the candidate phyla JdFR-76 and AABM5-125-24 with genes related to dissimilatory sulfate reduction exhibited distinctive metabolic features. Our results showed unique and novel microbial populations in the SYBH sulfur cycle correlated to the sharp redox gradients, revealing complex biogeochemical processes in this extreme environment. IMPORTANCE Oxygen-deficient regions in the global ocean are expanding rapidly and affect the growth, reproduction and ecological processes of marine organisms. The anaerobic water body of about 150 m in the Sansha Yongle Blue Hole (SYBH) provided a suitable environment to study the specific microbial metabolism in anaerobic seawater. Here, we found that the vertical distributions of the total and active communities of sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) were different in each water layer of the SYBH according to the dissolved oxygen content. Genes related to sulfur metabolism also showed distinct stratification characteristics. Furthermore, we have obtained diverse metagenome-assembled genomes, some of which exhibit special sulfur metabolic characteristics, especially candidate phyla JdFR-76 and AABM5-125-24 were identified as potential novel SRB. The results of this study will promote further understanding of the sulfur cycle in extreme environments, as well as the environmental adaptability of microorganisms in blue holes.
Collapse
Affiliation(s)
- Kai Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Min Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao-Yu Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chun-Xu Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunhui Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xing Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Lin Chen
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute, Sansha, China
| | - Zuosheng Yang
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
19
|
Zhang D, Li X, Wu Y, Xu X, Liu Y, Shi B, Peng Y, Dai D, Sha Z, Zheng J. Microbe-driven elemental cycling enables microbial adaptation to deep-sea ferromanganese nodule sediment fields. MICROBIOME 2023; 11:160. [PMID: 37491386 PMCID: PMC10367259 DOI: 10.1186/s40168-023-01601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Ferromanganese nodule-bearing deep-sea sediments cover vast areas of the ocean floor, representing a distinctive habitat in the abyss. These sediments harbor unique conditions characterized by high iron concentration and low degradable nutrient levels, which pose challenges to the survival and growth of most microorganisms. While the microbial diversity in ferromanganese nodule-associated sediments has been surveyed several times, little is known about the functional capacities of the communities adapted to these unique habitats. RESULTS Seven sediment samples collected adjacent to ferromanganese nodules from the Clarion-Clipperton Fracture Zone (CCFZ) in the eastern Pacific Ocean were subjected to metagenomic analysis. As a result, 179 high-quality metagenome-assembled genomes (MAGs) were reconstructed and assigned to 21 bacterial phyla and 1 archaeal phylum, with 88.8% of the MAGs remaining unclassified at the species level. The main mechanisms of resistance to heavy metals for microorganisms in sediments included oxidation (Mn), reduction (Cr and Hg), efflux (Pb), synergy of reduction and efflux (As), and synergy of oxidation and efflux (Cu). Iron, which had the highest content among all metallic elements, may occur mainly as Fe(III) that potentially functioned as an electron acceptor. We found that microorganisms with a diverse array of CAZymes did not exhibit higher community abundance. Instead, microorganisms mainly obtained energy from oxidation of metal (e.g., Mn(II)) and sulfur compounds using oxygen or nitrate as an electron acceptor. Chemolithoautotrophic organisms (Thaumarchaeota and Nitrospirota phyla) were found to be potential manganese oxidizers. The functional profile analysis of the dominant microorganisms further indicated that utilization of inorganic nutrients by redox reactions (rather than organic nutrient metabolism) is a major adaptive strategy used by microorganisms to support their survival in the ferromanganese nodule sediments. CONCLUSIONS This study provides a comprehensive metagenomic analysis of microbes inhabiting metal-rich ferromanganese nodule sediments. Our results reveal extensive redundancy across taxa for pathways of metal resistance and transformation, the highly diverse mechanisms used by microbes to obtain nutrition, and their participation in various element cycles in these unique environments. Video Abstract.
Collapse
Affiliation(s)
- Dechao Zhang
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuehong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Yanxia Liu
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Benze Shi
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dadong Dai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongli Sha
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Vigneron A, Cruaud P, Lovejoy C, Vincent WF. Genomic insights into cryptic cycles of microbial hydrocarbon production and degradation in contiguous freshwater and marine microbiomes. MICROBIOME 2023; 11:104. [PMID: 37173775 PMCID: PMC10176705 DOI: 10.1186/s40168-023-01537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/29/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Cyanobacteria and eukaryotic phytoplankton produce long-chain alkanes and generate around 100 times greater quantities of hydrocarbons in the ocean compared to natural seeps and anthropogenic sources. Yet, these compounds do not accumulate in the water column, suggesting rapid biodegradation by co-localized microbial populations. Despite their ecological importance, the identities of microbes involved in this cryptic hydrocarbon cycle are mostly unknown. Here, we identified genes encoding enzymes involved in the hydrocarbon cycle across the salinity gradient of a remote, vertically stratified, seawater-containing High Arctic lake that is isolated from anthropogenic petroleum sources and natural seeps. Metagenomic analysis revealed diverse hydrocarbon cycling genes and populations, with patterns of variation along gradients of light, salinity, oxygen, and sulfur that are relevant to freshwater, oceanic, hadal, and anoxic deep sea ecosystems. RESULTS Analyzing genes and metagenome-assembled genomes down the water column of Lake A in the Canadian High Arctic, we detected microbial hydrocarbon production and degradation pathways at all depths, from surface freshwaters to dark, saline, anoxic waters. In addition to Cyanobacteria, members of the phyla Flavobacteria, Nitrospina, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia had pathways for alkane and alkene production, providing additional sources of biogenic hydrocarbons. Known oil-degrading microorganisms were poorly represented in the system, while long-chain hydrocarbon degradation genes were identified in various freshwater and marine lineages such as Actinobacteria, Schleiferiaceae, and Marinimicrobia. Genes involved in sulfur and nitrogen compound transformations were abundant in hydrocarbon producing and degrading lineages, suggesting strong interconnections with nitrogen and sulfur cycles and a potential for widespread distribution in the ocean. CONCLUSIONS Our detailed metagenomic analyses across water column gradients in a remote petroleum-free lake derived from the Arctic Ocean suggest that the current estimation of bacterial hydrocarbon production in the ocean could be substantially underestimated by neglecting non-phototrophic production and by not taking low oxygen zones into account. Our findings also suggest that biogenic hydrocarbons may sustain a large fraction of freshwater and oceanic microbiomes, with global biogeochemical implications for carbon, sulfur, and nitrogen cycles. Video Abstract.
Collapse
Affiliation(s)
- Adrien Vigneron
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Takuvik Joint International Laboratory, CNRS / Université Laval, Québec, QC, Canada.
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, CNRS / Université Laval, Québec, QC, Canada
- Québec Océan, Université Laval, Québec, QC, Canada
| | - Warwick F Vincent
- Département de Biologie, Université Laval, Québec, QC, Canada
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, CNRS / Université Laval, Québec, QC, Canada
| |
Collapse
|
21
|
Ding W, Wang S, Qin P, Fan S, Su X, Cai P, Lu J, Cui H, Wang M, Shu Y, Wang Y, Fu HH, Zhang YZ, Li YX, Zhang W. Anaerobic thiosulfate oxidation by the Roseobacter group is prevalent in marine biofilms. Nat Commun 2023; 14:2033. [PMID: 37041201 PMCID: PMC10090131 DOI: 10.1038/s41467-023-37759-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Thiosulfate oxidation by microbes has a major impact on global sulfur cycling. Here, we provide evidence that bacteria within various Roseobacter lineages are important for thiosulfate oxidation in marine biofilms. We isolate and sequence the genomes of 54 biofilm-associated Roseobacter strains, finding conserved sox gene clusters for thiosulfate oxidation and plasmids, pointing to a niche-specific lifestyle. Analysis of global ocean metagenomic data suggests that Roseobacter strains are abundant in biofilms and mats on various substrates, including stones, artificial surfaces, plant roots, and hydrothermal vent chimneys. Metatranscriptomic analysis indicates that the majority of active sox genes in biofilms belong to Roseobacter strains. Furthermore, we show that Roseobacter strains can grow and oxidize thiosulfate to sulfate under both aerobic and anaerobic conditions. Transcriptomic and membrane proteomic analyses of biofilms formed by a representative strain indicate that thiosulfate induces sox gene expression and alterations in cell membrane protein composition, and promotes biofilm formation and anaerobic respiration. We propose that bacteria of the Roseobacter group are major thiosulfate-oxidizers in marine biofilms, where anaerobic thiosulfate metabolism is preferred.
