1
|
Mi Z, Wang Z, Wang Y, Xue X, Liao X, Wang C, Sun L, Lin Y, Wang J, Guo D, Liu T, Liu J, Modlin RL, Liu H, Zhang F. Cellular and molecular determinants of bacterial burden in leprosy granulomas revealed by single-cell multimodal omics. EBioMedicine 2024; 108:105342. [PMID: 39321499 PMCID: PMC11462173 DOI: 10.1016/j.ebiom.2024.105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Which cell populations that determine the fate of bacteria in infectious granulomas remain unclear. Leprosy, a granulomatous disease with a strong genetic predisposition, caused by Mycobacterium leprae infection, exhibits distinct sub-types with varying bacterial load and is considered an outstanding disease model for studying host-pathogen interactions. METHODS We performed single-cell RNA and immune repertoire sequencing on 11 healthy controls and 20 patients with leprosy, and integrated single-cell data with genome-wide genetic data on leprosy. Multiplex immunohistochemistry, and in vitro and in vivo infection experiments were conducted to confirm the multimodal omics findings. FINDINGS Lepromatous leprosy (L-LEP) granulomas with high bacterial burden were characterised by exhausted CD8+ T cells, and high RGS1 expression in CD8+ T cells was associated with L-LEP. By contrast, tuberculoid leprosy (T-LEP) granulomas with low bacterial burden displayed enrichment in resident memory IFNG+ CD8+ T cells (CD8+ Trm) with high GNLY expression. This enrichment was potentially attributable to the communication between IL1B macrophages and CD8+ Trm via CXCL10-CXCR3 signalling. Additionally, IL1B macrophages in L-LEP exhibited anti-inflammatory phenotype, with high APOE expression contributing to high bacterial burden. Conversely, IL1B macrophages in T-LEP were distinguished by interferon-γ induced GBP family genes. INTERPRETATION The state of IL1B macrophages and functional CD8+ T cells, as well as the relationship between them, is crucial for controlling bacterial persistence within granulomas. These insights may indicate potential targets for host-directed immunotherapy in granulomatous diseases caused by mycobacteria and other intracellular bacteria. FUNDING The Key research and development program of Shandong Province (2021LCZX07), Natural Science Foundation of Shandong Province (ZR2023MH046), Youth Science Foundation Cultivation Funding Plan of Shandong First Medical University (Shandong Academy of Medical Sciences) (202201-123), National Natural Science Foundation of China (82471800, 82230107, 82273545, 82304039), the China Postdoctoral Science Foundation (2023M742162), Shandong Province Taishan Scholar Project (tspd20230608), Joint Innovation Team for Clinical & Basic Research (202410), Central guidance for local scientific and technological development projects of Shandong Province (YDZX2023058).
Collapse
Affiliation(s)
- Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Yi Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Xiaotong Xue
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Xiaojie Liao
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Lele Sun
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Yingjie Lin
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Jianwen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Dianhao Guo
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Tingting Liu
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Jianjun Liu
- Laboratory of Human Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA.
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China.
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China.
| |
Collapse
|
2
|
David D, Das M, Mani Chandra H. A comparative study on the detection of Mycobacterium leprae DNA in urine samples of leprosy patients using Rlep-PCR with other conventional samples. Mol Biol Rep 2024; 51:504. [PMID: 38616219 DOI: 10.1007/s11033-024-09470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Mycobacterium leprae causes leprosy that is highly stigmatized and chronic infectious skin disease. Only some diagnostic tools are being used for the identification M. leprae in clinical samples, such as bacillary detection, and histopathological tests. These methods are invasive and often have low sensitivity. Currently, the PCR technique has been used as an effective tool fordetecting M. leprae DNA across different clinical samples. The current study aims to detect M. leprae DNA in urine samples of untreated and treated leprosy patients using the Rlep gene (129 bp) and compared the detection among Ridley-Jopling Classification. METHODS Clinical samples (Blood, Urine, and Slit Skin Smears (SSS)) were collected from leprosy and Non-leprosy patients. DNA extraction was performed using standard laboratory protocol and Conventional PCR was carried out for all samples using Rlep gene target and the amplicons of urine samples were sequenced by Sanger sequencing to confirm the Rlep gene target. RESULTS The M. leprae DNA was successfully detected in all clinical samples across all types of leprosy among all the study groups using RLEP-PCR. Rlep gene target was able to detect the presence of M. leprae DNA in 79.17% of urine, 58.33% of blood, and 50% of SSS samples of untreated Smear-Negative leprosy patients. The statistical significant difference (p = 0.004) was observed between BI Negative (Slit Skin Smear test) and RLEP PCR positivity in urine samples of untreated leprosy group. CONCLUSION The PCR positivity using Rlep gene target (129 bp) was highest in all clinical samples among the study groups, across all types of leprosy. Untreated tuberculoid and PNL leprosy patients showed the highest PCR positivity in urine samples, indicating its potential as a non-invasive diagnostic tool for leprosy and even for contact screening.
Collapse
Affiliation(s)
- Diana David
- Molecular Biology and Immunology, Schieffelin Institute of Health Research and Leprosy Centre, Karigiri, Vellore, Tamil Nadu, 632106, India
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Madhusmita Das
- Molecular Biology and Immunology, Schieffelin Institute of Health Research and Leprosy Centre, Karigiri, Vellore, Tamil Nadu, 632106, India
| | - Harish Mani Chandra
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| |
Collapse
|
3
|
Santana-da-Silva MN, Sena-dos-Santos C, Cáceres-Durán MÁ, de Souza FG, Gobbo AR, Pinto P, Salgado CG, dos Santos SEB. ncRNAs: an unexplored cellular defense mechanism in leprosy. Front Genet 2023; 14:1295586. [PMID: 38116294 PMCID: PMC10729009 DOI: 10.3389/fgene.2023.1295586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
Leprosy is an infectious disease primarily caused by the obligate intracellular parasite Mycobacterium leprae. Although it has been considered eradicated in many countries, leprosy continues to be a health issue in developing nations. Besides the social stigma associated with it, individuals affected by leprosy may experience nerve damage leading to physical disabilities if the disease is not properly treated or early diagnosed. Leprosy is recognized as a complex disease wherein socioenvironmental factors, immune response, and host genetics interact to contribute to its development. Recently, a new field of study called epigenetics has emerged, revealing that the immune response and other mechanisms related to infectious diseases can be influenced by noncoding RNAs. This review aims to summarize the significant advancements concerning non-coding RNAs in leprosy, discussing the key perspectives on this novel approach to comprehending the pathophysiology of the disease and identifying molecular markers. In our view, investigations on non-coding RNAs in leprosy hold promise and warrant increased attention from researches in this field.
Collapse
Affiliation(s)
- Mayara Natália Santana-da-Silva
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
- Laboratório de Imunologia, Seção de Virologia (SAVIR), Instituto Evandro Chagas, Ananindeua, Brazil
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Miguel Ángel Cáceres-Durán
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Felipe Gouvea de Souza
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Angelica Rita Gobbo
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Pablo Pinto
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Claudio Guedes Salgado
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Sidney Emanuel Batista dos Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| |
Collapse
|
4
|
Wang Z, Liu T, Li W, Yu G, Mi Z, Wang C, Liao X, Huai P, Chu T, Liu D, Sun L, Fu X, Sun Y, Wang H, Wang N, Liu J, Liu H, Zhang F. Genome-wide meta-analysis and fine-mapping prioritize potential causal variants and genes related to leprosy. MedComm (Beijing) 2023; 4:e415. [PMID: 38020709 PMCID: PMC10674079 DOI: 10.1002/mco2.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
To date, genome-wide association studies (GWASs) have discovered 35 susceptible loci of leprosy; however, the cumulative effects of these loci can only partially explain the overall risk of leprosy, and the causal variants and genes within these loci remain unknown. Here, we conducted out new GWASs in two independent cohorts of 5007 cases and 4579 controls and then a meta-analysis in these newly generated and multiple previously published (2277 cases and 3159 controls) datasets were performed. Three novel and 15 previously reported risk loci were identified from these datasets, increasing the known leprosy risk loci of explained genetic heritability from 23.0 to 38.5%. A comprehensive fine-mapping analysis was conducted, and 19 causal variants and 14 causal genes were identified. Specifically, manual checking of epigenomic information from the Epimap database revealed that the causal variants were mainly located within the immune-relevant or immune-specific regulatory elements. Furthermore, by using gene-set, tissue, and cell-type enrichment analyses, we highlighted the key roles of immune-related tissues and cells and implicated the PD-1 signaling pathways in the pathogenetic mechanism of leprosy. Collectively, our study identified candidate causal variants and elucidated the potential regulatory and coding mechanisms for genes associated with leprosy.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of BiostatisticsSchool of Public HealthCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Tingting Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Wenchao Li
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Gongqi Yu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Zihao Mi
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Chuan Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Xiaojie Liao
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Pengcheng Huai
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Tongsheng Chu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Dianchang Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Lele Sun
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Xi'an Fu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Yonghu Sun
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Honglei Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Na Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Jianjun Liu
- Department of Human Genetics, Genome Institute of SingaporeSingaporeSingapore
| | - Hong Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Furen Zhang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
5
|
Azevedo MDCS, Marques H, Binelli LS, Malange MSV, Devides AC, Fachin LRV, Soares CT, Belone ADFF, Rosa PS, Garlet GP, Trombone APF. B lymphocytes deficiency results in altered immune response and increased susceptibility to Mycobacterium leprae in a murine leprosy model. Cytokine 2023; 165:156184. [PMID: 36996537 DOI: 10.1016/j.cyto.2023.156184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Leprosy is a chronic and infectious disease that primarily affects the skin and peripheral nervous system, presenting a wide spectrum of clinical forms with different degrees of severity. The distinct host immune response patters developed in the response to the bacillus Mycobacterium leprae, the leprosy etiologic agent, are associated with the spectral clinical forms and outcome of the disease. In this context, B cells are allegedly involved in the disease immunopathogenesis, usually as antibody-producing cells, but also as potential effector or regulatory elements. In order to determine the regulatory B cells role in experimental leprosy, this study evaluated the outcome of M. leprae infection in B cell deficient mice (BKO) and WT C57Bl/6 control, by means of microbiological/bacilloscopic, immunohistochemical and molecular analysis, performed 8 months after M. leprae inoculation. The results demonstrated that infected BKO showed a higher bacilli number when compared with WT animals, demonstrating the importance of these cells in experimental leprosy. The molecular analysis demonstrates that the expression of IL-4, IL-10 and TGF-β was significantly higher in the BKO footpads when compared to WT group. Conversely, there was no difference in IFN-γ, TNF-α and IL-17 expression levels in BKO and WT groups. IL-17 expression was significantly higher in the lymph nodes of WT group. The immunohistochemical analysis revealed that M1 (CD80+) cells counts were significantly lower in the BKO group, while no significant difference was observed to M2 (CD206+) counts, resulting a skewed M1/M2 balance. These results demonstrated that the absence of B lymphocytes contribute to the persistence and multiplication of M. leprae, probably due to the increased expression of the IL-4, IL-10 and TGF-β cytokines, as well as a decrease in the number of M1 macrophages in the inflammatory site.
