1
|
Zhao C, Zhou J, Zhang Z, Wang W, Guo S, Bai Y, Xue Y, Zhu Y, Gao F, Ren G, Zhang L. Effects of different adzuki bean flour additions on structural and functional characteristics of extruded buckwheat noodles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1032-1043. [PMID: 39276015 DOI: 10.1002/jsfa.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
BACKGROUND Understanding the effects of different additions of adzuki bean flour (ABF) on structural and functional characteristics of extruded buckwheat noodles is important in developing high-quality starchy foods with desirable glycemic indexes. This study explored how varying amounts of ABF in extruded buckwheat noodles influenced their structural and functional characteristics. RESULTS The findings indicated that adding ABF substantially boosted the levels of protein and flavonoids, while decreasing the content of fat and starch. Adding ABF to the noodles extended the optimum cooking time and led to a reduction in both the stickiness of the cooked noodles and the pore size of the starch gel structure, compared with pure buckwheat noodles. Fourier transform infrared spectroscopy indicated that R1047/1022 increased with the content of ABF increased, while R1022/995 decreased. X-ray diffraction showed that the relative crystallinity of buckwheat noodles was enhanced with increasing ABF amount. Adding ABF notably significantly decreased the estimated glycemic index. The buckwheat noodles extruded with 20% ABF addition demonstrated notably stronger α-glucosidase inhibitory effects than those extruded with no ABF addition. CONCLUSION The present study demonstrates that the additions of ABF improved the structure and hypoglycemic activity of extruded buckwheat noodles while decreasing starch digestibility, and the optimal value was reached at an ABF addition of 20%. The study might fill gaps in starch noodle research and provide a new strategy for the development of functional food in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chaofan Zhao
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jiankang Zhou
- School of Life Science, Shanxi University, Taiyuan, China
| | - Zhuo Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Wenting Wang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Shengyuan Guo
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Bai
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yajie Xue
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yuting Zhu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Fei Gao
- Tropical Crop Germplasm Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guixing Ren
- School of Life Science, Shanxi University, Taiyuan, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
2
|
Mahdy RM, Al-Saif AM, Ahmed MEM, Abd El-Bary TS, Sharma A, El-Sheshtawy ANA, El-Serafy RS, Abd El-Ghany TS. Evaluation of Two Different Methods of Fulvic Acid Application (Seed Priming and Foliar Spray) on Growth, Yield, and Nutritional Quality of Pea ( Pisum sativum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3380. [PMID: 39683173 DOI: 10.3390/plants13233380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Pea is a commercially significant legume that is widely utilized worldwide and has a elevated amount of nutrition and bioactive components. Its consumption is attributed to a number of health benefits and its potential as a functional food. Fulvic acid can be used as a bio-stimulant to promote plant growth and increase nutrient availability and uptake. A field experiment was designed during two subsequent cropping seasons (i.e., 2022-23 and 2023-24) to evaluate the impact of two methods of fulvic acid application of seed priming and foliar spray on the growth, yield, antioxidant content, and nutritional value of pea (Pisum sativum L.) plants. The seeds were primed with fulvic acid at 1.5, 3 g L-1, and water, while a foliar spray of fulvic acid with the same doses was performed on the seedlings of non-primed seeds. The results obtained exhibited that the seed priming technique with fulvic acid outperformed the fulvic acid foliar applications. The increase in the fulvic acid dose to 3 g L-1 in both application techniques exhibited the highest plant growth, heaviest fresh and dry weights, and highest green seed yield. The maximum growth parameters were recorded after the foliar spray treatment at a dose of 3 g L-1, as it led to improvement in the growth parameters, leaf pigments, and total carbohydrates. The highest number of seeds per pod, number of pods per plant, 100-seed weight, and seed yield were obtained by the seed priming technique. From the results obtained, it may be concluded that the application of fulvic acid at 3 g L-1 via the seed priming technique is beneficial for enhancing the productivity of peas.
Collapse
Affiliation(s)
- Rehab M Mahdy
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Adel M Al-Saif
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mohamed E M Ahmed
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Tahany S Abd El-Bary
- Potato and Vegetatively Propagated Vegetables Department, Horticulture Research Institute, Agriculture Research Center, Giza 3725005, Egypt
| | - Ashutosh Sharma
- Faculty of Agricultural Sciences, DAV University, Jalandhar 144012, Punjab, India
| | | | - Rasha S El-Serafy
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Tamer S Abd El-Ghany
- Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
3
|
Tkaczewska J, Mungure T, Warner R. Is it still meat? The effects of replacing meat with alternative ingredients on the nutritional and functional properties of hybrid products: a review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39579157 DOI: 10.1080/10408398.2024.2430750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Consumer interest in a shift toward moderating animal products in their diets (flexitarian) is constantly increasing. One way to meet this consumer demand is through hybrid meat products, defined as those in which a portion of the meat is substituted by plant protein. This review article aims to analyze literature regarding the impact of replacing meat proteins with other alternative proteins on the functional and nutritional properties of hybrid products. Different food matrices created by hybrid products have impact on the digestive processes and outcomes in vitro and in vivo, and the bioavailability of protein, lipid, and mineral nutrients is modified, hence these aspects are reviewed. The functional properties of hybrid products change with regard to type of alternative protein source used. In hybrid products, deficiencies in amino acids in alternative proteins are balanced by amino acids from meat proteins, resulting in wholesome products. Additionally, animal protein degrades into peptides in the gut which bind non-animal iron and increase the availability of iron from the alternative protein material. This relationship may support the development of hybrid products offering products with increased iron bioavailability and a previously unseen beneficial nutritional composition. The effects of alternative protein addition in hybrid meat products on protein and mineral digestibility remains unclear. More research is required to clarify the interaction of the protein-food matrix as well as its effects on digestibility. Very little research has been conducted on the oxidative stability and microbiological safety of hybrid products.
Collapse
Affiliation(s)
- Joanna Tkaczewska
- Department of Animal Product Technology, University of Agriculture in Kraków, Poland Kraków
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| | - Tanyaradzwa Mungure
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| | - Robyn Warner
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
4
|
Augustin MA, Chen JY, Ye JH. Processing to improve the sustainability of chickpea as a functional food ingredient. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8397-8413. [PMID: 38619292 DOI: 10.1002/jsfa.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Chickpea is a field crop that is playing an emerging role in the provision of healthy and sustainable plant-based value-added ingredients for the food and nutraceutical industries. This article reviews the characteristics of chickpea (composition, health properties, and techno-functionality) and chickpea grain that influence their use as whole foods or ingredients in formulated food. It covers the exploitation of traditional and emerging processes for the conversion of chickpea into value-added differentiated food ingredients. The influence of processing on the composition, health-promoting properties, and techno-functionality of chickpea is discussed. Opportunities to tailor chickpea ingredients to facilitate their incorporation in traditional food applications and in the expanding plant-based meat alternative and dairy alternative markets are highlighted. The review includes an assessment of the possible uses of by-products of chickpea processing. Recommendations are provided for future research to build a sustainable industry using chickpea as a value-added ingredient. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mary Ann Augustin
- CSIRO Agriculture and Food, Werribee, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, Australia
| | - Jia-Ying Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Carboni AD, Martins GN, Castilho PC, Puppo MC, Ferrero C. Influence of Thermal Treatment and Granulometry on Physicochemical, Techno-Functional and Nutritional Properties of Lentil Flours. Foods 2024; 13:2744. [PMID: 39272510 PMCID: PMC11395638 DOI: 10.3390/foods13172744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Legume flours are an increasingly popular food ingredient. Thermal treatments applied prior to milling legumes and granulometry can modify flour properties, altering sensory, digestibility and functional attributes. Raw and treated (soaked and cooked) lentil flours of different granulometry were produced. The applied treatment resulted in an increase in fiber content (25.4 vs. 27.6% for raw and treated lentil flour, respectively) and water absorption capacity. It also led to a decrease in ash content (3.3 vs. 1.8% for raw and treated, respectively) and a darker flour. Treated lentil flour was mainly composed of fractions of high granulometry, which could be beneficial for products where a lower glycemic index is sought, as they demonstrated higher fiber and lower carbohydrate content than the finer fractions. Treated flour may be used as an ingredient in the development of raw products, including beverages and desserts, due to its reduced anti-nutritional compounds' content and enhanced organoleptic aspects. The obtained results allow an in-depth characterization of raw and treated lentils flour with different particle sizes to consider a formal and complete standardization of these flours and for understanding their utility and specific food applications.