Collapse
Affiliation(s)
- Wei Ding
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Shougang Wang
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Peng Qin
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shen Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Su
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Jie Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Han Cui
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Meng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yi Shu
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yongming Wang
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Hui-Hui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| |
Collapse
|
22
|
Degli Esposti M. The bacterial origin of mitochondria: Incorrect phylogenies and the importance of metabolic traits. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:1-35. [PMID: 36858653 DOI: 10.1016/bs.ircmb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article provides an updated review on the evolution of mitochondria from bacteria, which were likely related to extant alphaproteobacteria. Particular attention is given to the timeline of oxygen history on Earth and the entwined phases of eukaryotic evolution that produced the animals that still populate our planet. Mitochondria of early-branching unicellular eukaryotes and plants appear to retain partial or vestigial traits that were directly inherited from the alphaproteobacterial ancestors of the organelles. Most of such traits define the current aerobic physiology of mitochondria. Conversely, the anaerobic traits that would be essential in the syntrophic associations postulated for the evolution of eukaryotic cells are scantly present in extant alphaproteobacteria, and therefore cannot help defining from which bacterial lineage the ancestors of mitochondria originated. This question has recently been addressed quantitatively, reaching the novel conclusion that marine bacteria related to Iodidimonas may be the living relatives of protomitochondria. Additional evidence is presented that either support or does not contrast this novel view of the bacterial origin of mitochondria.
Collapse
|
23
|
He W, Cai R, Xi S, Yin Z, Du Z, Luan Z, Sun C, Zhang X. Study of Microbial Sulfur Metabolism in a Near Real-Time Pathway through Confocal Raman Quantitative 3D Imaging. Microbiol Spectr 2023; 11:e0367822. [PMID: 36809047 PMCID: PMC10101092 DOI: 10.1128/spectrum.03678-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
As microbial sulfur metabolism significantly contributes to the formation and cycling of deep-sea sulfur, studying their sulfur metabolism is important for understanding the deep-sea sulfur cycle. However, conventional methods are limited in near real-time studies of bacterial metabolism. Recently, Raman spectroscopy has been widely used in studies on biological metabolism due to its low-cost, rapid, label-free, and nondestructive features, providing us with new approaches to solve the above limitation. Here, we used the confocal Raman quantitative 3D imaging method to nondestructively detect the growth and metabolism of Erythrobacter flavus 21-3 in the long term and near real time, which possessed a pathway mediating the formation of elemental sulfur in the deep sea, but the dynamic process was unknown. In this study, its dynamic sulfur metabolism was visualized and quantitatively assessed in near real time using 3D imaging and related calculations. Based on 3D imaging, the growth and metabolism of microbial colonies growing under both hyperoxic and hypoxic conditions were quantified by volume calculation and ratio analysis. Additionally, unprecedented details of growth and metabolism were uncovered by this method. Due to this successful application, this method is potentially significant for analyzing the in situ biological processes of microorganisms in the future. IMPORTANCE Microorganisms contribute significantly to the formation of deep-sea elemental sulfur, so studies on their growth and dynamic sulfur metabolism are important to understand the deep-sea sulfur cycle. However, near real-time in situ nondestructive metabolic studies of microorganisms remain a great challenge due to the limitations of existing methods. We thus used an imaging-related workflow by confocal Raman microscopy. More detailed descriptions of the sulfur metabolism of E. flavus 21-3 were disclosed, which perfectly complemented previous research results. Therefore, this method is potentially significant for analyzing the in-situ biological processes of microorganisms in the future. To our knowledge, this is the first label-free and nondestructive in situ technique that can provide temporally persistent 3D visualization and quantitative information about bacteria.
Collapse
Affiliation(s)
- Wanying He
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ruining Cai
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shichuan Xi
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
| | - Ziyu Yin
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zengfeng Du
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhendong Luan
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin Zhang
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Abstract
Common culturing techniques and priorities bias our discovery towards specific traits that may not be representative of microbial diversity in nature. So far, these biases have not been systematically examined. To address this gap, here we use 116,884 publicly available metagenome-assembled genomes (MAGs, completeness ≥80%) from 203 surveys worldwide as a culture-independent sample of bacterial and archaeal diversity, and compare these MAGs to the popular RefSeq genome database, which heavily relies on cultures. We compare the distribution of 12,454 KEGG gene orthologs (used as trait proxies) in the MAGs and RefSeq genomes, while controlling for environment type (ocean, soil, lake, bioreactor, human, and other animals). Using statistical modeling, we then determine the conditional probabilities that a species is represented in RefSeq depending on its genetic repertoire. We find that the majority of examined genes are significantly biased for or against in RefSeq. Our systematic estimates of gene prevalences across bacteria and archaea in nature and gene-specific biases in reference genomes constitutes a resource for addressing these issues in the future.
Collapse
Affiliation(s)
- Sage Albright
- Department of Biology, University of Oregon, Eugene, USA
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, USA.
- Institute of Ecology and Evolution, University of Oregon, Eugene, USA.
| |
Collapse
|
25
|
Li Y, Xiong L, Yu H, Xiang Y, Wei Y, Zhang Q, Ji X. Biogeochemical sulfur cycling of virus auxiliary metabolic genes involved in Napahai plateau wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44430-44438. [PMID: 36692711 DOI: 10.1007/s11356-023-25408-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
Virus plays important roles in regulating microbial community structure, horizontal gene transfer, and promoting biological evolution, also augmenting host metabolism during infection via the expression of auxiliary metabolic genes (AMGs), and thus affect biogeochemical cycling in the oceans. As the "kidney of the earth," wetlands have rich biodiversity and abundant resources. Based on metagenomic data, 10 AMGs associated with sulfur cycling, i.e., tusA, moaD, dsrE, soxA, soxB, soxC, soxD, soxX, soxY, and soxZ, were analyzed in Napahai plateau wetland. The phylogenetic trees of AMGs involved in sulfur metabolism from different habitats and host origins were constructed. Combined with principal coordinate analysis, it revealed that most AMGs associated with sulfur metabolism clustered separately, indicating the abundance and uniqueness in this region. The sulfur metabolism pathways involved by AMGs were mainly SOX systems, among which sulfur oxidation was associated with moaD and dsrE genes, while sulfur transport was related to tusA genes. It provides an insight into the biogeochemical sulfur cycling in plateau wetlands and lays the foundation for further study on the co-evolution of virus and host.
Collapse
Affiliation(s)
- Yanmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lingling Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hang Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yingying Xiang
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
26
|
Wang H, Yang Q, Li D, Wu J, Yang S, Deng Y, Luo C, Jia W, Zhong Y, Peng P. Stable Isotopic and Metagenomic Analyses Reveal Microbial-Mediated Effects of Microplastics on Sulfur Cycling in Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1167-1176. [PMID: 36599128 DOI: 10.1021/acs.est.2c06546] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microplastics are readily accumulated in coastal sediments, where active sulfur (S) cycling takes place. However, the effects of microplastics on S cycling in coastal sediments and their underlying mechanisms remain poorly understood. In this study, the transformation patterns of different S species in mangrove sediments amended with different microplastics and their associated microbial communities were investigated using stable isotopic analysis and metagenomic sequencing. Biodegradable poly(lactic acid) (PLA) microplastics treatment increased sulfate (SO42-) reduction to yield more acid-volatile S and elementary S, which were subsequently transformed to chromium-reducible S (CRS). The S isotope fractionation between SO42- and CRS in PLA treatment increased by 9.1‰ from days 0 to 20, which was greater than 6.8‰ in the control. In contrast, recalcitrant petroleum-based poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC) microplastics had less impact on the sulfate reduction, resulting in 7.6 and 7.7‰ of S isotope fractionation between SO42- and CRS from days 0 to 20, respectively. The pronounced S isotope fractionation in PLA treatment was associated with increased relative abundance of Desulfovibrio-related sulfate-reducing bacteria, which contributed a large proportion of the microbial genes responsible for dissimilatory sulfate reduction. Overall, these findings provide insights into the potential impacts of microplastics exposure on the biogeochemical S cycle in coastal sediments.
