1
|
McDonnell L, Evans S, Lu Z, Suchoronczak M, Leighton J, Ordeniza E, Ritchie B, Valado N, Walsh N, Antoney J, Wang C, Luna-Flores CH, Scott C, Speight R, Vickers CE, Peng B. Cyanamide-inducible expression of homing nuclease I- SceI for selectable marker removal and promoter characterisation in Saccharomyces cerevisiae. Synth Syst Biotechnol 2024; 9:820-827. [PMID: 39072146 PMCID: PMC11277796 DOI: 10.1016/j.synbio.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
In synthetic biology, microbial chassis including yeast Saccharomyces cerevisiae are iteratively engineered with increasing complexity and scale. Wet-lab genetic engineering tools are developed and optimised to facilitate strain construction but are often incompatible with each other due to shared regulatory elements, such as the galactose-inducible (GAL) promoter in S. cerevisiae. Here, we prototyped the cyanamide-induced I- SceI expression, which triggered double-strand DNA breaks (DSBs) for selectable marker removal. We further combined cyanamide-induced I- SceI-mediated DSB and maltose-induced MazF-mediated negative selection for plasmid-free in situ promoter substitution, which simplified the molecular cloning procedure for promoter characterisation. We then characterised three tetracycline-inducible promoters showing differential strength, a non-leaky β-estradiol-inducible promoter, cyanamide-inducible DDI2 promoter, bidirectional MAL32/MAL31 promoters, and five pairs of bidirectional GAL1/GAL10 promoters. Overall, alternative regulatory controls for genome engineering tools can be developed to facilitate genomic engineering for synthetic biology and metabolic engineering applications.
Collapse
Affiliation(s)
- Liam McDonnell
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Samuel Evans
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Zeyu Lu
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mitch Suchoronczak
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Jonah Leighton
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Eugene Ordeniza
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Blake Ritchie
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nik Valado
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Niamh Walsh
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - James Antoney
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, 271018, People's Republic of China
| | - Carlos Horacio Luna-Flores
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, 2601, Australia
| | - Robert Speight
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
- Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
| | - Claudia E. Vickers
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Bingyin Peng
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Stepchenkova EI, Zadorsky SP, Shumega AR, Aksenova AY. Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification. Int J Mol Sci 2023; 24:11960. [PMID: 37569333 PMCID: PMC10419131 DOI: 10.3390/ijms241511960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
The yeast S. cerevisiae is a unique genetic object for which a wide range of relatively simple, inexpensive, and non-time-consuming methods have been developed that allow the performing of a wide variety of genome modifications. Among the latter, one can mention point mutations, disruptions and deletions of particular genes and regions of chromosomes, insertion of cassettes for the expression of heterologous genes, targeted chromosomal rearrangements such as translocations and inversions, directed changes in the karyotype (loss or duplication of particular chromosomes, changes in the level of ploidy), mating-type changes, etc. Classical yeast genome manipulations have been advanced with CRISPR/Cas9 technology in recent years that allow for the generation of multiple simultaneous changes in the yeast genome. In this review we discuss practical applications of both the classical yeast genome modification methods as well as CRISPR/Cas9 technology. In addition, we review methods for ploidy changes, including aneuploid generation, methods for mating type switching and directed DSB. Combined with a description of useful selective markers and transformation techniques, this work represents a nearly complete guide to yeast genome modification.