Collapse
Affiliation(s)
- Angela Daniela Carboni
- CIDCA-Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP-CONICET), Calle 47 y 116, La Plata 1900, Argentina
| | - Gonçalo Nuno Martins
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Paula Cristina Castilho
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - María Cecilia Puppo
- CIDCA-Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP-CONICET), Calle 47 y 116, La Plata 1900, Argentina
| | - Cristina Ferrero
- CIDCA-Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP-CONICET), Calle 47 y 116, La Plata 1900, Argentina
| |
Collapse
|
6
|
Luo S, Paliwal J, Koksel F. Nitrogen Gas-Assisted Extrusion for Improving the Physical Quality of Pea Protein-Enriched Corn Puffs with a Wide Range of Protein Contents. Foods 2024; 13:2411. [PMID: 39123602 PMCID: PMC11311776 DOI: 10.3390/foods13152411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Blowing agent-assisted extrusion cooking is a novel processing technique that can alter the expansion of extruded snacks and, thus, enhance their physical appeal, such as texture. However, to this day, this technique has only been studied for ingredients with limited protein contents (<30%). In this study, protein-enriched snacks were extruded using nitrogen gas as a blowing agent at a wide protein range (0-50%) to better explore the potential of this technique in manufacturing high-protein snacks. The results showed that, with nitrogen gas injection, extrudate radial expansion was significantly (p < 0.05) improved at 10% and 40% protein, while extrudate density was significantly reduced at 30% and 50% protein. Nitrogen gas-injected extrudates, especially at 50% protein, exhibited improvements in texture, including a reduction in hardness and an increase in crispness. Collectively, this study showed the promising potential of nitrogen gas-assisted extrusion in improving the physical appeal of innovative healthy snacks at a high protein level (i.e., 50%).
Collapse
Affiliation(s)
- Siwen Luo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Richardson Centre for Food Technology and Research, 196 Innovation Drive, Winnipeg, MB R3T 2N2, Canada;
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB R3T 2N2, Canada;
| | - Filiz Koksel
- Department of Food and Human Nutritional Sciences, University of Manitoba, Richardson Centre for Food Technology and Research, 196 Innovation Drive, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
7
|
Lee DJ, Cheng F, Li D, Ding K, Carlin J, Moore E, Ai Y. Important roles of coarse particles in pasting and gelling performance of different pulse flours under high-temperature heating. Food Chem 2024; 447:138896. [PMID: 38458133 DOI: 10.1016/j.foodchem.2024.138896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Dehulled pea, lentil, and faba bean grains were milled into flours with 0.5- to 2.5-mm sieves. As the particle size decreased, damaged-starch contents of the flours from the same pulse crop increased. At a holding temperature of 95 °C in RVA, peak and final viscosities and gelling ability of the flours generally increased as the particle size decreased. When the holding temperature increased from 95 to 140 °C, pasting viscosities of pea and lentil flours and gel hardness of lentil flours gradually decreased. In contrast, pasting viscosities and gel hardness of faba bean flours reached the highest values at 120 °C. The comparison of the pulse flours varying in particle size across the three market classes revealed that coarse particles comprising agglomerated starch, protein, and dietary fiber (i.e., particles of the second peak in the bimodal particle-size distribution curves) showed significant correlations with certain important functional properties of pulse flours.
Collapse
Affiliation(s)
- Dong-Jin Lee
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon State, Republic of Korea
| | - Fan Cheng
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dongxing Li
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ke Ding
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Emily Moore
- PerkinElmer, Scientific Canada ULC, Woodbridge, ON, Canada
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
8
|
Medhe SV, Kettawan AK, Kamble MT, Monboonpitak N, Thompson KD, Kettawan A, Pirarat N. Modification of Physiochemical and Techno-Functional Properties of Stink Bean ( Parkia speciosa) by Germination and Hydrothermal Cooking Treatment. Foods 2023; 12:4480. [PMID: 38137284 PMCID: PMC10743050 DOI: 10.3390/foods12244480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Stink bean, Parkia speciosa, is recognized as a significantly underutilized legume with versatile utility and diverse benefits. However, information on the impact of different processing methods, such as germination and hydrothermal cooking, is scarce on stink beans (SBs). Therefore, the current research aimed to explore the efficacy of germination (G) and hydrothermal cooking (HTC) on the physiochemical properties, proximate composition, techno-functional properties, and antioxidant potential of SB flour. Furthermore, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) were employed to assess structural and morphological changes. The results revealed that the physiochemical properties of SB were significantly enhanced through processing, with more pronounced improvements observed during germination. Additionally, SBG exhibited a significantly higher protein content and lower fat content compared to SBHTC and stink bean raw (SBR). Moreover, techno-functional properties such as color intensity, least gelation concentration, and pasting properties were significantly improved in SBG compared to SBHTC and SBR. FTIR analysis of SBG and SBHTC indicated structural modifications in the lipid, protein, and carbohydrate molecules. FESEM examination revealed morphological changes in SBG and SBHTC when compared to SBR. Importantly, SBG exhibited higher antioxidant activity and total phenolic content in comparison to SBHTC and SBR. Therefore, processed SB flour can be incorporated and utilized in product development, highlighting its potential as a plant-based protein source for protein-rich breakfast bars and cookies.
Collapse
Affiliation(s)
- Seema Vijay Medhe
- Department of Food Chemistry, Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; (S.V.M.); (A.K.K.); (N.M.)
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Aurawan Kringkasemsee Kettawan
- Department of Food Chemistry, Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; (S.V.M.); (A.K.K.); (N.M.)
| | - Manoj Tukaram Kamble
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nuntawat Monboonpitak
- Department of Food Chemistry, Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; (S.V.M.); (A.K.K.); (N.M.)
| | | | - Aikkarach Kettawan
- Department of Food Chemistry, Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; (S.V.M.); (A.K.K.); (N.M.)
| | - Nopadon Pirarat
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
9
|
Li C, Gao Z, Hu W, Zhu X, Li Y, Li N, Ma C. Integration of comparative transcriptomics and WGCNA characterizes the regulation of anthocyanin biosynthesis in mung bean ( Vigna radiata L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1251464. [PMID: 37941672 PMCID: PMC10628539 DOI: 10.3389/fpls.2023.1251464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Mung bean is a dual-use crop widely cultivated in Southeast Asia as a food and medicine resource. The development of new functional mung bean varieties demands identifying new genes regulating anthocyanidin synthesis and investigating their molecular mechanism. In this study, we used high-throughput sequencing technology to generate transcriptome sequence of leaves, petioles, and hypocotyls for investigating the anthocyanins accumulation in common mung bean variety as well as anthocyanidin rich mung bean variety, and to elucidate their molecular mechanisms. 29 kinds of anthocyanin compounds were identified. Most of the anthocyanin components contents were significantly higher in ZL23 compare with AL12. Transcriptome analysis suggested that a total of 93 structural genes encoding the anthocyanin biosynthetic pathway and 273 regulatory genes encoding the ternary complex of MYB-bHLH-WD40 were identified, of which 26 and 78 were differentially expressed in the two varieties. Weighted gene co-expression network analysis revealed that VrMYB3 and VrMYB90 might have enhanced mung bean anthocyanin content by inducing the expression of structural genes such as PAL, 4CL, F3'5'H, LDOX, and F3'H, which was consistent with qRT-PCR results. These findings are envisaged to provide a reference for studying the molecular mechanism of anthocyanin accumulation in mung beans.