Collapse
Affiliation(s)
| | - Heloísa Marques
- Centro Universitário Sagrado Coração, UNISAGRADO - Bauru, SP, Brazil; Universidade Federal do Piauí - Parnaíba, PI, Brazil
| | - Larissa S Binelli
- Centro Universitário Sagrado Coração, UNISAGRADO - Bauru, SP, Brazil
| | | | - Amanda C Devides
- Centro Universitário Sagrado Coração, UNISAGRADO - Bauru, SP, Brazil
| | | | | | | | | | - Gustavo P Garlet
- Bauru School of Dentistry, Sao Paulo University - FOB/USP - Bauru, SP, Brazil
| | | |
Collapse
|
6
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
7
|
Sadhu S, Kumar S, Mitra DK, Joshi B. Activated TLR2/4-positive T cells boost cell exhaustion during lepromatous leprosy infection via PD-1 upregulation. Heliyon 2022; 8:e11633. [DOI: 10.1016/j.heliyon.2022.e11633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
|
8
|
Froes LAR, Sotto MN, Trindade MAB. Leprosy: clinical and immunopathological characteristics. An Bras Dermatol 2022; 97:338-347. [PMID: 35379512 PMCID: PMC9133310 DOI: 10.1016/j.abd.2021.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Leprosy, a disease caused by Mycobacterium leprae, has polymorphic neurocutaneous manifestations strongly correlated with the host immune response. Peripheral neural damage can lead to sensory and motor losses, as well as deformities of the hands and feet. Both innate and acquired immune responses are involved, but the disease has been classically described along a Th1/Th2 spectrum, where the Th1 pole corresponds to the more limited presentations and the Th2 to the multibacillary ones. The aim of this review is to discuss this dichotomy in light of the current knowledge of the cytokines, T helper subpopulations, and regulatory T cells involved in each presentation of leprosy. The text will also address leprosy reactions related to increased inflammatory activity in both limited and multibacillary presentations, leading to exacerbation of chronic signs and symptoms and/or the development of new ones. Despite the efforts of many research groups around the world, there is no standardized serological test/biological marker for diagnosis so far, even in endemic areas, which could contribute to the eradication of leprosy.
Collapse
|
9
|
Sokhi UK, Xia Y, Sosa B, Turajane K, Nishtala SN, Pannellini T, Bostrom MP, Carli AV, Yang X, Ivashkiv LB. Immune Response to Persistent Staphyloccocus Aureus Periprosthetic Joint Infection in a Mouse Tibial Implant Model. J Bone Miner Res 2022; 37:577-594. [PMID: 34897801 PMCID: PMC8940655 DOI: 10.1002/jbmr.4489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
Staphyloccocus aureus is one of the major pathogens in orthopedic periprosthetic joint infection (PJI), a devastating complication of total joint arthroplasty that often results in chronic and persistent infections that are refractory to antibiotics and require surgical interventions. Biofilm formation has been extensively investigated as a reason for persistent infection. The cellular composition, activation status, cytokine profile, and role of the immune response during persistent S. aureus PJI are incompletely understood. In this study, we used histology, multiparametric flow cytometry, and gene expression analysis to characterize the immune response in a clinically relevant orthopedic PJI model. We tested the hypothesis that persistent S. aureus infection induces feedback mechanisms that suppress immune cell activation, thereby affecting the course of infection. Surprisingly, persistent infection was characterized by strikingly high cytokine gene expression indicative of robust activation of multiple components of innate and adaptive immunity, along with ongoing severe neutrophil-dominated inflammation, in infected joint and bone tissues. Activation and expansion of draining lymph nodes and a bone marrow stress granulopoiesis reaction were also maintained during late phase infection. In parallel, feedback mechanisms involving T-cell inhibitory receptors and exhaustion markers, suppressive cytokines, and regulatory T cells were activated and associated with decreased T-cell proliferation and tissue infiltration during the persistent phase of infection. These results identify the cellular and molecular components of the mouse immune response to persistent S. aureus PJI and indicate that neutrophil infiltration, inflammatory cytokine responses, and ongoing lymph node and bone marrow reactions are insufficient to clear infection and that immune effector mechanisms are suppressed by feedback inhibitory pathways. These immune-suppressive mechanisms are associated with diminished T-cell proliferation and tissue infiltration and can be targeted as part of adjuvant immunotherapeutic strategies in combination with debridement of biofilm, antibiotics, and other therapeutic modalities to promote eradication of infection. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Upneet K Sokhi
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Yunwei Xia
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Branden Sosa
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Kathleen Turajane
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Sita N Nishtala
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Tania Pannellini
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Department of Pathology, Hospital for Special Surgery, New York, NY, USA
| | - Mathias P Bostrom
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA.,Department of Orthopaedics, Weill Cornell Medicine, New York, NY, USA
| | - Alberto V Carli
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Lionel B Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.,Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Luo Y, Kiriya M, Tanigawa K, Kawashima A, Nakamura Y, Ishii N, Suzuki K. Host-Related Laboratory Parameters for Leprosy Reactions. Front Med (Lausanne) 2021; 8:694376. [PMID: 34746168 PMCID: PMC8568883 DOI: 10.3389/fmed.2021.694376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
Leprosy reactions are acute inflammatory episodes that complicate the course of a Mycobacterium leprae infection and are the major cause of leprosy-associated pathology. Two types of leprosy reactions with relatively distinct pathogenesis and clinical features can occur: type 1 reaction, also known as reversal reaction, and type 2 reaction, also known as erythema nodosum leprosum. These acute nerve-destructive immune exacerbations often cause irreversible disabilities and deformities, especially when diagnosis is delayed. However, there is no diagnostic test to detect or predict leprosy reactions before the onset of clinical symptoms. Identification of biomarkers for leprosy reactions, which impede the development of symptoms or correlate with early-onset, will allow precise diagnosis and timely interventions to greatly improve the patients' quality of life. Here, we review the progress of research aimed at identifying biomarkers for leprosy reactions, including its correlation with not only immunity but also genetics, transcripts, and metabolites, providing an understanding of the immune dysfunction and inflammation that underly the pathogenesis of leprosy reactions. Nevertheless, no biomarkers that can reliably predict the subsequent occurrence of leprosy reactions from non-reactional patients and distinguish type I reaction from type II have yet been found.
Collapse
Affiliation(s)
- Yuqian Luo
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Norihisa Ishii
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,National Sanatorium Tamazenshoen, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
11
|
Bretscher PA. The role of cytokines in determining the Th1/Th2 phenotype of an immune response: Coherence of the T cell response and the Cytokine Implementation Hypothesis. Scand J Immunol 2021. [PMCID: PMC9286540 DOI: 10.1111/sji.13110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The widely accepted Cytokine Milieu Hypothesis proposes that the cytokine milieu, in which antigen activates CD4 T cells, from a non‐T cell source, primarily determines the Th subset to which the ensuing effector Th cells belong. We focus on the generation of Th1 and Th2 cells. We briefly restate the grounds for the Threshold Hypothesis we favour for how the Th1/Th2 phenotype of a response is primarily determined: tentative and robust thresholds of antigen‐mediated CD4 T cell interactions lead to the generation of Th1 and Th2 cells. The component antigens of pathogens are present in different amounts. It is expected, within the context of the threshold mechanism that, although there is often an initial predominance of Th1 or Th2 cells, some Th cells of the opposing type are initially generated. An initially somewhat heterogeneous Th response is known to become with time more ‘coherent’ in its Th1/Th2 phenotype. I propose The Cytokine Implementation Hypothesis as a mechanism for how coherence is achieved. Most cytokines made by Th cells of one subset tend to facilitate the further generation of Th cells of this subset and/or inhibit the generation of Th cells of opposing subsets, accounting for how coherence may be achieved. Many observations on which The Cytokine Milieu Hypothesis is based are accounted for by this alternative hypothesis. We outline predictions of the new hypothesis and discuss the importance of coherence of immune responses for their efficacy in protecting against foreign invaders.
Collapse
Affiliation(s)
- Peter A. Bretscher
- Department of Biochemistry, Microbiology and Immunology Saskatoon Saskatchewan Canada
| |
Collapse
|
12
|
Leal-Calvo T, Avanzi C, Mendes MA, Benjak A, Busso P, Pinheiro RO, Sarno EN, Cole ST, Moraes MO. A new paradigm for leprosy diagnosis based on host gene expression. PLoS Pathog 2021; 17:e1009972. [PMID: 34695167 PMCID: PMC8568100 DOI: 10.1371/journal.ppat.1009972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/04/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional profiling is a powerful tool to investigate and detect human diseases. In this study, we used bulk RNA-sequencing (RNA-Seq) to compare the transcriptomes in skin lesions of leprosy patients or controls affected by other dermal conditions such as granuloma annulare, a confounder for paucibacillary leprosy. We identified five genes capable of accurately distinguishing multibacillary and paucibacillary leprosy from other skin conditions. Indoleamine 2,3-dioxygenase 1 (IDO1) expression alone was highly discriminatory, followed by TLR10, BLK, CD38, and SLAMF7, whereas the HS3ST2 and CD40LG mRNA separated multi- and paucibacillary leprosy. Finally, from the main differentially expressed genes (DEG) and enriched pathways, we conclude that paucibacillary disease is characterized by epithelioid transformation and granuloma formation, with an exacerbated cellular immune response, while multibacillary leprosy features epithelial-mesenchymal transition with phagocytic and lipid biogenesis patterns in the skin. These findings will help catalyze the development of better diagnostic tools and potential host-based therapeutic interventions. Finally, our data may help elucidate host-pathogen interplay driving disease clinical manifestations.
