1
|
Kiselev A, Park S. Immune niches for hair follicle development and homeostasis. Front Physiol 2024; 15:1397067. [PMID: 38711955 PMCID: PMC11070776 DOI: 10.3389/fphys.2024.1397067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The hair follicle is a dynamic mini-organ that has specialized cycles and architectures with diverse cell types to form hairs. Previous studies for several decades have investigated morphogenesis and signaling pathways during embryonic development and adult hair cycles in both mouse and human skin. In particular, hair follicle stem cells and mesenchymal niches received major attention as key players, and their roles and interactions were heavily revealed. Although resident and circulating immune cells affect cellular function and interactions in the skin, research on immune cells has mainly received attention on diseases rather than development or homeostasis. Recently, many studies have suggested the functional roles of diverse immune cells as a niche for hair follicles. Here, we will review recent findings about immune niches for hair follicles and provide insight into mechanisms of hair growth and diseases.
Collapse
Affiliation(s)
- Artem Kiselev
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Karpenko DV. Immune Privileges as a Result of Mutual Regulation of Immune and Stem Systems. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1818-1831. [PMID: 38105201 DOI: 10.1134/s0006297923110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023]
Abstract
Immune privileges of cancer stem cells is a well-known and widely studied problem, as presence of such cells in tumors is associated with refractoriness, recurrence, and metastasis. Accumulating evidence also suggests presence of immune privileges in non-pathological stem cells in addition to their other defense mechanisms against damaging factors. This similarity between pathological and normal stem cells raises the question of why stem cells have such a potentially dangerous property. Regulation of vital processes of autoimmunity control and regeneration realized through interactions between immune cells, stem cells, and their microenvironment are reviewed in this work as causes of formation of the stem cell immune privilege. Deep mutual integration between regulations of stem and immune cells is noted. Considering diversity and complexity of mutual regulation of stem cells, their microenvironment, and immune system, I suggest the term "stem system".
Collapse
Affiliation(s)
- Dmitriy V Karpenko
- Laboratory of Epigenetic Regulation of Hematopoiesis, National Medical Research Center for Hematology, Moscow, 125167, Russia.
| |
Collapse
|
3
|
Clinical Translation of Microbiome Research in Alopecia Areata: A New Perspective? COSMETICS 2022. [DOI: 10.3390/cosmetics9030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The continuous research advances in the microbiome field is changing clinicians’ points of view about the involvement of the microbiome in human health and disease, including autoimmune diseases such as alopecia areata (AA). Both gut and cutaneous dysbiosis have been considered to play roles in alopecia areata. A new approach is currently possible owing also to the use of omic techniques for studying the role of the microbiome in the disease by the deep understanding of microorganisms involved in the dysbiosis as well as of the pathways involved. These findings suggest the possibility to adopt a topical approach using either cosmetics or medical devices, to modulate or control, for example, the growth of overexpressed species using specific bacteriocins or postbiotics or with pH control. This will favour at the same time the growth of beneficial bacteria which, in turn, can impact positively both the structure of the scalp ecosystem on the host’s response to internal and external offenders. This approach, together with a “systemic” one, via oral supplementation, diet, or faecal transplantation, makes a reliable translation of microbiome research in clinical practice and should be taken into consideration every time alopecia areata is considered by a clinician.
Collapse
|
4
|
Connell SJ, Jabbari A. The current state of knowledge of the immune ecosystem in alopecia areata. Autoimmun Rev 2022; 21:103061. [PMID: 35151885 PMCID: PMC9018517 DOI: 10.1016/j.autrev.2022.103061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Alopecia areata (AA) is an autoimmune disease that affects approximately 2% of the general population. Patients with AA most commonly present with one or more patches of hair loss on the scalp in defined circular areas. A fraction of patients progress to more severe forms of the disease, in some cases with involvement of all body surfaces. The healthy anagen stage hair follicle is considered an immune privileged site, described as an environment that suppresses inflammatory immune responses. However, in AA, this immune privileged state collapses and marks the hair follicle as a target for the immune system, resulting in peri- and intrafollicular infiltration by lymphocytes. The complexity of the inflammatory ecosystem of the immune response to the hair follicle, and the relationships between the cellular and soluble participants, in AA remains incompletely understood. Many studies have demonstrated the presence of various immune cells around diseased hair follicles; however, often little is known about their respective contributions to AA pathogenesis. Furthering our understanding of the mechanisms of disease in AA is essential for the novel identification of targeted therapeutics that are efficacious and have few unintended effects.
Collapse
|
5
|
Park JM, Jun MS, Kim JA, Mali NM, Hsi TC, Cho A, Kim JC, Kim JY, Seo I, Kim J, Kim M, Oh JW. Restoration of Immune Privilege in Human Dermal Papillae Controlling Epithelial-Mesenchymal Interactions in Hair Formation. Tissue Eng Regen Med 2021; 19:105-116. [PMID: 34626334 DOI: 10.1007/s13770-021-00392-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hair follicles are among a handful of organs that exhibit immune privilege. Dysfunction of the hair follicle immune system underlies the development of inflammatory diseases, such as alopecia areata. METHODS Quantitative reverse transcription PCR and immunostaining was used to confirm the expression of major histocompatibility complex class I in human dermal papilla cells. Through transcriptomic analyses of human keratinocyte stem cells, major histocompatibility complex class I was identified as differentially expressed genes. Organ culture and patch assay were performed to assess the ability of WNT3a conditioned media to rescue immune privilege. Lastly, CD8+ T cells were detected near the hair bulb in alopecia areata patients through immunohistochemistry. RESULTS Inflammatory factors such as tumor necrosis factor alpha and interferon gamma were verified to induce the expression of major histocompatibility complex class I proteins in dermal papilla cells. Additionally, loss of immune privilege of hair follicles was rescued following treatment with conditioned media from outer root sheath cells. Transcriptomic analyses found 58 up-regulated genes and 183 down-regulated genes related in MHC class I+ cells. Using newborn hair patch assay, we demonstrated that WNT3a conditioned media with epidermal growth factor can restore hair growth. In alopecia areata patients, CD8+ T cells were increased during the transition from mid-anagen to late catagen. CONCLUSION Identification of mechanisms governing epithelial and mesenchymal interactions of the hair follicle facilitates an improved understanding of the regulation of hair follicle immune privilege.
Collapse
Affiliation(s)
- Jung Min Park
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea.,Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea.,Immune Square Inc., Daegu, Korea
| | - Mee Sook Jun
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Jung-A Kim
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Nanda Maya Mali
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Tsai-Ching Hsi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Areum Cho
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jung Chul Kim
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Jun Young Kim
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Incheol Seo
- Department of Microbiology, Dongguk University College of Medicine, Gyeongju, Korea
| | - Jungmin Kim
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Moonkyu Kim
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea. .,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea.
| | - Ji Won Oh
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea. .,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea. .,Immune Square Inc., Daegu, Korea. .,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea.
| |
Collapse
|
6
|
Abstract
Alopecia areata is a condition that affects hair follicles and leads to hair loss ranging from small well-defined patches to complete loss of all body hair. Despite its high incidence, the pathobiology is not fully understood, and no single concept could be universally accepted. Alopecia areata is mostly considered to be an autoimmune disease, in which the collapse of hair follicle immune privilege plays a key role. Higher incidence rate in the female population and increased overall risk of other autoimmune disorders militate in favor of autoimmune hypothesis. Antibodies against multiple components of hair follicles almost exclusively attack in anagen phase, where melanogenesis takes place. It suggests involvement of melanogenesis-associated autoantigens as a target epitope. Some investigators believed that alopecia areata is not a truly autoimmune disease but is only ‘consistent with’ autoimmune mechanisms. High frequency of a positive family history up to 42% may reflects the contribution of heredity factors. In addition, no specific target autoantigen has been identified so far, and autoantibodies to hair follicle-associated antigens are detectable in normal individuals.