Collapse
Affiliation(s)
- Chunxia Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Dry-land Agricultural Engineering Technology Research Center in Henan, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zexiang Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Dry-land Agricultural Engineering Technology Research Center in Henan, Henan University of Science and Technology, Luoyang, Henan, China
| | - Weili Hu
- Crop Breeding Research Center, Nanyang Academy of Agricultural Science, Nanyang, Henan, China
| | - Xu Zhu
- Crop Breeding Research Center, Nanyang Academy of Agricultural Science, Nanyang, Henan, China
| | - Youjun Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Dry-land Agricultural Engineering Technology Research Center in Henan, Henan University of Science and Technology, Luoyang, Henan, China
| | - Na Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Dry-land Agricultural Engineering Technology Research Center in Henan, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chao Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Dry-land Agricultural Engineering Technology Research Center in Henan, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
10
|
Schmidt HDO, Oliveira VRD. Overview of the Incorporation of Legumes into New Food Options: An Approach on Versatility, Nutritional, Technological, and Sensory Quality. Foods 2023; 12:2586. [PMID: 37444324 DOI: 10.3390/foods12132586] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Consumers are more aware and demanding of healthy food options, besides being concerned with environment-friendly consumption. This paper aims to evaluate nutritional, technological, and sensory characteristics of legumes and their products' quality and versatility, considering potential applications in new food options. Legumes are foods that have a recognized nutritional group since they have high protein and fiber content. However, their consumption is still somehow limited for some reasons: in some countries it is not easy to find all the species or cultivars, they need an organization and planning before preparation since they need soaking, and there is the presence of antinutritional factors. Due to the different functionalities of legume proteins, they can be applied to a variety of foods and for different purposes, as grains themselves, aquafaba, extracts, flours, brans, and textured proteins and sprouts. These products have been inserted as ingredients in infant food formulations, gluten-free foods, vegetarian diets, and in hybrid products to reduce food costs as well. Foods such as bread, cakes, cookies, meat analogues, and other baked or cooked products have been elaborated with nutritional, technological and sensory quality. Further development of formulations focused on improving the quality of legume-based products is necessary because of their potential and protein quality.
Collapse
Affiliation(s)
- Helena de Oliveira Schmidt
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Viviani Ruffo de Oliveira
- Postgraduate Program in Food, Nutrition and Health, Nutrition Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
11
|
Wu DT, Li WX, Wan JJ, Hu YC, Gan RY, Zou L. A Comprehensive Review of Pea ( Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023; 12:2527. [PMID: 37444265 DOI: 10.3390/foods12132527] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pisum sativum L., commonly referred to as dry, green, or field pea, is one of the most common legumes that is popular and economically important. Due to its richness in a variety of nutritional and bioactive ingredients, the consumption of pea has been suggested to be associated with a wide range of health benefits, and there has been increasing focus on its potential as a functional food. However, there have been limited literature reviews concerning the bioactive compounds, health-promoting effects, and potential applications of pea up to now. This review, therefore, summarizes the literature from the last ten years regarding the chemical composition, physicochemical properties, processing, health benefits, and potential applications of pea. Whole peas are rich in macronutrients, including proteins, starches, dietary fiber, and non-starch polysaccharides. In addition, polyphenols, especially flavonoids and phenolic acids, are important bioactive ingredients that are mainly distributed in the pea coats. Anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, may hinder nutrient absorption. Whole pea seeds can be processed by different techniques such as drying, milling, soaking, and cooking to improve their functional properties. In addition, physicochemical and functional properties of pea starches and pea proteins can be improved by chemical, physical, enzymatic, and combined modification methods. Owing to the multiple bioactive ingredients in peas, the pea and its products exhibit various health benefits, such as antioxidant, anti-inflammatory, antimicrobial, anti-renal fibrosis, and regulation of metabolic syndrome effects. Peas have been processed into various products such as pea beverages, germinated pea products, pea flour-incorporated products, pea-based meat alternatives, and encapsulation and packing materials. Furthermore, recommendations are also provided on how to better utilize peas to promote their development as a sustainable and functional grain. Pea and its components can be further developed into more valuable and nutritious products.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Xing Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jia-Jia Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
12
|
Zhou H, Liu C, Shang J, Zheng X. Effect of adding wheat (Triticum aestivum L.) farina with varied integrity of endosperm cell wall on dough characteristics, dried noodles quality and starch digestibility. Int J Biol Macromol 2023:125076. [PMID: 37244337 DOI: 10.1016/j.ijbiomac.2023.125076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
The changes of intact endosperm cell wall in cereal food processing and its effect on starch digestibility are important for developing nutritious and healthy next generation foods, but their changes in the process of traditional Chinese cooking products such as noodles making have not been investigated. In this paper, the changes in endosperm cell wall in the process of making dried noodles by adding 60 % wheat farina with varied particle sizes were tracked, and the underlying mechanisms affecting the noodle quality and starch digestibility were revealed. With increasing particle size (150-800 μm) of farina, the contents of starch and protein, swelling index of glutenin, and sedimentation value decreased significantly and the dietary fiber increased sharply; moreover, water absorption, stability and extensibility of dough decline obviously while the resistance to extension and thermal stability were enhanced. In addition, noodles made with flour added larger-particle size farina had a lower hardness, springiness, and stretchability while a higher adhesiveness. Compared to the flour and other samples, the flour with the smaller-particle size farina (150-355 μm) showed better rheological properties of dough and cooking quality of noodles. Furthermore, the integrity of the endosperm cell wall increased with increasing particle size (150-800 μm), which was perfectly preserved during noodle processing and was an effective physical barrier to inhibit starch digestion. The starch digestibility of noodles made from mixed farina with low protein content (~15 %) did not significantly reduce compared to that of wheat flour noodles with high protein content (~18 %), probably due to the increased cell wall permeability of noodle processing, or the overwhelming effect of noodle structure or protein content. In conclusion, our findings will contribute to an innovative perspective for in-depth understanding of the impact of endosperm cell wall on the quality and nutrition of noodles at the cellular level, which provided a theoretical basis for the moderate processing of wheat flour and the development of healthier wheat-based food products.
Collapse
Affiliation(s)
- Huichao Zhou
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chong Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Jiaying Shang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
13
|
Sinaki NY, Paliwal J, Koksel F. Enhancing the Techno-Functionality of Pea Flour by Air Injection-Assisted Extrusion at Different Temperatures and Flour Particle Sizes. Foods 2023; 12:foods12040889. [PMID: 36832963 PMCID: PMC9957081 DOI: 10.3390/foods12040889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Industrial applications of pulses in various food products depend on pulse flour techno-functionality. To manipulate the techno-functional properties of yellow pea flour, the effects of flour particle size (small vs. large), extrusion temperature profile (120, 140 and 160 °C at the die) and air injection pressure (0, 150 and 300 kPa) during extrusion cooking were investigated. Extrusion cooking caused the denaturation of proteins and gelatinization of starch in the flour, which induced changes in the techno-functionality of the extruded flour (i.e., increased water solubility, water binding capacity and cold viscosity and decreased emulsion capacity, emulsion stability, and trough and final viscosities). In general, the large particle size flour required less energy input to be extruded and had higher emulsion stability and trough and final viscosities compared to the small particle size flour. Overall, among all of the treatments studied, extrudates produced with air injection at 140 and 160 °C had higher emulsion capacity and emulsion stability, making them relatively better suited food ingredients for emulsified foods (e.g., sausages). The results indicated air injection's potential as a novel extrusion technique combined with modification of flour particle size distribution and extrusion processing conditions to effectively manipulate product techno-functionality and broaden the applications of pulse flours in the food industry.