Collapse
Affiliation(s)
- Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Sergey P. Zadorsky
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Andrey R. Shumega
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
| | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Cai G, Lin Z, Shi S. Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast. Enzyme Microb Technol 2022; 159:110056. [PMID: 35561628 DOI: 10.1016/j.enzmictec.2022.110056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/09/2023]
Abstract
Yeasts represent a group of the microorganisms most frequently seen in biotechnology. Recently, the class 2 type II CRISPR system (CRISPR/Cas9) has become the principal toolbox for genome editing. By efficiently implementing genetic manipulations such as gene integration/knockout, base editor, and transcription regulation, the development of biotechnological applications in yeasts has been extensively promoted. The genome-level tools based on CRISPR/Cas9, used for screening and identifying functional genes/gene clusters, are also advancing. In general, CRISPR/Cas9-assisted editing tools have gradually become standardized and function as host-orthogonal genetic systems, which results in time-saving for strain engineering and biotechnological application processes. In this review, we summarize the key points of the basic elements in the CRISPR/Cas9 system, including Cas9 variants, guide RNA, donors, and effectors. With a focus on yeast, we have also introduced the development of various CRISPR/Cas9 systems and discussed their future possibilities.
Collapse
Affiliation(s)
- Guang Cai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhenquan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
4
|
Antony JS, Hinz JM, Wyrick JJ. Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:924914. [PMID: 35706506 PMCID: PMC9190257 DOI: 10.3389/fbioe.2022.924914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
The versatility of clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) genome editing makes it a popular tool for many research and biotechnology applications. Recent advancements in genome editing in eukaryotic organisms, like fungi, allow for precise manipulation of genetic information and fine-tuned control of gene expression. Here, we provide an overview of CRISPR genome editing technologies in yeast, with a particular focus on Saccharomyces cerevisiae. We describe the tools and methods that have been previously developed for genome editing in Saccharomyces cerevisiae and discuss tips and experimental tricks for promoting efficient, marker-free genome editing in this model organism. These include sgRNA design and expression, multiplexing genome editing, optimizing Cas9 expression, allele-specific editing in diploid cells, and understanding the impact of chromatin on genome editing. Finally, we summarize recent studies describing the potential pitfalls of using CRISPR genome targeting in yeast, including the induction of background mutations.
Collapse
Affiliation(s)
- Jacob S. Antony
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | - John M. Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
- *Correspondence: John J. Wyrick,
| |
Collapse
|
5
|
A Saccharomyces eubayanus haploid resource for research studies. Sci Rep 2022; 12:5976. [PMID: 35396494 PMCID: PMC8993842 DOI: 10.1038/s41598-022-10048-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
Since its identification, Saccharomyces eubayanus has been recognized as the missing parent of the lager hybrid, S. pastorianus. This wild yeast has never been isolated from fermentation environments, thus representing an interesting candidate for evolutionary, ecological and genetic studies. However, it is imperative to develop additional molecular genetics tools to ease manipulation and thus facilitate future studies. With this in mind, we generated a collection of stable haploid strains representative of three main lineages described in S. eubayanus (PB-1, PB-2 and PB-3), by deleting the HO gene using CRISPR-Cas9 and tetrad micromanipulation. Phenotypic characterization under different conditions demonstrated that the haploid derivates were extremely similar to their parental strains. Genomic analysis in three strains highlighted a likely low frequency of off-targets, and sequencing of a single tetrad evidenced no structural variants in any of the haploid spores. Finally, we demonstrate the utilization of the haploid set by challenging the strains under mass-mating conditions. In this way, we found that S. eubayanus under liquid conditions has a preference to remain in a haploid state, unlike S. cerevisiae that mates rapidly. This haploid resource is a novel set of strains for future yeast molecular genetics studies.