Collapse
|
7
|
Bertolini M, McElwee K, Gilhar A, Bulfone‐Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29:703-725. [DOI: 10.1111/exd.14155] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kevin McElwee
- Monasterium Laboratory Münster Germany
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver British Columbia Canada
| | - Amos Gilhar
- Laboratory for Skin Research Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Silvia Bulfone‐Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
| | - Ralf Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
8
|
Rahmani W, Sinha S, Biernaskie J. Immune modulation of hair follicle regeneration. NPJ Regen Med 2020; 5:9. [PMID: 32411394 PMCID: PMC7214459 DOI: 10.1038/s41536-020-0095-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
The mammalian hair follicle undergoes repeated bouts of regeneration orchestrated by a variety of hair follicle stem cells. The last decade has witnessed the emergence of the immune niche as a key regulator of stem cell behavior and hair follicle regeneration. Hair follicles chemotactically attract macrophages and T cells so that they are in range to regulate epithelial stem cell quiescence, proliferation and differentiation during physiologic and injured states. Disruption of this dynamic relationship leads to clinically significant forms of hair loss including scarring and non-scarring alopecias. In this review, we summarize key concepts behind immune-mediated hair regeneration, highlight gaps in the literature and discuss the therapeutic potential of exploiting this relationship for treating various immune-mediated alopecias.
Collapse
Affiliation(s)
- Waleed Rahmani
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4 Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
9
|
Integral Roles of Specific Proteoglycans in Hair Growth and Hair Loss: Mechanisms behind the Bioactivity of Proteoglycan Replacement Therapy with Nourkrin® with Marilex® in Pattern Hair Loss and Telogen Effluvium. Dermatol Res Pract 2020; 2020:8125081. [PMID: 32425997 PMCID: PMC7222612 DOI: 10.1155/2020/8125081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/01/2020] [Indexed: 11/30/2022] Open
Abstract
Follicular proteoglycans are key players with structural, functional, and regulatory roles in the growth and cycling behaviour of the hair follicles. The expression pattern of specific proteoglycans is strongly correlated with follicular phase transitions, which further affirms their functional involvement. Research shows that bioactive proteoglycans, e.g., versican and decorin, can actively trigger follicular phase shift by their anagen-inducing, anagen-maintaining, and immunoregulatory properties. This emerging insight has led to the recognition of “dysregulated proteoglycan metabolism” as a plausible causal or mediating pathology in hair growth disorders in both men and women. In support of this, declined expression of proteoglycans has been reported in cases of anagen shortening and follicular miniaturisation. To facilitate scientific communication, we propose designating this pathology “follicular hypoglycania (FHG),” which results from an impaired ability of follicular cells to replenish and maintain a minimum relative concentration of key proteoglycans during anagen. Lasting FHG may advance to structural decay, called proteoglycan follicular atrophy (PFA). This process is suggested to be an integral pathogenetic factor in pattern hair loss (PHL) and telogen effluvium (TE). To address FHG and PFA, a proteoglycan replacement therapy (PRT) program using oral administration of a marine-derived extract (Nourkrin® with Marilex®, produced by Pharma Medico Aps, Aarhus, Denmark) containing specific proteoglycans has been developed. In clinical studies, this treatment significantly reduced hair fall, promoted hair growth, and improved quality of life in patients with male- and female-pattern hair loss. Accordingly, PRT (using Nourkrin® with Marilex®) can be recommended as an add-on treatment or monotherapy in patients with PHL and TE.
Collapse
|
10
|
Broadley D, McElwee KJ. A "hair-raising" history of alopecia areata. Exp Dermatol 2020; 29:208-222. [PMID: 31960494 DOI: 10.1111/exd.14073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
A 3500-year-old papyrus from ancient Egypt provides a list of treatments for many diseases including "bite hair loss," most likely alopecia areata (AA). The treatment of AA remained largely unchanged for over 1500 years. In 30 CE, Celsus described AA presenting as scalp alopecia in spots or the "windings of a snake" and suggested treatment with caustic compounds and scarification. The first "modern" description of AA came in 1813, though treatment still largely employed caustic agents. From the mid-19th century onwards, various hypotheses of AA development were put forward including infectious microbes (1843), nerve defects (1858), physical trauma and psychological stress (1881), focal inflammation (1891), diseased teeth (1902), toxins (1912) and endocrine disorders (1913). The 1950s brought new treatment developments with the first use of corticosteroid compounds (1952), and the first suggestion that AA was an autoimmune disease (1958). Research progressively shifted towards identifying hair follicle-specific autoantibodies (1995). The potential role of lymphocytes in AA was made implicit with immunohistological studies (1980s). However, studies confirming their functional role were not published until the development of rodent models (1990s). Genetic studies, particularly genome-wide association studies, have now come to the forefront and open up a new era of AA investigation (2000s). Today, AA research is actively focused on genetics, the microbiome, dietary modulators, the role of atopy, immune cell types in AA pathogenesis, primary antigenic targets, mechanisms by which immune cells influence hair growth, and of course the development of new treatments based on these discoveries.
Collapse
Affiliation(s)
- David Broadley
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| | - Kevin J McElwee
- Centre for Skin Sciences, University of Bradford, Bradford, UK.,Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Rajabi F, Drake LA, Senna MM, Rezaei N. Alopecia areata: a review of disease pathogenesis. Br J Dermatol 2018; 179:1033-1048. [PMID: 29791718 DOI: 10.1111/bjd.16808] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alopecia areata is a disorder that results in nonscarring hair loss. The psychological impact can be significant, leading to feelings of depression and social isolation. Objectives In this article, we seek to review the pathophysiological mechanisms proposed in recent years in a narrative fashion. METHODS We searched MEDLINE and Scopus for articles related to alopecia areata, with a particular emphasis on its pathogenesis. RESULTS The main theory of alopecia areata pathogenesis is that it is an autoimmune phenomenon resulting from a disruption in hair follicle immune privilege. What causes this breakdown is an issue of debate. Some believe that a stressed hair follicle environment triggers antigen presentation, while others blame a dysregulation in the central immune system entangling the follicles. Evidence for the latter theory is provided by animal studies, as well investigations around the AIRE gene. Different immune-cell lines including plasmacytoid dendritic cells, natural killer cells and T cells, along with key molecules such as interferon-γ, interleukin-15, MICA and NKG2D, have been identified as contributing to the autoimmune process. CONCLUSIONS Alopecia areata remains incurable, although it has been studied for years. Available treatment options at best are beneficial for milder cases, and the rate of relapse is high. Understanding the exact mechanisms of hair loss in alopecia areata is therefore of utmost importance to help identify potential therapeutic targets.