Collapse
Affiliation(s)
- Heli Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qian Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan523808, China
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sen Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou510045, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
| | - Wanglu Jia
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
| |
Collapse
|
27
|
Chuvochina M, Mussig AJ, Chaumeil PA, Skarshewski A, Rinke C, Parks DH, Hugenholtz P. Proposal of names for 329 higher rank taxa defined in the Genome Taxonomy Database under two prokaryotic codes. FEMS Microbiol Lett 2023; 370:fnad071. [PMID: 37480240 PMCID: PMC10408702 DOI: 10.1093/femsle/fnad071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023] Open
Abstract
The Genome Taxonomy Database (GTDB) is a taxonomic framework that defines prokaryotic taxa as monophyletic groups in concatenated protein reference trees according to systematic criteria. This has resulted in a substantial number of changes to existing classifications (https://gtdb.ecogenomic.org). In the case of union of taxa, GTDB names were applied based on the priority of publication. The division of taxa or change in rank led to the formation of new Latin names above the rank of genus that were only made publicly available via the GTDB website without associated published taxonomic descriptions. This has sometimes led to confusion in the literature and databases. A number of the provisional GTDB names were later published in other studies, while many still lack authorships. To reduce further confusion, here we propose names and descriptions for 329 GTDB-defined prokaryotic taxa, 223 of which are suitable for validation under the International Code of Nomenclature of Prokaryotes (ICNP) and 49 under the Code of Nomenclature of Prokaryotes described from Sequence Data (SeqCode). For the latter, we designated 23 genomes as type material. An additional 57 taxa that do not currently satisfy the validation criteria of either code are proposed as Candidatus.
Collapse
Affiliation(s)
- Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Aaron J Mussig
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Pierre-Alain Chaumeil
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Adam Skarshewski
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Christian Rinke
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Donovan H Parks
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics,, St Lucia QLD 4072, Brisbane, Australia
| |
Collapse
|
28
|
Han S, Li Y, Gao H. Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria. Antioxidants (Basel) 2022; 11:antiox11122487. [PMID: 36552695 PMCID: PMC9774590 DOI: 10.3390/antiox11122487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Sulfur is not only one of the most abundant elements on the Earth, but it is also essential to all living organisms. As life likely began and evolved in a hydrogen sulfide (H2S)-rich environment, sulfur metabolism represents an early form of energy generation via various reactions in prokaryotes and has driven the sulfur biogeochemical cycle since. It has long been known that H2S is toxic to cells at high concentrations, but now this gaseous molecule, at the physiological level, is recognized as a signaling molecule and a regulator of critical biological processes. Recently, many metabolites of H2S, collectively called reactive sulfur species (RSS), have been gradually appreciated as having similar or divergent regulatory roles compared with H2S in living organisms, especially mammals. In prokaryotes, even in bacteria, investigations into generation and physiology of RSS remain preliminary and an understanding of the relevant biological processes is still in its infancy. Despite this, recent and exciting advances in the fields are many. Here, we discuss abiotic and biotic generation of H2S/RSS, sulfur-transforming enzymes and their functioning mechanisms, and their physiological roles as well as the sensing and regulation of H2S/RSS.
Collapse
|
29
|
Bioprospecting for Novel Bacterial Sources of Hydrolytic Enzymes and Antimicrobials in the Romanian Littoral Zone of the Black Sea. Microorganisms 2022; 10:microorganisms10122468. [PMID: 36557721 PMCID: PMC9780896 DOI: 10.3390/microorganisms10122468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Marine microorganisms have evolved a large variety of metabolites and biochemical processes, providing great opportunities for biotechnologies. In the search for new hydrolytic enzymes and antimicrobial compounds with enhanced characteristics, the current study explored the diversity of cultured and uncultured marine bacteria in Black Sea water from two locations along the Romanian coastline. Microbial cell density in the investigated samples varied between 65 and 12.7 × 103 CFU·mL-1. The total bacterial community identified by Illumina sequencing of 16S rRNA gene comprised 185 genera belonging to 46 classes, mainly Gammaproteobacteria, Alphaproteobacteria, Flavobacteriia, and 24 phyla. The 66 bacterial strains isolated on seawater-based culture media belonged to 33 genera and showed variable growth temperatures, growth rates, and salt tolerance. A great fraction of these strains, including Pseudoalteromonas and Flavobacterium species, produced extracellular proteases, lipases, and carbohydrases, while two strains belonging to the genera Aquimarina and Streptomyces exhibited antimicrobial activity against human pathogenic bacteria. This study led to a broader view on the diversity of microbial communities in the Black Sea, and provided new marine strains with hydrolytic and antimicrobial capabilities that may be exploited in industrial and pharmaceutical applications.
Collapse
|
30
|
Ayala-Muñoz D, Macalady JL, Sánchez-España J, Falagán C, Couradeau E, Burgos WD. Microbial carbon, sulfur, iron, and nitrogen cycling linked to the potential remediation of a meromictic acidic pit lake. THE ISME JOURNAL 2022; 16:2666-2679. [PMID: 36123522 PMCID: PMC9666448 DOI: 10.1038/s41396-022-01320-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Cueva de la Mora is a permanently stratified acidic pit lake and a model system for extreme acid mine drainage (AMD) studies. Using a combination of amplicon sequencing, metagenomics and metatranscriptomics we performed a taxonomically resolved analysis of microbial contributions to carbon, sulfur, iron, and nitrogen cycling. We found that active green alga Coccomyxa onubensis dominated the upper layer and chemocline. The chemocline had activity for iron(II) oxidation carried out by populations of Ca. Acidulodesulfobacterium, Ferrovum, Leptospirillium, and Armatimonadetes. Predicted activity for iron(III) reduction was only detected in the deep layer affiliated with Proteobacteria. Activity for dissimilatory nitrogen cycling including nitrogen fixation and nitrate reduction was primarily predicted in the chemocline. Heterotrophic archaeal populations with predicted activity for sulfide oxidation related to uncultured Thermoplasmatales dominated in the deep layer. Abundant sulfate-reducing Desulfomonile and Ca. Acidulodesulfobacterium populations were active in the chemocline. In the deep layer, uncultured populations from the bacterial phyla Actinobacteria, Chloroflexi, and Nitrospirae contributed to both sulfate reduction and sulfide oxidation. Based on this information we evaluated the potential for sulfide mineral precipitation in the deep layer as a tool for remediation. We argue that sulfide precipitation is not limited by microbial genetic potential but rather by the quantity and quality of organic carbon reaching the deep layer as well as by oxygen additions to the groundwater enabling sulfur oxidation. Addition of organic carbon and elemental sulfur should stimulate sulfate reduction and limit reoxidation of sulfide minerals.