Collapse
Affiliation(s)
- Thyago Leal-Calvo
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Charlotte Avanzi
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mayara Abud Mendes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrej Benjak
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Busso
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stewart Thomas Cole
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Ferreira H, Mendes MA, de Mattos Barbosa MG, de Oliveira EB, Sales AM, Moraes MO, Sarno EN, Pinheiro RO. Potential Role of CXCL10 in Monitoring Response to Treatment in Leprosy Patients. Front Immunol 2021; 12:662307. [PMID: 34354699 PMCID: PMC8329534 DOI: 10.3389/fimmu.2021.662307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
The treatment of multibacillary cases of leprosy with multidrug therapy (MDT) comprises 12 doses of a combination of rifampicin, dapsone and clofazimine. Previous studies have described the immunological phenotypic pattern in skin lesions in multibacillary patients. Here, we evaluated the effect of MDT on skin cell phenotype and on the Mycobacterium leprae-specific immune response. An analysis of skin cell phenotype demonstrated a significant decrease in MRS1 (SR-A), CXCL10 (IP-10) and IFNG (IFN-γ) gene and protein expression after MDT release. Patients were randomized according to whether they experienced a reduction in bacillary load after MDT. A reduction in CXCL10 (IP-10) in sera was associated with the absence of a reduction in the bacillary load at release. Although IFN-γ production in response to M. leprae was not affected by MDT, CXCL10 (IP-10) levels in response to M. leprae increased in cells from patients who experienced a reduction in bacillary load after treatment. Together, our results suggest that CXCL10 (IP-10) may be a good marker for monitoring treatment efficacy in multibacillary patients.
Collapse
Affiliation(s)
- Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Anna Maria Sales
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Yasmin H, Varghese PM, Bhakta S, Kishore U. Pathogenesis and Host Immune Response in Leprosy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:155-177. [PMID: 34661895 DOI: 10.1007/978-3-030-67452-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leprosy is an ancient insidious disease caused by Mycobacterium leprae, where the skin and peripheral nerves undergo chronic granulomatous infections, leading to sensory and motor impairment with characteristic deformities. Susceptibility to leprosy and its disease state are determined by the manifestation of innate immune resistance mediated by cells of monocyte lineage. Due to insufficient innate resistance, granulomatous infection is established, influencing the specific cellular immunity. The clinical presentation of leprosy ranges between two stable polar forms (tuberculoid to lepromatous) and three unstable borderline forms. The tuberculoid form involves Th1 response, characterized by a well demarcated granuloma, infiltrated by CD4+ T lymphocytes, containing epitheloid and multinucleated giant cells. In the lepromatous leprosy, there is no characteristic granuloma but only unstructured accumulation of ineffective macrophages containing engulfed pathogens. Th1 response, characterised by IFN-γ and IL-2 production, activates macrophages in order to kill intracellular pathogens. Conversely, a Th2 response, characterized by the production of IL-4, IL-5 and IL-10, helps in antibody production and consequently downregulates the cell-mediated immunity induced by the Th1 response. M. lepare has a long generation time and its inability to grow in culture under laboratory conditions makes its study challenging. The nine-banded armadillo still remains the best clinical and immunological model to study host-pathogen interaction in leprosy. In this chapter, we present cellular morphology and the genomic uniqueness of M. leprae, and how the pathogen shows tropism for Schwann cells, macrophages and dendritic cells.
Collapse
Affiliation(s)
- Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Praveen Mathews Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
15
|
Abstract
Leprosy is a disease caused by Mycobacterium leprae (ML) with diverse clinical manifestations, which are strongly correlated with the host's immune response. Skin lesions may be accompanied by peripheral neural damage, leading to sensory and motor losses, as well as deformities of the hands and feet. Both innate and acquired immune responses are involved, but the disease has been classically described along a Th1/Th2 spectrum, where the Th1 pole corresponds to the most limited presentations and the Th2 to the most disseminated ones. We discuss this dichotomy in the light of current knowledge of cytokines, Th subpopulations and regulatory T cells taking part in each leprosy presentation. Leprosy reactions are associated with an increase in inflammatory activity both in limited and disseminated presentations, leading to a worsening of previous symptoms or the development of new symptoms. Despite the efforts of many research groups around the world, there is still no adequate serological test for diagnosis in endemic areas, hindering the eradication of leprosy in these regions.
Collapse
Affiliation(s)
| | - Maria Angela Bianconcini Trindade
- Departamento de Patologia, University of Sao Paulo, São Paulo, Brazil.,Imunodermatologia, Universidade de São Paulo Hospital das Clínicas, São Paulo, Brazil
| | | |
Collapse
|
16
|
Isgor C, Aydin C, Oztan O, Libreros S, Iragavarapu-Charyulu V. Inter-individual differences in immune profiles of outbred rats screened for an emotional reactivity phenotype. J Neuroimmunol 2020; 347:577349. [PMID: 32750564 DOI: 10.1016/j.jneuroim.2020.577349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
Inter-individual differences in emotional reactivity predict susceptibility versus resilience to mood pathology. Using experimentally-naïve outbred rats that vary in locomotor reactivity to the mild stress of an inescapable novel environment [i.e., top and bottom 1/3rd of the population identified as high responders (HR) and low responders (LR) respectively], we determined baseline variations in immune functions. Innate and adaptive immune responses vary basally in LRHR rats, namely a shift towards TH1 in LRs and TH2 in HRs was observed. These inter-individual variations in immune profiles in LRHRs could have significant implications in mood alterations and immune reactivity to microbes and cancer.
Collapse
Affiliation(s)
- Ceylan Isgor
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States of America
| | - Cigdem Aydin
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States of America
| | - Ozge Oztan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States of America
| | - Stephania Libreros
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States of America
| | - Vijaya Iragavarapu-Charyulu
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States of America.
| |
Collapse
|
17
|
Dalby E, Christensen SM, Wang J, Hamidzadeh K, Chandrasekaran P, Hughitt VK, Tafuri WL, Arantes RME, Rodrigues IA, Herbst R, El-Sayed NM, Sims GP, Mosser DM. Immune Complex-Driven Generation of Human Macrophages with Anti-Inflammatory and Growth-Promoting Activity. THE JOURNAL OF IMMUNOLOGY 2020; 205:102-112. [PMID: 32434940 DOI: 10.4049/jimmunol.1901382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
Abstract
To maintain homeostasis, macrophages must be capable of assuming either an inflammatory or an anti-inflammatory phenotype. To better understand the latter, we stimulated human macrophages in vitro with TLR ligands in the presence of high-density immune complexes (IC). This combination of stimuli resulted in a broad suppression of inflammatory mediators and an upregulation of molecules involved in tissue remodeling and angiogenesis. Transcriptomic analysis of TLR stimulation in the presence of IC predicted the downstream activation of AKT and the inhibition of GSK3. Consequently, we pretreated LPS-stimulated human macrophages with small molecule inhibitors of GSK3 to partially phenocopy the regulatory effects of stimulation in the presence of IC. The upregulation of DC-STAMP and matrix metalloproteases was observed on these cells and may represent potential biomarkers for this regulatory activation state. To demonstrate the presence of these anti-inflammatory, growth-promoting macrophages in a human infectious disease, biopsies from patients with leprosy (Hanseniasis) were analyzed. The lepromatous form of this disease is characterized by hypergammaglobulinemia and defective cell-mediated immunity. Lesions in lepromatous leprosy contained macrophages with a regulatory phenotype expressing higher levels of DC-STAMP and lower levels of IL-12, relative to macrophages in tuberculoid leprosy lesions. Therefore, we propose that increased signaling by FcγR cross-linking on TLR-stimulated macrophages can paradoxically promote the resolution of inflammation and initiate processes critical to tissue growth and repair. It can also contribute to infectious disease progression.
Collapse
Affiliation(s)
- Elizabeth Dalby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Stephen M Christensen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Jingya Wang
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878
| | - Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Prabha Chandrasekaran
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - V Keith Hughitt
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Wagner Luiz Tafuri
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; and
| | - Rosa Maria Esteves Arantes
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; and
| | | | - Ronald Herbst
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Gary P Sims
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878;
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742;
| |
Collapse
|
18
|
Mi Z, Liu H, Zhang F. Advances in the Immunology and Genetics of Leprosy. Front Immunol 2020; 11:567. [PMID: 32373110 PMCID: PMC7176874 DOI: 10.3389/fimmu.2020.00567] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Leprosy, a disease caused by the intracellular parasite Mycobacterium leprae or Mycobacterium lepromatosis, has affected humans for more than 4,000 years and is a stigmatized disease even now. Since clinical manifestations of leprosy patients present as an immune-related spectrum, leprosy is regarded as an ideal model for studying the interaction between host immune response and infection; in fact, the landscape of leprosy immune responses has been extensively investigated. Meanwhile, leprosy is to some extent a genetic disease because the genetic factors of hosts have long been considered major contributors to this disease. Many immune-related genes have been discovered to be associated with leprosy. However, immunological and genetic findings have rarely been studied and discussed together, and as a result, the effects of gene variants on leprosy immune responses and the molecular mechanisms of leprosy pathogenesis are largely unknown. In this context, we summarized advances in both the immunology and genetics of leprosy and discussed the perspective of the combination of immunological and genetic approaches in studying the molecular mechanism of leprosy pathogenesis. In our opinion, the integrating of immunological and genetic approaches in the future may be promising to elucidate the molecular mechanism of leprosy onset and how leprosy develops into different types of leprosy.
Collapse
Affiliation(s)
- Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
19
|
Maymone MBC, Laughter M, Venkatesh S, Dacso MM, Rao PN, Stryjewska BM, Hugh J, Dellavalle RP, Dunnick CA. Leprosy: Clinical aspects and diagnostic techniques. J Am Acad Dermatol 2020; 83:1-14. [PMID: 32229279 DOI: 10.1016/j.jaad.2019.12.080] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 01/27/2023]
Abstract
Leprosy, also known as Hansen's disease, is a curable infectious disease that remains endemic in >140 countries around the world. Despite being declared "eliminated" as a global public health problem by the World Health Organization in the year 2000, approximately 200,000 new cases were reported worldwide in 2017. Widespread migration may bring leprosy to nonendemic areas, such as North America. In addition, there are areas in the United States where autochthonous (person-to-person) transmission of leprosy is being reported among Americans without a history of foreign exposure. In the first article in this continuing medical education series, we review leprosy epidemiology, transmission, classification, clinical features, and diagnostic challenges.