Collapse
Affiliation(s)
- F Rajabi
- Department of Dermatology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - L A Drake
- Massachusetts General Hospital, Harvard Medical School, MA, U.S.A
| | - M M Senna
- Massachusetts General Hospital, Harvard Medical School, MA, U.S.A
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, U.K
| |
Collapse
|
12
|
Azzawi S, Penzi LR, Senna MM. Immune Privilege Collapse and Alopecia Development: Is Stress a Factor. Skin Appendage Disord 2018; 4:236-244. [PMID: 30410890 PMCID: PMC6219219 DOI: 10.1159/000485080] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
Hair is a defining mammalian feature that serves as a hallmark of human communication. Given the critical significance of hair in social, religious, and political contexts, it is important to understand factors that play a role in hair loss disorders. The hair follicle is an immune privileged site, and mounting evidence suggests that the collapse of immune privilege contributes to the pathogenesis of autoimmune hair loss disorders, including alopecia areata and lichen planopilaris. This review comprehensively appraises the current literature to shed light on mechanisms for immune privilege collapse, and examines the role of neurogenic stress in triggering this process.
Collapse
Affiliation(s)
| | - Lauren R. Penzi
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Maryanne M. Senna
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Does migrative and proliferative capability of epithelial cells reflect cellular developmental competence? ACTA ACUST UNITED AC 2018. [DOI: 10.2478/acb-2018-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Mammalian epithelial and epithelial-like cells are significantly involved in various processes associated with tissue development, differentiation and oncogenesis. Because of that, high number of research is focused on identifying cells that express stem-like or progenitor characteristics. Identifying such cells and recognizing their specific markers, would open new clinical opportunities in transplantology and oncology. There are several epithelia characterized by their ability to rapidly proliferate and/or differentiate. Due to their function or location they are subject to cyclic changes involving processes of apoptosis and regeneration. Literature presenting well-structured studies of these types of epithelia was analyzed in order to compare various results and establish if epithelial cells’ migrative and proliferative ability indicates their stemness potential. Endometrial, ovarian, oviductal and oral mucosal epithelia were analyzed with most of the publications delivering relatively unified results. The ability to rapidly proliferate/differentiate usually indicated the presence of some kind of stem/stem-like/progenitor cells. Most of the papers focused on pinpointing the exact location of these kind of cells, or analyzing specific markers that would be used for their future identification. There have also been substantial proportion of research that focused on discovering growth factors or intercellular signals that induced proliferation/differentiation in analyzed epithelia. Most of the research provided valuable insights into the modes of function and characteristics of the analyzed tissue, outlining the importance of such study for the possible clinical application of in vitro derived cell cultures.
Collapse
|
14
|
Paus R, Bulfone-Paus S, Bertolini M. Hair Follicle Immune Privilege Revisited: The Key to Alopecia Areata Management. J Investig Dermatol Symp Proc 2018; 19:S12-S17. [PMID: 29273098 DOI: 10.1016/j.jisp.2017.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The collapse of the immune privilege (IP) of the anagen hair bulb is now accepted as a key element in AA pathogenesis, and hair bulb IP restoration lies at the core of AA therapy. Here, we briefly review the essentials of hair bulb IP and recent progress in understanding its complexity. We discuss open questions and why the systematic dissection of hair bulb IP and its pharmacological manipulation (including the clinical testing of FK506 and α-melanocyte-stimulating hormone analogs) promise to extend the range of future therapeutic options in AA and other IP collapse-related autoimmune diseases.
Collapse
Affiliation(s)
- Ralf Paus
- Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre and MAHSC, Manchester, UK.
| | - Silvia Bulfone-Paus
- Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre and MAHSC, Manchester, UK
| | - Marta Bertolini
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
15
|
Gupta AK, Carviel JL, Abramovits W. Efficacy of tofacitinib in treatment of alopecia universalis in two patients. J Eur Acad Dermatol Venereol 2016; 30:1373-8. [PMID: 27306107 DOI: 10.1111/jdv.13598] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autoimmune-triggered non-scarring hair loss is a feature of alopecia areata (AA). Initially patchy and often self-limited, severe hair loss forms include the complete loss of scalp hair or alopecia totalis (AT) and complete loss of all hair or alopecia universalis (AU). For AT and AU a reliable treatment has remained elusive. The targeted kinase inhibitor tofacitinib, in current use for treatment of other immune diseases, has been hypothesized as a viable option for AA, AT and AU therapy and a few case reports support this. OBJECTIVE Our study aims to provide evidence for the effectiveness of tofacitinib in the treatment of AU. METHODS Two patients diagnosed with long-term AU were prescribed tofacitinib citrate at a dosage of 5 mg twice daily and observed for eight months. RESULTS In the first patient, beard growth was significant by 3 months of treatment. By 6 months of treatment, hair growth was apparent throughout the entire body. By 8 months of treatment, scalp hair continued to grow longer and thicker. In addition, eyelashes and eyebrows were established. In the second patient, a noticeable increase in scalp hair was present just 1 month into treatment. By 4 months into treatment, significant scalp regrowth was observed as well as eyelash, eyebrow and beard regrowth. Axillary hair regrowth and isolated leg hair was noted by 8 months. CONCLUSION In our patients, tofacitinib successfully alleviated AU in the absence of significant adverse side-effects. We recommend that further study be required to establish safety and confirm efficacy.
Collapse
Affiliation(s)
- A K Gupta
- Department of Medicine, University of Toronto School of Medicine, Toronto, Ontario, Canada.,Mediprobe Research Inc., London, Ontario, Canada
| | - J L Carviel
- Mediprobe Research Inc., London, Ontario, Canada
| | - W Abramovits
- Department of Medicine, Baylor University Medical Center, Dallas, TX, USA.,Departments of Dermatology and Family Practice, University of Texas Southwestern Medical School, Dallas, TX, USA.,Dermatology Treatment and Research Center, Dallas, TX, USA
| |
Collapse
|
16
|
Hair Follicle Mesenchyme-Associated PD-L1 Regulates T-Cell Activation Induced Apoptosis: A Potential Mechanism of Immune Privilege. J Invest Dermatol 2014; 134:736-745. [DOI: 10.1038/jid.2013.368] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/18/2022]
|
17
|
|
18
|
Buffoli B, Rinaldi F, Labanca M, Sorbellini E, Trink A, Guanziroli E, Rezzani R, Rodella LF. The human hair: from anatomy to physiology. Int J Dermatol 2013; 53:331-41. [DOI: 10.1111/ijd.12362] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Barbara Buffoli
- Section of Anatomy and Physiopathology; Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| | | | - Mauro Labanca
- Section of Anatomy and Physiopathology; Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| | | | | | | | - Rita Rezzani
- Section of Anatomy and Physiopathology; Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| | - Luigi F. Rodella
- Section of Anatomy and Physiopathology; Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| |
Collapse
|
19
|
Seok H, Jeon HS, Park HJ, Kim SK, Choi JH, Lew BL, Chung JH, Sim WY. Association of HSPA1B SNP rs6457452 with Alopecia Areata in the Korean population. Immunol Invest 2013; 43:212-23. [PMID: 24303776 DOI: 10.3109/08820139.2013.857351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The heat shock 70 kDa protein 1B (HSPA1B), which has been well-studied among the famous heat shock proteins HSPA1A/B/L, is related to autoimmune diseases, including Alopecia Areata (AA). In this study, the association of a 5'-untranslated region (5'UTR) SNP rs6457452 and a promoter SNP rs2763979 (-1140C > T) of HSPA1B with AA was investigated in 236 controls and 228 AA patients. Statistical analyses using the multiple logistic models were done, according to the onset and the clinical features of AA, including the age of onset, family history, type of AA lesion, nail involvement and body hair involvement. The results showed that rs6457452 was associated with the onset of AA (p < 0.002). In the analysis of clinical features of AA, rs6457452 was weakly related to the age of onset (p ≤ 0.04) and that rs2763979 was only weakly related to the type of AA lesion (p = 0.041). In conclusion, we suggest that the 5'UTR SNP rs6457452 of HSPA1B may be associated with the onset of AA and the T allele of rs6457452 may confer the reduced susceptibility to AA in the Korean population.