Collapse
|
6
|
Moon HY, Sim GH, Kim HJ, Kim K, Kang HA. Assessment of Cre-lox and CRISPR-Cas9 as tools for recycling of multiple-integrated selection markers in Saccharomyces cerevisiae. J Microbiol 2022; 60:18-30. [PMID: 34964942 DOI: 10.1007/s12275-022-1580-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
We evaluated the Cre-lox and CRISPR-Cas9 systems as marker-recycling tools in Saccharomyces cerevisiae recombinants containing multiple-integrated expression cassettes. As an initial trial, we constructed rDNA-nontranscribed spacer- or Ty4-based multiple integration vectors containing the URA3 marker flanked by the loxP sequence. Integrants harboring multiple copies of tHMG1 and NNV-CP expression cassettes were obtained and subsequently transformed with the Cre plasmid. However, the simultaneous pop-out of the expression cassettes along with the URA3 marker hampered the use of Cre-lox as a marker-recycling tool in multiple integrants. As an alternative, we constructed a set of CRISPR-Cas9-gRNA vectors containing gRNA targeted to auxotrophic marker genes. Transformation of multiple integrants of tHMG1 and NNV-CP cassettes by the Cas9-gRNA vector in the presence of the URA3 (stop) donor DNA fragments generated the Ura- transformants retaining multiple copies of the expression cassettes. CRISPR-Cas9-based inactivation led to the recycling of the other markers, HIS3, LEU2, and TRP1, without loss of expression cassettes in the recombinants containing multiple copies of tHMG1, NNV-CP, and SfBGL1 cassettes, respectively. Reuse of the same selection marker in marker-inactivated S. cerevisiae was validated by multiple integrations of the TrEGL2 cassette into the S. cerevisiae strain expressing SfBGL1. These results demonstrate that introducing stop codons into selection marker genes using the CRISPR-Cas9 system with donor DNA fragments is an efficient strategy for markerrecycling in multiple integrants. In particular, the continual reuse of auxotrophic markers would facilitate the construction of a yeast cell factory containing multiple copies of expression cassettes without antibiotic resistance genes.
Collapse
Affiliation(s)
- Hye Yun Moon
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gyu Hun Sim
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyeon Jin Kim
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keunpil Kim
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Rainha J, Rodrigues JL, Rodrigues LR. CRISPR-Cas9: A Powerful Tool to Efficiently Engineer Saccharomyces cerevisiae. Life (Basel) 2020; 11:13. [PMID: 33375364 PMCID: PMC7823794 DOI: 10.3390/life11010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Saccharomyces cerevisiae has been for a long time a common model for fundamental biological studies and a popular biotechnological engineering platform to produce chemicals, fuels, and pharmaceuticals due to its peculiar characteristics. Both lines of research require an effective editing of the native genetic elements or the inclusion of heterologous pathways into the yeast genome. Although S. cerevisiae is a well-known host with several molecular biology tools available, a more precise tool is still needed. The clustered, regularly interspaced, short palindromic repeats-associated Cas9 (CRISPR-Cas9) system is a current, widespread genome editing tool. The implementation of a reprogrammable, precise, and specific method, such as CRISPR-Cas9, to edit the S. cerevisiae genome has revolutionized laboratory practices. Herein, we describe and discuss some applications of the CRISPR-Cas9 system in S. cerevisiae from simple gene knockouts to more complex processes such as artificial heterologous pathway integration, transcriptional regulation, or tolerance engineering.
Collapse
Affiliation(s)
| | | | - Lígia R. Rodrigues
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (J.R.); (J.L.R.)
| |
Collapse
|
8
|
Chen H, Zhu C, Zhu M, Xiong J, Ma H, Zhuo M, Li S. High production of valencene in Saccharomyces cerevisiae through metabolic engineering. Microb Cell Fact 2019; 18:195. [PMID: 31699116 PMCID: PMC6839068 DOI: 10.1186/s12934-019-1246-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/29/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The biological synthesis of high value compounds in industry through metabolically engineered microorganism factories has received increasing attention in recent years. Valencene is a high value ingredient in the flavor and fragrance industry, but the low concentration in nature and high cost of extraction limits its application. Saccharomyces cerevisiae, generally recognized as safe, is one of the most commonly used gene expression hosts. Construction of S. cerevisiae cell factory to achieve high production of valencene will be attractive. RESULTS Valencene was successfully biosynthesized after introducing valencene synthase into S. cerevisiae BJ5464. A significant increase in valencene yield was observed after down-regulation or knock-out of squalene synthesis and other inhibiting factors (such as erg9, rox1) in mevalonate (MVA) pathway using a recyclable CRISPR/Cas9 system constructed in this study through the introduction of Cre/loxP. To increase the supplement of the precursor farnesyl pyrophosphate (FPP), all the genes of FPP upstream in MVA pathway were overexpressed in yeast genome. Furthermore, valencene expression cassettes containing different promoters and terminators were compared, and PHXT7-VS-TTPI1 was found to have excellent performance in valencene production. Finally, after fed-batch fermentation in 3 L bioreactor, valencene production titer reached 539.3 mg/L with about 160-fold improvement compared to the initial titer, which is the highest reported valencene yield. CONCLUSIONS This study achieved high production of valencene in S. cerevisiae through metabolic engineering and optimization of expression cassette, providing good example of microbial overproduction of valuable chemical products. The construction of recyclable plasmid was useful for multiple gene editing as well.
