1
|
Loh YM, Xu YY, Lee TT, Ohashi TS, Zhang YD, Eberl DF, Su MP, Kamikouchi A. Differences in male Aedes aegypti and Aedes albopictus hearing systems facilitate recognition of conspecific female flight tones. iScience 2024; 27:110264. [PMID: 39027372 PMCID: PMC11255862 DOI: 10.1016/j.isci.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
When Aedes albopictus mosquitoes invade regions predominated by Aedes aegypti, either the latter can be displaced or the species can coexist, with potential consequences on disease transmission. Males from both species identify females by listening for her flight sounds. Comparing male hearing systems may provide insight into how hearing could prevent interspecific mating. Here, we show that species-specific differences in female wing beat frequencies are reflected in differences in male ear mechanical tuning frequencies and sound response profiles. Though Aedes albopictus males are attracted to sound, they do not readily display abdominal bending, unlike Aedes aegypti. We observed interspecific differences in male ear mechanical, but not electrical, tuning, suggesting a conserved primary auditory processing pathway. Our work suggests a potential role for hearing in the premating isolation of Aedes aegypti and Aedes albopictus, with implications for predicting future dynamics in their sympatric relationships and our understanding of mosquito acoustic communication.
Collapse
Affiliation(s)
- YuMin M. Loh
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yifeng Y.J. Xu
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Tai-Ting Lee
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Takuro S. Ohashi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yixiao D. Zhang
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Daniel F. Eberl
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Matthew P. Su
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Grether GF, Finneran AE, Drury JP. Niche differentiation, reproductive interference, and range expansion. Ecol Lett 2024; 27:e14350. [PMID: 38062899 PMCID: PMC11497290 DOI: 10.1111/ele.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024]
Abstract
Understanding species distributions and predicting future range shifts requires considering all relevant abiotic factors and biotic interactions. Resource competition has received the most attention, but reproductive interference is another widespread biotic interaction that could influence species ranges. Rubyspot damselflies (Hetaerina spp.) exhibit a biogeographic pattern consistent with the hypothesis that reproductive interference has limited range expansion. Here, we use ecological niche models to evaluate whether this pattern could have instead been caused by niche differentiation. We found evidence for climatic niche differentiation, but the species that encounters the least reproductive interference has one of the narrowest and most peripheral niches. These findings strengthen the case that reproductive interference has limited range expansion and also provide a counterexample to the idea that release from negative species interactions triggers niche expansion. We propose that release from reproductive interference enables species to expand in range while specializing on the habitats most suitable for breeding.
Collapse
Affiliation(s)
- Gregory F. Grether
- Department of Ecology & Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ann E. Finneran
- Department of Ecology & Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | | |
Collapse
|
3
|
Ciocchetta S, Frentiu FD, Montarsi F, Capelli G, Devine GJ. Investigation on key aspects of mating biology in the mosquito Aedes koreicus. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:826-833. [PMID: 37622600 DOI: 10.1111/mve.12687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Aedes koreicus Edwards, 1917 (Hulecoetomyia koreica) is a mosquito (Diptera: Culicidae) from Northeast Asia with a rapidly expanding presence outside its original native range. Over the years, the species has been discovered in several new countries, either spreading after first introduction or remaining localised to limited areas. Notably, recent studies have demonstrated the ability of the species to transmit zoonotic parasites and viruses both in the field and in laboratory settings. Combined with its invasive potential, the possible role of Ae. koreicus in pathogen transmission highlights the public health risks resulting from its invasion. In this study, we used a recently established population from Italy to investigate aspects of biology that influence reproductive success in Ae. koreicus: autogeny, mating behaviour, mating disruption by the sympatric invasive species Aedes albopictus Skuse, 1894, and the presence of the endosymbiont Wolbachia pipientis Hertig, 1936. Our laboratory population did not exhibit autogenic behaviour and required a bloodmeal to complete its ovarian cycle. When we exposed Ae. koreicus females to males of Ae. albopictus, we observed repeated attempts at insemination and an aggressive, disruptive mating behaviour initiated by male Ae. albopictus. Despite this, no sperm was identified in Ae. koreicus spermathecae. Wolbachia, an endosymbiotic bacterium capable of influencing mosquito reproductive behaviour, was not detected in this Ae. koreicus population and, therefore, had no effect on Ae. koreicus reproduction.