Collapse
Affiliation(s)
- Hosik Seok
- Department of Pharmacology and Kohwang Medical Research Institute, College of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Paus R, Bertolini M. The role of hair follicle immune privilege collapse in alopecia areata: status and perspectives. J Investig Dermatol Symp Proc 2013; 16:S25-7. [PMID: 24326544 DOI: 10.1038/jidsymp.2013.7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alopecia areata (AA) may represent a CD8+T cell-mediated, organ-specific autoimmune disease in which as yet elusive autoantigens are recognized, once they become exposed by ectopic major histocompatibility complex class I expression by anagen hair follicles (HFs) that have lost their relative immune privilege (IP). On this basis, AA research is chiefly challenged with identifying the autoreactive CD8+T cells and their cognate autoantigens as well as key inducers of HF-IP collapse and "HF-IP guardians" that prevent and/or can restore IP collapse. However, natural killer group 2D-positive (NKG2D+) cells (incl. NK, NKT, and CD8+T cells) and NKG2D-activating ligands from the MICA (MHC I-related chain A) family may also have a key role in AA pathogenesis, as a massive infiltrate of IFN-γ-secreting NKG2D+ cells alone suffices to induce the AA phenotype. Therefore, we speculate that AA may represent a stereotypic, but distinct HF response pattern to inflammatory insults associated with HF-IP collapse.
Collapse
Affiliation(s)
- Ralf Paus
- 1] Department of Dermatology, University of Lübeck, Lübeck, Germany [2] Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | | |
Collapse
|
21
|
McElwee KJ, Gilhar A, Tobin DJ, Ramot Y, Sundberg JP, Nakamura M, Bertolini M, Inui S, Tokura Y, Jr LEK, Duque-Estrada B, Tosti A, Keren A, Itami S, Shoenfeld Y, Zlotogorski A, Paus R. What causes alopecia areata? Exp Dermatol 2013; 22:609-26. [PMID: 23947678 PMCID: PMC4094373 DOI: 10.1111/exd.12209] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pathobiology of alopecia areata (AA), one of the most frequent autoimmune diseases and a major unsolved clinical problem, has intrigued dermatologists, hair biologists and immunologists for decades. Simultaneously, both affected patients and the physicians who take care of them are increasingly frustrated that there is still no fully satisfactory treatment. Much of this frustration results from the fact that the pathobiology of AA remains unclear, and no single AA pathogenesis concept can claim to be universally accepted. In fact, some investigators still harbour doubts whether this even is an autoimmune disease, and the relative importance of CD8(+) T cells, CD4(+) T cells and NKGD2(+) NK or NKT cells and the exact role of genetic factors in AA pathogenesis remain bones of contention. Also, is AA one disease, a spectrum of distinct disease entities or only a response pattern of normal hair follicles to immunologically mediated damage? During the past decade, substantial progress has been made in basic AA-related research, in the development of new models for translationally relevant AA research and in the identification of new therapeutic agents and targets for future AA management. This calls for a re-evaluation and public debate of currently prevalent AA pathobiology concepts. The present Controversies feature takes on this challenge, hoping to attract more skin biologists, immunologists and professional autoimmunity experts to this biologically fascinating and clinically important model disease.
Collapse
Affiliation(s)
- K. J. McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - A. Gilhar
- Laboratory for Skin, Research, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel Marta Bertolini
| | - D. J. Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Y. Ramot
- Department of Dermatology, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - J. P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA; Division of Dermatology, Skin Disease Research Center, Vanderbilt University, Nashville, TN, USA
| | - M. Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan Yoshiki Tokura
| | - M. Bertolini
- Department of Dermatology, University of Lübeck, Germany Yehuda Shoenfeld
| | - S. Inui
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Y. Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - L. E. King Jr
- The Jackson Laboratory, Bar Harbor, ME, USA; Division of Dermatology, Skin Disease Research Center, Vanderbilt University, Nashville, TN, USA
| | - B. Duque-Estrada
- Instituto de Dermatologia Prof. Rubem David Azulay, Rio de Janeiro, Brazil Antonella Tosti
| | - A Tosti
- Department of Dermatology, University of Miami, Miami, FL, USA
| | - A. Keren
- Laboratory for Skin, Research, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel Marta Bertolini
| | - S. Itami
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Y. Shoenfeld
- Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - A. Zlotogorski
- Department of Dermatology, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - R. Paus
- Department of Dermatology, University of Lübeck, Germany; Institute of Inflammation and Repair, University of Manchester, Manchester, UK ,
| |
Collapse
|
22
|
Somatostatin Expression in Human Hair Follicles and Its Potential Role in Immune Privilege. J Invest Dermatol 2013; 133:1722-30. [DOI: 10.1038/jid.2013.53] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Pollack BP, Sapkota B, Cartee TV. Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin Cancer Res 2011; 17:4400-13. [PMID: 21586626 DOI: 10.1158/1078-0432.ccr-10-3283] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Diverse immune-related effects occur with the use of epidermal growth factor receptor inhibitors (EGFRI). In addition to the cutaneous inflammation induced by EGFRIs, these agents have been associated with the exacerbation of autoimmune skin disease and contact hypersensitivity, antiviral effects, and fatal alveolar damage in the setting of lung transplantation. Because EGFR ligands can modulate MHC class I (MHCI) and II (MHCII) molecule expression, we hypothesized that some of the immune-related effects of EGFRIs are due to direct effects on the expression of MHCI and/or MHCII molecules. EXPERIMENTAL DESIGN Primary human keratinocytes and a malignant keratinocyte cell line (A431) were treated with EGFRIs alone or prior to IFN-γ, a potent inducer of MHCI and MHCII molecule expression. CIITA, MHCI, and MHCII RNA expression was measured using quantitative real-time reverse transcriptase PCR, and cell surface MHCI and MHCII protein expression was measured using flow cytometry. Skin biopsies from patients were analyzed for MHCI and MHCII protein expression before and during therapy with an EGFRI using immunohistochemistry. RESULTS Both EGFR tyrosine kinase inhibitors and ligand-blocking antibodies (cetuximab) augmented the induction of MHCI and MHCII molecules by IFN-γ in primary and malignant human keratinocytes. Unexpectedly, the increase in MHCI protein expression did not require the presence of IFN-γ. Consistent with these in vitro findings, skin biopsies from cancer patients exhibited increased epidermal MHCI protein expression during therapy with an EGFRI as well as increases in MHCI and MHCII molecule RNA. CONCLUSIONS These studies suggest that EGFRIs may influence immune/inflammatory responses by directly modulating MHC expression. Clin Cancer Res; 17(13); 4400-13. ©2011 AACR.