Collapse
Affiliation(s)
- Hefeng Chen
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China
| | - Muzi Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Jinghui Xiong
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China
| | - Hao Ma
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Mans R, Wijsman M, Daran-Lapujade P, Daran JM. A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9. FEMS Yeast Res 2018; 18:5026622. [PMID: 29860374 PMCID: PMC6074844 DOI: 10.1093/femsyr/foy063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Here, two methods are described for efficient genetic modification of Saccharomyces cerevisiae using CRISPR/Cas9. The first method enables the modification of a single genetic locus using in vivo assembly of a guide RNA (gRNA) expression plasmid without the need for prior cloning. A second method using in vitro assembled plasmids that could contain up to two gRNAs was used to simultaneously introduce up to six genetic modifications (e.g. six gene deletions) in a single transformation step by transforming up to three gRNA expression plasmids simultaneously. The method is not only suitable for gene deletion but is also applicable for in vivo site-directed mutagenesis and integration of multiple DNA fragments in a single locus. In all cases, the strain transformed with the gRNA expression plasmids was equipped with a genomic integration of Spcas9, leading to strong and constitutive expression of SpCas9. The protocols detailed here have been streamlined to be executed by virtually any yeast molecular geneticist.
Collapse
Affiliation(s)
- Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
10
|
Hu Y, Jia Y, Zhao X, Yang Z, Hao Z, Dong J, Zeng F. A new strategy for seamless gene editing and marker recycling in Saccharomyces cerevisiae using lethal effect of Cwp1. Microbiologyopen 2018; 8:e00750. [PMID: 30311449 PMCID: PMC6562115 DOI: 10.1002/mbo3.750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023] Open
Abstract
Technologies development for seamless gene editing and marker recycling has allowed frequent genomic engineering in Saccharomyces cerevisiae for desired laboratory strains and cell factory. Alternative new approaches are still required for complicated scenarios. In this study, we report that inducible overexpression of cell wall protein 1 (Cwp1) by galactose addition confers yeast cells a robust growth inhibition. Direct repeats flanking the Gal‐CWP1:selectable marker cassette allow for its homology recombination excision and counter selection upon galactose addition, therefore enable seamless gene editing and marker recycling. We used this strategy and efficiently generated scarless Ade8 deletion mutants. Our results highlight the utility of lethal effect of Cwp1 overexpression a new counter selection strategy and a simple and efficient method for seamless gene editing and marker recycling in S. cerevisiae and potentially other fungi.
Collapse
Affiliation(s)
- Yuxiao Hu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yanrong Jia
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiangdong Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zihao Yang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhimin Hao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jingao Dong
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
11
|
Raschmanová H, Weninger A, Glieder A, Kovar K, Vogl T. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects. Biotechnol Adv 2018; 36:641-665. [PMID: 29331410 DOI: 10.1016/j.biotechadv.2018.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Within five years, the CRISPR-Cas system has emerged as the dominating tool for genome engineering, while also changing the speed and efficiency of metabolic engineering in conventional (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and non-conventional (Yarrowia lipolytica, Pichia pastoris syn. Komagataella phaffii, Kluyveromyces lactis, Candida albicans and C. glabrata) yeasts. Especially in S. cerevisiae, an extensive toolbox of advanced CRISPR-related applications has been established, including crisprTFs and gene drives. The comparison of innovative CRISPR-Cas expression strategies in yeasts presented here may also serve as guideline to implement and refine CRISPR-Cas systems for highly efficient genome editing in other eukaryotic organisms.