Collapse
Affiliation(s)
- Diana Ayala-Muñoz
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA, 16802, USA.
| | - Jennifer L Macalady
- Department of Geosciences, The Pennsylvania State University, 211 Deike Building University Park, University Park, PA, 16802, USA
| | - Javier Sánchez-España
- Centro Nacional Instituto Geológico Minero de España (IGME), CSIC, Calera 1, 28760 Tres Cantos, Madrid, Spain
| | - Carmen Falagán
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry 1st St., Portsmouth, PO1 2DY, UK
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, The Pennsylvania State University, 50 ASI University Park, University Park, PA, 16802, USA
| | - William D Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA, 16802, USA.
| |
Collapse
|
31
|
Oren A. Candidatus List No. 4: Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748458 DOI: 10.1099/ijsem.0.005545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| |
Collapse
|
32
|
Canfield DE, Kraft B. The 'oxygen' in oxygen minimum zones. Environ Microbiol 2022; 24:5332-5344. [PMID: 36054074 PMCID: PMC9828761 DOI: 10.1111/1462-2920.16192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Aerobic processes require oxygen, and anaerobic processes are typically hindered by it. In many places in the global ocean, oxygen is completely removed at mid-water depths forming anoxic oxygen minimum zones (A-OMZs). Within the oxygen gradients linking oxygenated waters with A-OMZs, there is a transition from aerobic to anaerobic microbial processes. This transition is not sharp and there is an overlap between processes using oxygen and those using other electron acceptors. This review will focus on the oxygen control of aerobic and anaerobic metabolisms and will explore how this overlap impacts both the carbon and nitrogen cycles in A-OMZ environments. We will discuss new findings on non-phototrophic microbial processes that produce oxygen, and we focus on how oxygen impacts the loss of fixed nitrogen (as N2 ) from A-OMZ waters. There are both physiological and environmental controls on the activities of microbial processes responsible for N2 loss, and the environmental controls are active at extremely low levels of oxygen. Understanding how these controls function will be critical to understanding and predicting how fixed-nitrogen loss in the oceans will respond to future global warming.
Collapse
Affiliation(s)
- Don E. Canfield
- Department of Biology and NordceeUniversity of Southern Denmark, Campusvej 55OdenseDenmark,Danish Institute for Advanced Studies (DIAS)Denmark,PetrochinaBeijingChina
| | - Beate Kraft
- Department of Biology and NordceeUniversity of Southern Denmark, Campusvej 55OdenseDenmark
| |
Collapse
|
33
|
Liu R, Shan Y, Xi S, Zhang X, Sun C. A deep-sea sulfate-reducing bacterium generates zero-valent sulfur via metabolizing thiosulfate. MLIFE 2022; 1:257-271. [PMID: 38818226 PMCID: PMC10989961 DOI: 10.1002/mlf2.12038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2024]
Abstract
Zero-valent sulfur (ZVS) is a crucial intermediate in the sulfur geobiochemical circulation and is widespread in deep-sea cold seeps. Sulfur-oxidizing bacteria are thought to be the major contributors to the formation of ZVS. However, ZVS production mediated by sulfate-reducing bacteria (SRB) has rarely been reported. In this study, we isolated and cultured a typical SRB designated Oceanidesulfovibrio marinus CS1 from deep-sea cold seep sediment in the South China Sea. We show that O. marinus CS1 forms ZVS in the medium supplemented with thiosulfate. Proteomic and protein activity assays revealed that thiosulfate reductase (PhsA) and the sulfide:quinone oxidoreductase (SQR) played key roles in driving ZVS formation in O. marinus CS1. During this process, thiosulfate firstly was reduced by PhsA to form sulfide, then sulfide was oxidized by SQR to produce ZVS. The expressions of PhsA and SQR were significantly upregulated when O. marinus CS1 was cultured in a deep-sea cold seep, strongly indicating that strain CS1 might form ZVS in the deep-sea environment. Notably, homologs of phsA and sqr were widely identified from microbes living in sediments of deep-sea cold seep in the South China Sea by the metagenomic analysis. We thus propose that SRB containing phsA and sqr genes potentially contribute to the formation of ZVS in deep-sea cold seep environments.
Collapse
Affiliation(s)
- Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| | - Shichuan Xi
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Marine Geology and EnvironmentCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Xin Zhang
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and EnvironmentCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
| |
Collapse
|
34
|
Piontek J, Meeske C, Hassenrück C, Engel A, Jürgens K. Organic matter availability drives the spatial variation in the community composition and activity of Antarctic marine bacterioplankton. Environ Microbiol 2022; 24:4030-4048. [PMID: 35656758 DOI: 10.1111/1462-2920.16087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Carbon cycling by Antarctic microbial plankton is poorly understood but it plays a major role in CO2 sequestration in the Southern Ocean. We investigated the summer bacterioplankton community in the largely understudied Weddell Sea, applying Illumina amplicon sequencing, measurements of bacterial production and chemical analyses of organic matter. The results revealed that the patchy distribution of productive coastal polynyas and less productive, mostly ice-covered sites was the major driver of the spatial changes in the taxonomic composition and activity of bacterioplankton. Gradients in organic matter availability induced by phytoplankton blooms were reflected in the concentrations and composition of dissolved carbohydrates and proteins. Bacterial production at bloom stations was, on average, 2.7 times higher than at less productive sites. Abundant bloom-responsive lineages were predominately affiliated with ubiquitous marine taxa, including Polaribacter, Yoonia-Loktanella, Sulfitobacter, the SAR92 clade, and Ulvibacter, suggesting a widespread genetic potential for adaptation to sub-zero seawater temperatures. A co-occurrence network analysis showed that dominant taxa at stations with low phytoplankton productivity were highly connected, indicating beneficial interactions. Overall, our study demonstrates that heterotrophic bacterial communities along Weddell Sea ice shelves were primarily constrained by the availability of labile organic matter rather than low seawater temperature. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Judith Piontek
- Leibniz Institute for Baltic Sea Research Warnemünde, Germany
| | | | | | - Anja Engel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research Warnemünde, Germany
| |
Collapse
|
35
|
Dede B, Hansen CT, Neuholz R, Schnetger B, Kleint C, Walker S, Bach W, Amann R, Meyerdierks A. Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes. THE ISME JOURNAL 2022; 16:1479-1490. [PMID: 35082431 PMCID: PMC9123188 DOI: 10.1038/s41396-022-01195-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 11/09/2022]
Abstract
Hydrothermal plumes transport reduced chemical species and metals into the open ocean. Despite their considerable spatial scale and impact on biogeochemical cycles, niche differentiation of abundant microbial clades is poorly understood. Here, we analyzed the microbial ecology of two bathy- (Brothers volcano; BrV-cone and northwest caldera; NWC) and a mesopelagic (Macauley volcano; McV) plumes on the Kermadec intra-oceanic arc in the South Pacific Ocean. The microbial community structure, determined by a combination of 16S rRNA gene, fluorescence in situ hybridization and metagenome analysis, was similar to the communities observed in other sulfur-rich plumes. This includes a dominance of the vent characteristic SUP05 clade (up to 22% in McV and 51% in BrV). In each of the three plumes analyzed, the community was dominated by a different yet uncultivated chemoautotrophic SUP05 species, here, provisionally named, Candidatus Thioglobus vadi (McV), Candidatus Thioglobus vulcanius (BrV-cone) and Candidatus Thioglobus plumae (BrV-NWC). Statistical analyses, genomic potential and mRNA expression profiles suggested a SUP05 niche partitioning based on sulfide and iron concentration as well as water depth. A fourth SUP05 species was present at low frequency throughout investigated plume samples and may be capable of heterotrophic or mixotrophic growth. Taken together, we propose that small variations in environmental parameters and depth drive SUP05 niche partitioning in hydrothermal plumes.