Collapse
Affiliation(s)
- Mayra B C Maymone
- Department of Dermatology, University of Colorado School of Medicine, Denver, Colorado
| | - Melissa Laughter
- Department of Dermatology, University of Colorado School of Medicine, Denver, Colorado
| | - Samantha Venkatesh
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Mara M Dacso
- National Hansen's (Leprosy) Disease Program, Baton Rouge, Louisiana; University of Texas Southwestern Medical Center, Dallas, Texas
| | - P Narasimha Rao
- Special Interest Group on Leprosy, Indian Association of Dermatologists, Venereologists and Leprologists, Hyderabad, India
| | | | - Jeremy Hugh
- Department of Dermatology, University of Colorado School of Medicine, Denver, Colorado
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado School of Medicine, Denver, Colorado
| | - Cory A Dunnick
- Department of Dermatology, University of Colorado School of Medicine, Denver, Colorado.
| |
Collapse
|
20
|
Pepineli AC, Alves HV, Tiyo BT, Macedo LC, Visentainer L, de Lima Neto QA, Zacarias JMV, Sell AM, Visentainer JEL. Vitamin D Receptor Gene Polymorphisms Are Associated With Leprosy in Southern Brazil. Front Immunol 2019; 10:2157. [PMID: 31636627 PMCID: PMC6787522 DOI: 10.3389/fimmu.2019.02157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022] Open
Abstract
Vitamin D, together with its nuclear receptor (VDR), plays an important role in modulating the immune response, decreasing the inflammatory process. Some polymorphisms of the VDR gene, such as BsmI (G>A rs1544410), ApaI (G>T rs7975232), and TaqI (T>C rs731236) could affect its stability and mRNA transcription activity, while FokI T>C (rs2228570) gives a truncated protein with three fewer amino acids and more efficiency in binding vitamin D. This study evaluated these four polymorphisms in the immunopathogenesis of leprosy in 404 patients and 432 control individuals without chronic or infectious disease in southern Brazil. When analyzing differences in the allele and genotype frequency of polymorphisms between patients (leprosy per se, multibacillary, and paucibacillary clinical forms) and controls, we found no statistically significant association. Regarding haplotype analysis, the bAt haplotype was associated with protection from leprosy per se (P = 0.004, OR = 0.34, CI = 0.16–0.71) and from the multibacillary clinical form (P = 0.005, OR = 0.30, CI = 0.13–0.70). In individuals aged 40 or more years, this haplotype has also showed protection against leprosy per se and multibacillary (OR = 0.26, CI = 0.09–0.76; OR = 0.26, CI = 0.07–0.78, respectively), while the BAt haplotype was a risk factor for leprosy per se in the same age group (OR = 1.34, CI = 1.04–1.73). In conclusion, despite having found no associations between the VDR gene polymorphisms with the development of leprosy, the haplotypes formed by the BsmI, ApaI, and TaqI polymorphisms were associated with leprosy per se and the multibacillary clinical form.
Collapse
Affiliation(s)
- Afonso Carrasco Pepineli
- Laboratory of Immunogenetics, Department of Basic Health Sciences, Maringá State University (UEM), Maringá, Brazil
| | - Hugo Vicentin Alves
- Laboratory of Immunogenetics, Department of Basic Health Sciences, Maringá State University (UEM), Maringá, Brazil
| | - Bruna Tiaki Tiyo
- Laboratory of Immunogenetics, Department of Basic Health Sciences, Maringá State University (UEM), Maringá, Brazil
| | - Luciana Conci Macedo
- Laboratory of Immunogenetics, Department of Basic Health Sciences, Maringá State University (UEM), Maringá, Brazil
| | - Lorena Visentainer
- Department of Medicine, Faculty of Medical Sciences, Campinas State University (UNICAMP), São Paulo, Brazil
| | - Quirino Alves de Lima Neto
- Laboratory of Immunogenetics, Department of Basic Health Sciences, Maringá State University (UEM), Maringá, Brazil
| | | | - Ana Maria Sell
- Laboratory of Immunogenetics, Department of Basic Health Sciences, Maringá State University (UEM), Maringá, Brazil
| | | |
Collapse
|
21
|
Dwivedi VP, Banerjee A, Das I, Saha A, Dutta M, Bhardwaj B, Biswas S, Chattopadhyay D. Diet and nutrition: An important risk factor in leprosy. Microb Pathog 2019; 137:103714. [PMID: 31493502 DOI: 10.1016/j.micpath.2019.103714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/09/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023]
Abstract
Leprosy, once considered as poor man's disease may cause severe neurological complications and physical disabilities. Classification of leprosy depends upon the cell mediated and humoral immune responses of the host, from tuberculoid to lepromatous stage. Current therapy to prevent the disease is not only very lengthy but also consists of expensive multiple antibiotics in combination. Treatment and the duration depend on the bacillary loads, from six months in paucibacillary to a year in multibacillary leprosy. Although as per WHO recommendations, these antibiotics are freely available but still out of reach to patients of many rural areas of the world. In this review, we have focused on the nutritional aspect during the multi-drug therapy of leprosy along with the role of nutrition, particularly malnutrition, on susceptibility of Mycobacterium leprae and development of clinical symptoms. We further discussed the diet plan for the patients and how diet plans can affect the immune responses during the disease.
Collapse
Affiliation(s)
- Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Arindam Banerjee
- Rafi Ahmed Dental College, Govt of West Bengal, Moulalai, Kolkata, 7600014, India
| | - Indraneel Das
- Declibac Technologies Private Limited, 24 B, Lake Road, Kolkata, 700 029, India
| | - Aparajita Saha
- Nutri-Diet Kolkata, 34A Charu Avenue, Kolkata, 700033, India
| | - Malabika Dutta
- Department of Dietetics, Kothari Medical Center, 8/3 Alipore Road, Kolkata, 700027, India
| | - Bhavya Bhardwaj
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saptarshi Biswas
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, India; ICMR-Virus Unit, ID & BG Hospital, General Block 4, 57 Dr Suresh C Banerjee Road, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
22
|
Crespo F, White J, Roberts C. Revisiting the tuberculosis and leprosy cross-immunity hypothesis: Expanding the dialogue between immunology and paleopathology. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2019; 26:37-47. [PMID: 31185376 DOI: 10.1016/j.ijpp.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 05/08/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Our primary objective is to re-visit the tuberculosis and leprosy cross-immunity. hypothesis through the careful integration of immunology and paleopathology. METHODS Using an integrated theoretical analysis that evaluates clinical literature on human innate immunological responses, paleomicrobiology, bioarchaeology, and paleopathology, we develop a multifactorial model. RESULTS Past populations do not represent homogeneous immunological landscapes, and therefore it is likely that leprosy in Medieval Europe did not uniformly decline due to cross-immunity. CONCLUSIONS We recommend that bioarchaeological reconstructions of past disease experience take into consideration models that include variation in immune function based on past environments and social contexts. This provides a unique opportunity to conduct comprehensive analyses on complex immunological processes. SIGNIFICANCE Extrapolating results from experimental immunology to larger populations elucidates complexities of disease cross-immunity and highlights the importance of synthesizing archaeological, social, paleopathological and biological data as a means of understanding disease in the past. LIMITATIONS All extrapolations from data produced from in vitro studies to past populations, using living donors, pose significant limitations where, among other factors, the full reconstruction of past environmental and social contexts can frequently be sparse or incomplete. SUGGESTIONS FOR FUTURE RESEARCH To reduce the limitations of integrating experimental immunology with bioarchaeological reconstructions (i.e. how to use skeletal samples to reconstruct inflammatory phenotypes), we propose that osteoimmunology, or the study of the interplay between immune cells and bone cells, should be considered a vital discipline and perhaps the foundation for the expansion of paleoimmunology.
Collapse
Affiliation(s)
- Fabian Crespo
- Department of Anthropology, University of Louisville, Louisville, KY, 40292, USA.
| | - Jacob White
- Department of Anthropology, University of Louisville, Louisville, KY, 40292, USA
| | | |
Collapse
|
23
|
Vilani-Moreno FR, Barbosa ASAA, Sartori BGC, Diório SM, Silva SMUR, Rosa PS, de Faria Fernandes Belone A, Soares CT, Lauris JRP, Pedrini SCB. Murine experimental leprosy: Evaluation of immune response by analysis of peritoneal lavage cells and footpad histopathology. Int J Exp Pathol 2019; 100:161-174. [PMID: 31124597 DOI: 10.1111/iep.12319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/16/2019] [Accepted: 04/02/2019] [Indexed: 11/28/2022] Open
Abstract
This study evaluated the immune response of nude and BALB/c mice inoculated in the footpads (FP) with Mycobacterium leprae after 3, 5 and 8 months. At each timepoint peritoneal cells, peripheral blood, FP and popliteal lymph nodes (PLN) were collected. Peritoneal cell cultures were performed to measure the H2 O2 , O2 - , NO, IL-2, IL-4, IL-10, IL-12, IFN-γ and TNF levels. Serum levels of anti-PGL-I antibodies were also quantified. The results showed that the infection was progressive in nude mice with bacterial multiplication, development of macroscopic lesions in the FP and presence of bacilli in the PLN at 8 months. In BALB/c mice, the infection reached a plateau of bacillary multiplication at 5 months and regressed at 8 months. Histopathological analysis of FP revealed a mononuclear inflammatory infiltrate with a large number of neutrophils at 5 months, with a higher number in nude mice. At 8 months, the number of neutrophils decreased and the infiltrate was predominantly mononuclear in both mouse strains. There was no H2 O2, O2 - , IL-2, IL-4, IL-10 and IFN-γ production in the course of infection in nude mice; however, in BALB/c, O2 - and IL-12 production was higher at 5 months and NO, IFN-γ and TNF production was higher at 8 months when there was a decrease in the number of bacilli. The level of anti-PGL-I antibodies was higher in BALB/c mice. Thus, nude and BALB/c mice can be used as experimental models for the study of various aspects of leprosy.
Collapse
|
24
|
Notch signaling induces lymphoproliferation, T helper cell activation and Th1/Th2 differentiation in leprosy. Immunol Lett 2019; 207:6-16. [PMID: 30629982 DOI: 10.1016/j.imlet.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 02/02/2023]
Abstract
The present study evaluates role of Notch1 signaling in the regulation of T cell immunity in leprosy. Peripheral blood mononuclear cells from leprosy patients and healthy controls were activated with Mycobacterium leprae antigens along with activation of Notch1 signaling pathway and then lymphoproliferation was analyzed by lymphocytes transformation test and the expression of Notch1 and its ligands DLL1, Jagged1 and Jagged 2, T cell activation marker and Th1-Th2 cytokines on Th cells in PBMCs of study subjects were analyzed by flow cytometry. Further, these parameters were also analyzed after inhibition of Notch1 signaling pathway. Higher percentage of Notch1expressing Th cells were noted in TT/BT cases and higher percentage of DLL1 expressing Th cells in TT/BT and BL/LL cases. M. leprae antigens were found to induce the expression of Jagged1 on Th cells. Interestingly activation of Notch1 signaling pathway induced lymphoproliferation in BL/LL cases in response of PGL-1. Activation of Notch1 signaling was also found to induce the expression of T cell activation markers CD25, CD69 and Th1 cytokine IFN-γ in response to M. leprae antigens. Immunomodulation through Notch1 signaling seen in our study could be helpful in augmenting Th1 response in leprosy.