Collapse
Affiliation(s)
- Brian P Pollack
- Department of Dermatology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
24
|
Abstract
The role of neurohormones and neuropeptides in human hair follicle (HF) pigmentation extends far beyond the control of melanin synthesis by α-MSH and ACTH and includes melanoblast differentiation, reactive oxygen species scavenging, maintenance of HF immune privilege, and remodeling of the HF pigmentary unit (HFPU). It is now clear that human HFs are not only a target of multiple neuromediators, but also are a major non-classical production site for neurohormones such as CRH, proopiomelanocortin, ACTH, α-MSH, ß-endorphin, TRH, and melatonin. Moreover, human HFs have established a functional peripheral equivalent of the hypothalamic-pituitary-adrenal axis. By charting the author's own meanderings through the jungle of hair pigmentation research, the current perspectives essay utilizes four clinical observations - hair repigmentation, canities, poliosis, and 'overnight greying'- as points of entry into the enigmas and challenges of .pigmentary HF neuroendocrinology. After synthesizing key principles and defining major open questions in the field, selected research avenues are delineated that appear clinically most promising. In this context, novel neuroendocrinological strategies to retard or reverse greying and to reduce damage to the HFPU are discussed.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
25
|
Hair follicle is a target of stress hormone and autoimmune reactions. J Dermatol Sci 2010; 60:67-73. [DOI: 10.1016/j.jdermsci.2010.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 09/21/2010] [Indexed: 11/16/2022]
|
26
|
Hair Follicles from Alopecia Areata Patients Exhibit Alterations in Immune Privilege-Associated Gene Expression in Advance of Hair Loss. J Invest Dermatol 2010; 130:2677-80. [DOI: 10.1038/jid.2010.180] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Gilhar A. Collapse of Immune Privilege in Alopecia Areata: Coincidental or Substantial? J Invest Dermatol 2010; 130:2535-7. [DOI: 10.1038/jid.2010.260] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Becker JC, Houben R, Schrama D, Voigt H, Ugurel S, Reisfeld RA. Mouse models for melanoma: a personal perspective. Exp Dermatol 2010; 19:157-64. [DOI: 10.1111/j.1600-0625.2009.00986.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Prolactin and the Skin: A Dermatological Perspective on an Ancient Pleiotropic Peptide Hormone. J Invest Dermatol 2009; 129:1071-87. [DOI: 10.1038/jid.2008.348] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J Invest Dermatol 2007; 128:1196-206. [PMID: 18160967 DOI: 10.1038/sj.jid.5701183] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hair follicles (HFs) enjoy a relative immune privilege (IP) that is characterized by downregulation of major histocompatibility complex (MHC) class I and local expression of potent immunosuppressants. Normally, natural killer (NK) cells attack cells with absent/low MHC class I expression. However, because few perifollicular NK cells are found around healthy human anagen HFs, we asked how HFs escape from NK cell attack. This study suggests that this happens via an active NK cell suppression. Alopecia areata (AA), an organ-specific autoimmune disease thought to result from a collapse of HF-IP, in contrast, shows striking defects in NK cell inhibition/containment. We show that the NK cell inhibitor macrophage migration inhibitory factor is strongly expressed by the HF epithelium, and very few CD56(+)/NKG2D(+) NK cells are observed in and around normal anagen HFs compared to AA with prominent aggregations of CD56(+)/NKG2D(+) NK around AA-HFs. By flow cytometry, many fewer NK function-activating receptors (NKG2D, NKG2C) and significantly more killer cell Ig-like receptors-2D2/2D3 were found to be expressed on peripheral blood CD56(+) NK cells of healthy controls than on those of AA patients. In addition, only weak immunoreactivity for MHC class I chain-related A gene was observed in normal anagen HFs compared to AA. To our knowledge, this defect is previously unreported and must be taken into account in AA pathogenesis and its management.
Collapse
|
31
|
Gilhar A, Paus R, Kalish RS. Lymphocytes, neuropeptides, and genes involved in alopecia areata. J Clin Invest 2007; 117:2019-27. [PMID: 17671634 PMCID: PMC1934574 DOI: 10.1172/jci31942] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many lessons in autoimmunity - particularly relating to the role of immune privilege and the interplay between genetics and neuroimmunology - can be learned from the study of alopecia areata, the most common cause of inflammation-induced hair loss. Alopecia areata is now understood to represent an organ-restricted, T cell-mediated autoimmune disease of hair follicles. Disease induction is associated with collapse of hair follicle immune privilege in both humans and in animal models. Here, the role of HLA associations, other immunogenetic factors, and neuroendocrine parameters in alopecia areata pathogenesis are reviewed. This instructive and clinically significant model disease deserves more widespread interest in the immunology community.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, The Ruth and Bruce Rappaport Faculty of Medicine, Technion — Israel Institute of Technology and Flieman Medical Center, Haifa, Israel.
University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany.
Department of Dermatology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Ralf Paus
- Skin Research Laboratory, The Ruth and Bruce Rappaport Faculty of Medicine, Technion — Israel Institute of Technology and Flieman Medical Center, Haifa, Israel.
University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany.
Department of Dermatology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Richard S. Kalish
- Skin Research Laboratory, The Ruth and Bruce Rappaport Faculty of Medicine, Technion — Israel Institute of Technology and Flieman Medical Center, Haifa, Israel.
University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany.
Department of Dermatology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
32
|
Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84:1155-228. [PMID: 15383650 DOI: 10.1152/physrev.00044.2003] [Citation(s) in RCA: 1367] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents interacting via pathways activated by receptor-dependent and -independent mechanisms, in hormonal, auto-, para-, or intracrine fashion. Because of the multidirectional nature and heterogeneous character of the melanogenesis modifying agents, its controlling factors are not organized into simple linear sequences, but they interphase instead in a multidimensional network, with extensive functional overlapping with connections arranged both in series and in parallel. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortins and ACTH, whereas among the negative regulators agouti protein stands out, determining intensity of melanogenesis and also the type of melanin synthesized. Within the context of the skin as a stress organ, melanogenic activity serves as a unique molecular sensor and transducer of noxious signals and as regulator of local homeostasis. In keeping with these multiple roles, melanogenesis is controlled by a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes. Indeed, the significance of melanogenesis extends beyond the mere assignment of a color trait.
Collapse
Affiliation(s)
- Andrzej Slominski
- Dept. of Pathology, Suite 599, University of Tennessee Health Science Center, 930 Madison Avenue, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
33
|
Ito T, Ito N, Bettermann A, Tokura Y, Takigawa M, Paus R. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:623-34. [PMID: 14742267 PMCID: PMC1602279 DOI: 10.1016/s0002-9440(10)63151-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The collapse of major histocompatibility complex (MHC) class-I-dependent immune privilege can lead to autoimmune disease or fetal rejection. Pragmatic and instructive models are needed to clarify the as yet obscure controls of MHC class I down-regulation in situ, to dissect the principles of immune privilege generation, maintenance, and collapse as well as to develop more effective strategies for immune privilege restoration. Here, we propose that human scalp hair follicles, which are abundantly available and easily studied, are ideally suited for this purpose: interferon-gamma induces ectopic MHC class I expression in the constitutively MHC class-I-negative hair matrix epithelium of organ-cultured anagen hair bulbs, likely via interferon regulatory factor-1, along with up-regulation of the MHC class I pathway molecules beta(2)microglobulin and transporter associated with antigen processing (TAP-2). In the first report to identify natural immunomodulators capable of down-regulating MHC class I expression in situ in a normal, neuroectoderm-derived human tissue, we show that ectopic MHC class I expression in human anagen hair bulbs can be normalized by treatment with alpha-MSH, IGF-1, or TGF-beta1, all of which are locally generated, as well as by FK506. These agents are promising candidates for immune privilege restoration and for suppressing MHC class I expression where this is clinically desired (eg, in alopecia areata, multiple sclerosis, autoimmune uveitis, mumps orchitis, and fetal or allograft rejection).