Collapse
Affiliation(s)
- Bledina Dede
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Christian T Hansen
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Rene Neuholz
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Group: Quality Assurance and Cyber-Physical Systems, Bremen, Germany
| | - Bernhard Schnetger
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Charlotte Kleint
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | - Sharon Walker
- National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Seattle, WA, USA
| | - Wolfgang Bach
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Geoscience Department, University of Bremen, Bremen, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|
36
|
Microbial Activities and Selection from Surface Ocean to Subseafloor on the Namibian Continental Shelf. Appl Environ Microbiol 2022; 88:e0021622. [PMID: 35404072 PMCID: PMC9088280 DOI: 10.1128/aem.00216-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxygen minimum zones (OMZs) are hot spots for redox-sensitive nitrogen transformations fueled by sinking organic matter. In comparison, the regulating role of sulfur-cycling microbes in marine OMZs, their impact on carbon cycling in pelagic and benthic habitats, and activities below the seafloor remain poorly understood. Using 13C DNA stable isotope probing (SIP) and metatranscriptomics, we explored microbial guilds involved in sulfur and carbon cycling from the ocean surface to the subseafloor on the Namibian shelf. There was a clear separation in microbial community structure across the seawater-seafloor boundary, which coincided with a 100-fold-increased concentration of microbial biomass and unique gene expression profiles of the benthic communities. 13C-labeled 16S rRNA genes in SIP experiments revealed carbon-assimilating taxa and their distribution across the sediment-water interface. Most of the transcriptionally active taxa among water column communities that assimilated 13C from diatom exopolysaccharides (mostly Bacteroidetes, Actinobacteria, Alphaproteobacteria, and Planctomycetes) also assimilated 13C-bicarbonate under anoxic conditions in sediment incubations. Moreover, many transcriptionally active taxa from the seafloor community (mostly sulfate-reducing Deltaproteobacteria and sulfide-oxidizing Gammaproteobacteria) that assimilated 13C-bicarbonate under sediment anoxic conditions also assimilated 13C from diatom exopolysaccharides in the surface ocean and OMZ waters. Despite strong selection at the sediment-water interface, many taxa related to either planktonic or benthic communities were found to be present at low abundance and actively assimilating carbon under both sediment and water column conditions. In austral winter, mixing of shelf waters reduces stratification and suspends sediments from the seafloor into the water column, potentially spreading metabolically versatile microbes across niches. IMPORTANCE Microbial activities in oxygen minimum zones (OMZs) transform inorganic fixed nitrogen into greenhouse gases, impacting the Earth’s climate and nutrient equilibrium. Coastal OMZs are predicted to expand with global change and increase carbon sedimentation to the seafloor. However, the role of sulfur-cycling microbes in assimilating carbon in marine OMZs and related seabed habitats remain poorly understood. Using 13C DNA stable isotope probing and metatranscriptomics, we explore microbial guilds involved in sulfur and carbon cycling from ocean surface to subseafloor on the Namibian shelf. Despite strong selection and differential activities across the sediment-water interface, many active taxa were identified in both planktonic and benthic communities, either fixing inorganic carbon or assimilating organic carbon from algal biomass. Our data show that many planktonic and benthic microbes linked to the sulfur cycle can cross redox boundaries when mixing of the shelf waters reduces stratification and suspends seafloor sediment particles into the water column.
Collapse
|
37
|
Hahn CR, Farag IF, Murphy CL, Podar M, Elshahed MS, Youssef NH. Microbial Diversity and Sulfur Cycling in an Early Earth Analogue: From Ancient Novelty to Modern Commonality. mBio 2022; 13:e0001622. [PMID: 35258328 PMCID: PMC9040765 DOI: 10.1128/mbio.00016-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 01/19/2023] Open
Abstract
Life emerged and diversified in the absence of molecular oxygen. The prevailing anoxia and unique sulfur chemistry in the Paleo-, Meso-, and Neoarchean and early Proterozoic eras may have supported microbial communities that differ from those currently thriving on the earth's surface. Zodletone spring in southwestern Oklahoma represents a unique habitat where spatial sampling could substitute for geological eras namely, from the anoxic, surficial light-exposed sediments simulating a preoxygenated earth to overlaid water column where air exposure simulates oxygen intrusion during the Neoproterozoic era. We document a remarkably diverse microbial community in the anoxic spring sediments, with 340/516 (65.89%) of genomes recovered in a metagenomic survey belonging to 200 bacterial and archaeal families that were either previously undescribed or that exhibit an extremely rare distribution on the current earth. Such diversity is underpinned by the widespread occurrence of sulfite, thiosulfate, tetrathionate, and sulfur reduction and the paucity of sulfate reduction machineries in these taxa. Hence, these processes greatly expand lineages mediating reductive sulfur-cycling processes in the tree of life. An analysis of the overlaying oxygenated water community demonstrated the development of a significantly less diverse community dominated by well-characterized lineages and a prevalence of oxidative sulfur-cycling processes. Such a transition from ancient novelty to modern commonality underscores the profound impact of the great oxygenation event on the earth's surficial anoxic community. It also suggests that novel and rare lineages encountered in current anaerobic habitats could represent taxa that once thrived in an anoxic earth but have failed to adapt to earth's progressive oxygenation. IMPORTANCE Life on earth evolved in an anoxic setting; however, the identity and fate of microorganisms that thrived in a preoxygenated earth are poorly understood. In Zodletone spring, the prevailing geochemical conditions are remarkably similar to conditions prevailing in surficial earth prior to oxygen buildup in the atmosphere. We identify hundreds of previously unknown microbial lineages in the spring and demonstrate that these lineages possess the metabolic machinery to mediate a wide range of reductive sulfur processes, with the capacity to respire sulfite, thiosulfate, sulfur, and tetrathionate, rather than sulfate, which is a reflection of the differences in sulfur-cycling chemistry in ancient versus modern times. Collectively, such patterns strongly suggest that microbial diversity and sulfur-cycling processes in a preoxygenated earth were drastically different from the currently observed patterns and that the Great Oxygenation Event has precipitated the near extinction of a wide range of oxygen-sensitive lineages and significantly altered the microbial reductive sulfur-cycling community on earth.
Collapse
Affiliation(s)
- C. Ryan Hahn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ibrahim F. Farag
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chelsea L. Murphy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mircea Podar
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
38
|
Henkel JV, Schulz-Vogt HN, Dellwig O, Pollehne F, Schott T, Meeske C, Beier S, Jürgens K. Biological manganese-dependent sulfide oxidation impacts elemental gradients in redox-stratified systems: indications from the Black Sea water column. THE ISME JOURNAL 2022; 16:1523-1533. [PMID: 35124702 PMCID: PMC9122950 DOI: 10.1038/s41396-022-01200-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
The reduction of manganese oxide with sulfide in aquatic redox-stratified systems was previously considered to be mainly chemical, but recent isolation of the Black Sea isolate Candidatus Sulfurimonas marisnigri strain SoZ1 suggests an important role for biological catalyzation. Here we provide evidence from laboratory experiments, field data, and modeling that the latter process has a strong impact on redox zonation in the Black Sea. High relative abundances of Sulfurimonas spp. across the redoxcline in the central western gyre of the Black Sea coincided with the high-level expression of both the sulfide:quinone oxidoreductase gene (sqr, up to 93% expressed by Sulfurimonas spp.) and other sulfur oxidation genes. The cell-specific rate of manganese-coupled sulfide oxidation by Ca. S. marisnigri SoZ1 determined experimentally was combined with the in situ abundance of Sulfurimonas spp. in a one-dimensional numerical model to calculate the vertical sulfide distribution. Abiotic sulfide oxidation was too slow to counterbalance the sulfide flux from euxinic water. We conclude that microbially catalyzed Mn-dependent sulfide oxidation influences the element cycles of Mn, S, C, and N and therefore the prevalence of other functional groups of prokaryotes (e.g., anammox bacteria) in a sulfide-free, anoxic redox zone.
Collapse
Affiliation(s)
- J V Henkel
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, Rostock, 18119, Germany.
| | - H N Schulz-Vogt
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, Rostock, 18119, Germany
| | - O Dellwig
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, Rostock, 18119, Germany
| | - F Pollehne
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, Rostock, 18119, Germany
| | - T Schott
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, Rostock, 18119, Germany
| | - C Meeske
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, Rostock, 18119, Germany
| | - S Beier
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, Rostock, 18119, Germany
| | - K Jürgens
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, Rostock, 18119, Germany
| |
Collapse
|
39
|
Bidaud CC, Monteil CL, Menguy N, Busigny V, Jézéquel D, Viollier É, Travert C, Skouri-Panet F, Benzerara K, Lefevre CT, Duprat É. Biogeochemical Niche of Magnetotactic Cocci Capable of Sequestering Large Polyphosphate Inclusions in the Anoxic Layer of the Lake Pavin Water Column. Front Microbiol 2022; 12:789134. [PMID: 35082768 PMCID: PMC8786505 DOI: 10.3389/fmicb.2021.789134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are microorganisms thriving mostly at oxic–anoxic boundaries of aquatic habitats. MTB are efficient in biomineralising or sequestering diverse elements intracellularly, which makes them potentially important actors in biogeochemical cycles. Lake Pavin is a unique aqueous system populated by a wide diversity of MTB with two communities harbouring the capability to sequester not only iron under the form of magnetosomes but also phosphorus and magnesium under the form of polyphosphates, or calcium carbonates, respectively. MTB thrive in the water column of Lake Pavin over a few metres along strong redox and chemical gradients representing a series of different microenvironments. In this study, we investigate the relative abundance and the vertical stratification of the diverse populations of MTB in relation to environmental parameters, by using a new method coupling a precise sampling for geochemical analyses, MTB morphotype description, and in situ measurement of the physicochemical parameters. We assess the ultrastructure of MTB as a function of depth using light and electron microscopy. We evidence the biogeochemical niche of magnetotactic cocci, capable of sequestering large PolyP inclusions below the oxic–anoxic transition zone. Our results suggest a tight link between the S and P metabolisms of these bacteria and pave the way to better understand the implication of MTB for the P cycle in stratified environmental conditions.