Collapse
Affiliation(s)
- Hana Raschmanová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
| | - Astrid Weninger
- Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Anton Glieder
- Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820 Wädenswil, Switzerland
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
Karabín M, Jelínek L, Kotrba P, Cejnar R, Dostálek P. Enhancing the performance of brewing yeasts. Biotechnol Adv 2017; 36:691-706. [PMID: 29277309 DOI: 10.1016/j.biotechadv.2017.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/23/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022]
Abstract
Beer production is one of the oldest known traditional biotechnological processes, but is nowadays facing increasing demands not only for enhanced product quality, but also for improved production economics. Targeted genetic modification of a yeast strain is one way to increase beer quality and to improve the economics of beer production. In this review we will present current knowledge on traditional approaches for improving brewing strains and for rational metabolic engineering. These research efforts will, in the near future, lead to the development of a wider range of industrial strains that should increase the diversity of commercial beers.
Collapse
Affiliation(s)
- Marcel Karabín
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Lukáš Jelínek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Rudolf Cejnar
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Pavel Dostálek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic.
| |
Collapse
|
13
|
Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1621-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Gnügge R, Rudolf F. Saccharomyces cerevisiaeShuttle vectors. Yeast 2017; 34:205-221. [DOI: 10.1002/yea.3228] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 01/25/2023] Open
Affiliation(s)
- Robert Gnügge
- D-BSSE; ETH Zurich and Swiss Institute of Bioinformatics; Zurich Switzerland
- Life Science Zurich PhD Program on Molecular and Translational Biomedicine; Zurich Switzerland
- Competence Centre for Personalized Medicine; Zurich Switzerland
| | - Fabian Rudolf
- D-BSSE; ETH Zurich and Swiss Institute of Bioinformatics; Zurich Switzerland
| |
Collapse
|
15
|
Reider Apel A, d'Espaux L, Wehrs M, Sachs D, Li RA, Tong GJ, Garber M, Nnadi O, Zhuang W, Hillson NJ, Keasling JD, Mukhopadhyay A. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:496-508. [PMID: 27899650 PMCID: PMC5224472 DOI: 10.1093/nar/gkw1023] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023] Open
Abstract
Despite the extensive use of Saccharomyces cerevisiae as a platform for synthetic biology, strain engineering remains slow and laborious. Here, we employ CRISPR/Cas9 technology to build a cloning-free toolkit that addresses commonly encountered obstacles in metabolic engineering, including chromosomal integration locus and promoter selection, as well as protein localization and solubility. The toolkit includes 23 Cas9-sgRNA plasmids, 37 promoters of various strengths and temporal expression profiles, and 10 protein-localization, degradation and solubility tags. We facilitated the use of these parts via a web-based tool, that automates the generation of DNA fragments for integration. Our system builds upon existing gene editing methods in the thoroughness with which the parts are standardized and characterized, the types and number of parts available and the ease with which our methodology can be used to perform genetic edits in yeast. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important enzyme, taxadiene synthase (TXS). This approach enabled us to diagnose an issue with TXS solubility, the resolution of which yielded a 25-fold improvement in taxadiene production.
