1
|
Zewail MB, Doghish AS, El-Husseiny HM, Mady EA, Mohammed OA, Elbadry AMM, Elbokhomy AS, Bhnsawy A, El-Dakroury WA. Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. Biomater Sci 2024. [PMID: 39484700 DOI: 10.1039/d4bm01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, etc. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 17 Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, 10 Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amir S Elbokhomy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdelmenem Bhnsawy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
2
|
Jacob S, Kather FS, Boddu SHS, Shah J, Nair AB. Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024; 16:1333. [PMID: 39458662 PMCID: PMC11510719 DOI: 10.3390/pharmaceutics16101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nanoemulsions (NEs) are submicron-sized heterogeneous biphasic liquid systems stabilized by surfactants. They are physically transparent or translucent, optically isotropic, and kinetically stable, with droplet sizes ranging from 20 to 500 nm. Their unique properties, such as high surface area, small droplet size, enhanced bioavailability, excellent physical stability, and rapid digestibility, make them ideal for encapsulating various active substances. This review focuses on recent advancements, future prospects, and challenges in the field of NEs, particularly in oral, parenteral, and ophthalmic delivery. It also discusses recent clinical trials and patents. Different types of in vitro and in vivo NE characterization techniques are summarized. High-energy and low-energy preparation methods are briefly described with diagrams. Formulation considerations and commonly used excipients for oral, ocular, and ophthalmic drug delivery are presented. The review emphasizes the need for new functional excipients to improve the permeation of large molecular weight unstable proteins, oligonucleotides, and hydrophilic drugs to advance drug delivery rapidly.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
3
|
Laha A, Nasra S, Bhatia D, Kumar A. Advancements in rheumatoid arthritis therapy: a journey from conventional therapy to precision medicine via nanoparticles targeting immune cells. NANOSCALE 2024; 16:14975-14993. [PMID: 39056352 DOI: 10.1039/d4nr02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that mainly affects the inner lining of the synovial joints and leads to chronic inflammation. While RA is not known as lethal, recent research indicates that it may be a silent killer because of its strong association with an increased risk of chronic lung and heart diseases. Patients develop these systemic consequences due to the regular uptake of heavy drugs such as disease-modifying antirheumatic medications (DMARDs), glucocorticoids (GCs), nonsteroidal anti-inflammatory medicines (NSAIDs), etc. Nevertheless, a number of these medications have off-target effects, which might cause adverse toxicity, and have started to become resistant in patients as well. Therefore, alternative and promising therapeutic techniques must be explored and adopted, such as post-translational modification inhibitors (like protein arginine deiminase inhibitors), RNA interference by siRNA, epigenetic drugs, peptide therapy, etc., specifically in macrophages, neutrophils, Treg cells and dendritic cells (DCs). As the target cells are specific, ensuring targeted delivery is also equally important, which can be achieved with the advent of nanotechnology. Furthermore, these nanocarriers have fewer off-site side effects, enable drug combinations, and allow for lower drug dosages. Among the nanoparticles that can be used for targeting, there are both inorganic and organic nanomaterials such as solid-lipid nanoparticles, liposomes, hydrogels, dendrimers, and biomimetics that have been discussed. This review highlights contemporary therapy options targeting macrophages, neutrophils, Treg cells, and DCs and explores the application of diverse nanotechnological techniques to enhance precision RA therapies.
Collapse
Affiliation(s)
- Anwesha Laha
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar - 382055, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
4
|
Bizymis AP, Giannou V, Tzia C. Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity. Molecules 2024; 29:3754. [PMID: 39202834 PMCID: PMC11356815 DOI: 10.3390/molecules29163754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The aim of this study was to develop functional composite edible films or coatings for fruit preservation by the addition of bioactive components in combinations that have not yet been thoroughly studied, according to the relevant literature. Edible films were initially composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio), and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio). The bioactive components incorporated (5, 10 and 15% v/v) were as follows: (i) pomace oil-based nanoemulsion (NE) aiming to enhance barrier properties, and (ii) caffeine (C), aiming to enhance the antioxidant activity of films, respectively. Indeed, NE addition led to very high barrier properties (low oxygen and water vapor permeability), increased flexibility and reduced color. Furthermore, the contribution of these coatings to fresh strawberries' preservation under cold storage was investigated, with very promising results concerning weight loss, color difference, and preservation of fruit moisture and quantity of O2 and CO2 inside the packages. Additionally, C addition led to very high antioxidant activity, reduced color and improved barrier properties. Finally, the contribution of these coatings to avocado's preservation under cold storage was investigated, with very encouraging results for color difference, hardness and peroxide value of the fruit samples.
Collapse
Affiliation(s)
| | | | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Polytechnioupoli, Zografou, 15780 Athens, Greece; (A.-P.B.); (V.G.)
| |
Collapse
|
5
|
de Oliveira TS, Costa AMM, Cabral LMC, Freitas-Silva O, Tonon RV. Physical and biological properties of alginate-based cinnamon essential oil nanoemulsions: Study of two different production strategies. Int J Biol Macromol 2024; 275:133627. [PMID: 38964684 DOI: 10.1016/j.ijbiomac.2024.133627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Nanoemulsions are a promising alternative for essential oil incorporation into active coatings. The influence of the preparation steps order on nanoemulsions' physical properties is still little explored. This study aimed to analyze the effect of the sequence of preparation steps and of the oil and polymer concentration on the stability, physical properties, and antifungal activity of alginate-based cinnamon essential oil nanoemulsions. The nanoemulsions were produced by two strategies: (I) preparation directly into an alginate solution (Ultra-Turrax at 10,000 rpm for 5 min + Ultrasound 150 W for 3 min); and (II) preparation in water (Ultra-Turrax at 10,000 rpm for 5 min + Ultrasound 150 W for 3 min) followed by homogenization with a sodium alginate solution (Ultra-Turrax at 10,000 rpm for 1, 3 or 5 min). The nanoemulsion prepared by the second strategy showed better stability, physical properties, and antifungal activity. In general, the presence of alginate hindered the cavitation effects of ultrasound, leading to the increase of droplets size and consequently affecting emulsions stability, turbidity, and antifungal properties.