Collapse
Affiliation(s)
- Cécile C Bidaud
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France.,Aix-Marseille University, CNRS, CEA, UMR 7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France.,Université de Paris, Centre de Recherches Interdisciplinaires (CRI), Paris, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR 7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Vincent Busigny
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Didier Jézéquel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France.,INRAE & Université Savoie Mont Blanc, UMR CARRTEL, Thonon-les-Bains, France
| | - Éric Viollier
- LSCE, CEA/CNRS/UVSQ/IPSL, Université Paris Saclay & Université de Paris France, Gif-sur-Yvette Cedex, France
| | - Cynthia Travert
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Fériel Skouri-Panet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR 7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Élodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| |
Collapse
|
40
|
Abstract
The SUP05 clade of gammaproteobacteria (Thioglobaceae) comprises both primary producers and primary consumers of organic carbon in the oceans. Host-associated autotrophs are a principal source of carbon and other nutrients for deep-sea eukaryotes at hydrothermal vents, and their free-living relatives are a primary source of organic matter in seawater at vents and in marine oxygen minimum zones. Similar to other abundant marine heterotrophs, such as SAR11 and Roseobacter, heterotrophic Thioglobaceae use the dilute pool of osmolytes produced by phytoplankton for growth, including methylated amines and sulfonates. Heterotrophic members are common throughout the ocean, and autotrophic members are abundant at hydrothermal vents and in anoxic waters; combined, they can account for more than 50% of the total bacterial community. Studies of both cultured and uncultured representatives from this diverse family are providing novel insights into the shifting biogeochemical roles of autotrophic and heterotrophic bacteria that cross oxic-anoxic boundary layers in the ocean.
Collapse
Affiliation(s)
- Robert M Morris
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA;
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
41
|
Guo R, Ma X, Zhang J, Liu C, Thu CA, Win TN, Aung NL, Win HS, Naing S, Li H, Zhou F, Wang P. Microbial community structures and important taxa across oxygen gradients in the Andaman Sea and eastern Bay of Bengal epipelagic waters. Front Microbiol 2022; 13:1041521. [PMID: 36406446 PMCID: PMC9667114 DOI: 10.3389/fmicb.2022.1041521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/29/2022] [Indexed: 05/01/2023] Open
Abstract
In oceanic oxygen minimum zones (OMZs), the abundances of aerobic organisms significantly decrease and energy shifts from higher trophic levels to microorganisms, while the microbial communities become critical drivers of marine biogeochemical cycling activities. However, little is known of the microbial ecology of the Andaman Sea and eastern Bay of Bengal (BoB) OMZs. In the present study, a total of 131 samples which from the Andaman Sea and eastern BoB epipelagic waters were analyzed. The microbial community distribution patterns across oxygen gradients, including oxygenic zones (OZs, dissolved oxygen [DO] ≥ 2 mg/L), oxygen limited zones (OLZs, 0.7 mg/L < DO < 2 mg/L), and OMZs (DO ≤ 0.7 mg/L), were investigated. Mantel tests and Spearman's correlation analysis revealed that DO was the most important driver of microbial community structures among several environmental factors. Microbial diversity, richness, and evenness were highest in the OLZs and lowest in the OZs. The microbial community compositions of OZ and OMZ waters were significantly different. Random forest analysis revealed 24 bioindicator taxa that differentiated OZ, OLZ, and OMZ water communities. These bioindicator taxa included Burkholderiaceae, HOC36, SAR11 Clade IV, Thioglobaceae, Nitrospinaceae, SAR86, and UBA10353. Further, co-occurrence network analysis revealed that SAR202, AEGEAN-169, UBA10353, SAR406, and Rhodobacteraceae were keystone taxa among the entire interaction network of the microbial communities. Functional prediction further indicated that the relative abundances of microbial populations involved in nitrogen and sulfur cycling were higher in OMZs. Several microbial taxa, including the Thioglobaceae, Nitrospinaceae, SAR202, SAR406, WPS-2, UBA10353, and Woeseiaceae, may be involved in nitrogen and/or sulfur cycling, while also contributing to oxygen consumption in these waters. This study consequently provides new insights into the microbial community structures and potentially important taxa that contribute to oxygen consumption in the Andaman Sea and eastern BoB OMZ.
Collapse
Affiliation(s)
- Ruoyu Guo
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
| | - Xiao Ma
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Chenggang Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Chit Aung Thu
- Research and Development Section, Department of Fisheries, Naypyidaw, Myanmar
| | - Tun Naing Win
- Department of Meteorology and Hydrology, Ministry of Transport and Communication, Naypyidaw, Myanmar
| | - Nyan Lin Aung
- Environmental Conservation Department, Ministry of Natural Resources and Environmental Conservation, Naypyidaw, Myanmar
| | - Hlaing Swe Win
- National Analytical Laboratory, Department of Research in Innovation, Ministry of Education, Naypyidaw, Myanmar
| | - Sanda Naing
- Port and Harbour Engineering Department, Myanmar Maritime University, Thanlyin, Myanmar
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Feng Zhou
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- *Correspondence: Feng Zhou,
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
- Pengbin Wang,
| |
Collapse
|
42
|
Orita R, Yoshida K, Terazono H, Nagano Y, Goto M, Kimura K, Kobayashi G. Weekly Observations of Estuarine Microbial Assemblages during Summer in the Inner Part of Ariake Bay, Japan; Microbial Water-sediment Coupling in Turbid Shallow Waters. Microbes Environ 2022; 37. [PMID: 35676048 PMCID: PMC9530734 DOI: 10.1264/jsme2.me22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estuarine microbial assemblages are altered by a number of environmental factors, and knowledge of these changes is essential for understanding the functions of microbes in estuarine ecosystems. The aims of the present study were to examine the relationship between microbial assemblages in the water column and sediment surface, and to identify the environmental factors that influence the short-term dynamics of microbial assemblages in these two zones in summer in the inner part of Ariake Bay. The microbial assemblage of each sample consisted of a mean of 71.1% operational taxonomic units (OTUs), which commonly occurred in the water column and sediment surface, although their relative composition markedly differed between the two zones. In the water column, spatiotemporal changes in microbial assemblages correlated with several environmental factors, such as the nitrogen content in suspended particles, turbidity, and salinity. On the other hand, temporal changes in the sediment’s microbial assemblages were governed by a single environmental factor, namely, the oxygen reduction potential. These results suggest that the composition of microbial assemblages in the water column and sediment surface differed even in highly turbid brackish waters with high sediment resuspension, and the environmental factors contributing to the change in the assemblage composition also differed between the water column and sediment.