Collapse
Affiliation(s)
- Silvia Ciocchetta
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Francesca D Frentiu
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Patterson CW, Drury JP. Interspecific behavioural interference and range dynamics: current insights and future directions. Biol Rev Camb Philos Soc 2023; 98:2012-2027. [PMID: 37364865 DOI: 10.1111/brv.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Novel biotic interactions in shifting communities play a key role in determining the ability of species' ranges to track suitable habitat. To date, the impact of biotic interactions on range dynamics have predominantly been studied in the context of interactions between different trophic levels or, to a lesser extent, exploitative competition between species of the same trophic level. Yet, both theory and a growing number of empirical studies show that interspecific behavioural interference, such as interspecific territorial and mating interactions, can slow down range expansions, preclude coexistence, or drive local extinction, even in the absence of resource competition. We conducted a systematic review of the current empirical research into the consequences of interspecific behavioural interference on range dynamics. Our findings demonstrate there is abundant evidence that behavioural interference by one species can impact the spatial distribution of another. Furthermore, we identify several gaps where more empirical work is needed to test predictions from theory robustly. Finally, we outline several avenues for future research, providing suggestions for how interspecific behavioural interference could be incorporated into existing scientific frameworks for understanding how biotic interactions influence range expansions, such as species distribution models, to build a stronger understanding of the potential consequences of behavioural interference on the outcome of future range dynamics.
Collapse
Affiliation(s)
| | - Jonathan P Drury
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| |
Collapse
|
5
|
Keith SA, Drury JP, McGill BJ, Grether GF. Macrobehaviour: behavioural variation across space, time, and taxa. Trends Ecol Evol 2023; 38:1177-1188. [PMID: 37661519 DOI: 10.1016/j.tree.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
We explore how integrating behavioural ecology and macroecology can provide fundamental new insight into both fields, with particular relevance for understanding ecological responses to rapid environmental change. We outline the field of macrobehaviour, which aims to unite these disciplines explicitly, and highlight examples of research in this space. Macrobehaviour can be envisaged as a spectrum, where behavioural ecologists and macroecologists use new data and borrow tools and approaches from one another. At the heart of this spectrum, interdisciplinary research considers how selection in the context of large-scale factors can lead to systematic patterns in behavioural variation across space, time, and taxa, and in turn, influence macroecological patterns and processes. Macrobehaviour has the potential to enhance forecasts of future biodiversity change.
Collapse
Affiliation(s)
- Sally A Keith
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Jonathan P Drury
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME 04469, USA
| | - Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Anttonen T, Burghi T, Duvall L, Fernandez MP, Gutierrez G, Kermen F, Merlin C, Michaiel A. Neurobiology and Changing Ecosystems: Mechanisms Underlying Responses to Human-Generated Environmental Impacts. J Neurosci 2023; 43:7530-7537. [PMID: 37940589 PMCID: PMC10634574 DOI: 10.1523/jneurosci.1431-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 11/10/2023] Open
Abstract
Human generated environmental change profoundly affects organisms that reside across diverse ecosystems. Although nervous systems evolved to flexibly sense, respond, and adapt to environmental change, it is unclear whether the rapid rate of environmental change outpaces the adaptive capacity of complex nervous systems. Here, we explore neural systems mediating responses to, or impacted by, changing environments, such as those induced by global heating, sensory pollution, and changing habitation zones. We focus on rising temperature and accelerated changes in environments that impact sensory experience as examples of perturbations that directly or indirectly impact neural function, respectively. We also explore a mechanism involved in cross-species interactions that arises from changing habitation zones. We demonstrate that anthropogenic influences on neurons, circuits, and behaviors are widespread across taxa and require further scientific investigation to understand principles underlying neural resilience to accelerating environmental change.SIGNIFICANCE STATEMENT Neural systems evolved over hundreds of millions of years to allow organisms to sense and respond to their environments - to be receptive and responsive, yet flexible. Recent rapid, human-generated environmental changes are testing the limits of the adaptive capacity of neural systems. This presents an opportunity and an urgency to understand how neurobiological processes, including molecular, cellular, and circuit-level mechanisms, are vulnerable or resilient to changing environmental conditions. We showcase examples that range from molecular to circuit to behavioral levels of analysis across several model species, framing a broad neuroscientific approach to explore topics of neural adaptation, plasticity, and resilience. We believe this emerging scientific area is of great societal and scientific importance and will provide a unique opportunity to reexamine our understanding of neural adaptation and the mechanisms underlying neural resilience.