Collapse
Affiliation(s)
- Tamires Sousa de Oliveira
- Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil.
| | - André Mesquita Magalhães Costa
- Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Lourdes Maria Corrêa Cabral
- Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil; Embrapa Agroindústria de Alimentos, Rio de Janeiro, Brazil
| | | | - Renata Valeriano Tonon
- Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil; Embrapa Agroindústria de Alimentos, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Engelmann JI, de Farias BS, Igansi AV, Silva PP, Cadaval TRS, Gelesky MA, Crexi VT, de Almeida Pinto LA. Chitosan-based nanocapsules by emulsification containing PUFA concentrates from tuna oil. FOOD SCI TECHNOL INT 2024; 30:317-328. [PMID: 36703262 DOI: 10.1177/10820132231153496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chitosan nanocapsules containing polyunsaturated fatty acid (PUFA) concentrates from tuna oil, with EPA + DHA contents around 57% (w/w), were developed by emulsification process, using different chitosan concentration (1.0%, 1.5%, 2.0%, w/v) and stirring speed (10,000, 15,000, 20,000 rpm). The effects of these parameters on particle size and zeta potential were evaluated. The physical and oxidative stabilities were used to measure the product quality during storage. Chitosan concentration, stirring speed and its interaction significantly affected (p < 0.05) the particle size. In addition, chitosan concentration significantly affected (p < 0.05) the zeta potential of nanocapsules emulsion. Based on the results of physical and oxidative stabilities, the nanocapsules were stable for 30 days under refrigeration temperature (7 °C), and with 1.5-2% chitosan resulted in improved protection against oil oxidation. The nanocapsules produced with 2% chitosan and 10,000 rpm showed the lowest variations of polydispersity index and nanocapsules size after 30 days of storage (221.8 ± 3.0 nm). These conditions can be considered the most suitable to produce nanocapsules of PUFA concentrates from tuna oil using chitosan as wall material. These nanocapsules showed physical characteristics and oxidative stability, which could enable their application in the food industry, representing an important source of EPA and DHA fatty acids.
Collapse
Affiliation(s)
- Jenifer Ines Engelmann
- School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Bruna Silva de Farias
- School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Andrei Vallerão Igansi
- School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Patrick Peres Silva
- School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | | | - Valéria Terra Crexi
- Laboratory of Food Engineering, Federal University of Pampa - Bagé Campus, Bagé, RS, Brazil
| | | |
Collapse
|
7
|
Agustinisari I, Mulia K, Harimurti N, Nasikin M, Rienoviar, Herawati H, Manalu LP. The Potency of Maillard Conjugates Containing Whey Protein as Natural Emulsifier. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:3254132. [PMID: 38962097 PMCID: PMC11222009 DOI: 10.1155/2024/3254132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024]
Abstract
There is a continued need for the advancement of natural emulsifiers to replace synthetic emulsifiers, driven by human health concerns. This study is aimed at producing protein-polysaccharide conjugates through the Maillard reaction and at evaluating its ability as an emulsifier based on its emulsifying properties. The proteins used in this study were bovine milk whey protein and soy protein isolates, while the polysaccharides were maltodextrin and pectin. The protein-polysaccharide conjugation used a Maillard reaction under dry heating conditions. The protein and polysaccharide mass ratios were 1 : 2 and 1 : 3. The results showed that the types of proteins and polysaccharides and their mass affect the surface tension of the conjugate products. Whey protein-pectin conjugates with a mass ratio of 1 : 2 and a concentration of 1% had the lowest surface tension at 43.77 dyne/cm2. This conjugate sample also showed the highest emulsifying index at 27.20 m2/g. The conjugate powder containing pectin as a polysaccharide showed better emulsifying activity than that of those containing maltodextrin. However, the smallest droplet size of the emulsion (256.5 nm) resulted from the emulsification process using whey protein-maltodextrin conjugates as an emulsifier. The FTIR and gel electrophoresis (SDS-PAGE) analysis confirmed the conjugation formation. In general, protein-polysaccharide conjugates containing whey protein could potentially act as a natural emulsifier for food.
Collapse
Affiliation(s)
- Iceu Agustinisari
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Kamarza Mulia
- Department of Chemical EngineeringUniversitas Indonesia, Depok 16424, Indonesia
| | - Niken Harimurti
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Mohammad Nasikin
- Department of Chemical EngineeringUniversitas Indonesia, Depok 16424, Indonesia
| | - Rienoviar
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Heny Herawati
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Lamhot Parulian Manalu
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| |
Collapse
|
8
|
Sathiyaseelan A, Zhang X, Han K, Wang MH. Enhancing antifungal and biocompatible efficacy of undecanoic acid through incorporation with chitosan-based nanoemulsion. Int J Biol Macromol 2024; 267:131328. [PMID: 38574901 DOI: 10.1016/j.ijbiomac.2024.131328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
The management of invasive fungal infections in humans poses significant challenges due to the intricate nature of the treatment, which is both arduous and costly, necessitating routine diagnostic procedures. Consequently, this investigation aimed to formulate a chitosan-based nanoemulsion (CS NEMs) incorporating the antifungal agent undecanoic acid (UDA), characterizing these NEMs and assessing their antifungal efficacy against both filamentous and non-filamentous fungal pathogens. The CS-based UDA NEMs were synthesized by introducing the surfactant Triton X-100 and the stabilizer glycerol. Nanoparticle tracking analysis (NTA) and SEM demonstrated the CS-UDA NEMs with an average size of 145 nm and 164.5 ± 24 nm, respectively. The successful formation of CS-UDA NEMs was verified through FTIR and XRD. CS-UDA NEMs exhibited exceptional inhibition against Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Candida albicans with MFC of 500, 500, 250 and 250 μg/mL, respectively. Additionally, CS-UDA NEMs displayed comparatively lower antioxidant activity as determined by DPPH and ABTS radical scavenging assays. Importantly, CS-UDA NEMs demonstrated no cytotoxic effects on NIH3T3 cells even at higher concentration (1000 μg/mL), as confirmed by cell viability and fluorescent staining assays. In conclusion, this study suggests that the developed CS-UDA NEMs hold promise as potent antifungal agents with diverse potential applications.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kiseok Han
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
9
|
Sara RJ, Coers D, Behrman C, Bobay J, Subir M. Molecular Adsorption and Physicochemical Properties at Liquid/Liquid Nanoemulsion Soft Interfaces: Effect of Charge and Hydrophobicity. J Phys Chem B 2024. [PMID: 38498699 DOI: 10.1021/acs.jpcb.3c07907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Contrary to the popular adage, "Oil and water do not mix", evidence of mixtures comprising the two "immiscible" liquids is universal. In the presence of an emulsifier, oil and water mix to form a colloidal suspension known as emulsion. Their utility in many areas such as food chemistry, biomedical health sectors, catalysis, and the petroleum industry is well recognized. While their application in our society is pervasive, tantalizing fundamental questions regarding the chemistry that takes place at the oil/water soft interface still linger. For instance, do organic compounds show proclivity for this molecularly thin boundary and, if so, what forces, hydrophobic or pure electrostatic among others, drive the molecular interactions? The focus of this Article is on molecular adsorption at the interface of oil-in-water (O/W) nanoemulsion (NE) droplets. The effect of the interfacial surfactant charge (positive, negative, zwitterionic, and neutral) on the affinity of aromatic organic compounds on the O/W NEs has been studied. Using a second harmonic generation (SHG), a nonlinear light scattering technique, we have explored the adsorption equilibrium of charged and neutral organic dyes. By variation of the surfactant functional group and thereby the interfacial charge properties, the source of the adsorption interaction, if any, has been deduced. The population of surfactants containing a charged functional group at the O/W interface is found to be sparse, yet adsorption at some of these interfaces has been observed. A purely electrostatic Coulomb interaction plays a key role, but the presence of a charged interface does not necessitate molecular adsorption. Hydrophobic interactions are not a major driving force of adsorption for the SHG dyes studied. However, a possible pi-interaction is likely in explaining the accumulation of neutral aromatic compounds at the O/W NE interface. These intricate adsorption features are discussed in the context of NE interfacial charge properties and their stability upon molecular adsorption.