Collapse
|
25
|
Devides AC, Rosa PS, de Faria Fernandes Belone A, Coelho NMB, Ura S, Silva EA. Can anti–PGL-1 and anti–NDO-LID-1 antibody titers be used to predict the risk of reactions in leprosy patients? Diagn Microbiol Infect Dis 2018; 91:260-265. [DOI: 10.1016/j.diagmicrobio.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/20/2018] [Accepted: 03/03/2018] [Indexed: 10/17/2022]
|
26
|
Sadhu S, Mitra DK. Emerging Concepts of Adaptive Immunity in Leprosy. Front Immunol 2018; 9:604. [PMID: 29686668 PMCID: PMC5900054 DOI: 10.3389/fimmu.2018.00604] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
Leprosy is a chronic intracellular infection caused by the acid-fast bacillus, Mycobacterium leprae. The disease chiefly affects the skin, peripheral nerves, mucosa of the upper respiratory tract, and the eyes. The damage to peripheral nerves results in sensory and motor impairment with characteristic deformities and disability. Presently, the disease remains concentrated in resource-poor countries in tropical and warm temperate regions with the largest number of cases reported from India. Even though innate immunity influences the clinical manifestation of the disease, it is the components of adaptive immune system which seem to tightly correlate with the characteristic spectrum of leprosy. M. leprae-specific T cell anergy with bacillary dissemination is the defining feature of lepromatous leprosy (LL) patients in contrast to tuberculoid leprosy (TT) patients, which is characterized by strong Th1-type cell response with localized lesions. Generation of Th1/Th2-like effector cells, however, cannot wholly explain the polarized state of immunity in leprosy. A comprehensive understanding of the role of various regulatory T cells, such as Treg and natural killer T cells, in deciding the polarized state of T cell immunity is crucial. Interaction of these T cell subsets with effector T cells like Th1 (IFN-γ dominant), Th2 (interluekin-4 dominant), and Th17 (IL-17+) cells through various regulatory cytokines and molecules (programmed death-1/programmed death ligand-1) may constitute key events in dictating the state of immune polarization, thus controlling the clinical manifestation. Studying these important components of the adaptive immune system in leprosy patients is essential for better understanding of immune function, correlate(s) the immunity and mechanism(s) of its containment.
Collapse
Affiliation(s)
- Soumi Sadhu
- Department of Transplant Immunology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.,Department of Immunogenetics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.,Department of Immunogenetics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
27
|
Affiliation(s)
- C E Griffiths
- Department of Medicine, University of Manchester School of Medicine, Hope Hospital, Salford, England
| | | |
Collapse
|
28
|
Jin SH, Ahn KJ, An S. Importance of the immune response to Mycobacterium leprae in the skin. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-017-0012-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Lima HR, Gasparoto TH, de Souza Malaspina TS, Marques VR, Vicente MJ, Marcos EC, Souza FC, Nogueira MRS, Barreto JA, Garlet GP, da Silva JS, Brito-de-Souza VN, Campanelli AP. Immune Checkpoints in Leprosy: Immunotherapy As a Feasible Approach to Control Disease Progression. Front Immunol 2017; 8:1724. [PMID: 29312289 PMCID: PMC5732247 DOI: 10.3389/fimmu.2017.01724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Leprosy remains a health problem in several countries. Current management of patients with leprosy is complex and requires multidrug therapy. Nonetheless, antibiotic treatment is insufficient to prevent nerve disabilities and control Mycobacterium leprae. Successful infectious disease treatment demands an understanding of the host immune response against a pathogen. Immune-based therapy is an effective treatment option for malignancies and infectious diseases. A promising therapeutic approach to improve the clinical outcome of malignancies is the blockade of immune checkpoints. Immune checkpoints refer to a wide range of inhibitory or regulatory pathways that are critical for maintaining self-tolerance and modulating the immune response. Programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4, and lymphocyte-activation gene-3 are the most important immune checkpoint molecules. Several pathogens, including M. leprae, are supposed to utilize these mechanisms to evade the host immune response. Regulatory T cells and expression of co-inhibitory molecules on lymphocytes induce specific T-cell anergy/exhaustion, leading to disseminated and progressive disease. From this perspective, we outline how the co-inhibitory molecules PD-1, PD-L1, and Th1/Th17 versus Th2/Treg cells are balanced, how antigen-presenting cell maturation acts at different levels to inhibit T cells and modulate the development of leprosy, and how new interventions interfere with leprosy development.
Collapse
Affiliation(s)
- Hayana Ramos Lima
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Thaís Helena Gasparoto
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Vinícius Rizzo Marques
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Marina Jurado Vicente
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | | | | | | - João Santana da Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
30
|
de Sousa JR, Sotto MN, Simões Quaresma JA. Leprosy As a Complex Infection: Breakdown of the Th1 and Th2 Immune Paradigm in the Immunopathogenesis of the Disease. Front Immunol 2017; 8:1635. [PMID: 29234318 PMCID: PMC5712391 DOI: 10.3389/fimmu.2017.01635] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Leprosy is a chronic infectious disease whose evolution involves complex immune mechanisms of the host that influence the clinical presentation of the disease. For many years, the main interpretation of the host defense response was based on characterization of the established immune paradigm between T helper (Th) 1 and Th2 lymphocytes. However, with advances in the knowledge of immunology, new approaches have emerged along with the development of new immunological pathways that have changed the interpretation of the long-established paradigm of the polar forms of the disease, especially with the identification of new subtypes of T lymphocytes such as Th9, Th17, Th22, and Tregs. Thus, this review discusses the role of these new subtypes of T helper lymphocytes and how the development of the immune response of these cells modifies the pattern of the Th1/Th2 response in the immunopathogenesis of leprosy.
Collapse
Affiliation(s)
| | - Mirian Nacagami Sotto
- Faculty of Medicine, Department of Pathology, Sao Paulo University, São Paulo, Brazil
| | - Juarez Antonio Simões Quaresma
- Tropical Medicine Center, Federal University of Pará, Belém, Brazil.,Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
| |
Collapse
|
31
|
Azevedo MDCS, Marques H, Binelli LS, Malange MSV, Devides AC, Silva EA, Fachin LRV, Ghidella CC, Soares CT, Garlet GP, Rosa PS, Belone ADFF, Trombone APF. Simultaneous analysis of multiple T helper subsets in leprosy reveals distinct patterns of Th1, Th2, Th17 and Tregs markers expression in clinical forms and reactional events. Med Microbiol Immunol 2017; 206:429-439. [PMID: 28875310 DOI: 10.1007/s00430-017-0519-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/29/2017] [Indexed: 12/01/2022]
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae. Previous studies have demonstrated that the difference among clinical forms of leprosy can be associated with the immune response of patients, mainly by T helper (Th) and regulatory T cells (Tregs). Then, aiming at clarifying the immune response, the expression of cytokines related to Th1, Th2, Th17 and Tregs profiles were evaluated by qPCR in 87 skin biopsies from leprosy patients. Additionally, cytokines and anti-PGL-1 antibodies were determined in serum by ELISA. The results showed that the expression of various targets (mRNA) related to Th1, Th2, Th17 and Tregs were significantly modulated in leprosy when compared with healthy individuals, suggesting the presence of a mixed profile. In addition, the targets related to Th1 predominated in the tuberculoid pole and side and Th2 and Tregs predominated in the lepromatous pole and side; however, Th17 targets showed a mixed profile. Concerning reactional events, Tregs markers were decreased and IL-15 was increased in reversal reaction and IL-17F, CCL20 and IL-8 in erythema nodosum leprosum, when compared with the respective non-reactional leprosy patients. Additionally, ELISA analysis demonstrated that IL-22, IL-6, IL-10 and anti-PGL-1 antibody levels were significantly higher in the serum of patients when compared with healthy individuals, and IL-10 and anti-PGL-1 antibodies were also increased in the lepromatous pole and side. Together, these results indicate that Th1, Th2 and Th17 are involved in the determination of clinical forms of leprosy and suggest that decreased Tregs activity may be involved in the pathogenesis of reactional events.
Collapse
Affiliation(s)
| | - Heloisa Marques
- Centro de Ciências da Saúde, Universidade do Sagrado Coração, Rua Irmã Arminda, 10-50, Jardim Brasil, Bauru, São Paulo, 17.011-160, Brazil
| | - Larissa Sarri Binelli
- Centro de Ciências da Saúde, Universidade do Sagrado Coração, Rua Irmã Arminda, 10-50, Jardim Brasil, Bauru, São Paulo, 17.011-160, Brazil
| | - Mariana Silva Vieira Malange
- Centro de Ciências da Saúde, Universidade do Sagrado Coração, Rua Irmã Arminda, 10-50, Jardim Brasil, Bauru, São Paulo, 17.011-160, Brazil
| | - Amanda Carreira Devides
- Centro de Ciências da Saúde, Universidade do Sagrado Coração, Rua Irmã Arminda, 10-50, Jardim Brasil, Bauru, São Paulo, 17.011-160, Brazil
| | - Eliane Aparecida Silva
- Instituto Lauro de Souza Lima, Rodovia Comandante João Ribeiro de Barros, Km 225/226, Bauru, São Paulo, 17034-971, Brazil
| | - Luciana Raquel Vincenzi Fachin
- Instituto Lauro de Souza Lima, Rodovia Comandante João Ribeiro de Barros, Km 225/226, Bauru, São Paulo, 17034-971, Brazil
| | - Cassio Cesar Ghidella
- Centro de Referência de Hanseníase e Tuberculose, Rua Pedro Guimarães s/n, Bairro Santa Cruz, Rondonópolis, Mato Grosso, 78710-760, Brazil
| | - Cleverson Teixeira Soares
- Instituto Lauro de Souza Lima, Rodovia Comandante João Ribeiro de Barros, Km 225/226, Bauru, São Paulo, 17034-971, Brazil
| | - Gustavo Pompermaier Garlet
- Departamento de Ciências Biológicas, Faculdade de Odontologia de Bauru, Universidade de São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Patrícia Sammarco Rosa
- Instituto Lauro de Souza Lima, Rodovia Comandante João Ribeiro de Barros, Km 225/226, Bauru, São Paulo, 17034-971, Brazil
| | | | - Ana Paula Favaro Trombone
- Centro de Ciências da Saúde, Universidade do Sagrado Coração, Rua Irmã Arminda, 10-50, Jardim Brasil, Bauru, São Paulo, 17.011-160, Brazil.
| |
Collapse
|
32
|
Mycobacterium avium Subsp. paratuberculosis Induces Specific IgE Production in Japanese People with Allergies. Int J Inflam 2017; 2017:7959154. [PMID: 28523203 PMCID: PMC5421096 DOI: 10.1155/2017/7959154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/02/2017] [Indexed: 12/16/2022] Open
Abstract
Background. The prevalence of allergies is steadily increasing worldwide; however, the pathogenesis is still unclear. We hypothesized that Mycobacterium avium subsp. paratuberculosis (MAP) may contribute to allergy development. This organism can be present in dairy foods, it can elicit an immunomodulatory switch from a Th1 to a Th2 response, and it has been speculated that it is linked to several human autoimmune diseases. To determine the contribution, sera from 99 individuals with various atopic disorders and 45 healthy nonallergic controls were assessed for total IgE levels and successively for MAP-specific IgE by ELISA. Results. The mean total serum IgE level in allergic patients was 256 ± 235 IU/mL, and in the healthy controls it was 62 ± 44 IU/mL (AUC = 0.88; p < 0.0001). Among the patient groups, 50 of the 99 subjects had increased IgE total level ≥ 150 IU/mL, while 49 subjects had IgE ≤ 150 IU/mL (mean level: 407 ± 256 IU/mL versus 106 ± 16 IU/mL; p < 0.0001). Additionally, 6 out of 50 subjects (12%) with IgE ≥ 150 IU/mL and none (0%) with IgE ≤ 150 IU/mL were positive for specific MAP IgE (AUC = 0.63; p = 0.03). Conclusion. The present study revealed that MAP has the ability to induce specific IgE and might contribute to the induction of allergic inflammation in genetically predisposed individuals.