Collapse
Affiliation(s)
- Nasibeh Y. Sinaki
- Department of Food and Human Nutritional Sciences, University of Manitoba, 250 Ellis Building, 13 Freedman Crescent, Winnipeg, MB R3T 2N2, Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB R3T 2N2, Canada
| | - Filiz Koksel
- Department of Food and Human Nutritional Sciences, University of Manitoba, 250 Ellis Building, 13 Freedman Crescent, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
14
|
Gravel A, Doyen A. Pulse Globulins 11S and 7S: Origins, Purification Methods, and Techno-functional Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2704-2717. [PMID: 36722439 DOI: 10.1021/acs.jafc.2c07507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A growing interest in pulse proteins in recent years results from their crucial role in the transition toward sustainable food systems. Consequently, current research is mainly focused on the production of protein ingredients and the evaluation of their nutritional and techno-functional properties for the development of animal product analogues. However, the individual impacts of the major proteins 11S legumin and 7S vicilin on pulse techno-functionalities remains unclear. Thus, this review aims to represent current knowledge on pulse 11S and 7S globulin origins, extraction, separation, and purification methods as well as their techno-functionalities. This paper also discusses the principal challenges related to pulse vicilin and legumin purification methods, such as efficiency and environmental concerns, as well as 11S/7S ratio variability. This review highlights the fact that 11S and 7S fractions serve different purposes in pulse functionality and that more efficient and eco-friendly purification techniques are required to properly assess their respective functional attributes. Such research would allow the determination of optimal 11S/7S ratios for the integration of pulse protein ingredients in various food formulations. Hence, food industries would be able to select species/varieties, agronomical methods, and processing methods to produce ingredients with suitable 11S/7S ratios, catering to consumers' ethical, environmental, and nutritional concerns.
Collapse
Affiliation(s)
- Alexia Gravel
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Quebec G1V 0A6, Canada
| | - Alain Doyen
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
15
|
Quantitative Modeling of the Degradation of Pesticide Residues in Wheat Flour Supply Chain. Foods 2023; 12:foods12040788. [PMID: 36832863 PMCID: PMC9957015 DOI: 10.3390/foods12040788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Pesticide residues in grain products are a major issue due to their comprehensive and long-term impact on human health, and quantitative modeling on the degradation of pesticide residues facilitate the prediction of pesticide residue level with time during storage. Herein, we tried to study the effect of temperature and relative humidity on the degradation profiles of five pesticides (carbendazim, bensulfuron methyl, triazophos, chlorpyrifos, and carbosulfan) in wheat and flour and establish quantitative models for prediction purpose. Positive samples were prepared by spraying the corresponding pesticide standards of certain concentrations. Then, these positive samples were stored at different combinations of temperatures (20 °C, 30 °C, 40 °C, 50 °C) and relative humidity (50%, 60%, 70%, 80%). Samples were collected at specific time points, ground, and the pesticide residues were extracted and purified by using QuEChERS method, and then quantified by using UPLC-MS/MS. Quantitative model of pesticide residues was constructed using Minitab 17 software. Results showed that high temperature and high relative humidity accelerate the degradation of the five pesticide residues, and their degradation profiles and half-lives over temperature and relative humidity varied among pesticides. The quantitative model for pesticide degradation in the whole process from wheat to flour was constructed, with R2 above 0.817 for wheat and 0.796 for flour, respectively. The quantitative model allows the prediction of the pesticide residual level in the process from wheat to flour.
Collapse
|
16
|
Yu S, Wu Y, Li Z, Wang C, Zhang D, Wang L. Effect of different milling methods on physicochemical and functional properties of mung bean flour. Front Nutr 2023; 10:1117385. [PMID: 36908915 PMCID: PMC9998992 DOI: 10.3389/fnut.2023.1117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
There needs to be more information concerning the effect of different milling methods on the physicochemical properties of whole-grain mung bean flour. Therefore, the physicochemical properties of whole grain mung bean flour were analyzed using universal grinders (UGMB), ball mills (BMMB), and vibration mills (VMMB). The results showed that the particle size of the sample after ultrafine grinding treatment was significantly reduced to 21.34 μm (BMMB) and 26.55 μm (VMMB), and the specific surface area was increased. The particle distribution was uniform to a greater extent, and the color was white after treatment. Moreover, the water holding capacity (WHC), oil holding capacity (OHC), and swelling power (SP) increased, and the bulk density and solubility (S) decreased. The Rapid Viscosity Analyzer (RVA) indicated that the final viscosity of the sample after ultrafine grinding was high. Furthermore, rheological tests demonstrated that the consistency coefficient K, shear resistance, and viscosity were decreased. The results of functional experiments showed that the treated samples (BMMB and VMMB) increased their capacity for cation exchange by 0.59 and 8.28%, respectively, bile acid salt adsorption capacity increased from 25.56 to 27.27 mg/g and 26.38 mg/g, and nitrite adsorption capacity increased from 0.58 to 1.17 mg/g and 1.12 mg/g.
Collapse
Affiliation(s)
- Shibo Yu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanchun Wu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhenjiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Quality Supervision, Inspection and Testing Center of Agricultural Processed Products Ministry of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China.,Quality Supervision, Inspection and Testing Center of Agricultural Processed Products Ministry of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
17
|
Ajala A, Kaur L, Lee SJ, Singh J. Native and processed legume seed microstructure and its influence on starch digestion and glycaemic features: A review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Effect of Wheat Replacement by Pulse Flours on the Texture, Color, and Sensorial Characteristics of Crackers: Flash Profile Analysis. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:2354045. [PMID: 36032407 PMCID: PMC9410925 DOI: 10.1155/2022/2354045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022]
Abstract
Pulse flours are growing in popularity as alternatives to wheat in bakery products due to their high protein and nutritional value. However, the effect of different pulse species and substitution on sensory perception is unclear. The sensory perception of crackers made by partially replacing wheat with chickpea (40-80%) and lupin flour (10-30%) was evaluated using Flash profile analysis in association with instrumental analysis of texture and color. Flash profile analysis was conducted in Greece and Indonesia in order to allow culture comparison of the profiling of the samples and language by the subjects of the panel. Lightness (L∗) and hardness of crackers were decreased by the addition of pulses. Flash profile analysis indicated an association among color, texture, and sensory perception by judges. Derived attributes were associated with the physicochemical characteristics and raw materials of crackers for both panels. GPA analysis of Greek panel indicated that increasing the replacement of wheat led to the generation of more attributes regardless of pulse species, while the Indonesian panel was able to detect differences among pulse species.