Collapse
Affiliation(s)
- Rubyat J Sara
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Derek Coers
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Charles Behrman
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Jaron Bobay
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Mahamud Subir
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
10
|
Tan WN, Samling BA, Tong WY, Chear NJY, Yusof SR, Lim JW, Tchamgoue J, Leong CR, Ramanathan S. Chitosan-Based Nanoencapsulated Essential Oils: Potential Leads against Breast Cancer Cells in Preclinical Studies. Polymers (Basel) 2024; 16:478. [PMID: 38399856 PMCID: PMC10891598 DOI: 10.3390/polym16040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Since ancient times, essential oils (EOs) derived from aromatic plants have played a significant role in promoting human health. EOs are widely used in biomedical applications due to their medicinal properties. EOs and their constituents have been extensively studied for treating various health-related disorders, including cancer. Nonetheless, their biomedical applications are limited due to several drawbacks. Recent advances in nanotechnology offer the potential for utilising EO-loaded nanoparticles in the treatment of various diseases. In this aspect, chitosan (CS) appears as an exceptional encapsulating agent owing to its beneficial attributes. This review highlights the use of bioactive EOs and their constituents against breast cancer cells. Challenges associated with the use of EOs in biomedical applications are addressed. Essential information on the benefits of CS as an encapsulant, the advantages of nanoencapsulated EOs, and the cytotoxic actions of CS-based nanoencapsulated EOs against breast cancer cells is emphasised. Overall, the nanodelivery of bioactive EOs employing polymeric CS represents a promising avenue against breast cancer cells in preclinical studies.
Collapse
Affiliation(s)
- Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | - Benedict Anak Samling
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Woei-Yenn Tong
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Selangor, Malaysia
| | - Nelson Jeng-Yeou Chear
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Joseph Tchamgoue
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Chean-Ring Leong
- Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Alor Gajah 78000, Melaka, Malaysia;
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| |
Collapse
|
11
|
Al-Gethami W, Qamar MA, Shariq M, Alaghaz ANMA, Farhan A, Areshi AA, Alnasir MH. Emerging environmentally friendly bio-based nanocomposites for the efficient removal of dyes and micropollutants from wastewater by adsorption: a comprehensive review. RSC Adv 2024; 14:2804-2834. [PMID: 38234871 PMCID: PMC10792434 DOI: 10.1039/d3ra06501d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Water scarcity will worsen due to population growth, urbanization, and climate change. Addressing this issue requires developing energy-efficient and cost-effective water purification technologies. One approach is to use biomass to make bio-based materials (BBMs) with valuable attributes. This aligns with the goal of environmental conservation and waste management. Furthermore, the use of biomass is advantageous because it is readily available, economical, and has minimal secondary environmental impact. Biomass materials are ideal for water purification because they are abundant and contain important functional groups like hydroxyl, carboxyl, and amino groups. Functional groups are important for modifying and absorbing contaminants in water. Single-sourced biomass has limitations such as weak mechanical strength, limited adsorption capacity, and chemical instability. Investing in research and development is crucial for the development of efficient methods to produce BBMs and establish suitable water purification application models. This review covers BBM production, modification, functionalization, and their applications in wastewater treatment. These applications include oil-water separation, membrane filtration, micropollutant removal, and organic pollutant elimination. This review explores the production processes and properties of BBMs from biopolymers, highlighting their potential for water treatment applications. Furthermore, this review discusses the future prospects and challenges of developing BBMs for water treatment and usage. Finally, this review highlights the importance of BBMs in solving water purification challenges and encourages innovative solutions in this field.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University Al-Hawiah, PO Box 11099 Taif City Saudi Arabia
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University Jazan 45142 Saudi Arabia
| | | | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38040 Pakistan
| | - Ashwaq A Areshi
- Samtah General Hospital, Ministry of Health Jazan 86735 Saudi Arabia
| | - M Hisham Alnasir
- Department of Physics, RIPHAH International University Islamabad 44000 Pakistan
| |
Collapse
|
12
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
13
|
Panwar A, Kumar V, Dhiman A, Thakur P, Sharma V, Sharma A, Kumar S. Nanoemulsion based edible coatings for quality retention of fruits and vegetables-decoding the basics and advancements in last decade. ENVIRONMENTAL RESEARCH 2024; 240:117450. [PMID: 37875173 DOI: 10.1016/j.envres.2023.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Fruits and vegetables (F&V) are highly perishable and have important contributions to nutritional and economic sustainability. Although the developing nations have shown an immense increase in the production of horticultural commodities, the post-harvest losses are significant and have an adverse impact on the resources, economy, and environment as well. Nanoemulsion-based carriers are recognized for their diversity, natural origin, and immense potential to restrict losses while boosting the functional attributes of produce. The recent findings attest to nanoemulsions potential for extending the shelf life, managing quality, and reducing the losses of the perishables for sustainable livelihood of the farmers. However, further studies are required to evaluate the biological fate, safety, or potential toxicity of the nanoemulsion-based edible coatings. This review precisely focuses on various matrices used in the production of nanoemulsions, fabrication methods, characterization techniques, and the use of natural emulsifiers instead of chemicals. The future research focus stresses on developing low-cost fabrication techniques for nanoemulsion, improvement of the transmission properties i. e gas transmission rate (GTR), water vapor transmission rate (WVTR), and enhancing the performance of monolayer, bilayer, and other composite nanoemulsion base films. This beyond reducing the postharvest losses shall also restrict burden of the food waste management and related environmental issues at the same time.