Collapse
Affiliation(s)
- Taisuke Ito
- Department of Dermatology, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
This essay reviews the available evidence that the proximal hair follicle epithelium generates and maintains an area of relative immune privilege during a defined segment of the hair cycle (i.e., during anagen). This immune privilege is chiefly characterized by a very low level of expression of MHC class Ia antigens and by the local production of potent immunosuppressive agents, such as alpha-MSH and TGF-beta1. We discuss the putative functions of immune privilige of the anagen hair bulb, favoring the view that immune privilege serves mainly to sequester anagen- and/or melanogenesis-associated autoantigens from immune recognition by autoreactive CD8+ T cells. On this basis, we develop how the "immune privilege collapse model" of alopecia areata pathogenesis was conceived. In our discussion of the clinical implications of immune privilege, we outline the currently available evidence in support of this still hypothetical scenario to explain the initiation, progression, and termination of alopecia areata lesions. We review the most recent evidence from our laboratory that alpha-MSH, IGF-1, and TGF-beta1 can downregulate IFN-gamma-induced ectopic MHC class I expression in human anagen hair bulbs in vitro. Finally, we suggest that hair follicle-derived alpha-MSH, IGF-gamma, and TGF-beta1 form part of a constitutively active "IP restoration machinery" of the anagen hair bulb, which we propose to be recruited whenever the hair follicle suffers immune injury. Finally, we sketch some particularly promising avenues for future investigation into the far too long ignored hair follicle immune privilege.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University Hospital, Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
35
|
Taira K, Narisawa Y, Nakafusa J, Misago N, Tanaka T. Spatial relationship between Merkel cells and Langerhans cells in human hair follicles. J Dermatol Sci 2002; 30:195-204. [PMID: 12443842 DOI: 10.1016/s0923-1811(02)00104-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The distributions of Merkel cells and Langerhans cells within human hair follicles have been reported. However, there has been no description of the relationship between Merkel cells and Langerhans cells, which were discovered by 19th century German pathologists. Merkel cells and Langerhans cells share some similar characteristics such as the localization of human hair follicles, a close association with peripheral nerves and the expression of several neuropeptides. Merkel cells were stained with CK20 or CAM5.2, while Langerhans cells were stained with CD1a or S-100 protein. We thus immunohistochemically confirmed the preferential localization of Merkel cells and Langerhans cells in normal human hair follicles. Using a double staining technique, two- and three-dimensional observations demonstrated that a small proportion of Merkel cells were closely contacted with Langerhans cells below the sebaceous gland level, presumably indicating the bulge area. Merkel cells and Langerhans cells connected directly or approached each dendrite within the basal layer of the outer root sheath. For the first time, we demonstrated a close anatomical relationship between Merkel cells and Langerhans cells within the bulge area of human hair follicles where follicular stem cells may be present. These morphological observations suggest a functional interaction between follicular Merkel cells and Langerhans cells. We herein hypothesize that Merkel cells communicate with Langerhans cells by characteristic dendrites in which some neuropeptides or cytokines may be stored.
Collapse
Affiliation(s)
- Kayo Taira
- Department of Internal Medicine, Saga Medical School, Nabeshima 5-1-1, Saga City 849-8501, Japan
| | | | | | | | | |
Collapse
|
36
|
Abstract
Nearly 50 years ago, Chase published a review of hair cycling in which he detailed hair growth in the mouse and integrated hair biology with the biology of his day. In this review we have used Chase as our model and tried to put the adult hair follicle growth cycle in perspective. We have tried to sketch the adult hair follicle cycle, as we know it today and what needs to be known. Above all, we hope that this work will serve as an introduction to basic biologists who are looking for a defined biological system that illustrates many of the challenges of modern biology: cell differentiation, epithelial-mesenchymal interactions, stem cell biology, pattern formation, apoptosis, cell and organ growth cycles, and pigmentation. The most important theme in studying the cycling hair follicle is that the follicle is a regenerating system. By traversing the phases of the cycle (growth, regression, resting, shedding, then growth again), the follicle demonstrates the unusual ability to completely regenerate itself. The basis for this regeneration rests in the unique follicular epithelial and mesenchymal components and their interactions. Recently, some of the molecular signals making up these interactions have been defined. They involve gene families also found in other regenerating systems such as fibroblast growth factor, transforming growth factor-beta, Wnt pathway, Sonic hedgehog, neurotrophins, and homeobox. For the immediate future, our challenge is to define the molecular basis for hair follicle growth control, to regenerate a mature hair follicle in vitro from defined populations, and to offer real solutions to our patients' problems.
Collapse
Affiliation(s)
- K S Stenn
- Beauty Genome Sciences Inc., Skillman, New Jersey, USA.
| | | |
Collapse
|
37
|
Christoph T, Müller-Röver S, Audring H, Tobin DJ, Hermes B, Cotsarelis G, Rückert R, Paus R. The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol 2000; 142:862-73. [PMID: 10809841 DOI: 10.1046/j.1365-2133.2000.03464.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunology of the hair follicle, its relationship with the 'skin immune system' and its role in hair diseases remain biologically intriguing and clinically important. In this study, we analysed the immunoreactivity patterns of 15 immunodermatological markers to determine the cellular composition and immune privilege of the human hair follicle immune system in anagen VI (growth phase). The most prominent cells located in or around the hair follicle were Langerhans cells, CD4+ or CD8+ T cells, macrophages and mast cells, whereas B cells, natural killer cells and gammadelta T cells were found very rarely. Langerhans cells (CD1a+, major histocompatibility complex, MHC class II+), and T cells (CD4+ or CD8+) were predominantly distributed in the distal hair follicle epithelium, whereas macrophages (CD68+, MHC class II+) and mast cells (Giemsa+) were located in the perifollicular connective tissue sheath. Transmission electron microscopy confirmed low numbers of immune cells in the proximal hair follicle epithelium, and very few macrophages and Langerhans cells were seen in the dermal papilla. Melanophages were observed in the connective tissue sheath and dermal papilla. MHC class I (HLA-A, -B, -C) and beta2-microglobulin immunoreactivity was found on most skin cells, but was substantially reduced on isthmus keratinocytes and virtually absent in the proximal hair follicle epithelium. Apart from the absence of Fas ligand immunoreactivity, the sharply reduced numbers of T cells and Langerhans cells, and the virtual absence of MHC class I expression all suggest that the anagen proximal hair follicle constitutes an area of immune privilege within the hair follicle immune system, whose collapse may be crucial for the pathogenesis of alopecia areata.