Collapse
|
33
|
Saini C, Tarique M, Rai R, Siddiqui A, Khanna N, Sharma A. T helper cells in leprosy: An update. Immunol Lett 2017; 184:61-66. [PMID: 28235552 DOI: 10.1016/j.imlet.2017.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Leprosy is an ancient disease caused by gram positive, rod shaped bacilli called Mycobacterium leprae. Patients present with varied clinico-pathological disease depending on the host immune response to Mycobacterium leprae. Thus tuberculoid (TT) and lepromatous (LL) patients represent two ends of a spectrum where the former shows limited disease, high T cell mediate immune (CMI) response and low antibody (HI) levels in serum. In contrast the latter has low T cell and high humoral immune response i.e antibody levels. The mechanisms underlying these differences have been investigated intensely; however, there is no consensus on the primary immunological basis. Over three decades, Th1 and Th2 paradigm were thought to underling tuberculoid and lepromatous disease respectively. However many patients were shown to have mixed Th1/Th2 pattern of (IFN-γ/IL-4) cytokines. The present review was undertaken with a view to understand the T cells and cytokine dysregulation in leprosy. In recent years the sub classes of T cells that are Regulatory in nature (Treg) have been implicated in immune diseases where they were shown to suppress T cell functions. Additionally Th17 cells secreting IL-17A, IL17F, were implicated in immune inflammation. Taken together these regulatory cells may play a part in influencing immune responses in leprosy.
Collapse
Affiliation(s)
- Chaman Saini
- Department of Biochemistry, All India Institute of Medical sciences, New Delhi 110029, India.
| | - Mohd Tarique
- Department of Biochemistry, All India Institute of Medical sciences, New Delhi 110029, India
| | - Reeta Rai
- Department of Biochemistry, All India Institute of Medical sciences, New Delhi 110029, India
| | | | - Neena Khanna
- Department of Dermatology, All India Institute of Medical sciences, New Delhi 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical sciences, New Delhi 110029, India.
| |
Collapse
|
34
|
Tarique M, Saini C, Naqvi RA, Khanna N, Sharma A, Rao DN. IL-12 and IL-23 modulate plasticity of FoxP3 + regulatory T cells in human Leprosy. Mol Immunol 2017; 83:72-81. [PMID: 28110210 DOI: 10.1016/j.molimm.2017.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/22/2016] [Accepted: 01/07/2017] [Indexed: 12/17/2022]
Abstract
Leprosy is a bacterial disease caused by M. leprae. Its clinical spectrum reflects the host's immune response to the M. leprae and provide an ideal model to investigate the host pathogen interaction and immunological dysregulation. Tregs are high in leprosy patients and responsible for immune suppression of the host by producing IL-10 and TGF-β cytokines. In leprosy, plasticity of Tregs remain unstudied. This is the first study describing the conversion of Tregs into Th1-like and Th17-like cells using in vitro cytokine therapy in leprosy patients. Peripheral blood mononuclear cells from leprosy patients were isolated and stimulated with M. leprae antigen (MLCwA), rIL-12 and rIL-23 for 48h. Expression of FoxP3 in CD4+CD25+ Tregs, intracellular cytokines IFN-γ, TGF-β, IL-10 and IL-17 in Tregs cells were evaluated by flow cytometry (FACS) after stimulation. rIL-12 treatment increases the levels of pStat4 in Tregs and IFN-γ production. In the presence of rIL-23, pStat3+ and IL-17A+ cells increase. rIL-12 and r-IL-23 treatment downregulated the FoxP3 expression, IL-10 and TGF-β production by Tregs and enhances the expression of co-stimulatory molecules (CD80, CD86). In conclusion rIL-12 converts Tregs into IFN-γ producing cells through STAT-4 signaling while rIL-23 converts Tregs into IL-17 producing cells through STAT-3 signaling in leprosy patients. This study may helpful to provide a new avenue to overcome the immunosuprression in leprosy patients using in vitro cytokine.
Collapse
Affiliation(s)
- Mohd Tarique
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, New Delhi, 110029, India
| | - Chaman Saini
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, New Delhi, 110029, India
| | - Raza Ali Naqvi
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, New Delhi, 110029, India
| | - Neena Khanna
- Department of Dermatovenerology, All India Institute of Medical Sciences, AIIMS, New Delhi, 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, New Delhi, 110029, India.
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, New Delhi, 110029, India; GITAM Institute of Medical Sciences and Research, GITAM University, Rushikonda, Visakhapatnam, 530045, India.
| |
Collapse
|
35
|
Crespo FA, Klaes CK, Switala AE, DeWitte SN. Do leprosy and tuberculosis generate a systemic inflammatory shift? Setting the ground for a new dialogue between experimental immunology and bioarchaeology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 162:143-156. [PMID: 27704524 DOI: 10.1002/ajpa.23104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022]
Abstract
It is possible that during long lasting chronic infections such as tuberculosis (TB) and leprosy individuals who generate a stronger immune response will produce a chronic shift in the systemic levels of inflammatory proteins. Consequently, the systemic immunological shift could affect inflammatory responses against other persistent pathogens such as Porphyromonas gingivalis associated with periodontal disease (PD). OBJECTIVE To determine if in vitro exposure to Mycobacterium tuberculosis or M. leprae lysates impacts subsequent immune responses to P. gingivalis; and to propose a new dialogue between experimental immunology and paleopathology. MATERIAL AND METHODS We sequentially (2 days protocol) exposed peripheral blood mononuclear cells (PBMCs) from healthy donors to bacterial lysates either from M. tuberculosis, or M. leprae, or P. gingivalis. After collecting all supernatants, we measured the expression of immune proteins TNFα and IFNγ using an enzyme-linked immunosorbent assay. RESULTS Early exposure (day 1) of PBMCs to M. leprae or M. tuberculosis lysates induces an inflammatory shift detected by the increase of TNFα and IFNγ when the same cells are subsequently (day 2) exposed to oral pathogen P. gingivalis. DISCUSSION By extrapolating these results, we suggest that chronic infections, such as TB and leprosy, could generate a systemic immunological shift that can affect other inflammatory processes such the one present in PD. We propose that the presence and severity of PD should be explored as a proxy for inflammatory status or competence when reconstructing the health profile in past populations.
Collapse
Affiliation(s)
- Fabian A Crespo
- Department of Anthropology, University of Louisville, Louisville, Kentucky
| | | | - Andrew E Switala
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sharon N DeWitte
- Departments of Anthropology and Biological Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
36
|
Field-Friendly Test for Monitoring Multiple Immune Response Markers during Onset and Treatment of Exacerbated Immunity in Leprosy. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:515-519. [PMID: 27030588 DOI: 10.1128/cvi.00033-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/23/2016] [Indexed: 11/20/2022]
Abstract
Acute inflammatory reactions represent the major cause of irreversible neuropathy in leprosy. These tissue-destroying episodes have considerable overlap with acute immunological complications (flares) in several chronic (autoimmune) diseases that similarly warrant early detection. However, the lack of diagnostic tests impedes early diagnosis of these reactions. Here, we evaluated a user-friendly multiplex lateral flow assay for the simultaneous detection of IP-10 and anti-phenolic glycolipid I antibodies for longitudinally monitoring early onset and treatment of leprosy reactions.
Collapse
|
37
|
Bhandarkar SS, Lanka P, Lanka LR, Veledar E, Bonner MY, MacKelfresh J, Arbiser JL. Tuberculosis verrucosa cutis lesions exhibit a greater microvessel count than lupus vulgaris lesions. Exp Dermatol 2016; 25:479-80. [PMID: 26896643 DOI: 10.1111/exd.12980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | - Padmavathy Lanka
- Department of Dermatology, Veterans Administration Medical Center, Atlanta, GA, USA
| | - Lakshmana Rao Lanka
- Department of Pathology, Vinayaka Mission's Medical College, Karaikal, Pondicherry UT, India
| | - Emir Veledar
- Baptist Health South Flordia, Jacksonville, FL, USA
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie MacKelfresh
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology, Vinayaka Mission's Medical College, Karaikal, Pondicherry UT, India
| |
Collapse
|
38
|
Saini C, Siddiqui A, Ramesh V, Nath I. Leprosy Reactions Show Increased Th17 Cell Activity and Reduced FOXP3+ Tregs with Concomitant Decrease in TGF-β and Increase in IL-6. PLoS Negl Trop Dis 2016; 10:e0004592. [PMID: 27035913 PMCID: PMC4818038 DOI: 10.1371/journal.pntd.0004592] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND 50% of leprosy patients suffer from episodes of Type 1/ reversal reactions (RR) and Type 2/ Erythema Nodosum Leprosum (ENL) reactions which lead to morbidity and nerve damage. CD4+ subsets of Th17 cells and CD25+FOXP3+ regulatory T cells (Tregs) have been shown to play a major role in disease associated immunopathology and in stable leprosy as reported by us and others. The aim of our study was to analyze their role in leprosy reactions. METHODOLOGY AND PRINCIPLE FINDINGS Quantitative reverse transcribed PCR (qPCR), flowcytometry and ELISA were used to respectively investigate gene expression, cell phenotypes and supernatant levels of cytokines in antigen stimulated PBMC cultures in patients with stable disease and those undergoing leprosy reactions. Both types of reactions are associated with significant increase of Th17 cells and associated cytokines IL-17A, IL-17F, IL-21, IL-23 and chemokines CCL20, CCL22 as compared to matching stable forms of leprosy. Concurrently patients in reactions show reduction in FOXP3+ Treg cells as well as reduction in TGF-β and increase in IL-6. Moreover, expression of many T cell markers, cytokines, chemokines and signaling factors were observed to be increased in RR as compared to ENL reaction patients. CONCLUSIONS Patients with leprosy reactions show an imbalance in Th17 and Treg populations. The reduction in Treg suppressor activity is associated withhigherTh17cell activity. The combined effect of reduced TGF-β and enhanced IL-6, IL-21 cytokines influence the balance between Th17 or Treg cells in leprosy reactions as reported in the murine models and autoimmune diseases. The increase in Th17 cell associated cytokines may contribute to lesional inflammation.