Collapse
|
19
|
Sivakumar C, Chaudhry MMA, Nadimi M, Paliwal J, Courcelles J. Characterization of roller and Ferkar-milled pulse flours using laser diffraction and scanning electron microscopy. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Sadohara R, Winham DM, Cichy KA. Food Industry Views on Pulse Flour—Perceived Intrinsic and Extrinsic Challenges for Product Utilization. Foods 2022; 11:foods11142146. [PMID: 35885389 PMCID: PMC9319253 DOI: 10.3390/foods11142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Pulses such as beans, chickpeas, peas, and lentils are typically consumed whole, but pulse flours will increase their versatility and drive consumption. Beans are the most produced pulse crop in the United States, although their flour use is limited. To expand commercial applications, knowledge of pulse flour attributes important to the food industry is needed. This research aimed to understand the food industry’s needs and barriers for pulse flour utilization. An online survey invitation was sent via direct email to individuals employed in food companies developing wheat flour products. A survey weblink was distributed by pulse commodity boards to their membership. Survey questions asked food manufacturers about intrinsic factors of pulse flours that were satisfactory or challenging, and extrinsic factors for use such as market demand. Of the 75 complete responses, 21 currently or had previously used pulse flours in products, and 54 were non-users of pulse flours. Ten users indicated that there were challenges with pulse flours while five did not. Two of the most selected challenges of end-product qualities were flavor and texture. Over half of the respondents were unfamiliar with bean flour. Increasing awareness of bean flours and their attributes coupled with market demand for pulse flour-based products may be the most important extrinsic factors to increasing use among food manufacturers rather than supply or cost.
Collapse
Affiliation(s)
- Rie Sadohara
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; (R.S.); (K.A.C.)
| | - Donna M. Winham
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| | - Karen A. Cichy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; (R.S.); (K.A.C.)
- Sugarbeet and Bean Research, USDA-ARS, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Modification of physicochemical, functional properties, and digestibility of macronutrients in common bean (Phaseolus vulgaris L.) flours by different thermally treated whole seeds. Food Chem 2022; 382:132570. [PMID: 35245760 DOI: 10.1016/j.foodchem.2022.132570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
Abstract
The utilization of beans (Phaseolus vulgaris L.) is hindered by unpleasant flavors, low macronutrients digestibility, and long cooking time. The pre-thermally treated beans can overcome these limitations. Therefore, the effect of thermal methods (moist-heat and dry-heat) and bean market classes (black, navy, kidney, and pinto) on functional properties and digestibility of bean flours were compared to raw counterparts. Within bean class, moist-heated samples showed increased water-holding capacities of 2.54-2.87 g H2O/g sample and starch/protein digestibility whereas dry-heated samples showed enhanced flavor profile and increased oil-holding capacities of 1.04-1.14 g oil/g sample. Among bean classes, moist-heated kidney bean flour showed the highest water-holding capacity of 2.87 g H2O/g sample and starch/protein digestibility while dry-heated pinto bean flour had the highest oil-holding capacity of 1.14 g oil/g sample. The current result may provide a basis for the development of pre-thermally treated legume flours and facilitate their applications.
Collapse
|
22
|
Augustin M, Cole M. Towards a sustainable food system by design using faba bean protein as an example. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Winham DM, Thompson SV, Heer MM, Davitt ED, Hooper SD, Cichy KA, Knoblauch ST. Black Bean Pasta Meals with Varying Protein Concentrations Reduce Postprandial Glycemia and Insulinemia Similarly Compared to White Bread Control in Adults. Foods 2022; 11:foods11111652. [PMID: 35681402 PMCID: PMC9180063 DOI: 10.3390/foods11111652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
Postprandial glycemic and insulinemic effects of three black bean pastas were evaluated among eighteen normoglycemic adults (8 men, 10 women) in a randomized crossover trial. Black beans were milled into flour using a commercial Knife or compression/decompression mill (C/D mill). The C/D-mill-derived pastas had medium protein (Combo-MP) and low protein (Cyclone-LP) concentrations. Three black bean flour pastas (Knife, Combo-MP, and Cyclone-LP) were compared to two controls: white bread and whole black beans. Treatments contained 50 g of available carbohydrate. Plasma glucose, serum insulin, and appetite measures were collected at fasting and 30, 60, 90, 150, and 180 min postprandial. Gastrointestinal symptoms were evaluated 10–12 h postprandial. ANOVA (one-way, repeated measures) was used to evaluate satiety, gastrointestinal symptoms, sensory variables, glucose and insulin differences from baseline, and incremental area under the curve (iAUC) by time and/or treatment. Three-hour glucose and insulin iAUCs were lower with whole black beans than white bread. Black bean pasta meals increased satiety, reduced appetite, and produced numerically lower glucose and insulin responses than white bread. However, no differences were observed between pasta types, indicating a similar metabolic response regardless of milling technique. Our results provide evidence for dietary guidance to reduce postprandial glucose and related health risks through pulse food products.
Collapse
Affiliation(s)
- Donna M. Winham
- Department of Food Science & Human Nutrition, Iowa State University, Ames, IA 50011, USA; (M.M.H.); (E.D.D.); (S.T.K.)
- Correspondence: ; Tel.: +1-515-294-5040
| | - Sharon V. Thompson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA;
| | - Michelle M. Heer
- Department of Food Science & Human Nutrition, Iowa State University, Ames, IA 50011, USA; (M.M.H.); (E.D.D.); (S.T.K.)
| | - Elizabeth D. Davitt
- Department of Food Science & Human Nutrition, Iowa State University, Ames, IA 50011, USA; (M.M.H.); (E.D.D.); (S.T.K.)
| | - Sharon D. Hooper
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lasing, MI 48824, USA;
| | - Karen A. Cichy
- Sugarbeet and Bean Research, USDA-ARS, East Lansing, MI 48824, USA;
| | - Simon T. Knoblauch
- Department of Food Science & Human Nutrition, Iowa State University, Ames, IA 50011, USA; (M.M.H.); (E.D.D.); (S.T.K.)
| |
Collapse
|
24
|
Lan Chi NT, Narayanan M, Chinnathambi A, Govindasamy C, Subramani B, Brindhadevi K, Pimpimon T, Pikulkaew S. Fabrication, characterization, anti-inflammatory, and anti-diabetic activity of silver nanoparticles synthesized from Azadirachta indica kernel aqueous extract. ENVIRONMENTAL RESEARCH 2022; 208:112684. [PMID: 34995544 DOI: 10.1016/j.envres.2022.112684] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The Azadirachta indica is an excellent and pharmaceutically valuable phytochemicals enriched traditional medicinal plant. The purpose of the research was to assess the ability of A. indica aqueous kernel extract to synthesize silver nanoparticles as well as their anti-inflammatory and anti-diabetic activity in vitro. The obtained results state that the aqueous kernel extract of A. indica can fabricate the silver nanoparticles and be confirmed by standard analytical techniques. Under UV-visible spectrophotometer analysis, the absorbance peak was found at 430 nm was related to the surface plasmon resonance of silver nanoparticles. The FTIR (Fourier-transform infrared spectroscopy) analysis revealed that numbers of functional groups belong to the pharmaceutically valuable phytochemicals, which act as reducing, capping, and stabilizing agent on silver nanoparticles synthesis. The size and shape of the silver nanoparticles were examined as 19.27-22.15 nm and spherical in shape. Interestingly, this kernel fabricated silver nanoparticles possess a reasonable anti-inflammatory (69.77%) and anti-diabetic (73.5%) activity at 100 μg mL-1 and these were partially comparable with standards (anti-inflammatory: 81.15%; anti-diabetic: 87.9%). Thus, the aqueous kernel extract fabricated silver nanoparticles can be considered for further in-vivo study to assess the practical possibility to promote as a pharmaceutical agent.