Collapse
Affiliation(s)
- Anika Panwar
- Department of Food Science & Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan HP, 173230, India
| | - Vikas Kumar
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana. Punjab, 141027, India
| | - Atul Dhiman
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana. Punjab, 141027, India
| | - Priyanka Thakur
- Department of Food Science & Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan HP, 173230, India
| | - Vishal Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan (HP), 173229, India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur, Hamirpur, HP, 176041, India
| | - Satish Kumar
- Department of Food Science & Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan HP, 173230, India.
| |
Collapse
|
14
|
Soni M, Yadav A, Maurya A, Das S, Dubey NK, Dwivedy AK. Advances in Designing Essential Oil Nanoformulations: An Integrative Approach to Mathematical Modeling with Potential Application in Food Preservation. Foods 2023; 12:4017. [PMID: 37959136 PMCID: PMC10648556 DOI: 10.3390/foods12214017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Preservation of foods, along with health and safety issues, is a growing concern in the current generation. Essential oils have emerged as a natural means for the long-term protection of foods along with the maintenance of their qualities. Direct applications of essential oils have posed various constraints to the food system and also have limitations in application; hence, encapsulation of essential oils into biopolymers has been recognized as a cutting-edge technology to overcome these challenges. This article presents and evaluates the strategies for the development of encapsulated essential oils on the basis of fascination with the modeling and shuffling of various biopolymers, surfactants, and co-surfactants, along with the utilization of different fabrication processes. Artificial intelligence and machine learning have enabled the preparation of different nanoemulsion formulations, synthesis strategies, stability, and release kinetics of essential oils or their bioactive components from nanoemulsions with improved efficacy in food systems. Different mathematical models for the stability and delivery kinetics of essential oils in food systems have also been discussed. The article also explains the advanced application of modeling-based encapsulation strategies on the preservation of a variety of food commodities with their intended implication in food and agricultural industries.
Collapse
Affiliation(s)
| | | | | | | | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India; (M.S.); (A.Y.); (A.M.); (S.D.); (N.K.D.)
| |
Collapse
|
15
|
Hessel V, Escribà-Gelonch M, Schmidt S, Tran NN, Davey K, Al-Ani LA, Muhd Julkapli N, Abdul Wahab Y, Khalil I, Woo MW, Gras S. Nanofood Process Technology: Insights on How Sustainability Informs Process Design. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:11437-11458. [PMID: 37564955 PMCID: PMC10410668 DOI: 10.1021/acssuschemeng.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Nanostructured products are an actively growing area for food research, but there is little information on the sustainability of processes used to make these products. In this Review, we advocate for selection of sustainable process technologies during initial stages of laboratory-scale developments of nanofoods. We show that selection is assisted by predictive sustainability assessment(s) based on conventional technologies, including exploratory ex ante and "anticipatory" life-cycle assessment. We demonstrate that sustainability assessments for conventional food process technologies can be leveraged to design nanofood process concepts and technologies. We critically review emerging nanostructured food products including encapsulated bioactive molecules and processes used to structure these foods at laboratory, pilot, and industrial scales. We apply a rational method via learning lessons from sustainability of unit operations in conventional food processing and critically apportioned lessons between emerging and conventional approaches. We conclude that this method provides a quantitative means to incorporate sustainability during process design for nanostructured foods. Findings will be of interest and benefit to a range of food researchers, engineers, and manufacturers of process equipment.
Collapse
Affiliation(s)
- Volker Hessel
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | | | - Svenja Schmidt
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Nam Nghiep Tran
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Kenneth Davey
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Lina A. Al-Ani
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasmin Abdul Wahab
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ibrahim Khalil
- Healthcare
Pharmaceuticals Limited, Rajendrapur, Gazipur 1741, Bangladesh
| | - Meng Wai Woo
- Department
of Chemical & Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Sally Gras
- Department
of Chemical Engineering and Bio21 Molecular Science and Biotechnology
Institute, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
16
|
Malekjani N, Karimi R, Assadpour E, Jafari SM. Control of release in active packaging/coating for food products; approaches, mechanisms, profiles, and modeling. Crit Rev Food Sci Nutr 2023; 64:10789-10811. [PMID: 37401796 DOI: 10.1080/10408398.2023.2228413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Antimicrobial or antioxidant active packaging (AP) is an emerging technology in which a bioactive antimicrobial or antioxidant agent is incorporated into the packaging material to protect the contained product during its shelf life from deterioration. The important issue in AP is making a balance between the deterioration rate of the food product and the controlled release of the bioactive agent. So, the AP fabrication should be designed in such a way that fulfills this goal. Modeling the controlled release is an effective way to avoid trial and error and time-consuming experimental runs and predict the release behavior of bioactive agents in different polymeric matrices and food/food simulants. To review the release of bioactive compounds from AP, in the first part of this review we present an introductory explanation regarding the release controlling approaches in AP. Then the release mechanisms are explained which are very important in defining the appropriate modeling approach and also the interpretation of the modeling results. Different release profiles that might be observed in different packaging systems are also introduced. Finally, different modeling approaches including empirical and mechanistic techniques are covered and the recent literature regarding the utilization of such approaches to help design new AP is thoroughly studied.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
17
|
Mushtaq A, Mohd Wani S, Malik A, Gull A, Ramniwas S, Ahmad Nayik G, Ercisli S, Alina Marc R, Ullah R, Bari A. Recent insights into Nanoemulsions: Their preparation, properties and applications. Food Chem X 2023; 18:100684. [PMID: 37131847 PMCID: PMC10149285 DOI: 10.1016/j.fochx.2023.100684] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
The ever-increasing demand for healthy diet by consumers has prompted the research adopting cutting-edge methods that can maintain the quality of fruits and vegetables without the use of preservatives. Emulsion based coating approach has been regarded as a viable way to extend the shelf life of fresh produce. New opportunities are being created in a number of industries, (medicines, cosmetics and food) because of new advancements in the developing field of nanoemulsions. Nanoemulsion based methods are efficient for encapsulating the active ingredients including antioxidants, lipids, vitamins and antimicrobial agents owing to the small droplet size, stability and improved biological activity. This review provides an overview of recent developments in preserving the quality and safety of fresh-cut fruits & vegetables with nanoemulsion as a carrier of functional compounds (antimicrobial agents, antibrowning/antioxidants and texture enhancers). In addition, material and methods used for fabrication of the nanoemulsion is also described in this review. In addition, material and methods used for fabrication, of the nanoemulsion is also present.
Collapse
Affiliation(s)
- Abeeda Mushtaq
- Division of Food Science and Technology, Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, Jammu and Kashmir, India
- Corresponding authors.
| | - A.R. Malik
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
- Corresponding authors.
| | - Amir Gull
- Department of Food Science and Technology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College Shopian, J&K, India
- Corresponding authors.