Collapse
Affiliation(s)
- Chaman Saini
- National Institute of Pathology (ICMR) Safdarjung Hospital Campus, New Delhi, India
| | | | | | - Indira Nath
- National Institute of Pathology (ICMR) Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
39
|
Bahia El Idrissi N, Hakobyan S, Ramaglia V, Geluk A, Morgan BP, Das PK, Baas F. Complement activation in leprosy: a retrospective study shows elevated circulating terminal complement complex in reactional leprosy. Clin Exp Immunol 2016; 184:338-46. [PMID: 26749503 DOI: 10.1111/cei.12767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium leprae infection gives rise to the immunologically and histopathologically classified spectrum of leprosy. At present, several tools for the stratification of patients are based on acquired immunity markers. However, the role of innate immunity, particularly the complement system, is largely unexplored. The present retrospective study was undertaken to explore whether the systemic levels of complement activation components and regulators can stratify leprosy patients, particularly in reference to the reactional state of the disease. Serum samples from two cohorts were analysed. The cohort from Bangladesh included multi-bacillary (MB) patients with (n = 12) or without (n = 46) reaction (R) at intake and endemic controls (n = 20). The cohort from Ethiopia included pauci-bacillary (PB) (n = 7) and MB (n = 23) patients without reaction and MB (n = 15) patients with reaction. The results showed that the activation products terminal complement complex (TCC) (P ≤ 0·01), C4d (P ≤ 0·05) and iC3b (P ≤ 0·05) were specifically elevated in Bangladeshi patients with reaction at intake compared to endemic controls. In addition, levels of the regulator clusterin (P ≤ 0·001 without R; P < 0·05 with R) were also elevated in MB patients, irrespective of a reaction. Similar analysis of the Ethiopian cohort confirmed that, irrespective of a reaction, serum TCC levels were increased significantly in patients with reactions compared to patients without reactions (P ≤ 0·05). Our findings suggests that serum TCC levels may prove to be a valuable tool in diagnosing patients at risk of developing reactions.
Collapse
Affiliation(s)
- N Bahia El Idrissi
- Department of Genome Analysis, Academic Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - S Hakobyan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - V Ramaglia
- Department of Genome Analysis, Academic Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - A Geluk
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - P Kumar Das
- Department of Genome Analysis, Academic Medical Center, Amsterdam, 1105, AZ, the Netherlands.,Department of Clinical Immunology, Colleges of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - F Baas
- Department of Genome Analysis, Academic Medical Center, Amsterdam, 1105, AZ, the Netherlands
| |
Collapse
|
40
|
Neela VSK, Devalraju KP, Pydi SS, Sunder SR, Adiraju KR, Singh SS, Anandaraj MPJS, Valluri VL. Mycobacterial r32-kDa antigen-specific T-cell responses correlate with successful treatment and a heightened anti-microbial response in human leprosy patients. Int Immunol 2016; 28:435-41. [DOI: 10.1093/intimm/dxw009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
|
41
|
The GATA3 gene is involved in leprosy susceptibility in Brazilian patients. INFECTION GENETICS AND EVOLUTION 2016; 39:194-200. [PMID: 26807920 DOI: 10.1016/j.meegid.2016.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/23/2015] [Accepted: 01/21/2016] [Indexed: 11/21/2022]
Abstract
Leprosy outcome is a complex trait and the host-pathogen-environment interaction defines the emergence of the disease. Host genetic risk factors have been successfully associated to leprosy. The 10p13 chromosomal region was linked to leprosy in familial studies and GATA3 gene is a strong candidate to be part of this association. Here, we tested tag single nucleotide polymorphisms at GATA3 in two case-control samples from Brazil comprising a total of 1633 individuals using stepwise strategy. The A allele of rs10905284 marker was associated with leprosy resistance. Then, a functional analysis was conducted and showed that individuals carrying AA genotype express higher levels of GATA-3 protein in lymphocytes. So, we confirmed that the rs10905284 is a locus associated to leprosy and influences the levels of this transcription factor in the Brazilian population.
Collapse
|
42
|
Zhao Y, Bao L, Chan LS, DiPietro LA, Chen L. Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis. PLoS One 2016; 11:e0146451. [PMID: 26752054 PMCID: PMC4709197 DOI: 10.1371/journal.pone.0146451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/17/2015] [Indexed: 01/13/2023] Open
Abstract
Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lei Bao
- Departments of Dermatology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lawrence S. Chan
- Departments of Dermatology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Departments of Immunology and Microbiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Medicine Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
43
|
Sadhu S, Khaitan BK, Joshi B, Sengupta U, Nautiyal AK, Mitra DK. Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy. PLoS Negl Trop Dis 2016; 10:e0004338. [PMID: 26751584 PMCID: PMC4709061 DOI: 10.1371/journal.pntd.0004338] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
T cell defect is a common feature in lepromatous or borderline lepromatous leprosy (LL/BL) patients in contrast to tuberculoid or borderline tuberculoid type (TT/BT) patients. Tuberculoid leprosy is characterized by strong Th1-type cell response with localized lesions whereas lepromatous leprosy is hallmarked by its selective Mycobacterium leprae specific T cell anergy leading to disseminated and progressive disease. FoxP3+ Regulatory T cells (Treg) which are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases also dampen proinflammatory T cells that include T helper 17 (Th17) cells. This study is aimed at evaluating the role of Treg cells in influencing other effector T cells and its relationship with the cytokine polarized state in leprosy patients. Peripheral blood mononuclear cells from of BT/TT (n = 15) and BL/LL (n = 15) patients were stimulated with M. leprae antigen (WCL) in presence of golgi transport inhibitor monensin for FACS based intracellular cytokine estimation. The frequency of Treg cells showed >5-fold increase in BL/LL in comparison to BT/TT and healthy contacts. These cells produced suppressive cytokine, IL-10 in BL/LL as opposed to BT/TT (p = 0.0200) indicating their suppressive function. The frequency of Th17 cells (CD4, CD45RO, IL-17) was, however, higher in BT/TT. Significant negative correlation (r = -0.68, P = 0.03) was also found between IL-10 of Treg cells and IL-17+ T cells in BL/LL. Blocking IL-10/TGF-β restored the IL-17+ T cells in BL/LL patients. Simultaneously, presence of Th17 related cytokines (TGF-β, IL-6, IL-17 and IL-23) decreased the number of FoxP3+ Treg cells concomitantly increasing IL-17 producing CD4+ cells in lepromatous leprosy. Higher frequency of Programmed Death-1/PD-1+ Treg cells and its ligand, PDL-1 in antigen presenting cells (APCs) was found in BL/LL patients. Inhibition of this pathway led to rescue of IFN-γ and IL-17 producing T cells. Results indicate that Treg cells are largely responsible for the kind of immunosuppression observed in BL/LL patients. This study also proves that Treg cells are profoundly affected by the cytokine milieu and this property may be utilized for benefit of the host. Polarized T cell response (Th1/Th2 biased) to Mycobacterium leprae (M. leprae) is believed to be a critical element in the pathogenesis of leprosy and its varied clinical manifestations. However, immune response at the pathologic sites of leprosy is an extremely complex process, particularly in the light of recently evidenced heterogeneity of T cell subsets. FoxP3 positive regulatory T cells (Treg) are one of the most potent hierarchic cell types suppressing the effector T cell function with eventual regulation of immune response elicited by the host during intracellular infections. This study shows the recovery of the cell mediated response by CD4+ T cells by inhibiting the suppressive cytokines, IL-10 and TGF-β and also by blocking of the Programmed Death-1 pathway in cells isolated from lepromatous leprosy patients. Reversal of IL-17 immune response was also achieved by modulating the cytokine milieu of in vitro cell culture and hence provides us cues to counter the M. leprae unresponsiveness in leprosy patients.
Collapse
Affiliation(s)
- Soumi Sadhu
- Department of Transplant Immunology and Immunogenetics, AIIMS, New Delhi, India
| | | | - Beenu Joshi
- Immunology Division, National Jalma Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Agra, India
| | - Utpal Sengupta
- Stanley Browne Research Laboratory, The Leprosy Mission, Shahdara, New Delhi, India
| | | | | |
Collapse
|
44
|
Brennan PJ. 50 Years On: The United States-Japan Cooperative Medical Science Program 1965 -2015; Part II, the Leprosy Joint Panel. NIHON HANSENBYO GAKKAI ZASSHI = JAPANESE JOURNAL OF LEPROSY : OFFICIAL ORGAN OF THE JAPANESE LEPROSY ASSOCIATION 2015; 84:79-86. [PMID: 26630800 DOI: 10.5025/hansen.84.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
de Macedo CS, Anderson DM, Pascarelli BM, Spraggins JM, Sarno EN, Schey KL, Pessolani MCV. MALDI imaging reveals lipid changes in the skin of leprosy patients before and after multidrug therapy (MDT). JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1374-85. [PMID: 26634971 DOI: 10.1002/jms.3708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/17/2015] [Indexed: 05/28/2023]
Abstract
Leprosy still represents a health problem in several countries. Affecting skin and peripheral nerves, it may lead to permanent disabilities. Disturbances on skin lipid metabolism in leprosy were already observed; however, the localization and distribution of lipids could not be accessed. The role of lipids on infectious disease has been fully addressed only recently, as they directly influence immune response. Matrix-assisted laser desorption/ionization imaging mass spectrometry provides a powerful tool to localize and identify lipids in tissues. The aim of this work was to study and compare the changes in lipid distribution of skin biopsies taken from leprosy patients before and after multidrug therapy (MDT). Different species of phosphatidic acid, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin and phosphatidylcholine were detected. Differences in skin lipid signal intensities, as well as in their localization, were observed before and after MDT in every patient. In general, lipid distribution in the skin after MDT had a pattern similar to control skin samples, where most of the lipids were located in the upper part of the dermis and epidermis. This study opens paths to a better understanding of lipid functions in leprosy pathogenesis and immune response.