Collapse
Affiliation(s)
- Nguyen Thuy Lan Chi
- Van Lang School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Krishnagiri, Hosur, Tamil Nadu, 635130, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Baskaran Subramani
- Division of Hematology and Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health, San Antonio, TX, USA
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Tipsukon Pimpimon
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Surachai Pikulkaew
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
25
|
Recent advancements in baking technologies to mitigate formation of toxic compounds: A comprehensive review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Cargo-Froom CL, Newkirk RW, Marinangeli CPF, Shoveller AK, Ai Y, Kiarie EG, Columbus DA. The effects of grinding and pelleting on nutrient composition of Canadian pulses. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2021-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding the effects of processing pulses is required for their effective incorporation into livestock feed. To determine the impacts of processing, Canadian peas, lentils, chickpeas, and faba beans, plus soybean meal (as a comparison), were ground into fine and coarse products and pelleted at 3 different temperatures (60-65, 70-75, and 80-85 oC). Grinding increased crude protein content in all pulses (P<0.05), but did not affect most amino acids in pulses and soybean meal (P>0.05). Pelleting increased crude protein content in Amarillo peas, Dun peas, and lentils (P<0.05), but decreased in soybean meal (P<0.05). Pelleting increased cysteine, lysine, and methionine, and decreased histidine and tyrosine in most pulses (P<0.05). Comparatively, pelleting significantly increased lysine and decreased tyrosine content in soybean meal (P<0.05). These results suggest that processing can positively affect protein and amino acid content of pulses. However, specific effects on nutritional composition differed across ingredient type.
Collapse
Affiliation(s)
- Cara L Cargo-Froom
- University of Guelph, 3653, Animal Biosciences, Guelph, Canada
- Prairie Swine Centre Inc, 468453, Saskatoon, Canada
| | - Rex W. Newkirk
- University of Saskatchewan, 7235, Animal and Poultry Science, Saskatoon, Saskatchewan, Canada,
| | | | - Anna K Shoveller
- University of Guelph, 3653, Animal Biosciences , Guelph, Ontario, Canada
| | - Yongfeng Ai
- University of Saskatchewan, 7235, Department of Food and Bioproduct Sciences, Saskatoon, Canada
| | - Elijah G. Kiarie
- University of Guelph, 3653, Department of Animal Biosciences, Guelph, Ontario, Canada
| | - Daniel Allan Columbus
- University of Saskatchewan, 7235, Department of Animal and Poultry Science, Saskatoon, Canada, S7N 5A2
- Prairie Swine Centre Inc, 468453, Saskatoon, Canada, S7H 5N9
| |
Collapse
|
27
|
Li H, Zou L, Li XY, Wu DT, Liu HY, Li HB, Gan RY. Adzuki bean (Vigna angularis): Chemical compositions, physicochemical properties, health benefits, and food applications. Compr Rev Food Sci Food Saf 2022; 21:2335-2362. [PMID: 35365946 DOI: 10.1111/1541-4337.12945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
Adzuki bean (Vigna angularis), also called red bean, is a legume of Fabaceae (Leguminosae) family. This crop is native to East Asia and is also commercially available in other parts of the world. It is becoming a research focus owing to its distinct nutritional properties (e.g., abundant in polyphenols). The diverse health benefits and multiple utilization of this pulse are associated with its unique composition. However, there is a paucity of reviews focusing on the nutritional properties and potent applications of adzuki beans. This review summarizes the chemical compositions, physicochemical properties, health benefits, processing, and applications of adzuki beans. Suggestions on how to better utilize the adzuki bean are also provided to facilitate its development as a functional grain. Adzuki bean and its components can be further developed into value-added and nutritionally enhanced products.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xin-Yan Li
- Department of Neonatology, Longquanyi District of Chengdu Maternal and Child Healthcare Hospital, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
28
|
Fernando S, Manthey FA. Effect of different mills on the physical and flow properties of selected black bean flour particle size fractions. Cereal Chem 2022. [DOI: 10.1002/cche.10531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Supun Fernando
- Cereal Science Graduate Program, Department of Plant Sciences, Department number 7670, PO Box 6050 North Dakota State University Fargo ND 58108‐6050 USA
| | - Frank A. Manthey
- Cereal Science Graduate Program, Department of Plant Sciences, Department number 7670, PO Box 6050 North Dakota State University Fargo ND 58108‐6050 USA
| |
Collapse
|
29
|
Classification of pulse flours using near-infrared hyperspectral imaging. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Kumar SR, Sadiq MB, Anal AK. Comparative study of physicochemical and functional properties of soaked, germinated and pressure cooked Faba bean. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:257-267. [PMID: 35068570 PMCID: PMC8758870 DOI: 10.1007/s13197-021-05010-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/09/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023]
Abstract
Faba bean flours (germinated, soaked, cooked and raw) were evaluated for physiochemical and functional properties. The flour samples exhibited considerable amounts of carbohydrates (58.79-66.19 g/100 g) and proteins (21.9-29.1 g/100 g). Soaked faba bean (SFB) (29.1 g/100 g) and raw faba bean (RFB) (25.70 g/100 g) flour contained significantly higher amount of protein than germinated faba bean (GFB) and pressure cooked faba bean (PCFB). The physicochemical and functional composition of GFB and PCFB were improved compare to raw flour. Physical and functional properties such as water absorption index (2.97 g/g) and foaming stability (140.13 mL/100 mL) were increased by germination. The functional properties of pressure-cooked faba bean such as water solubility index (2.12 g/100 g) and water absorption capacity (2.02 g/g) were higher than other flour samples. The microstructure of legume flour samples explained that the starch granules of raw flours were smooth, oval and granular structure whereas soaked, germinated and cooked flours showed damaged starch granules. The effect of soaking, germination and pressure-cooking demonstrated significant variations in functionals characteristics of faba bean flour. Therefore, various processing conditions can be combined to obtain the desired characteristics in faba bean-based food products.
Collapse
Affiliation(s)
- Simmi Ranjan Kumar
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Nueng, 12120 Pathum Thani Thailand
| | - Muhammad Bilal Sadiq
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600 Pakistan
| | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Nueng, 12120 Pathum Thani Thailand
| |
Collapse
|
31
|
Grasso N, Lynch NL, Arendt EK, O'Mahony JA. Chickpea protein ingredients: A review of composition, functionality, and applications. Compr Rev Food Sci Food Saf 2021; 21:435-452. [PMID: 34919328 DOI: 10.1111/1541-4337.12878] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/05/2021] [Accepted: 10/31/2021] [Indexed: 01/30/2023]
Abstract
Chickpea (Cicer arietinum L.) is a pulse consumed all over the world, representing a good source of protein, as well as fat, fiber, and other carbohydrates. As a result of the growing global population the demand for the protein component of this pulse is increasing and various approaches have been proposed and developed to extract same. In this review the composition, functionality, and applications of chickpea protein ingredients are described. Moreover, methods to enhance protein quality have been identified, as well as applications of the coproducts resulting from protein extraction and processing. The principal dry and wet protein enrichment approaches, resulting in protein concentrates and isolates, include air classification, alkaline/acid extraction, salt extraction, isoelectric precipitation, and membrane filtration. Chickpea proteins exhibit good functional properties such as solubility, water and oil absorption capacity, emulsifying, foaming, and gelling. During protein enrichment, the functionality of protein can be enhanced in addition to primary processing (e.g., germination and dehulling, fermentation, enzymatic treatments). Different applications of chickpea protein ingredients, and their coproducts, have been identified in research, highlighting the potential of these ingredients for novel product development and improvement of the nutritional profile of existing food products. Formulations to meet consumer needs in terms of healthy and sustainable foods have been investigated in the literature and can be further explored. Future research may be useful to improve applications of the specific coproducts that result from the extraction of chickpea proteins, thereby leading to more sustainable processes.