Collapse
Affiliation(s)
- Tommi Anttonen
- Institute of Biology, University of Southern Denmark, Odense, Denmark DK-5230
| | - Thiago Burghi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB2 1PZ
| | - Laura Duvall
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Gabrielle Gutierrez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Florence Kermen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark DK-1165
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Angie Michaiel
- Department of Life Sciences, The Kavli Foundation, Los Angeles, California 90230
| |
Collapse
|
7
|
Costanzo K, Occhino D. Effects of Temperature on Blood Feeding and Activity Levels in the Tiger Mosquito, Aedes albopictus. INSECTS 2023; 14:752. [PMID: 37754720 PMCID: PMC10531981 DOI: 10.3390/insects14090752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Temperature has been shown to have profound effects on mosquito population dynamics and life history. Understanding these effects can provide insight into how mosquito populations and the diseases they transmit may vary across space and time and under the changes imposed by climate change. In this study, we evaluated how temperature affects the blood feeding and general activity patterns in the globally invasive mosquito species Aedes albopictus. We reared cohorts of Ae. albopictus from hatch through adulthood across three temperatures (26 °C, 29 °C, and 32 °C). The propensity of adult females to take a blood meal and the size of the blood meal were compared across temperatures. We also observed the overall activity levels of adult females over a 13.5 h period. At the highest temperature tested (32 °C), females were less likely to take a blood meal and were most active, as measured through frequency of movement. We postulate that our highest-temperature treatment imposes heat stress on adult female Ae. albopictus, where many abstain from blood feeding and increase movement in an attempt to escape the heat stress and find a more favorable resting location.
Collapse
Affiliation(s)
- Katie Costanzo
- Biology Department, Canisius University, 2001 Main St., Buffalo, NY 14208, USA;
| | | |
Collapse
|
8
|
Gómez M, Macedo AT, Pedrosa MC, Hohana F, Barros V, Pires B, Barbosa L, Brito M, Garziera L, Argilés-Herrero R, Virginio JF, Carvalho DO. Exploring Conditions for Handling Packing and Shipping Aedes aegypti Males to Support an SIT Field Project in Brazil. INSECTS 2022; 13:871. [PMID: 36292819 PMCID: PMC9604236 DOI: 10.3390/insects13100871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The sterile insect technique (SIT) application, as an alternative tool for conventional mosquito control methods, has recently gained prominence. Nevertheless, some SIT components require further development, such as protocols under large-scale conditions, focusing on packing and shipping mosquitoes, and considering transporting time. Immobilization of Aedes aegypti males was tested at temperatures 4, 7, 10, and 14 °C, and each temperature was assessed for 60, 90, and 120 min. The recovery after 24 h was also studied. Chilled and control-reared males had comparable survival rates for all conditions, although 4 °C for 120 min impacted male survival. The male escape rate was affected after 60 min of exposure at 4 °C; this difference was not significant, with 24 h of recovery. First, we defined the successful immobilization at 4 °C for 60 min, thus enabling the evaluation of two transportation intervals: 6 and 24 h, with the assessment of different compaction densities of 100 and 150 mosquitoes/cm3 at 10 °C to optimize the shipment. Compaction during simulated mosquito shipments reduced survival rates significantly after 6 and 24 h. In the mating propensity and insemination experiments, the sterile males managed to inseminate 40 to 66% for all treatments in laboratory conditions. The male insemination propensity was affected only by the highest compaction condition concerning the control. The analysis of the densities (100 and 150 males/cm3) showed that a higher density combined with an extended shipment period (24 h) negatively impacted the percentage of inseminated females. The results are very helpful in developing and improving the SIT packing and shipment protocols. Further studies are required to evaluate all combined parameters' synergetic effects that can combine irradiation to assess sexual competitiveness when sterile males are released into the field.