Collapse
Affiliation(s)
- Amanda Reider Apel
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, CA 94720, USA
| | - Leo d'Espaux
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, CA 94720, USA
| | - Maren Wehrs
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, CA 94720, USA
| | - Daniel Sachs
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, CA 94720, USA
| | - Rachel A Li
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, CA 94720, USA
| | - Gary J Tong
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, CA 94720, USA
| | - Megan Garber
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, CA 94720, USA
| | - Oge Nnadi
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, CA 94720, USA
| | - William Zhuang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, CA 94720, USA
| | - Nathan J Hillson
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, CA 94720, USA
- DOE Joint Genome Institute, Walnut Creek, California, CA 94598, USA
| | - Jay D Keasling
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, CA 94720, USA
- DOE Joint Genome Institute, Walnut Creek, California, CA 94598, USA
- The Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Aindrila Mukhopadhyay
- DOE Joint BioEnergy Institute, Emeryville, California, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, CA 94720, USA
| |
Collapse
|
16
|
Pathway swapping: Toward modular engineering of essential cellular processes. Proc Natl Acad Sci U S A 2016; 113:15060-15065. [PMID: 27956602 DOI: 10.1073/pnas.1606701113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent developments in synthetic biology enable one-step implementation of entire metabolic pathways in industrial microorganisms. A similarly radical remodelling of central metabolism could greatly accelerate fundamental and applied research, but is impeded by the mosaic organization of microbial genomes. To eliminate this limitation, we propose and explore the concept of "pathway swapping," using yeast glycolysis as the experimental model. Construction of a "single-locus glycolysis" Saccharomyces cerevisiae platform enabled quick and easy replacement of this yeast's entire complement of 26 glycolytic isoenzymes by any alternative, functional glycolytic pathway configuration. The potential of this approach was demonstrated by the construction and characterization of S. cerevisiae strains whose growth depended on two nonnative glycolytic pathways: a complete glycolysis from the related yeast Saccharomyces kudriavzevii and a mosaic glycolysis consisting of yeast and human enzymes. This work demonstrates the feasibility and potential of modular, combinatorial approaches to engineering and analysis of core cellular processes.
Collapse
|
17
|
Jessop-Fabre MM, Jakočiūnas T, Stovicek V, Dai Z, Jensen MK, Keasling JD, Borodina I. EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J 2016; 11:1110-7. [PMID: 27166612 PMCID: PMC5094547 DOI: 10.1002/biot.201600147] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/14/2016] [Accepted: 05/03/2016] [Indexed: 11/08/2022]
Abstract
Saccharomyces cerevisiae is an established industrial host for production of recombinant proteins, fuels and chemicals. To enable stable integration of multiple marker-free overexpression cassettes in the genome of S. cerevisiae, we have developed a vector toolkit EasyClone-MarkerFree. The integration of linearized expression cassettes into defined genomic loci is facilitated by CRISPR/Cas9. Cas9 is recruited to the chromosomal location by specific guide RNAs (gRNAs) expressed from a set of gRNA helper vectors. Using our genome engineering vector suite, single and triple insertions are obtained with 90-100% and 60-70% targeting efficiency, respectively. We demonstrate application of the vector toolkit by constructing a haploid laboratory strain (CEN.PK113-7D) and a diploid industrial strain (Ethanol Red) for production of 3-hydroxypropionic acid, where we tested three different acetyl-CoA supply strategies, requiring overexpression of three to six genes each. Among the tested strategies was a bacterial cytosolic pyruvate dehydrogenase complex, which was integrated into the genome in a single transformation. The publicly available EasyClone-MarkerFree vector suite allows for facile and highly standardized genome engineering, and should be of particular interest to researchers working on yeast chassis with limited markers available.
Collapse
Affiliation(s)
- Mathew M Jessop-Fabre
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Zongjie Dai
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
| |
Collapse
|
18
|
Metabolic Engineering of Probiotic Saccharomyces boulardii. Appl Environ Microbiol 2016; 82:2280-2287. [PMID: 26850302 DOI: 10.1128/aem.00057-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/30/2016] [Indexed: 01/23/2023] Open
Abstract
Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii.