Collapse
Affiliation(s)
- Nadia Grasso
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Nicola L Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Byanju B, Lamsal B. Protein-Rich Pulse Ingredients: Preparation, Modification Technologies and Impact on Important Techno-Functional and Quality Characteristics, and Major Food Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bibek Byanju
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Buddhi Lamsal
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
33
|
Calabrese V, Gunes DZ, Farrés IF. Rheological control of pea fibre dispersions in oil: The role of particle and water volume fractions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Comprehensive Understanding of Roller Milling on the Physicochemical Properties of Red Lentil and Yellow Pea Flours. Processes (Basel) 2021. [DOI: 10.3390/pr9101836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The development of convenience foods by incorporating nutrient-rich pulses such as peas and lentils will tremendously alter the future of pulse and cereal industries. However, these pulses should be size-reduced before being incorporated into many food products. Therefore, an attempt was made to adapt roller mill settings to produce de-husked yellow pea and red lentil flours. The milling flowsheets unique to yellow peas and red lentils were developed in producing small, medium, and large flours with maximum yield and flour quality. This study also investigated the differences in chemical composition, physical characteristics, and particle size distributions of the resultant six flour fractions. The kernel dimensions and physicochemical properties of the whole yellow pea and red lentils were also studied to develop customized mill settings. Overall, the mill settings had a significant effect on the physical properties of different particle-sized flours. The geometric mean diameters of different particle-sized red lentil flours were 56.05 μm (small), 67.01 μm (medium), and 97.17 μm (large), while for yellow pea flours they were 41.38 μm (small), 60.81 μm (medium), and 98.31 μm (large). The particle size distribution of all the flour types showed a bimodal distribution, except for the small-sized yellow pea flour. For both the pulse types, slightly more than 50% flour was approximately sizing 50 μm, 75 μm, and 100 μm for small, medium, and large settings, respectively. The chemical composition of the flour types remained practically the same for different-sized flours, fulfilling the objective of this current study. The damaged starch values for red lentil and yellow pea flour types increased with a decrease in flour particle size. Based on the Hausner’s ratios, the flowability of large-sized flour of red lentils could be described as passable; however, all the remaining five flour types were indicated as either poor or very poor. The findings of this study assist the millers to adapt yellow pea and red lentil milling technologies with minor modifications to the existing facilities. The study also helps in boosting the production of various baking products using pulse and wheat flour blends to enhance their nutritional quality.
Collapse
|
35
|
Tyl C, Bresciani A, Marti A. Recent Progress on Improving the Quality of Bran-Enriched Extruded Snacks. Foods 2021; 10:foods10092024. [PMID: 34574134 PMCID: PMC8471519 DOI: 10.3390/foods10092024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 12/29/2022] Open
Abstract
The incorporation of milling by-products, in particular bran, into starch-based extruded snacks allows manufacturers to address two consumer demands at once, i.e., those for goods that are more sustainably produced and of higher nutritional value. However, the higher fiber content in bran than in refined cereal flours poses a limit to the amount that can be included without compromising the quality of extruded snacks, which crucially depends on expansion. Thus, several studies have focused on the effect of bran on the physicochemical characteristics of extruded snacks, leading to the need to review the recent findings in this area. Opportunities, challenges, and potential solutions of bran-enriched snacks are addressed, and several current knowledge gaps are highlighted. Specifically, the first part of the review presents the effects of extrusion cooking on bran's compositional aspects, focusing on structural changes and product quality. After summarizing the main quality traits of extruded snacks (e.g., expansion rate, bulk density, and textural attributes), the effects of bran enrichment on the physical and sensory characteristics of the final product are discussed. Finally, bran pre-treatments as well as processing optimization are discussed as approaches to improve the quality of bran-enriched snacks.
Collapse
Affiliation(s)
- Catrin Tyl
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, 1433 Ås, Norway;
| | - Andrea Bresciani
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Giovanni Celoria, 2, 20133 Milan, Italy;
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Giovanni Celoria, 2, 20133 Milan, Italy;
- Correspondence:
| |
Collapse
|
36
|
Yu B, Xiang D, Mahfuz H, Patterson N, Bing D. Understanding Starch Metabolism in Pea Seeds towards Tailoring Functionality for Value-Added Utilization. Int J Mol Sci 2021; 22:8972. [PMID: 34445676 PMCID: PMC8396644 DOI: 10.3390/ijms22168972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review outlines the understanding of starch metabolism with a particular focus on peas and highlights the knowledge of pea starch granule structure and its relationship with functional properties, and industrial applications. Using the currently available pea genetics and genomics knowledge and breakthroughs in omics technologies, we discuss the perspectives and possible avenues to advance our understanding of starch metabolism in peas at an unprecedented level, to ultimately enable the molecular design of multi-functional native pea starch and to create value-added utilization.
Collapse
Affiliation(s)
- Bianyun Yu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Humaira Mahfuz
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Dengjin Bing
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada;
| |
Collapse
|
37
|
Duijsens D, Gwala S, Pallares AP, Pälchen K, Hendrickx M, Grauwet T. How postharvest variables in the pulse value chain affect nutrient digestibility and bioaccessibility. Compr Rev Food Sci Food Saf 2021; 20:5067-5096. [PMID: 34402573 DOI: 10.1111/1541-4337.12826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 01/12/2023]
Abstract
Pulses are increasingly being put forward as part of healthy diets because they are rich in protein, (slowly digestible) starch, dietary fiber, minerals, and vitamins. In pulses, nutrients are bioencapsulated by a cell wall, which mostly survives cooking followed by mechanical disintegration (e.g., mastication). In this review, we describe how different steps in the postharvest pulse value chain affect starch and protein digestion and the mineral bioaccessibility of pulses by influencing both their nutritional composition and structural integrity. Processing conditions that influence structural characteristics, and thus potentially the starch and protein digestive properties of (fresh and hard-to-cook [HTC]) pulses, have been reported in literature and are summarized in this review. The effect of thermal treatment on the pulse microstructure seems highly dependent on pulse type-specific cell wall properties and postharvest storage, which requires further investigation. In contrast to starch and protein digestion, the bioaccessibility of minerals is not dependent on the integrity of the pulse (cellular) tissue, but is affected by the presence of mineral antinutrients (chelators). Although pulses have a high overall mineral content, the presence of mineral antinutrients makes them rather poorly accessible for absorption. The negative effect of HTC on mineral bioaccessibility cannot be counteracted by thermal processing. This review also summarizes lessons learned on the use of pulses for the preparation of foods, from the traditional use of raw-milled pulse flours, to purified pulse ingredients (e.g., protein), to more innovative pulse ingredients in which cellular arrangement and bioencapsulation of macronutrients are (partially) preserved.
Collapse
Affiliation(s)
- Dorine Duijsens
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Shannon Gwala
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Andrea Pallares Pallares
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Katharina Pälchen
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Hooper SD, Bassett A, Sadohara R, Cichy KA. Elucidation of the low resistant starch phenotype in Phaseolus vulgaris exhibited in the yellow bean Cebo Cela. J Food Sci 2021; 86:3975-3986. [PMID: 34392534 DOI: 10.1111/1750-3841.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
Dry beans(Phaseolus vulgaris) are rich in complex carbohydrates including resistant starch (RS). RS, the starch fraction that escapes digestion, typically ranges from 35% in raw beans to 4% in cooked beans. A low RS bean genotype, Cebo Cela, was identified with 96% less RS (1.5% RS) than normal raw beans. The goal of this research was to elucidate the factors responsible for this low RS phenotype. The low RS phenotype was evaluated in whole bean flour and starch in Cebo Cela (yellow), Canario (yellow), Alpena (navy) and Samurai (otebo). α-Amylase activation was found to be a major contributor of the low RS content phenotype of the whole bean flour for Cebo Cela (-21.9% inhibition). Total starch (43.6%-40.2%), amylose (31.0%-31.5%), molecular weight and chain length distributions of amylose and amylopectin did not contribute to the low RS phenotype. Yellow bean starches were digested nearly 1.5 times (95%-94%) faster than starch granules from otebo and navy beans (65%-73%) due to lower proportions of amylopectin chains. PRACTICAL APPLICATION: This study is of value to the food industry because the yellow bean, Cebo Cela, is easily hydrolyzed by α-amylase and also has α-amylase promotion properties. Therefore, Cebo Cela can be used as an alternate starch source for ethanol fermentation and for the production of maltodextrins and fructose/glucose syrups which are used as food thickeners and sweeteners.