Collapse
Affiliation(s)
- Maylen Gómez
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
- Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, P.O. Box 100 Vienna, Austria
| | - Aline T. Macedo
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Michelle C. Pedrosa
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Fernanda Hohana
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Verenna Barros
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Bianca Pires
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Lucas Barbosa
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Miriam Brito
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Luiza Garziera
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Rafael Argilés-Herrero
- Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, P.O. Box 100 Vienna, Austria
| | - Jair F. Virginio
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Danilo O. Carvalho
- Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, P.O. Box 100 Vienna, Austria
| |
Collapse
|
9
|
Zhou J, Liu S, Liu H, Xie Z, Liu L, Lin L, Jiang J, Yang M, Zhou G, Gu J, Zhou X, Yan G, James AA, Chen XG. Interspecific mating bias may drive Aedes albopictus displacement of Aedes aegypti during its range expansion. PNAS NEXUS 2022; 1:pgac041. [PMID: 35601361 PMCID: PMC9112929 DOI: 10.1093/pnasnexus/pgac041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/05/2022] [Accepted: 04/08/2022] [Indexed: 01/29/2023]
Abstract
Aedes albopictus is the most invasive mosquito in the world and often displaces Ae. aegypti in regions where their populations overlap. Interspecific mating has been proposed as a possible cause for this displacement, but whether this applies across the range of their sympatry remains unclear. Aedes albopictus and Ae. aegypti collected from allopatric and sympatric areas in China were allowed to interact in cage experiments with different crosses and sex-choices. The results confirm that asymmetric interspecific mating occurs in these populations with matings between allopatric Ae. albopictus males and Ae. aegypti females being significantly higher (55.2%) than those between Ae. aegypti males and Ae. albopictus females (27.0%), and sympatric mosquitoes showed a similar but lower frequency bias, 25.7% versus 6.2%, respectively. The cross-mated females can mate second time (remate) with the respective conspecific males and the 66.7% remating success of female Ae. albopictus was significantly higher than the 9.3% of Ae. aegypti females. Furthermore, 17.8% of the matings of Ae. albopictus males exposed to mixed pools of Ae. albopictus and Ae. aegypti females and 9.3% of the matings of Ae. aegypti males with mixed Ae. aegypti and Ae. albopictus females were interspecific. The difference in the length of clasper between male Ae. albopictus (0.524 mm) and Ae. aegypti (0.409 mm) may be correlated with corresponding mates. We conclude that stronger Ae. albopictus male interspecific mating and more avid female intraspecific remating result in a satyr effect and contribute to competitive displacement of Ae. aegypti as allopatric Ae. albopictus invade during range expansion.
Collapse
Affiliation(s)
- Jiayong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shuang Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Liping Liu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Lifeng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jinyong Jiang
- Yunnan Provincial Institute of Parasitic Disease Control, Simao 665099, China
| | - Mingdong Yang
- Yunnan Provincial Institute of Parasitic Disease Control, Simao 665099, China
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, CA 92697, USA
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697, USA
| | - Anthony A James
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Negl Trop Dis 2022; 16:e0010324. [PMID: 35471983 PMCID: PMC9041844 DOI: 10.1371/journal.pntd.0010324] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background The combination of Wolbachia-based incompatible insect technique (IIT) and radiation-based sterile insect technique (SIT) can be used for population suppression of Aedes aegypti. Our main objective was to evaluate whether open-field mass-releases of wAlbB-infected Ae. aegypti males, as part of an Integrated Vector Management (IVM) plan led by the Mexican Ministry of Health, could suppress natural populations of Ae. aegypti in urbanized settings in south Mexico. Methodology/Principal findings We implemented a controlled before-and-after quasi-experimental study in two suburban localities of Yucatan (Mexico): San Pedro Chimay (SPC), which received IIT-SIT, and San Antonio Tahdzibichén used as control. Release of wAlbB Ae. aegypti males at SPC extended for 6 months (July-December 2019), covering the period of higher Ae. aegypti abundance. Entomological indicators included egg hatching rates and outdoor/indoor adult females collected at the release and control sites. Approximately 1,270,000 lab-produced wAlbB-infected Ae. aegypti males were released in the 50-ha treatment area (2,000 wAlbB Ae. aegypti males per hectare twice a week in two different release days, totaling 200,000 male mosquitoes per week). The efficacy of IIT-SIT in suppressing indoor female Ae. aegypti density (quantified from a generalized linear mixed model showing a statistically significant reduction in treatment versus control areas) was 90.9% a month after initiation of the suppression phase, 47.7% two months after (when number of released males was reduced in 50% to match local abundance), 61.4% four months after (when initial number of released males was re-established), 88.4% five months after and 89.4% at six months after the initiation of the suppression phase. A proportional, but lower, reduction in outdoor female Ae. aegypti was also quantified (range, 50.0–75.2% suppression). Conclusions/Significance Our study, the first open-field pilot implementation of Wolbachia IIT-SIT in Mexico and Latin-America, confirms that inundative male releases can significantly reduce natural populations of Ae. aegypti. More importantly, we present successful pilot results of the integration of Wolbachia IIT-SIT within a IVM plan implemented by Ministry of Health personnel. Wild-type female Ae. aegypti mating with released males carrying the maternally inherited bacteria Wolbachia produce infertile eggs, leading to important reductions in mosquito population size. We present results from pilot open-field mass-releases of Ae. aegypti males infected with the Wolbachia strain wAlbB (termed incompatible insect technique, IIT) and irradiated to prevent accidental female mosquito colonization (termed sterile insect technique, SIT). Our IIT-SIT approach was implemented by the Mexican Ministry of Health within an Integrated Vector Management (IVM) plan to suppress natural populations of Ae. aegypti. Approximately 1,270,000 lab-produced wAlbB-infected Ae. aegypti males were released in a 50-ha. town of Yucatan over a period of 24 weeks. Throughout the suppression phase, we observed significant reductions in egg hatching, outdoor and indoor female Ae. aegypti densities in the release town compared to a similar town used as control. The largest effect was on the number of indoor Ae. aegypti females per house (Prokopack collections) which reached a 90% efficacy. Our study, the first report of an open-field pilot-study with mass-releases of sterile Ae. aegypti males produced with IIT-SIT in Mexico and Latin-America, confirms findings from other settings showing important reductions in entomological indices due to inundative incompatible male releases.