Collapse
Affiliation(s)
- T Christoph
- Department of Dermatology, University Hospital Eppendorf, University of Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Paus R, van der Veen C, Eichmüller S, Kopp T, Hagen E, Müller-Röver S, Hofmann U. Generation and cyclic remodeling of the hair follicle immune system in mice. J Invest Dermatol 1998; 111:7-18. [PMID: 9665380 DOI: 10.1046/j.1523-1747.1998.00243.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this immunohistomorphometric study, we have defined basic characteristics of the hair follicle (HF) immune system during follicle morphogenesis and cycling in C57BL/6 mice, in relation to the skin immune system. Langerhans cells and gammadelta T cell receptor immunoreactive lymphocytes were the predominant intraepithelial hematopoietic cells in neonatal mouse skin. After their numeric increase in the epidermis, these cells migrated into the HF, although only when follicle morphogenesis was almost completed. In contrast to Langerhans cells, gammadelta T cell receptor immunoreactive lymphocytes entered the HF only via the epidermis. Throughout HF morphogenesis and cycling, both cell types remained strikingly restricted to the distal outer root sheath. On extremely rare occasions, CD4+ or CD8+ alphabetaTC were detected within the HF epithelium or the sebaceous gland. Major histocompatibility complex class II+, MAC-1+ cells of macrophage phenotype and numerous mast cells appeared very early on during HF development in the perifollicular dermis, and the percentage of degranulated mast cells significantly increased during the initiation of synchronized HF cycling (first catagen). During both depilation- and cyclosporine A-induced HF cycling, the numbers of intrafollicular Langerhans cells, gammadelta T cell receptor immunoreactive lymphocytes, and perifollicular dermal macrophages fluctuated significantly. Yet, no numeric increase of perifollicular macrophages was detectable during HF regression, questioning their proposed role in catagen induction. In summary, the HF immune system is generated fairly late during follicle development, shows striking differences to the extrafollicular skin immune system, and undergoes substantial hair cycle-associated remodeling. In addition, synchronized HF cycling is accompanied by profound alterations of the skin immune system.
Collapse
Affiliation(s)
- R Paus
- Department of Dermatology, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Rückert R, Hofmann U, van der Veen C, Bulfone-Paus S, Paus R. MHC class I expression in murine skin: developmentally controlled and strikingly restricted intraepithelial expression during hair follicle morphogenesis and cycling, and response to cytokine treatment in vivo. J Invest Dermatol 1998; 111:25-30. [PMID: 9665382 DOI: 10.1046/j.1523-1747.1998.00228.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hair bulb keratinocytes generate one of the few "immune privileged" tissue compartments of the mammalian organism by suppressing classical MHC class I (MHC Ia) antigens. Expression of non-classical MHC class I (MHC Ib) antigens in the follicle has been found, but only in its distal epithelium. Here, we have defined when during murine hair follicle morphogenesis these peculiar MHC Ia and Ib expression patterns are established, how they change during the murine hair cycle, and how different MHC I modulatory agents alter follicular MHC Ia and Ib expression in vivo. During neonatal hair follicle morphogenesis in C57BL/6 mice, distal follicle keratinocytes began to express MHC Ia (H2b) only late in development. The MHC Ib antigens, Qa-1 and Qa-2, did not become visible until the initiation of follicle cycling, with Qa-1 expression being more widespread than that of Qa-2. H2b, Qa-1, and TAP-1 immunoreactivity on previously negative keratinocytes of the proximal anagen hair bulb was upregulated by intradermal injection of the proinflammatory cytokine interferon-gamma, but not by tumor necrosis factor-alpha or interleukin-1beta. Injection of the reportedly MHC class I downregulating agents interleukin-10, insulin-like growth factor-1, transforming growth factor-beta, alpha-melanocyte stimulating hormone, or dexamethasone, however, all failed to downregulate constitutive or interferon-gamma-induced follicular MHC Ia expression. This shows that the hair follicle is a previously unrecognized site of Qa-1 expression and that interferon-gamma is a key regulator of follicular MHC I expression in vivo. It also suggests that the developmental and immunologic controls of MHC I expression by follicle keratinocytes differ from those of other epithelial cells.
Collapse
Affiliation(s)
- R Rückert
- Department of Dermatology, Charité, Humboldt-University of Berlin, Germany
| | | | | | | | | |
Collapse
|
40
|
Becker JC, Varki N, Bröcker EB, Reisfeld RA. Lymphocyte-mediated alopecia in C57BL/6 mice following successful immunotherapy for melanoma. J Invest Dermatol 1996; 107:627-32. [PMID: 8823372 DOI: 10.1111/1523-1747.ep12584237] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Successful immunotherapy of established B16 melanoma metastases in C57BL/6 mice can be achieved by antibody-targeted interleukin-2 administration. This therapeutic effect is accompanied in approximately 20% of the animals by induction of a population of lymphocytes that migrates to and substantially disrupts the cytoarchitecture of the skin, which results in progressive alopecia. The histologic changes associated with the hair loss, i.e., peri-, and intrafollicular inflammatory infiltrates consisting of both activated CD4+ and CD8+ T cells, as well as expression of major histocompatibility complex class I antigens on subinfundibular follicle epithelium, are similar to those observed in human alopecia areata. Furthermore, the alopecic phenotype can be transmitted horizontally by passive transfer of lymphocytes from treated animals to naïve mice. Since lymphocytes from treated animals either lacking or displaying signs of alopecia are able to transmit these phenotypic changes to a similar percentage of naïve animals, the initiation of alopecia seems to be dependent on the coincidence of at least two different events: the presence of specific lymphocyte populations as well as specific features of the skin disclosing a target for these cells.
Collapse
Affiliation(s)
- J C Becker
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
41
|
Paus R, Eichmüller S, Hofmann U, Czarnetzki BM, Robinson P. Expression of classical and non-classical MHC class I antigens in murine hair follicles. Br J Dermatol 1994; 131:177-83. [PMID: 7917980 DOI: 10.1111/j.1365-2133.1994.tb08488.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Not all keratinocytes in human and rat hair follicles express MHC class I antigens (MHC I). In the present study, we report the first immunohistological profile of classical and non-classical MHC I expression in the skin of adolescent C57 BL-6 mice during the induced hair cycle. MHC I immunoreactivity (H-2b, H-2Db) is absent in the matrix and inner root sheath of growing (= anagen) hair follicles, and the dermal papillae are H-2b negative during catagen and telogen. This lack of normal MHC I expression may serve to sequester potentially damaging autoantigens from immune recognition. In addition, we present the first evidence of non-classical MHC class I antigen expression in normal mammalian skin: during the entire hair cycle, the distal hair follicle shows strong Qa-2 immunoreactivity, which appears to be restricted to an epithelial follicle compartment densely populated by gamma-delta T cells with which Qa-2 molecules may interact as part of a primitive antibacterial defense system of the follicle. The murine hair cycle is an attractive model for dissecting the functional roles of H-2b and Qa-2 molecules in hair biology and in related tissue-interaction systems.
Collapse
Affiliation(s)
- R Paus
- Department of Dermatology, University Hospital R. Virchow, Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
42
|
Slominski A, Paus R. Melanogenesis is coupled to murine anagen: Toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J Invest Dermatol 1993. [DOI: 10.1016/0022-202x(93)90507-e] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Slominski A, Paus R. Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J Invest Dermatol 1993; 101:90S-97S. [PMID: 8326158 DOI: 10.1111/1523-1747.ep12362991] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hair is actively pigmented only when it grows: the melanogenic activity of follicular melanocytes (MC) is strictly coupled to the anagen stage of the hair cycle. In catagen, melanin formation is switched off and is absent throughout telogen. The appearance of pigmentation is preceded, and further accompanied by, a time-frame - restricted, differential pattern of tyrosinase transcription, translation, and enzyme activities during the development of anagen follicles. In this speculative review, we argue that signals required for melanin synthesis and pigment transfer to bulb keratinocytes (KC) are intrinsic to the skin, rather than coming from the serum. First, the proopiomelanocortin (POMC) gene is expressed and translated during anagen, but is below the level of detectability in telogen; POMC is a precursor protein for adrenocorticotropin and melanotropins, which are potent regulators of MC proliferation and differentiation. Second, fibroblasts and KC produce factors that affect MC proliferation and differentiation. We suggest that signals regulating follicular MC activity partially derive from cutaneous cells expressing POMC. Vice versa, MC transfer to surrounding KC pigment granules with potent bioregulatory properties. MC also produce and secrete various signal molecules that can regulate mesenchymal and epithelial cell functions. Anagen-associated melanogenesis and the cyclic production of a pigmented hair shaft result from programmed and tightly coordinated epithelial-mesenchymal-neuroectodermal interactions, in which MC may act not only as pigmentary, but also as hair growth-regulatory cells.