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Cardoso LT, Alexandre B, Cacciatore FA, Magedans YVDS, Fett-Neto AG, Contri RV, Malheiros PDS. Carvacrol-loaded nanoemulsions produced with a natural emulsifier for lettuce sanitization. Food Res Int 2023; 168:112748. [PMID: 37120202 DOI: 10.1016/j.foodres.2023.112748] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Carvacrol is an antimicrobial agent that shows potential for eliminating microorganisms in vegetables, increasing food safety. However, intense odor and low water solubility of carvacrol are limiting factors for its application for fresh vegetables sanitization, which can be overcome by nanotechnology. Two different nanoemulsions containing carvacrol (11 mg/mL) were developed by probe sonication: carvacrol-saponin nanoemulsion (CNS) and carvacrol-polysorbate 80 nanoemulsion (CNP). Formulations presented appropriate droplet sizes (from 74.7 nm to 168.2 nm) and high carvacrol encapsulation efficiency (EE) (from 89.5 % to 91.5 %). CNS showed adequate droplet size distribution (PDI < 0.22) and high zeta potential values (around -30 mV) compared to CNP, with saponin chosen for the following experiments. Carvacrol nanoemulsions presented Bacterial Inactivation Concentration (BIC) against the Salmonella cocktail from 5.51 to 0.69 mg/mL and for the E. coli cocktail from 1.84 to 0.69 mg/mL. Among all tested nanoemulsions, CNS1 presented the lowest BIC (0.69 mg/mL) against both bacterial cocktails. Damage to bacterial cells in lettuce treated with nanoemulsion was confirmed by scanning electron microscopy. For lettuce sanitization, CNS1 showed a similar effect to unencapsulated carvacrol, with a high bacterial reduction (>3 log CFU/g) after lettuce immersion for 15 min at 2 × BIC. Using the same immersion time, the CNS1 (2 × BIC) demonstrated equal or better efficacy in reducing both tested bacterial cocktails (>3 log CFU/g) when compared to acetic acid (6.25 mg/mL), citric acid (25 mg/mL), and sodium hypochlorite solution (150 ppm). Lettuce immersed in CNS1 at both concentrations (BIC and 2 × BIC) did not change the color and texture of leaves, while the unencapsulated carvacrol at 2 × BIC darkened them and reduced their firmness. Consequently, carvacrol-saponin nanoemulsion (CNS1) proved to be a potential sanitizer for lettuce.
Collapse
Affiliation(s)
- Louise Thomé Cardoso
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Bibiana Alexandre
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Fabiola Ayres Cacciatore
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Yve Verônica da Silva Magedans
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Instituto de Biociências (Departamento de Botânica), Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Arthur Germano Fett-Neto
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Instituto de Biociências (Departamento de Botânica), Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Renata Vidor Contri
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Patrícia da Silva Malheiros
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.
| |
Collapse
|
19
|
Deng W, Zheng H, Zhu Z, Deng Y, Shi Y, Wang D, Zhong Y. Effect of Surfactant Formula on the Film Forming Capacity, Wettability, and Preservation Properties of Electrically Sprayed Sodium Alginate Coats. Foods 2023; 12:foods12112197. [PMID: 37297442 DOI: 10.3390/foods12112197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Surfactants are always added to coating formulations to ensure good adhesion of edible coatings to a product's surface and to maintain freshness. In this study, the effects of the mix surfactants Tween 20 and Span 80 with different hydrophile-lipophile balance (HLB) values on the film-forming ability, wettability, and preservation capacity of blueberry sodium alginate coating were investigated. The results indicated that Tween 20 obviously ensured favorable wettability and improved the uniformity and mechanical properties of the resulting film. While the addition of Span 80 reduced the mean particle size of the coating, enhanced the water resistance of the film, and helped to reduce blueberry weight loss. A sodium alginate coating with low viscosity and medium HLB could better inhibit the galactose, sucrose, and linoleic acid metabolism of blueberries, reduce the consumption of phenols, promote the accumulation of flavonoids, and thus display superior coating performance. In summary, sodium alginate coating with medium HLB had comprehensive advantages in film-forming ability and wettability and was conducive to the fresh-keeping role.
Collapse
Affiliation(s)
- Wanqing Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyuan Zheng
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zichun Zhu
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuchen Shi
- Shanghai SOLON Information Technology Co., Ltd., Shanghai 201108, China
| | - Danfeng Wang
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Zhong
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Xu J, Zhu X, Zhang J, Li Z, Kang W, He H, Wu Z, Dong Z. Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series. ULTRASONICS SONOCHEMISTRY 2023; 97:106451. [PMID: 37257207 DOI: 10.1016/j.ultsonch.2023.106451] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly suffered from a low ultrasonic energy efficiency caused by the large acoustic impedance and energy consumption, subordinately confronted with a low throughput, complicated fabrication with complex structure and weak ultrasonic cavitation. Herein, we employed a typical ultrasonic microreactor (USMR) that ensured the high-efficient energy input and generated intense cavitation behavior for efficient breakage of droplets and continuous production of unified oil-in-water (O/W) nanoemulsions in a single cycle and without any pre-emulsification treatment. The emulsification was optimized by tuning the formula indexes, technological parameters, and numerical analysis using Response Surface Methodology (RSM), followed by a comparison with the emulsification by a traditional ultrasonic probe. The USMR exhibited superior emulsification efficiency and easy scale-up with remarkable uniformity by series mode. In addition, concurrent and uniform nanoemulsions with high throughput could also be achieved by a larger USMR with high ultrasonic power. Based on RSM analysis, uniform DS and PDI of 96.4 nm and 0.195 were observed under the optimal conditions, respectively, well consistent with the predicted values. Impressively, the optimal nanoemulsions have a uniform spherical morphology and exhibited superior stability, which held well in 45 days at 4℃ and 25℃. The results in the present work may provide a typical paradigm for the preparation of functional nanomaterials based on the novel and efficient emulsification tools.
Collapse
Affiliation(s)
- Jiahong Xu
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 515063 Shantou, China; Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Xiaojing Zhu
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China.
| | - Jie Zhang
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Zhipeng Li
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Wenjiang Kang
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Haibo He
- MoGe um-Flow Technology Co., Ltd., 515031 Shantou, China
| | - Zhilin Wu
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 515063 Shantou, China; Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Zhengya Dong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 515063 Shantou, China; Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China.
| |
Collapse
|
21
|
Manzoor M, Sharma P, Murtaza M, Jaiswal AK, Jaglan S. Fabrication, characterization, and interventions of protein, polysaccharide and lipid-based nanoemulsions in food and nutraceutical delivery applications: A review. Int J Biol Macromol 2023; 241:124485. [PMID: 37076071 DOI: 10.1016/j.ijbiomac.2023.124485] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The fabrication and application of nanoemulsions for incorporating and delivering diverse bioactive compounds, particularly hydrophobic substances, is becoming an increasing focus of research with the potential to improve the nutritional and health status of individuals. Constant advancements in nanotechnological approaches aid in the creation of nanoemulsions using diverse biopolymers such as proteins, peptides, polysaccharides, and lipids to improve the stability, bioactivity, and bioavailability of active hydrophilic and lipophilic compounds. This article provides a comprehensive overview of various techniques used to create and characterize nanoemulsions as well as theories for understanding their stability. The article also highlights the advancement of nanoemulsions in boosting the bioaccessibility of nutraceuticals to help advance their potential use in various food and pharmaceutical formulations.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, Punjab 144411, India.