Collapse
|
11
|
Mitchell C, Leigh S, Alphey L, Haerty W, Chapman T. Reproductive interference and Satyrisation: mechanisms, outcomes and potential use for insect control. JOURNAL OF PEST SCIENCE 2022; 95:1023-1036. [PMID: 35535033 PMCID: PMC9068665 DOI: 10.1007/s10340-022-01476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Reproductive Interference occurs when interactions between individuals from different species disrupt reproductive processes, resulting in a fitness cost to one or both parties involved. It is typically observed between individuals of closely related species, often upon secondary contact. In both vertebrates and invertebrates, Reproductive Interference is frequently referred to as 'Satyrisation'. It can manifest in various ways, ranging from blocking or reducing the efficacy of mating signals, through to negative effects of heterospecific copulations and the production of sterile or infertile hybrid offspring. The negative fitness effects of Satyrisation in reciprocal matings between species are often asymmetric and it is this aspect, which is most relevant to, and can offer utility in, pest management. In this review, we focus on Satyrisation and outline the mechanisms through which it can operate. We illustrate this by using test cases, and we consider the underlying reasons why the reproductive interactions that comprise Satyrisation occur. We synthesise the key factors affecting the expression of Satyrisation and explore how they have potential utility in developing new routes for the management and control of harmful insects. We consider how Satyrisation might interact with other control mechanisms, and conclude by outlining a framework for its use in control, highlighting some of the important next steps.
Collapse
Affiliation(s)
- Christina Mitchell
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Stewart Leigh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Luke Alphey
- The Pirbright Institute, Ash Rd, Pirbright, Woking, GU24 0NF UK
| | - Wilfried Haerty
- Evolutionary Genomics, Earlham Institute, Norwich Research Park, Norwich, NR4 7UG UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
12
|
Garjito TA, Widiarti W, Hidajat MC, Handayani SW, Mujiyono M, Prihatin MT, Ubaidillah R, Sudomo M, Satoto TBT, Manguin S, Gavotte L, Frutos R. Homogeneity and Possible Replacement of Populations of the Dengue Vectors Aedes aegypti and Aedes albopictus in Indonesia. Front Cell Infect Microbiol 2021; 11:705129. [PMID: 34307199 PMCID: PMC8294392 DOI: 10.3389/fcimb.2021.705129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Currently, Aedes aegypti, the principal vector of dengue virus in Indonesia, has spread throughout the archipelago. Aedes albopictus is also present. Invasion and high adaptability of the Aedes mosquitoes to all of these areas are closely related to their ecology and biology. Between June 2016 and July 2017, larval and adult mosquito collections were conducted in 43 locations in 25 provinces of Indonesia using standardized sampling methods for dengue vector surveillance. The samples collected were analyzed for polymorphism and phylogenetic relationship using the mitochondrial cox1 gene and the nuclear ribosomal internal transcribed spacer 2 (ITS2). Almost all Ae. aegypti samples collected in this study (89%) belonged to the same haplotype. A similar situation is observed with the nuclear ITS2 marker. Populations of Ae. aegypti characterized few years ago were genetically different. A closely related observation was made with Aedes albopictus for which the current populations are different from those described earlier. Ae. aegypti populations were found to be highly homogenous all over Indonesia with all samples belonging to the same maternal lineage. Although difficult to demonstrate formally, there is a possibility of population replacement. Although to a lower extent, a similar conclusion was reached with Ae. albopictus.