Collapse
Affiliation(s)
- Ryo Orita
- Faculty of Agriculture, Saga University
| | | | | | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University
| | | | | | | |
Collapse
|
43
|
Using Oxidative Electrodes to Enrich Novel Members in the Desulfobulbaceae Family from Intertidal Sediments. Microorganisms 2021; 9:microorganisms9112329. [PMID: 34835454 PMCID: PMC8618199 DOI: 10.3390/microorganisms9112329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Members in the family of Desulfobulbaceae may be influential in various anaerobic microbial communities, including those in anoxic aquatic sediments and water columns, and within wastewater treatment facilities and bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs). However, the diversity and roles of the Desulfobulbaceae in these communities have received little attention, and large portions of this family remain uncultured. Here we expand on findings from an earlier study (Li, Reimers, and Alleau, 2020) to more fully characterize Desulfobulbaceae that became prevalent in biofilms on oxidative electrodes of bioelectrochemical reactors. After incubations, DNA extraction, microbial community analyses, and microscopic examination, we found that a group of uncultured Desulfobulbaceae were greatly enriched on electrode surfaces. These Desulfobulbaceae appeared to form filaments with morphological features ascribed to cable bacteria, but the majority were taxonomically distinct from recognized cable bacteria genera. Thus, the present study provides new information about a group of Desulfobulbaceae that can exhibit filamentous morphologies and respire on the oxidative electrodes. While the phylogeny of cable bacteria is still being defined and updated, further enriching these members can contribute to the overall understanding of cable bacteria and may also lead to identification of successful isolation strategies.
Collapse
|
44
|
Long AM, Jurgensen SK, Petchel AR, Savoie ER, Brum JR. Microbial Ecology of Oxygen Minimum Zones Amidst Ocean Deoxygenation. Front Microbiol 2021; 12:748961. [PMID: 34777296 PMCID: PMC8578717 DOI: 10.3389/fmicb.2021.748961] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/06/2021] [Indexed: 01/05/2023] Open
Abstract
Oxygen minimum zones (OMZs) have substantial effects on the global ecology and biogeochemical processes of marine microbes. However, the diversity and activity of OMZ microbes and their trophic interactions are only starting to be documented, especially in regard to the potential roles of viruses and protists. OMZs have expanded over the past 60 years and are predicted to expand due to anthropogenic climate change, furthering the need to understand these regions. This review summarizes the current knowledge of OMZ formation, the biotic and abiotic factors involved in OMZ expansion, and the microbial ecology of OMZs, emphasizing the importance of bacteria, archaea, viruses, and protists. We describe the recognized roles of OMZ microbes in carbon, nitrogen, and sulfur cycling, the potential of viruses in altering host metabolisms involved in these cycles, and the control of microbial populations by grazers and viruses. Further, we highlight the microbial community composition and roles of these organisms in oxic and anoxic depths within the water column and how these differences potentially inform how microbial communities will respond to deoxygenation. Additionally, the current literature on the alteration of microbial communities by other key climate change parameters such as temperature and pH are considered regarding how OMZ microbes might respond to these pressures. Finally, we discuss what knowledge gaps are present in understanding OMZ microbial communities and propose directions that will begin to close these gaps.
Collapse
Affiliation(s)
- Andrew M. Long
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | | | | | | | - Jennifer R. Brum
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
45
|
Phylogenomics of SAR116 Clade Reveals Two Subclades with Different Evolutionary Trajectories and an Important Role in the Ocean Sulfur Cycle. mSystems 2021; 6:e0094421. [PMID: 34609172 PMCID: PMC8547437 DOI: 10.1128/msystems.00944-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SAR116 clade within the class Alphaproteobacteria represents one of the most abundant groups of heterotrophic bacteria inhabiting the surface of the ocean. The small number of cultured representatives of SAR116 (only two to date) is a major bottleneck that has prevented an in-depth study at the genomic level to understand the relationship between genome diversity and its role in the marine environment. In this study, we use all publicly available genomes to provide a genomic overview of the phylogeny, metabolism, and biogeography within the SAR116 clade. This increased genomic diversity has led to the discovery of two subclades that, despite coexisting in the same environment, display different properties in their genomic makeup. One represents a novel subclade for which no pure cultures have been isolated and is composed mainly of single-amplified genomes (SAGs). Genomes within this subclade showed convergent evolutionary trajectories with more streamlined features, such as low GC content (ca. 30%), short intergenic spacers (<22 bp), and strong purifying selection (low ratio of nonsynonymous to synonymous polymorphisms [dN/dS]). Besides, they were more abundant in metagenomic databases recruiting at the deep chlorophyll maximum. Less abundant and restricted to the upper photic layers of the global ocean, the other subclade of SAR116, enriched in metagenome-assembled genomes (MAGs), included the only two pure cultures. Genomic analysis suggested that both clades have a significant role in the sulfur cycle with differences in the way both clades can metabolize dimethylsulfoniopropionate (DMSP). IMPORTANCE The SAR116 clade of Alphaproteobacteria is a ubiquitous group of heterotrophic bacteria inhabiting the surface of the ocean, but the information about their ecology and population genomic diversity is scarce due to the difficulty of getting pure culture isolates. The combination of single-cell genomics and metagenomics has become an alternative approach to study these kinds of microbes. Our results expand the understanding of the genomic diversity, distribution, and lifestyles within this clade and provide evidence of different evolutionary trajectories in the genomic makeup of the two subclades that could serve to illustrate how evolutionary pressure can drive different adaptations to the same environment. Therefore, the SAR116 clade represents an ideal model organism for the study of the evolutionary streamlining of genomes in microbes that have relatively close relatedness to each other.
Collapse
|
46
|
Savoie ER, Lanclos VC, Henson MW, Cheng C, Getz EW, Barnes SJ, LaRowe DE, Rappé MS, Thrash JC. Ecophysiology of the Cosmopolitan OM252 Bacterioplankton ( Gammaproteobacteria). mSystems 2021; 6:e0027621. [PMID: 34184914 PMCID: PMC8269220 DOI: 10.1128/msystems.00276-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Among the thousands of species that comprise marine bacterioplankton communities, most remain functionally obscure. One key cosmopolitan group in this understudied majority is the OM252 clade of Gammaproteobacteria. Although frequently found in sequence data and even previously cultured, the diversity, metabolic potential, physiology, and distribution of this clade has not been thoroughly investigated. Here, we examined these features of OM252 bacterioplankton using a newly isolated strain and genomes from publicly available databases. We demonstrated that this group constitutes a globally distributed novel genus ("Candidatus Halomarinus"), sister to Litoricola, comprising two subclades and multiple distinct species. OM252 organisms have small genomes (median, 2.21 Mbp) and are predicted obligate aerobes capable of alternating between chemoorganoheterotrophic and chemolithotrophic growth using reduced sulfur compounds as electron donors. Subclade I genomes encode genes for the Calvin-Benson-Bassham cycle for carbon fixation. One representative strain of subclade I, LSUCC0096, had extensive halotolerance and a mesophilic temperature range for growth, with a maximum rate of 0.36 doublings/h at 35°C. Cells were curved rod/spirillum-shaped, ∼1.5 by 0.2 μm. Growth yield on thiosulfate as the sole electron donor under autotrophic conditions was roughly one-third that of heterotrophic growth, even though calculations indicated similar Gibbs energies for both catabolisms. These phenotypic data show that some "Ca. Halomarinus" organisms can switch between serving as carbon sources or sinks and indicate the likely anabolic cost of lithoautotrophic growth. Our results thus provide new hypotheses about the roles of these organisms in global biogeochemical cycling of carbon and sulfur. IMPORTANCE Marine microbial communities are teeming with understudied taxa due to the sheer numbers of species in any given sample of seawater. One group, the OM252 clade of Gammaproteobacteria, has been identified in gene surveys from myriad locations, and one isolated organism has even been genome sequenced (HIMB30). However, further study of these organisms has not occurred. Using another isolated representative (strain LSUCC0096) and publicly available genome sequences from metagenomic and single-cell genomic data sets, we examined the diversity within the OM252 clade and the distribution of these taxa in the world's oceans, reconstructed the predicted metabolism of the group, and quantified growth dynamics in LSUCC0096. Our results generate new knowledge about the previously enigmatic OM252 clade and point toward the importance of facultative chemolithoautotrophy for supporting some clades of ostensibly "heterotrophic" taxa.