| | - Priyanshu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Mohd Murtaza
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
22
|
Hadidi M, Tan C, Assadpour E, Kharazmi MS, Jafari SM. Emerging plant proteins as nanocarriers of bioactive compounds. J Control Release 2023; 355:327-342. [PMID: 36731801 DOI: 10.1016/j.jconrel.2023.01.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The high prevalence of chronic illnesses, including cancer, diabetes, obesity, and cardiovascular diseases has become a growing concern for modern society. Recently, various bioactive compounds (bioactives) are shown to have a diversity of health-beneficial impacts on a wide range of disorders. But the application of these bioactives in food and pharmaceutical formulations is limited due to their poor water solubility and low bioaccessibility/bioavailability. Plant proteins are green alternatives for designing biopolymeric nanoparticles as appropriate nanocarriers thanks to their amphiphilic nature compatible with many bioactives and unique functional properties. Recently, emerging plant proteins (EPPs) are employed as nanocarriers for protection and targeted delivery of bioactives and also improving their stability and shelf-life. EPPs could enhance the solubility, stability, and bioavailability of bioactives by different types of delivery systems. In addition, the use of EPPs in combination with other biopolymers like polysaccharides was found to make a favorable wall material for food bioactives. This review article covers the various sources and importance of EPPs along with different encapsulation techniques of bioactives. Characterization of EPPs for encapsulation is also investigated. Furthermore, the focus is on the application of EPPs as nanocarriers for food bioactives.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
23
|
Rathod NB, Meral R, Siddiqui SA, Nirmal N, Ozogul F. Nanoemulsion-based approach to preserve muscle food: A review with current knowledge. Crit Rev Food Sci Nutr 2023; 64:6812-6833. [PMID: 36789616 DOI: 10.1080/10408398.2023.2175347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Muscle foods are regarded as nutritionally dense foods while they are prone to spoilage by action of microorganism and oxidation. Recently, the consumer's preference is mostly toward minimally processed foods as well as preserved with natural preservatives. However, natural extract directly to the food matrix has several drawbacks. Hence development and applications of nanoemulsion has gained importance for the preservation of muscle foods to meet consumer requirements with enhanced food safety. Nanoemulsion utilizes natural extracts at much lower concentration with higher preservative abilities over original components. Nanoemulsions offer protection to the active component from degradation and ensure longer bioavailability. Novel techniques used for formulation of nanoemulsion provide stability to the emulsion with desirable qualities to improve their impacts. The application of nanoemulsion is known to enhance the preservative action of nanoemulsions by improving the microbial safety and oxidative stability in nanoform. This review provides recent updates on different methods used for formulation of nanoemulsions from different sources. Besides, successful application of nanoemulsion derived using natural agents for muscle food preservation and shelf life extension are reviewed. Thus, the application of nanoemulsion to extend shelf life and maintain quality is suggested for muscle foods.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post-Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth) Roha, Raigad, Maharashtra, India
| | - Raciye Meral
- Faculty of Engineering, Department of Food Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
24
|
Casalini S, Giacinti Baschetti M. The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1021-1041. [PMID: 35396735 PMCID: PMC10084250 DOI: 10.1002/jsfa.11918] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, interest in sustainable food packaging systems with additional functionality, able to increase the shelf life of products, has grown steadily. Following this trend, the present review analyzes the state of the art of this active renewable packaging. The focus is on antimicrobial systems containing nanocellulose and chitosan, as support for the incorporation of essential oils. These are the most sustainable and readily available options to produce completely natural active packaging materials. After a brief overview of the different active packaging technologies, the main features of nanocellulose, chitosan, and of the different essential oils used in the field of active packaging are introduced and described. The latest findings about the nanocellulose- and chitosan-based active packaging are then presented. The antimicrobial effectiveness of the different solutions is discussed, focusing on their effect on other material properties. The effect of the different inclusion strategies is also reviewed considering both in vivo and in vitro studies, in an attempt to understand more promising solutions and possible pathways for further development. In general, essential oils are very successful in exerting antimicrobial effects against the most diffused gram-positive and gram-negative bacteria, and affecting other material properties (tensile strength, water vapor transmission rate) positively. Due to the wide variety of biopolymer matrices and essential oils available, it is difficult to create general guidelines for the development of active packaging systems. However, more attention should be dedicated to sensory analysis, release kinetics, and synergetic action of different essential oils to optimize the active packaging on different food products. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Casalini
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| |
Collapse
|
25
|
Anthracnose Controlled by Essential Oils: Are Nanoemulsion-Based Films and Coatings a Viable and Efficient Technology for Tropical Fruit Preservation? Foods 2023; 12:foods12020279. [PMID: 36673370 PMCID: PMC9857729 DOI: 10.3390/foods12020279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Post-harvest diseases can be a huge problem for the tropical fruit sector. These fruits are generally consumed in natura; thus, their integrity and appearance directly affect commercialization and consumer desire. Anthracnose is caused by fungi of the genus Colletotrichum and affects tropical fruits, resulting in lesions that impair their appearance and consumption. Antifungals generally used to treat anthracnose can be harmful to human health, as well as to the environment. Therefore, essential oils (EO) have been investigated as natural biofungicides, successfully controlling anthracnose symptoms. The hydrophobicity, high volatility, and oxidative instability of essential oils limit their direct application; hence, these oils must be stabilized before food application. Distinct delivery systems have already been proposed to protect/stabilize EOs, and nanotechnology has recently reshaped the food application limits of EOs. This review presents robust data regarding nanotechnology application and EO antifungal properties, providing new perspectives to further improve the results already achieved in the treatment of anthracnose. Additionally, it evaluates the current scenario involving the application of EO directly or incorporated in films and coatings for anthracnose treatment in tropical fruits, which is of great importance, especially for those fruits intended for exportation that may have a prolonged shelf life.
Collapse
|
26
|
Zhang Y, Sun G, Li D, Xu J, McClements DJ, Li Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:139-178. [DOI: 10.1016/bs.afnr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Xie Q, Liu G, Zhang Y. Edible films/coatings containing bioactive ingredients with micro/nano encapsulation: A comprehensive review of their fabrications, formulas, multifunctionality and applications in food packaging. Crit Rev Food Sci Nutr 2022; 64:5341-5378. [PMID: 36503369 DOI: 10.1080/10408398.2022.2153794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the consumer's pursuit of safe, nontoxic and nutritious foods, edible and/or biodegradable materials have stood out in food packaging and preservation. In this context, the preparation and application of micro/nano encapsulated active ingredients (M/N-E-BAIs) represent a step toward reinforcing the properties of sustainable and controllable food packaging, particularly for the successful incorporation of new substances and functionalities into traditional edible films/coatings. This review, from the preparation of M/N-E-BAIs, the fabrication of edible film/coating containing M/N-E-BAIs to their characterization of multifunction and the application in food, makes a systematic summary and in-depth discussion. Food-grade polymers can encapsulate bioactive ingredients (BAIs) by chemical, physicochemical and mechanical methods, thereby forming M/N-E-BAIs with suitable sustained-release and unique biological activities. Furthermore, M/N-E-BAIs is incorporated into biopolymer substrates by solvent casting, 3D printing or electrostatic spinning to obtain novel edible films/coatings. This advanced packaging material exhibits superior physicochemical and functional properties over traditional food films/coatings. Besides, their applications in foods as active and intelligent packaging can improve food quality, prolong shelf life and monitor food corruption. Even so, there are still many challenges and limitations in formulation, preparation and application of this new packaging technology that need to be addressed in the future.