Collapse
Affiliation(s)
- Triwibowo Ambar Garjito
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Widiarti Widiarti
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Muhammad Choirul Hidajat
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia.,Doctoral School of Medical Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Sri Wahyuni Handayani
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Mujiyono Mujiyono
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Mega Tyas Prihatin
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Rosichon Ubaidillah
- Research Center for Biology, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Mohammad Sudomo
- National Institute of Health Research and Development, The Ministry of Health of Indonesia, Jakarta, Indonesia
| | - Tri Baskoro Tunggul Satoto
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sylvie Manguin
- HydroSciences Montpellier (UMR-HSM), IRD, CNRS, Montpellier, France
| | | | | |
Collapse
|
13
|
Brennan SA, Grob IC, Bartz CE, Baker JK, Jiang Y. Displacement of Aedes albopictus by Aedes aegypti in Gainesville, Florida. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2021; 37:93-97. [PMID: 34184045 DOI: 10.2987/20-6992.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aedes aegypti and Ae. albopictus are invasive mosquitoes, capable of vectoring arboviruses such as dengue, chikungunya, yellow fever, and Zika. Recent shifts in spatial distribution indicate there is a resurgence of Ae. aegypti in certain regions of Florida. After a 26-year absence, Ae. aegypti larvae were collected in a downtown neighborhood in Gainesville, Florida, in November 2019. Subsequent surveys confirmed that Ae. albopictus was completely displaced by Ae. aegypti in this neighborhood, whereas Ae. albopictus and Ae. aegypti coexisted around this community focus, and Ae. albopictus alone has been found elsewhere in the city and county since the 1990s. Field surveys revealed that Ae. aegypti is resurging in the downtown area of Gainesville and is actively dispersing to adjacent neighborhoods. Thus, Ae. aegypti could potentially replace Ae. albopictus across more of urban Gainesville in north-central Florida, as reported recently in coastal cities of northeastern Florida.
Collapse
Affiliation(s)
- Sara A Brennan
- Gainesville Mosquito Control Services405 NW 39th Ave., Gainesville, FL 32609
| | - Ivy C Grob
- Gainesville Mosquito Control Services405 NW 39th Ave., Gainesville, FL 32609
| | - Cason E Bartz
- Gainesville Mosquito Control Services405 NW 39th Ave., Gainesville, FL 32609
| | - Justin K Baker
- Gainesville Mosquito Control Services405 NW 39th Ave., Gainesville, FL 32609
| | - Yongxing Jiang
- Gainesville Mosquito Control Services405 NW 39th Ave., Gainesville, FL 32609
| |
Collapse
|
14
|
Westby KM, Juliano SA, Medley KA. Aedes albopictus (Diptera: Culicidae) Has Not Become the Dominant Species in Artificial Container Habitats in a Temperate Forest More Than a Decade After Establishment. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:950-955. [PMID: 33073848 PMCID: PMC8244635 DOI: 10.1093/jme/tjaa215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Aedes albopictus (Skuse) (Diptera: Culicidae) is one of the most invasive species globally, and has led to rapid declines and local extirpations of resident mosquitoes where it becomes established. A potential mechanism behind these displacements is the superior competitive ability of Ae. albopictus in larval habitats. Research on the context-dependent nature of competitive displacement predicts that Ae. albopictus will not replace native Aedes triseriatus (Say) (Diptera: Culicidae) in treeholes but could do so in artificial container habitats. Aedes albopictus remains rare in temperate treeholes but less is known about how Ae. albopictus fares in artificial containers in forests. Tyson Research Center (TRC) is a field station composed of mostly oak-hickory forest located outside Saint Louis, MO. The container community has been studied regularly at TRC since 2007 with permanently established artificial containers on the property since 2013. Aedes albopictus was detected each year when these communities were sampled; however, its abundance remains low and it fails to numerically dominate other species in these communities. We present data that show Ae. albopictus numbers have not increased in the last decade. We compare egg counts from 2007 to 2016 and combine larval sample data from 2012 to 2017.We present average larval densities and prevalence of Ae. albopictus and two competitors, Ae. triseriatus and Aedes japonicus (Theobald) (Diptera: Culicidae), as well as monthly averages by year. These data highlight a circumstance in which Ae. albopictus fails to dominate the Aedes community despite it doing so in more human-impacted habitats. We present hypotheses for these patterns based upon abiotic and biotic environmental conditions.