Collapse
Affiliation(s)
- Cristiana S de Macedo
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Oswaldo Cruz Institute (IOC) - Cellular Microbiology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - David M Anderson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Bernardo M Pascarelli
- Oswaldo Cruz Institute (IOC) - Leprosy Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Euzenir N Sarno
- Oswaldo Cruz Institute (IOC) - Leprosy Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Kevin L Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Maria Cristina V Pessolani
- Oswaldo Cruz Institute (IOC) - Cellular Microbiology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
46
|
Horta-Baas G, Hernández-Cabrera MF, Barile-Fabris LA, del S Romero-Figueroa M, Arenas-Guzmán R. Multibacillary leprosy mimicking systemic lupus erythematosus: case report and literature review. Lupus 2015; 24:1095-1102. [DOI: 10.1177/0961203315574557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Leprosy is an infectious chronic disease with a wide range of clinical and serological manifestations. We report a case of a woman presenting with a malar rash, painless oral ulcers, photosensitivity, arthritis, positive antinuclear antibodies test and leuko-lymphopenia. Our case illustrates an unusual presentation of leprosy initially diagnosed as systemic lupus erythematosus (SLE). After the confirmation of multibacillary leprosy and multidrug therapy recommended by the World Health Organization, a good clinical response was observed. Recognition of rheumatic manifestations in leprosy is important as they may be confused with SLE. A literature review is presented to encourage clinicians to consider leprosy as a differential diagnosis. Specifically in patients with unusual rheumatic manifestations and persistent skin lesions, and when neurological symptoms are present. Leprosy has not been eradicated, so misdiagnosis can be frequent. It is necessary to increase medical practitioner awareness in order start proper treatment.
Collapse
Affiliation(s)
- G Horta-Baas
- Servicio de Reumatología, Hospital General Regional 220, Instituto Mexicano del Seguro Social, Toluca, Estado de México, México
| | - M F Hernández-Cabrera
- Centro de Investigación en Ciencias Médicas, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - L A Barile-Fabris
- Jefe de Servicio del Departamento de Reumatología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Distrito Federal, México
| | - M del S Romero-Figueroa
- Coordinación de Investigación en Salud, Delegación Estado de México Poniente, Instituto Mexicano del Seguro Social, Toluca, México
| | - R Arenas-Guzmán
- Dermatólogo y Micólogo. Jefe de la Sección de Micología. Departamento de Dermatología. Hospital General Dr Manuel Gea González, Distrito Federal, México
| |
Collapse
|
47
|
Saidi W, Gammoudi R, Korbi M, Aounallah A, Boussofara L, Ghariani N, Sriha B, Braham N, Denguezli M, Belajouza C, Nouira R. Hemophagocytic lymphohistiocytosis: an unusual complication of leprosy. Int J Dermatol 2015; 54:1054-9. [DOI: 10.1111/ijd.12792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/02/2014] [Accepted: 06/22/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Wafa Saidi
- Department of Dermatology; Farhat Hached Hospital; Sousse Tunisia
| | - Rima Gammoudi
- Department of Dermatology; Farhat Hached Hospital; Sousse Tunisia
| | - Mouna Korbi
- Department of Dermatology; Farhat Hached Hospital; Sousse Tunisia
| | - Amina Aounallah
- Department of Dermatology; Farhat Hached Hospital; Sousse Tunisia
| | - Lobna Boussofara
- Department of Dermatology; Farhat Hached Hospital; Sousse Tunisia
| | - Najet Ghariani
- Department of Dermatology; Farhat Hached Hospital; Sousse Tunisia
| | | | - Nejia Braham
- Department of Hematology Laboratory; Farhat Hached Hospital; Sousse Tunisia
| | | | | | - Rafia Nouira
- Department of Dermatology; Farhat Hached Hospital; Sousse Tunisia
| |
Collapse
|
48
|
Neela VSK, Suryadevara NC, Shinde VG, Pydi SS, Jain S, Jonnalagada S, Singh SS, Valluri VL, Anandaraj MPJS. Association of Taq I, Fok I and Apa I polymorphisms in Vitamin D Receptor (VDR) gene with leprosy. Hum Immunol 2015; 76:402-5. [PMID: 25890006 DOI: 10.1016/j.humimm.2015.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Vitamin D Receptor (VDR) is a transacting transcription factor which mediates immunomodulatory function and plays a key role in innate and adaptive immune responses through its ligand and polymorphisms in VDR gene may affect its regulatory function. OBJECTIVE To investigate the association of three VDR gene polymorphisms (TaqI rs731236, FokI rs2228570 and ApaI rs7975232) with leprosy. METHODS The study group includes 404 participants of which 222 were leprosy patients (paucibacillary=87, multibacillary=135) and 182 healthy controls. Genotyping was done using PCR-RFLP technique. Statistical analysis was performed using SNP Stats and PLINK software. RESULTS The VDR FokI (rs2228570) ff genotype, ApaI (rs7975232) AA, Aa genotype and haplotype T-f-a, T-F-A were positively associated with leprosy when compared to healthy controls. CONCLUSION The two variants at Fok and Apa positions in VDR gene are significantly associated with leprosy. Genotypes at FokI (ff), ApaI (aa) and haplotype (T-F-a, T-f-a) may contribute to the risk of developing leprosy by altering VDR phenotype/levels subsequently modulation of immune response.
Collapse
Affiliation(s)
| | | | - Vidya Gouri Shinde
- LEPRA India - Blue Peter Public Health & Research Centre (BPHRC), Hyderabad, Telangana, India
| | - Satya Sudheer Pydi
- LEPRA India - Blue Peter Public Health & Research Centre (BPHRC), Hyderabad, Telangana, India
| | - Suman Jain
- Thalassemia and Sickle Cell Anaemia Society (TSCS), Hyderabad, Telangana, India
| | - Subbanna Jonnalagada
- LEPRA India - Blue Peter Public Health & Research Centre (BPHRC), Hyderabad, Telangana, India
| | | | - Vijaya Lakshmi Valluri
- LEPRA India - Blue Peter Public Health & Research Centre (BPHRC), Hyderabad, Telangana, India
| | - M P J S Anandaraj
- LEPRA India - Blue Peter Public Health & Research Centre (BPHRC), Hyderabad, Telangana, India
| |
Collapse
|
49
|
Albuquerque RG, Okazaki KM, Hirotsu C, Tomimori J, Tufik S, Andersen ML. Sleep, Hansen's disease and the immune system--a not so harmonic triad. Med Hypotheses 2015; 84:456-9. [PMID: 25686506 DOI: 10.1016/j.mehy.2015.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/26/2022]
Abstract
Hansen's disease is one of the oldest skin diseases in the world characterized by a spectrum of clinical manifestations that are associated with stigmatization and poor quality of life. It is also considered a model disease for investigating the human immune system because of its association with immune reactions, which are thought to be a reflection of the host's immunological response, promoting intense cellular activity or humoral secretion. This relationship between the cellular and microbial components of skin and their regulation by local immune responses may be modulated by a currently neglected behavior: sleep. Recent studies have demonstrated that sleep deprivation may aggravate the progression of chronic dermatological diseases, which in turn can lead to a non-restorative sleep pattern. Indeed, sleep is essential for immune and skin integrity. Thus, we propose here a hypothesis linking Hansen's disease, sleep and immunity in a bidirectional relationship. Hansen's disease patients may demonstrate a worse sleep quality than the general population through the modulation of immunological environment; and sleep restriction, a hallmark of modern society, being a possible predictor of the disease progression.
Collapse
Affiliation(s)
- Rachel Gimenes Albuquerque
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | - Keity Mey Okazaki
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | - Camila Hirotsu
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, Vila Clementino, 04024-002 São Paulo, SP, Brazil.
| | - Jane Tomimori
- Department of Dermatology, Universidade Federal de São Paulo, Rua Borges Lagoa, 508, Vila Clementino, 04038-001 São Paulo, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | - Monica Levy Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| |
Collapse
|
50
|
de Almeida-Neto FB, Assis Costa VM, Oliveira-Filho AF, de Souza Franco E, Tavares Julião de Lima EV, Barros de Lorena VM, Oliveira de Souza VM, de Sousa Maia MB. TH17 cells, interleukin-17 and interferon-γ in patients and households contacts of leprosy with multibacillary and paucibacillary forms before and after the start of chemotherapy treatment. J Eur Acad Dermatol Venereol 2014; 29:1354-61. [PMID: 25429820 DOI: 10.1111/jdv.12869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/21/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Studies on the immunology of leprosy are fundamental to the understanding of the various forms of clinical manifestation of the disease. In some diseases, lymphocytes TH17 and one of its key cytokines, interleukin-17 has been shown to be essential in developing an effective immune response. In leprosy, involvement of lymphocyte TH17 and interleukin-17 remains understudied. OBJECTIVES This study is the first investigation to examine the association between TH17 cells, interleukin-17 and interferon- γ in patients and households contacts of leprosy. METHODS To document the participation of TH17 cells and interleukin-17 in the immunology of leprosy, to observe the behavior of interferon-γ in relation to interleukin-17 and to verify the differences found between individuals paucibacillary, multibacillary and household contacts, we analyzed samples peripheral blood to identify TH-17 cells, interleukin-17 and IFN-γ; establishing relationships between all the groups. RESULTS There was a significant difference in the results found in the comparison between the paucibacillary and multibacillary groups of patients (P < 0.001), as well with the household contacts (P < 0.005). The polychemotherapeutic treatment modified the profile of immune response in multibacillary patients compared to what was observed before the start of treatment. CONCLUSION The principal finding was that TH17 lymphocytes and interleukin-17 actively participating in the immune response of Hansen's disease as well these cells can stimulate the cellular immunity.
Collapse
Affiliation(s)
- F B de Almeida-Neto
- Department of Pathology, Federal University of Pernambuco (UFPE), Pernambuco, Brazil.,Dermatology, Leprology and Venereology, Amélia de Pontes Health Care Center - Caruaru, Pernambuco, Brazil.,Herbert de Souza Health Care Center - Cabo de Santo Agostinho, Pernambuco, Brazil
| | - V M Assis Costa
- Tropical Medicine, UFPE, Pernambuco, Brazil.,Keizo Asami Imunopathology Laboratory (LIKA), UFPE, Pernambuco, Brazil
| | | | | | | | - V M Barros de Lorena
- Immunology Department, Aggeu Magalhães Research Center, CPqAM / Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| | - V M Oliveira de Souza
- Tropical Medicine, UFPE, Pernambuco, Brazil.,Keizo Asami Imunopathology Laboratory (LIKA), UFPE, Pernambuco, Brazil.,Departament of Pharmaceutical Sciences, UFPE, Pernambuco, Brazil
| | - M B de Sousa Maia
- Departments of Physiology and Pharmacology, Laboratory of Pharmacology of Bioactive Products, UFPE, Pernambuco, Brazil
| |
Collapse
|