Collapse
Affiliation(s)
- Qiwen Xie
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yuanlv Zhang
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
28
|
Li G, Zhou Q, Liu S, Qian C, Han J, Zhou T, Li P, Gu Q. Effect of Tribute citrus essential oil nanoemulsion-loaded gelatin on the gel behavior and gelation surface morphologies. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
30
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Premanath R, James JP, Karunasagar I, Vaňková E, Scholtz V. Tropical plant products as biopreservatives and their application in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Perrin L, Desobry-Banon S, Gillet G, Desobry S. Review of High-Frequency Ultrasounds Emulsification Methods and Oil/Water Interfacial Organization in Absence of any Kind of Stabilizer. Foods 2022; 11:2194. [PMID: 35892779 PMCID: PMC9331899 DOI: 10.3390/foods11152194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Emulsions are multiphasic systems composed of at least two immiscible phases. Emulsion formulation can be made by numerous processes such as low-frequency ultrasounds, high-pressure homogenization, microfluidization, as well as membrane emulsification. These processes often need emulsifiers' presence to help formulate emulsions and to stabilize them over time. However, certain emulsifiers, especially chemical stabilizers, are less and less desired in products because of their negative environment and health impacts. Thus, to avoid them, promising processes using high-frequency ultrasounds were developed to formulate and stabilize emulsifier-free emulsions. High-frequency ultrasounds are ultrasounds having frequency greater than 100 kHz. Until now, emulsifier-free emulsions' stability is not fully understood. Some authors suppose that stability is obtained through hydroxide ions' organization at the hydrophobic/water interfaces, which have been mainly demonstrated by macroscopic studies. Whereas other authors, using microscopic studies, or simulation studies, suppose that the hydrophobic/water interfaces would be rather stabilized thanks to hydronium ions. These theories are discussed in this review.
Collapse
Affiliation(s)
- Louise Perrin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
- SAS GENIALIS, Route d’Achères, 18250 Henrichemont, France;
| | - Sylvie Desobry-Banon
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| | | | - Stephane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| |
Collapse
|
33
|
Huang W, Chen L. Fabrication of protein nanomaterials as delivery systems. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:237-275. [PMID: 35940707 DOI: 10.1016/bs.afnr.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioactive compounds in foods, nutraceuticals and pharmaceutical have been gaining interest due to health benefits, which can help to reduce the risk of certain chronic diseases. Recently, nanoencapsulation have attract attention because it is an efficient and promising approach for protection of bioactive compounds, and delivery them to the target physiological sites for controlled release and improvement absorption. Food proteins are promising materials to be fabricated into a variety of nanostructured delivery systems because of their high nutritional value, good functional properties, and health-benefiting effects. Various techniques and approaches are utilized to prepare nanostructured food protein. This chapter introduces the major techniques for the fabrication of nanoparticles and nanoemulsions from food proteins. The basic principles, advantages, and limitations of the techniques are discussed. The encapsulation and release of bioactive compounds in different nanostructured food proteins are illustrated in specific case studies. Due to the fast growing interest of bioactive encapsulation in various sectors, this chapter is of importance for guiding the development of nanostructured food protein loaded with bioactive ingredients for food, nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Weijuan Huang
- College of Food Science, South China Agricultural University, Guangzhou, China; Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
34
|
Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
36
|
Terra ALM, Contessa CR, Rasia TA, Vaz BDS, Moraes CC, de Medeiros Burkert JF, Costa JAV, de Morais MG, Moreira JB. Nanotechnology Perspectives for Bacteriocin Applications in Active Food Packaging. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2022.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ana Luiza Machado Terra
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Camila Ramão Contessa
- Laboratory Bioprocess Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS Brazil
| | - Thays Arpino Rasia
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Bruna da Silva Vaz
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Caroline Costa Moraes
- Laboratory of Microbiology and Food Toxicology, Federal University of Pampa, Bagé, Brazil
| | | | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Juliana Botelho Moreira
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
37
|
Formulation and Characterization of Gum Arabic Stabilized Red Rice Extract Nanoemulsion. Polymers (Basel) 2022; 14:polym14101938. [PMID: 35631821 PMCID: PMC9146556 DOI: 10.3390/polym14101938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interest in the utilization of plant-based bioactive compounds in foods has increased due to their biochemical activities and as alternatives in the reduction of high concentrations of chemical utilization. However, some of these additives are hydrophobic, thus being harder to disperse into the hydrophilic food matrix. Therefore, an oil-in-water nanoemulsion (RRE1-RRE10) was formulated with different concentrations of red rice extract (1-10% w/v). Nanoemulsion showed droplet sizes within the range of 157.33-229.71 nm and the best formulation (RRE5) was selected based on the creaming index which was stable to flocculation over a range of temperatures (30-90 °C), pH (2-9), and salt concentration (100-600 mM). It showed significantly improved antioxidant and anti-inflammatory activity as compared to its other counterparts. Potential antimicrobial activity against Staphylococcus aureus was attributed to RRE5 nanoemulsion as compared to Escherichia coli. Therefore, due to the potential bioactivity of RRE5 nanoemulsion, it can be scaled up at the industrial level.
Collapse
|
38
|
Miele NA, Volpe S, Torrieri E, Cavella S. Improving physical properties of sodium caseinate based coating with the optimal formulation: Effect on strawberries’ respiration and transpiration rates. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Fallah AA, Sarmast E, Jafari T, Mousavi Khaneghah A. Vegetable oil-based nanoemulsions for the preservation of muscle foods: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2022; 63:8554-8567. [PMID: 35400244 DOI: 10.1080/10408398.2022.2057415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This systematic review and meta-analysis quantified the effects of various vegetable oil-based nanoemulsion (NE) formulations on muscle foods' microbial and chemical quality by estimating the weighted overall response ratio (R*). Treatment of muscle foods with NE formulations reduced the growth rates of total mesophilic bacteria, total psychrophilic bacteria, lactic acid bacteria, and Enterobacteriaceae by 26.2% (R*=0.738), 19% (R*=0.810), 44.7% (R*=0.553), and 31.8% (R*=0.682) during the storage period, respectively. Moreover, the NE formulations retarded the increasing rates of volatile basic-nitrogen content, lipid and protein oxidation, and lipid hydrolysis by 41.4% (R*=0.586), 34% (R*=0.660), 55% (R*=0.450), and 37.1% (R*=0.629), respectively. The NE formulations prepared from safflower, olive, canola, and sunflower oil were more effective than the other vegetable oils to control microbial growth and slow down chemical changes in muscle foods. The combination of nanoemulsions (NEs) and essential oils (EOs) was more efficient than NEs to preserve muscle foods. Packaging NE-treated muscle foods under anaerobic conditions provided better control of microbial growth and chemical changes than packaging under aerobic conditions. Consequently, a combination of vegetable oil-based NEs and EOs followed by anaerobic packaging is the most effective treatment to improve the quality of muscle foods.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2057415 .