Collapse
Affiliation(s)
- Katie M Westby
- Tyson Research Center, Washington University in Saint Louis, Eureka, MO
| | - Steven A Juliano
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Kim A Medley
- Tyson Research Center, Washington University in Saint Louis, Eureka, MO
| |
Collapse
|
15
|
Yang B, Borgert BA, Alto BW, Boohene CK, Brew J, Deutsch K, DeValerio JT, Dinglasan RR, Dixon D, Faella JM, Fisher-Grainger SL, Glass GE, Hayes R, Hoel DF, Horton A, Janusauskaite A, Kellner B, Kraemer MUG, Lucas KJ, Medina J, Morreale R, Petrie W, Reiner RC, Riles MT, Salje H, Smith DL, Smith JP, Solis A, Stuck J, Vasquez C, Williams KF, Xue RD, Cummings DAT. Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. PLoS Negl Trop Dis 2021; 15:e0009063. [PMID: 33764975 PMCID: PMC8051819 DOI: 10.1371/journal.pntd.0009063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2021] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Florida faces the challenge of repeated introduction and autochthonous transmission of arboviruses transmitted by Aedes aegypti and Aedes albopictus. Empirically-based predictive models of the spatial distribution of these species would aid surveillance and vector control efforts. To predict the occurrence and abundance of these species, we fit a mixed-effects zero-inflated negative binomial regression to a mosquito surveillance dataset with records from more than 200,000 trap days, representative of 53% of the land area and ranging from 2004 to 2018 in Florida. We found an asymmetrical competitive interaction between adult populations of Aedes aegypti and Aedes albopictus for the sampled sites. Wind speed was negatively associated with the occurrence and abundance of both vectors. Our model predictions show high accuracy (72.9% to 94.5%) in validation tests leaving out a random 10% subset of sites and data since 2017, suggesting a potential for predicting the distribution of the two Aedes vectors.
Collapse
Affiliation(s)
- Bingyi Yang
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Brooke A. Borgert
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Barry W. Alto
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Carl K. Boohene
- Polk County Mosquito Control, Parks and Natural Resources Division, Florida, United States of America
| | - Joe Brew
- Institut de Salut Global de Barcelona, Carrer del Rosselló, Barcelona, Catalonia, Spain
| | - Kelly Deutsch
- Orange County Government, Florida, Orange County Mosquito Control Division, Florida, United States of America
| | - James T. DeValerio
- University of Florida Institute of Food and Agricultural Sciences, Bradford County Extension, Starke, Florida, United States of America
| | - Rhoel R. Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, United States of America
| | - Daniel Dixon
- Anastasia Mosquito Control District, St. Augustine, Florida, United States of America
| | - Joseph M. Faella
- Brevard County Mosquito Control, Florida, United States of America
| | | | - Gregory E. Glass
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Geography, University of Florida, Gainesville, Florida, United States of America
| | - Reginald Hayes
- Palm Beach County Mosquito Control, Florida, United States of America
| | - David F. Hoel
- Lee County Mosquito Control District, Florida, United States of America
| | - Austin Horton
- Gulf County Mosquito Control, Florida, United States of America
| | - Agne Janusauskaite
- Pasco County Mosquito Control District, Florida, United States of America
| | - Bill Kellner
- Citrus County Mosquito Control District, Florida, United States of America
| | - Moritz U. G. Kraemer
- Harvard Medical School, Boston, Massachusetts, United States of America
- Computational Epidemiology Lab, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Keira J. Lucas
- Collier Mosquito Control District, Naples, Florida, United States of America
| | - Johana Medina
- Miami-Dade County Mosquito Control, Florida, United States of America
| | - Rachel Morreale
- Lee County Mosquito Control District, Florida, United States of America
| | - William Petrie
- Miami-Dade County Mosquito Control, Florida, United States of America
| | - Robert C. Reiner
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Michael T. Riles
- Beach Mosquito Control District, Florida, United States of America
| | - Henrik Salje
- Mathematical Modelling Unit, Institut Pasteur, Paris, France
| | - David L. Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - John P. Smith
- Florida State University, Panama City, Florida, United States of America
| | - Amy Solis
- Clarke: Aquatic and Mosquito Control Services and Products, St. Charles, Illinois, United States of America
| | - Jason Stuck
- Pinellas County Mosquito Control, Stormwater and Vegetation Division, Florida, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control, Florida, United States of America
| | - Katie F. Williams
- Manatee County Mosquito Control District, Florida, United States of America
| | - Rui-De Xue
- Brevard County Mosquito Control, Florida, United States of America
| | - Derek A. T. Cummings
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
16
|
Feitoza TDS, Ferreira-de-Lima VH, Câmara DCP, Honório NA, Lounibos LP, Lima-Camara TN. Interspecific Mating Effects on Locomotor Activity Rhythms and Refractoriness of Aedes albopictus (Diptera: Culicidae) Females. INSECTS 2020; 11:E874. [PMID: 33316878 PMCID: PMC7764719 DOI: 10.3390/insects11120874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 11/17/2022]
Abstract
This study tests the hypotheses that the locomotor activity of Ae. albopictus females is not significantly altered by the presence of accessory gland (AG) extracts from conspecific and heterospecific males, and that Ae. albopictus females remain receptive to mating with conspecific males even after receiving AG of Ae. aegypti males. Virgin Ae. albopictus females were injected with saline (control group), AG extracts of Ae. aegypti males (aegMAG) or AG extracts of Ae. albopictus males (albMAG). Locomotor activity was evaluated under 12 h of light and 12 h of darkness at 25 °C. All live Ae. albopictus females were subsequently exposed to conspecific males for 48 h, and their spermathecae were dissected for the presence of sperm. Females injected with aegMAG and albMAG showed significant decreases in total, diurnal and diurnal without lights-on Period activities. Females injected with aegMAG showed significant decreases in nocturnal and nocturnal without lights-off period activities. Females injected with albMAG showed significant decreases in lights-off activity. A total of 83% of Ae. albopictus females injected with aegMAG and 10% of females injected with albMAG were inseminated by conspecific males. These results, coupled with our previous paper on MAG and interspecific mating effects on female Ae. aegypti, demonstrate contrasting outcomes on locomotor activities and loss of sexual receptivity, both conspecific and heterospecific MAGs capable of sterilizing virgin Ae. aegypti, but only conspecific MAGs sterilizing Ae. albopictus, whereas locomotor activities were depressed in females of both species after heterospecific and conspecific injections or treatments.