Collapse
Affiliation(s)
- Emily R. Savoie
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - V. Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael W. Henson
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Chuankai Cheng
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Eric W. Getz
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Shelby J. Barnes
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Douglas E. LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael S. Rappé
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Kāneʻohe, Hawaii, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
47
|
Hallsworth JE, Mancinelli RL, Conley CA, Dallas TD, Rinaldi T, Davila AF, Benison KC, Rapoport A, Cavalazzi B, Selbmann L, Changela H, Westall F, Yakimov MM, Amils R, Madigan MT. Astrobiology of life on Earth. Environ Microbiol 2021; 23:3335-3344. [PMID: 33817931 DOI: 10.1111/1462-2920.15499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue 'Ecophysiology of Extremophiles'. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.
Collapse
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Rocco L Mancinelli
- Bay Area Environmental Research Institute, NASA Ames Research Center, Mountain View, CA, 94035, USA
| | | | - Tiffany D Dallas
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Teresa Rinaldi
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
| | | | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, 26506-6300, USA
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, Riga, LV-1004, Latvia
| | - Barbara Cavalazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.,Italian Antarctic National Museum (MNA), Mycological Section, Genoa, 16128, Italy
| | - Hitesh Changela
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Department of Earth and Planetary Science, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Frances Westall
- CNRS, Ctr Biophys Mol UPR 4301, Rue Charles Sadron, CS 80054, Orleans, F-45071, France
| | - Michail M Yakimov
- Institute of Marine Biological Resources and Biotechnology, IRBIM-CNR, Messina, 98122, Italy
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CBMSO, CSICUAM), Cantoblanco, Madrid, 28049, Spain.,Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
48
|
Cabello-Yeves PJ, Callieri C, Picazo A, Mehrshad M, Haro-Moreno JM, Roda-Garcia JJ, Dzhembekova N, Slabakova V, Slabakova N, Moncheva S, Rodriguez-Valera F. The microbiome of the Black Sea water column analyzed by shotgun and genome centric metagenomics. ENVIRONMENTAL MICROBIOME 2021; 16:5. [PMID: 33902743 PMCID: PMC8067304 DOI: 10.1186/s40793-021-00374-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/18/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND The Black Sea is the largest brackish water body in the world, although it is connected to the Mediterranean Sea and presents an upper water layer similar to some regions of the former, albeit with lower salinity and temperature. Despite its well-known hydrology and physicochemical features, this enormous water mass remains poorly studied at the microbial genomics level. RESULTS We have sampled its different water masses and analyzed the microbiome by shotgun and genome-resolved metagenomics, generating a large number of metagenome-assembled genomes (MAGs) from them. We found various similarities with previously described Black Sea metagenomic datasets, that show remarkable stability in its microbiome. Our datasets are also comparable to other marine anoxic water columns like the Cariaco Basin. The oxic zone resembles to standard marine (e.g. Mediterranean) photic zones, with Cyanobacteria (Synechococcus but a conspicuously absent Prochlorococcus), and photoheterotrophs domination (largely again with marine relatives). The chemocline presents very different characteristics from the oxic surface with many examples of chemolithotrophic metabolism (Thioglobus) and facultatively anaerobic microbes. The euxinic anaerobic zone presents, as expected, features in common with the bottom of meromictic lakes with a massive dominance of sulfate reduction as energy-generating metabolism, a few (but detectable) methanogenesis marker genes, and a large number of "dark matter" streamlined genomes of largely unpredictable ecology. CONCLUSIONS The Black Sea oxic zone presents many similarities to the global ocean while the redoxcline and euxinic water masses have similarities to other similar aquatic environments of marine (Cariaco Basin or other Black Sea regions) or freshwater (meromictic monimolimnion strata) origin. The MAG collection represents very well the different types of metabolisms expected in this kind of environment. We are adding critical information about this unique and important ecosystem and its microbiome.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain
| | - Cristiana Callieri
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75651, Uppsala, Sweden
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain
| | - Nina Dzhembekova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Violeta Slabakova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Nataliya Slabakova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Snejana Moncheva
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
| |
Collapse
|
49
|
A source of isotopically light organic carbon in a low-pH anoxic marine zone. Nat Commun 2021; 12:1604. [PMID: 33707435 PMCID: PMC7952585 DOI: 10.1038/s41467-021-21871-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Geochemical and stable isotope measurements in the anoxic marine zone (AMZ) off northern Chile during periods of contrasting oceanographic conditions indicate that microbial processes mediating sulfur and nitrogen cycling exert a significant control on the carbonate chemistry (pH, AT, DIC and pCO2) of this region. Here we show that in 2015, a large isotopic fractionation between DIC and POC, a DIC and N deficit in AMZ waters indicate the predominance of in situ dark carbon fixation by sulfur-driven autotrophic denitrification in addition to anammox. In 2018, however, the fractionation between DIC and POC was significantly lower, while the total alkalinity increased in the low-pH AMZ core, suggesting a predominance of heterotrophic processes. An isotope mass-balance model demonstrates that variations in the rates of sulfur- and nitrogen-mediated carbon fixation in AMZ waters contribute ~7–35% of the POC exported to deeper waters. Thus, dark carbon fixation should be included in assessments of future changes in carbon cycling and carbonate chemistry due to AMZ expansion. Anoxic marine zones are expanding and intensifying with climate change. Here the authors show that microbial dark carbon fixation influences the carbonate system and the stable isotope composition in waters off Chile, contributing up to 35% of the organic carbon reaching the mesopelagic region.
Collapse
|
50
|
Vigneron A, Cruaud P, Culley AI, Couture RM, Lovejoy C, Vincent WF. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem. MICROBIOME 2021; 9:46. [PMID: 33593438 PMCID: PMC7887784 DOI: 10.1186/s40168-021-00999-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND The sulfur cycle encompasses a series of complex aerobic and anaerobic transformations of S-containing molecules and plays a fundamental role in cellular and ecosystem-level processes, influencing biological carbon transfers and other biogeochemical cycles. Despite their importance, the microbial communities and metabolic pathways involved in these transformations remain poorly understood, especially for inorganic sulfur compounds of intermediate oxidation states (thiosulfate, tetrathionate, sulfite, polysulfides). Isolated and highly stratified, the extreme geochemical and environmental features of meromictic ice-capped Lake A, in the Canadian High Arctic, provided an ideal model ecosystem to resolve the distribution and metabolism of aquatic sulfur cycling microorganisms along redox and salinity gradients. RESULTS Applying complementary molecular approaches, we identified sharply contrasting microbial communities and metabolic potentials among the markedly distinct water layers of Lake A, with similarities to diverse fresh, brackish and saline water microbiomes. Sulfur cycling genes were abundant at all depths and covaried with bacterial abundance. Genes for oxidative processes occurred in samples from the oxic freshwater layers, reductive reactions in the anoxic and sulfidic bottom waters and genes for both transformations at the chemocline. Up to 154 different genomic bins with potential for sulfur transformation were recovered, revealing a panoply of taxonomically diverse microorganisms with complex metabolic pathways for biogeochemical sulfur reactions. Genes for the utilization of sulfur cycle intermediates were widespread throughout the water column, co-occurring with sulfate reduction or sulfide oxidation pathways. The genomic bin composition suggested that in addition to chemical oxidation, these intermediate sulfur compounds were likely produced by the predominant sulfur chemo- and photo-oxidisers at the chemocline and by diverse microbial degraders of organic sulfur molecules. CONCLUSIONS The Lake A microbial ecosystem provided an ideal opportunity to identify new features of the biogeochemical sulfur cycle. Our detailed metagenomic analyses across the broad physico-chemical gradients of this permanently stratified lake extend the known diversity of microorganisms involved in sulfur transformations over a wide range of environmental conditions. The results indicate that sulfur cycle intermediates and organic sulfur molecules are major sources of electron donors and acceptors for aquatic and sedimentary microbial communities in association with the classical sulfur cycle. Video abstract.
Collapse
Affiliation(s)
- Adrien Vigneron
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
| | - Alexander I Culley
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Raoul-Marie Couture
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Département de Chimie, Université Laval, Québec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Québec Océan, Université Laval, Québec, QC, Canada.
| | - Warwick F Vincent
- Département de Biologie, Université Laval, Québec, QC, Canada
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
| |
Collapse
|