Collapse
Affiliation(s)
- A Slominski
- Department of Microbiology, Immunology and Molecular Genetics, Albany Medical College, NY 12208
| | | |
Collapse
|
44
|
Li L, Margolis LB, Paus R, Hoffman RM. Hair shaft elongation, follicle growth, and spontaneous regression in long-term, gelatin sponge-supported histoculture of human scalp skin. Proc Natl Acad Sci U S A 1992; 89:8764-8. [PMID: 1528891 PMCID: PMC50001 DOI: 10.1073/pnas.89.18.8764] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In order to better understand the molecular mechanisms of human hair growth control and to test hair growth-modulatory drugs, appropriate in vitro models are required. Here, we report the long-term growth, shaft elongation, and spontaneous regression of human hair follicles in histoculture of intact scalp skin. Human scalp skin with abundant hair follicles in various stages of the hair growth cycle was grown for up to 40 days in a gelatin sponge-supported histoculture system at the air/liquid interface. Isolated follicles placed in the gelatin-sponge matrix also supported hair shaft elongation, with the hair follicle cells remaining proliferative and viable for very long periods. Hair shaft elongation occurred mainly during the first 10 days of histoculture of both intact skin and isolated follicles. However, hair follicles were viable and follicle keratinocytes continued to incorporate [3H]thymidine for up to several weeks after shaft elongation had ceased as shown by fluorescent-dye double staining, measured by confocal laser scanning microscopy, and by histological autoradiography of [3H]thymidine incorporation, respectively. Hair follicles could continue their cycle in histoculture; for example, apparent spontaneous catagen induction was observed both histologically and by the actual regression of the hair follicle. In addition, vellus follicles were shown to be viable at day 40 after initiation of culture. In the histocultured human scalp we demonstrated the association of mast cells with anagen follicles and macrophages with catagen follicles, suggesting a role of these cells in the hair cycle. This histoculture technique should serve as a powerful tool for future hair research in the human system as well as a screening assay for compounds that can perturb the hair cycle.
Collapse
Affiliation(s)
- L Li
- AntiCancer, Inc., San Diego, CA 92110
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- W T Gibson
- Unilever Research, Colworth Laboratory, Sharnbrook, Bedford, England
| | | | | |
Collapse
|
46
|
Abstract
Immunostaining techniques were used to investigate the relationship between immune cells, proteoglycan, and class I MHC distribution in skin during the hair cycle in rats. The growth stage, anagen, was characterized by absence of class I MHC staining on most cells of the lower follicle and presence of chondroitin proteoglycan in the follicle sheath and dermal papilla. Immune cells were few in number and not associated with follicles. Dramatic changes were observed during regression in catagen; class I MHC was expressed on all follicle epithelium, large numbers of activated macrophages aggregated around the follicles, and the chondroitin proteoglycans disappeared from the follicle sheath and dermal papilla. During the resting stage, telogen, class I MHC remained on cells of the secondary germ, but macrophages and chondroitin proteoglycans were absent. These observations lead us to propose a hypothesis of immune privilege in hair growth.
Collapse
Affiliation(s)
- G E Westgate
- Personal Products Research Division, Unilever Research, Sharnbrook, Bedford, U.K
| | | | | |
Collapse
|
47
|
Lindberg K, Rheinwald JG. Three distinct keratinocyte subtypes identified in human oral epithelium by their patterns of keratin expression in culture and in xenografts. Differentiation 1990; 45:230-41. [PMID: 1708735 DOI: 10.1111/j.1432-0436.1990.tb00477.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have characterized the cells that form the human oral epithelia by analyzing their patterns of keratin expression in culture and in transplants. Keratinocytes of all oral regions synthesized high levels of keratins K5/K14 and K6/K16,K17, as expressed by cells of all stratified squamous epithelia in culture. However, cells from different regions varied in their expression in culture of retinoid-inducible (K19 and K13) and simple epithelial (K7, K8 and K18) keratins. By these criteria, all oral cells could be classified as belonging to one of three intrinsically distinct subtypes: "keratinizing" (gingiva, hard palate), "typical nonkeratinizing" (inner cheek, floor of mouth, ventral tongue) and "special non-keratinizing" (soft palate), all of which differed from the epidermal keratinocyte subtype. Cells from fetal floor of mouth expressed a pattern of keratins in culture markedly different from that of adult floor of mouth cells but identical to that of the adult "special nonkeratinizing" subtype and similar to that of several oral squamous cell carcinoma lines. When cultures of oral keratinocytes were grafted to the dermis of nude mice, they formed stratified epithelial structures after 10 days. In some areas of the stratified structures, the basal layer recapitulated the K19 expression pattern of the oral region from which they had originated. Thus, regional differentiation of the oral epithelium is based on an intrinsic specialization of regional keratinocyte stem cells. Additionally, oral cell transformation either frequently involves reversion to the fetal keratin program or else oral cells that express this keratin program are especially susceptible to transformation.
Collapse
Affiliation(s)
- K Lindberg
- Division of Cell Growth and Regulation, Dana-Farber Cancer Institute, Boston, MA
| | | |
Collapse
|
48
|
Ramanathan J, Philipsen HP. In vivo behaviour of intraosseously implanted oral epithelium in rats. INTERNATIONAL JOURNAL OF ORAL SURGERY 1981; 10:180-8. [PMID: 6797973 DOI: 10.1016/s0300-9785(81)80052-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Bellamy D, Hinsull SM. Influence of lodgement site on the proliferation of metastases of Walker 256 carcinoma in the rat. Br J Cancer 1978; 37:81-5. [PMID: 619960 PMCID: PMC2009512 DOI: 10.1038/bjc.1978.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The growth of s.c. Walker 256 carcinoma was found to be independent of secondary growths induced by i.v. injection. Tumour cells injected i.v. lodged mainly in the lungs, with small clusters of cells in the lymph nodes. The rate of cellular proliferation of these secondary growths of Walker carcinoma was significantly higher than that observed in the s.c. tumour. In addition, host lung tissue was found to inhibit the development of metastases, and it is postulated that the host tissue may produce a diffusible inhibitor and that differences in the effectiveness of these humoral factors may account, in part, for locational differences in tumour growth patterns.
Collapse
|
50
|
Quevedo WC, Bienieki TC, Holstein TJ, Dyer HJ. Lactate dehydrogenase isozymes of mouse epidermis. EXPERIENTIA 1975; 31:1034-6. [PMID: 1175739 DOI: 10.1007/bf02326943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Five isozymes of LDH are demonstrable in the epidermis of the ear pinnae, hind feet, trunk dorsa, and tails of adult C57BL, C57HR, and C3HB mice by polyacrylamide gel electrophoresis. LDH-5 activity predominates in electropherograms. The ratio of LDH-1 to LDH-K is greater in the epidermis of ear pinna and trunk dorsum than in that of tail and hind foot. The region-specific patterns of epidermal LDH isozymes are not correlated with melanin pigmentation or "hairiness' of the skin.
Collapse
|