Collapse
|
19
|
González-Ramos D, Gorter de Vries AR, Grijseels SS, van Berkum MC, Swinnen S, van den Broek M, Nevoigt E, Daran JMG, Pronk JT, van Maris AJA. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:173. [PMID: 27525042 PMCID: PMC4983051 DOI: 10.1186/s13068-016-0583-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Acetic acid, released during hydrolysis of lignocellulosic feedstocks for second generation bioethanol production, inhibits yeast growth and alcoholic fermentation. Yeast biomass generated in a propagation step that precedes ethanol production should therefore express a high and constitutive level of acetic acid tolerance before introduction into lignocellulosic hydrolysates. However, earlier laboratory evolution strategies for increasing acetic acid tolerance of Saccharomyces cerevisiae, based on prolonged cultivation in the presence of acetic acid, selected for inducible rather than constitutive tolerance to this inhibitor. RESULTS Preadaptation in the presence of acetic acid was shown to strongly increase the fraction of yeast cells that could initiate growth in the presence of this inhibitor. Serial microaerobic batch cultivation, with alternating transfers to fresh medium with and without acetic acid, yielded evolved S. cerevisiae cultures with constitutive acetic acid tolerance. Single-cell lines isolated from five such evolution experiments after 50-55 transfers were selected for further study. An additional constitutively acetic acid tolerant mutant was selected after UV-mutagenesis. All six mutants showed an increased fraction of growing cells upon a transfer from a non-stressed condition to a medium containing acetic acid. Whole-genome sequencing identified six genes that contained (different) mutations in multiple acetic acid-tolerant mutants. Haploid segregation studies and expression of the mutant alleles in the unevolved ancestor strain identified causal mutations for the acquired acetic acid tolerance in four genes (ASG1, ADH3, SKS1 and GIS4). Effects of the mutations in ASG1, ADH3 and SKS1 on acetic acid tolerance were additive. CONCLUSIONS A novel laboratory evolution strategy based on alternating cultivation cycles in the presence and absence of acetic acid conferred a selective advantage to constitutively acetic acid-tolerant mutants and may be applicable for selection of constitutive tolerance to other stressors. Mutations in four genes (ASG1, ADH3, SKS1 and GIS4) were identified as causative for acetic acid tolerance. The laboratory evolution strategy as well as the identified mutations can contribute to improving acetic acid tolerance in industrial yeast strains.
Collapse
Affiliation(s)
- Daniel González-Ramos
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Arthur R. Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Sietske S. Grijseels
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Margo C. van Berkum
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Steve Swinnen
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
20
|
Jakočiūnas T, Jensen MK, Keasling JD. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 2015; 34:44-59. [PMID: 26707540 DOI: 10.1016/j.ymben.2015.12.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/29/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022]
Abstract
One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
| |
Collapse
|
21
|
Solis-Escalante D, Kuijpers NGA, Barrajon-Simancas N, van den Broek M, Pronk JT, Daran JM, Daran-Lapujade P. A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism. EUKARYOTIC CELL 2015; 14:804-16. [PMID: 26071034 PMCID: PMC4519752 DOI: 10.1128/ec.00064-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Abstract
As a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae's current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae strains, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (the "minimal glycolysis" [MG] strain). Remarkably, a combination of a quantitative systems approach and semiquantitative analysis in a wide array of growth environments revealed the absence of a phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic of S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means of fixing minor glycolytic paralogs in the yeast genome. The MG strain was carefully designed and constructed to provide a robust prototrophic platform for quantitative studies and has been made available to the scientific community.