Collapse
Affiliation(s)
- Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Elham Sarmast
- Research Laboratories in Sciences, Applied to Food (LABO-RESALA), INRS Armand-Frappier Health Biotechnology Research Centre, MAPAQ Research Chair in Food Safety and Quality, Canadian Irradiation Centre (CIC), Institute of Nutrition and Functional Foods (INAF), Laval, Quebec, Canada
| | - Tina Jafari
- Department of Biochemistry and Nutrition, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
40
|
Amiri-Rigi A, Abbasi S, Emmambux MN. Background, Limitations, and Future Perspectives in Food Grade Microemulsions and Nanoemulsions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2059808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Atefeh Amiri-Rigi
- Food Research Laboratory, Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Soleiman Abbasi
- Food Colloids and Rheology Laboratory, Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Naushad Emmambux
- Food Research Laboratory, Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
41
|
Improved functionality of cinnamon oil emulsion-based gelatin films as potential edible packaging film for wax apple. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Ultrasonication induced nano-emulsification of thyme essential oil: Optimization and antibacterial mechanism against Escherichia coli. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
|
45
|
Chitosan nanoemulsion: Gleam into the futuristic approach for preserving the quality of muscle foods. Int J Biol Macromol 2021; 199:121-137. [PMID: 34953807 DOI: 10.1016/j.ijbiomac.2021.12.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Trend for consumption of healthy meat without synthetic additives is blooming globally and has attracted the interest of consumers and research sphere to look for enhancement of quality and safety of food. Chitosan is multi-functional marine biopolymer with several befitting properties such as non-toxicity, ease of modification, antimicrobial activity, biodegradability and bio-compatibility, making it suitable for use in meat based food systems, which are highly prone to putrescence due to availability of high level protein, micronutrients and moisture. Bioactive components from plant extracts on account of their natural lineage are exquisite determinants for meat preservation in association with chitosan to replace synthetic molecules, which are considered to evince toxicological effects. Nanoemulsions are viable systems for integrating a myriad of active constituents framed by microfluidization, high-pressure homogenization, ultra-sonication, phase inversion (PIC and PIT) and spontaneous-emulsification with benefits of droplet size reduction, improved solubility, stability and their biological activity. This article summarizes the most important information on formulation, fabrication and advancements in chitosan-based nanoemulsions highlighting their potential benefit for applications in the muscle food system. Supervising the all-around executions of chitosan nanoemulsions for various food systems, the current review has been framed to lay down understandings regarding improvements made in the production and functionality of chitosan nanoemulsions for quality retention of meat products. Furthermore, it highlights the novel trends in chitosan-nanoemulsions application in meat based food systems from a preservation and shelf-life prolongation perspective.
Collapse
|
46
|
Das S, Ghosh A, Mukherjee A. Nanoencapsulation-Based Edible Coating of Essential Oils as a Novel Green Strategy Against Fungal Spoilage, Mycotoxin Contamination, and Quality Deterioration of Stored Fruits: An Overview. Front Microbiol 2021; 12:768414. [PMID: 34899650 PMCID: PMC8663763 DOI: 10.3389/fmicb.2021.768414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Currently, applications of essential oils for protection of postharvest fruits against fungal infestation and mycotoxin contamination are of immense interest and research hot spot in view of their natural origin and possibly being an alternative to hazardous synthetic preservatives. However, the practical applications of essential oils in broad-scale industrial sectors have some limitations due to their volatility, less solubility, hydrophobic nature, and easy oxidation in environmental conditions. Implementation of nanotechnology for efficient incorporation of essential oils into polymeric matrices is an emerging and novel strategy to extend its applicability by controlled release and to overcome its major limitations. Moreover, different nano-engineered structures (nanoemulsion, suspension, colloidal dispersion, and nanoparticles) developed by applying a variety of nanoencapsulation processes improved essential oil efficacy along with targeted delivery, maintaining the characteristics of food ingredients. Nanoemulsion-based edible coating of essential oils in fruits poses an innovative green alternative against fungal infestation and mycotoxin contamination. Encapsulation-based coating of essential oils also improves antifungal, antimycotoxigenic, and antioxidant properties, a prerequisite for long-term enhancement of fruit shelf life. Furthermore, emulsion-based coating of essential oil is also efficient in the protection of physicochemical characteristics, viz., firmness, titrable acidity, pH, weight loss, respiration rate, and total phenolic contents, along with maintenance of organoleptic attributes and nutritional qualities of stored fruits. Based on this scenario, the present article deals with the advancement in nanoencapsulation-based edible coating of essential oil with efficient utilization as a novel safe green preservative and develops a green insight into sustainable protection of fruits against fungal- and mycotoxin-mediated quality deterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Abhinanda Ghosh
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
47
|
Tayeb HH, Felimban R, Almaghrabi S, Hasaballah N. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2021; 45:100533. [PMID: 34692429 PMCID: PMC8526445 DOI: 10.1016/j.colcom.2021.100533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 05/08/2023]
Abstract
Viral diseases are emerging as global threats. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), that causes coronavirus disease (COVID-19), has severe global impacts. Safety, dosage, and potency of vaccines recently approved for emergency use against SARS-CoV-2 need further evaluation. There is still no effective treatment against COVID-19; therefore, safe, and effective vaccines or therapeutics against SARS-CoV-2 are urgently needed. Oil-in-water nanoemulsions (O/W NEs) are emerging as sophisticated, protective, and therapeutic platforms. Encapsulation capacity, which offers better drug pharmacokinetics, coupled with the tunable surfaces present NEs as promising tools for pharmaceutical applications. The challenges facing drug discovery, and the advancements of NEs in drug delivery demonstrate the potential of NEs against evolving diseases, like COVID-19. Here we summarize current COVID-19 knowledge and discuss the composition, stability, preparation, characterization, and biological fate of O/W NEs. We also provide insights into NE structural-functional properties that may contribute to therapeutic or preventative solutions against COVID-19.
Collapse
Affiliation(s)
- Hossam H Tayeb
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Raed Felimban
- 3D Bioprinting Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sarah Almaghrabi
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Nojod Hasaballah
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Tao M, Chen J, Huang K. Bio-based antimicrobial delivery systems for improving microbial safety and quality of raw or minimally processed foods. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Bottom–up nanoparticle synthesis: a review of techniques, polyphenol-based core materials, and their properties. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03867-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Deghiedy NM, Elkenawy NM, Abd El-Rehim HA. Gamma radiation-assisted fabrication of bioactive-coated thyme nanoemulsion: A novel approach to improve stability, antimicrobial and antibiofilm efficacy. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|