Collapse
Affiliation(s)
- Sharon D Hooper
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Amber Bassett
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Rie Sadohara
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Karen A Cichy
- USDA-ARS, Sugarbeet and Bean Research Unit, East Lansing, Michigan, USA
| |
Collapse
|
39
|
An Untargeted Metabolomics Approach for Correlating Pulse Crop Seed Coat Polyphenol Profiles with Antioxidant Capacity and Iron Chelation Ability. Molecules 2021; 26:molecules26133833. [PMID: 34201792 PMCID: PMC8270320 DOI: 10.3390/molecules26133833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.
Collapse
|
40
|
Garcia-Valle DE, Bello-Perez LA, Tovar J. Addition of chickpea markedly increases the indigestible carbohydrate content in semolina pasta as eaten. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2869-2876. [PMID: 33155278 DOI: 10.1002/jsfa.10918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND There is a growing interest in increasing dietary fiber (DF) consumption because of the health benefits associated with this nutrient. Pulses are considered a good source of non-digestible carbohydrates. The aim of this study was to investigate the possibility of substituting semolina with chickpea flour to increase indigestible carbohydrate content without altering the texture of the pasta. RESULTS Pasta was prepared by extruding semolina-chickpea blends. The protein and DF content in the cooked pasta increased with the chickpea level, with an important contribution of resistant starch (RS) to the DF values. The optimum cooking time decreased as the chickpea content increased, which was related to the degree of starch gelatinization of the raw pasta. The in vitro digestible starch content decreased with the chickpea substitution level, concomitant with the increase in RS content. In general, the texture of the chickpea-containing pasta was similar to that of semolina pasta. CONCLUSIONS Pending acceptability studies on these pastas may grant their promotion as good fiber sources, probably helpful in the fight against obesity and diet-related non-communicable diseases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Juscelino Tovar
- Department of Food Technology Engineering and Nutrition, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Fernando S, Manthey FA. Milling method affects the physical properties of black bean flour. Cereal Chem 2021. [DOI: 10.1002/cche.10418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Supun Fernando
- Cereal Science Graduate Program, Department of Plant Sciences North Dakota State University Fargo ND USA
| | - Frank A. Manthey
- Cereal Science Graduate Program, Department of Plant Sciences North Dakota State University Fargo ND USA
| |
Collapse
|
42
|
Gangola MP, Ramadoss BR, Jaiswal S, Chan C, Mollard R, Fabek H, Tulbek M, Jones P, Sanchez-Hernandez D, Anderson GH, Chibbar RN. Faba bean meal, starch or protein fortification of durum wheat pasta differentially influence noodle composition, starch structure and in vitro digestibility. Food Chem 2021; 349:129167. [PMID: 33567351 DOI: 10.1016/j.foodchem.2021.129167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/10/2023]
Abstract
Faba bean (Vicia faba L.) flour, starch concentrate (60% starch), protein concentrate (~60% protein) and protein isolate (~85% protein) were added to replace one-quarter of durum wheat semolina to enrich the nutritional quality and physiological functions of durum wheat (Triticum turgidum L.) pasta. The raw pasta samples prepared with protein concentrate or isolate had higher (p ≤ 0.001) protein and lower (p ≤ 0.001) total starch concentrations, along with increased total dietary fiber and slowly digestible starch (p ≤ 0.001) than durum wheat semolina control or those with added whole faba-bean flour or isolated starch. The faba bean fortified pasta had altered starch with increased proportion of medium B-type glucan chains and long C-type glucan chains, reduced starch digestibility and were associated with glycaemia related effects in the human diet. The faba bean fortified pasta had increased protein and dietary fiber that influenced food intake and satiety. The results suggest differential contributions of food ingredients in human health outcomes.
Collapse
Affiliation(s)
- Manu P Gangola
- Department of Plant Sciences, College of Agriculture and Bioresources, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Bharathi Raja Ramadoss
- Department of Plant Sciences, College of Agriculture and Bioresources, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Sarita Jaiswal
- Department of Plant Sciences, College of Agriculture and Bioresources, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Catharine Chan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Medical Sciences Building, 5(th) Floor, 1 King's College Circle, Toronto, ON, Canada
| | - Rebecca Mollard
- Department of Food and Human Nutritional Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, MB, Canada
| | - Hrvoje Fabek
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Medical Sciences Building, 5(th) Floor, 1 King's College Circle, Toronto, ON, Canada
| | - Mehmet Tulbek
- AGT Food and Ingredients Inc. (AGT), Saskatoon, SK, Canada
| | - Peter Jones
- Department of Food and Human Nutritional Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, MB, Canada
| | - Diana Sanchez-Hernandez
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Medical Sciences Building, 5(th) Floor, 1 King's College Circle, Toronto, ON, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Medical Sciences Building, 5(th) Floor, 1 King's College Circle, Toronto, ON, Canada
| | - Ravindra N Chibbar
- Department of Plant Sciences, College of Agriculture and Bioresources, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
43
|
Price C, Kiszonas AM, Smith B, Morris CF. Roller milling performance of dry yellow split peas: Mill stream composition and functional characteristics. Cereal Chem 2021. [DOI: 10.1002/cche.10385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chelsea Price
- School of Food Science Washington State University Pullman WA USA
| | | | - Brennan Smith
- School of Food Science University of Idaho Moscow ID USA
| | | |
Collapse
|
44
|
Pallares Pallares A, Gwala S, Pälchen K, Duijsens D, Hendrickx M, Grauwet T. Pulse seeds as promising and sustainable source of ingredients with naturally bioencapsulated nutrients: Literature review and outlook. Compr Rev Food Sci Food Saf 2021; 20:1524-1553. [DOI: 10.1111/1541-4337.12692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Andrea Pallares Pallares
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Shannon Gwala
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Katharina Pälchen
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Dorine Duijsens
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| |
Collapse
|
45
|
Kenar JA, Felker FC, Singh M, Byars JA, Berhow MA, Bowman MJ, Winkler-Moser JK. Comparison of composition and physical properties of soluble and insoluble navy bean flour components after jet-cooking, soaking, and cooking. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Gravel A, Doyen A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102272] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Bresciani A, Marti A. Using Pulses in Baked Products: Lights, Shadows, and Potential Solutions. Foods 2019; 8:E451. [PMID: 31581614 PMCID: PMC6835306 DOI: 10.3390/foods8100451] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023] Open
Abstract
Nowadays, consumers are more conscious of the environmental and nutritional benefits of foods. Pulses-thanks to both nutritional and health-promoting features, together with their low environmental impact-satisfy the demand for high-protein/high-fiber products. However, their consumption is still somewhat limited in Western countries, due to the presence of antinutrient compounds including phytic acid, trypsin inhibitors, and some undigested oligosaccharides, which are responsible for digestive discomfort. Another limitation of eating pulses regularly is their relatively long preparation time. One way to increase the consumption of pulses is to use them as an ingredient in food formulations, such as bread and other baked products. However, some sensory and technological issues limit the use of pulses on an industrial scale; consequently, they require special attention when combined with cereal-based products. Developing formulations and/or processes to improve pulse quality is necessary to enhance their incorporation into baked products. In this context, this study provides an overview of strengths and weaknesses of pulse-enriched baked products focusing on the various strategies-such as the choice of suitable ingredients or (bio)-technological approaches-that counteract the negative effects of including pulses in baked goods.
Collapse
Affiliation(s)
- Andrea Bresciani
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy.
| | - Alessandra Marti
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy.
| |
Collapse
|