Collapse
Affiliation(s)
| | - Niels G A Kuijpers
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
22
|
Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NGA, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJA, Daran JMG. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov004. [PMID: 25743786 PMCID: PMC4399441 DOI: 10.1093/femsyr/fov004] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A variety of techniques for strain engineering in Saccharomyces cerevisiae have recently been developed. However, especially when multiple genetic manipulations are required, strain construction is still a time-consuming process. This study describes new CRISPR/Cas9-based approaches for easy, fast strain construction in yeast and explores their potential for simultaneous introduction of multiple genetic modifications. An open-source tool (http://yeastriction.tnw.tudelft.nl) is presented for identification of suitable Cas9 target sites in S. cerevisiae strains. A transformation strategy, using in vivo assembly of a guideRNA plasmid and subsequent genetic modification, was successfully implemented with high accuracies. An alternative strategy, using in vitro assembled plasmids containing two gRNAs, was used to simultaneously introduce up to six genetic modifications in a single transformation step with high efficiencies. Where previous studies mainly focused on the use of CRISPR/Cas9 for gene inactivation, we demonstrate the versatility of CRISPR/Cas9-based engineering of yeast by achieving simultaneous integration of a multigene construct combined with gene deletion and the simultaneous introduction of two single-nucleotide mutations at different loci. Sets of standardized plasmids, as well as the web-based Yeastriction target-sequence identifier and primer-design tool, are made available to the yeast research community to facilitate fast, standardized and efficient application of the CRISPR/Cas9 system. CRISPR/Cas9 like a Swiss army knife enables molecular biologists to quickly introduce simultaneous multiple and diverse genetic modifications in baker's yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Robert Mans
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Harmen M van Rossum
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antoon Backx
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Niels G A Kuijpers
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
23
|
Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 2015; 28:213-222. [PMID: 25638686 DOI: 10.1016/j.ymben.2015.01.008] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/13/2014] [Accepted: 01/20/2015] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains. We applied our genome engineering tool for an exploratory analysis of all possible single, double, triple, quadruple and quintuple gene disruption combinations to search for strains with high mevalonate production, a key intermediate for the industrially important isoprenoid biosynthesis pathway. Even though we did not overexpress any genes in the mevalonate pathway, this analysis identified strains with mevalonate titers greater than 41-fold compared to the wild-type strain. Our findings illustrate the applicability of this highly specific and efficient multiplex genome engineering approach to accelerate functional genomics and metabolic engineering efforts.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Ida Bonde
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Markus Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Scott J Harrison
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Lasse E Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA.
| |
Collapse
|
24
|
Siddiqui MS, Choksi A, Smolke CD. A system for multilocus chromosomal integration and transformation-free selection marker rescue. FEMS Yeast Res 2014; 14:1171-85. [PMID: 25226817 DOI: 10.1111/1567-1364.12210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 02/01/2023] Open
Abstract
Yeast integrating plasmids (YIPs) are a versatile tool for stable integration in Saccharomyces cerevisiae. However, current YIP systems necessitate time- and labor-intensive methods for cloning and selection marker rescue. Here, we describe the design, construction, and validation of a new YIP system capable of accelerating the stable integration of multiple expression constructs into different loci in the yeast S. cerevisiae. These 'directed pop-out' plasmids enable a simple, two-step integration protocol that results in a scarless integration alongside a complete rescue of the selection marker. These plasmids combine three key features: a dedicated 'YIPout' fragment directs a recombination event that rescues the selection marker while avoiding undesired excision of the target DNA sequence, a multifragment modular DNA assembly system simplifies cloning, and a new set of counterselectable markers enables serial integration followed by a transformation-free marker rescue event. We constructed and tested directed pop-out YIPs for integration of fluorescent reporter genes into four yeast loci. We validated our new YIP design by integrating three reporter genes into three different loci with transformation-free rescue of selection markers. These new YIP designs will facilitate the construction of yeast strains that express complex heterologous metabolic pathways.
Collapse
Affiliation(s)
- Michael S Siddiqui
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
25
|
Abstract
Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.
Collapse
Affiliation(s)
- Owen W Ryan
- Energy Biosciences Institute, University of California, Berkeley, California, USA
| | - Jamie H D Cate
- Energy Biosciences Institute, University of California, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Chemistry, University of California, Berkeley, California, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|