Collapse
Affiliation(s)
- Thais de Souza Feitoza
- Laboratory of Entomology in Public Health, School of Public Health, University of São Paulo, São Paulo, SP 01246-904, Brazil
| | | | - Daniel Cardoso Portela Câmara
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
| | - Nildimar Alves Honório
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
| | - L Philip Lounibos
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Tamara Nunes Lima-Camara
- Laboratory of Entomology in Public Health, School of Public Health, University of São Paulo, São Paulo, SP 01246-904, Brazil
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP 01246-904, Brazil
| |
Collapse
|
17
|
Steinwascher K. Competition and growth among Aedes aegypti larvae: Effects of distributing food inputs over time. PLoS One 2020; 15:e0234676. [PMID: 33006964 PMCID: PMC7531853 DOI: 10.1371/journal.pone.0234676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022] Open
Abstract
Male and female mosquito larvae compete for different subsets of the yeast food resource in laboratory microcosms. Males compete more intensely with males, and females with females. The amount and timing of food inputs alters both growth and competition, but the effects are different between sexes. Increased density increases competition among males. Among females, density operates primarily by changing the food/larva or total food; this affects competition in some interactions and growth in others. Food added earlier in the life span contributes more to mass than the same quantity added later. After a period of starvation larvae appear to use some of the subsequent food input to rebuild physiological reserves in addition to building mass. The timing of pupation is affected by the independent factors and competition, but not in the same way for the two sexes, and not in the same way as mass at pupation for the two sexes. There is an effect of density on the timing of pupation for females independent of competition or changes in food/larva or total food. Male and female larvae have different larval life history strategies. Males grow quickly to a minimum size, then pupate, depending on the amount of food available. Males that do not grow quickly enough may delay pupation further to grow larger, resulting in a bimodal distribution of sizes and ages. Males appear to have a maximum size determined by the early food level. Females grow faster than males and grow larger than males on the same food inputs. Females affect the growth and competition among males by manipulating the number of particles in the microcosm through changes in feeding behavior. Mosquito larvae appear to have evolved to survive periods of starvation and take advantage of intermittent inputs of food into containers.
Collapse
Affiliation(s)
- Kurt Steinwascher
- Florida Medical Entomology Laboratory, Vero Beach, FL, United States of America
| |
Collapse
|
18
|
Kyogoku D, Wheatcroft D. Heterospecific mating interactions as an interface between ecology and evolution. J Evol Biol 2020; 33:1330-1344. [PMID: 32762053 DOI: 10.1111/jeb.13687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
Reproductive interference (costly interspecific sexual interactions) is well-understood to promote divergence in mating-relevant traits (i.e. reproductive character displacement: RCD), but it can also reduce population growth, eventually leading to local extinction of one of the species. The ecological and evolutionary processes driven by reproductive interference can interact with each other. These interactions are likely to influence whether the outcome is coexistence or extinction, but remain little studied. In this paper, we first develop an eco-evolutionary perspective on reproductive interference by integrating ecological and evolutionary processes in a common framework. We also present a simple model to demonstrate the eco-evolutionary dynamics of reproductive interference. We then identify a number of factors that are likely to influence the relative likelihoods of extinction or RCD. We discuss particularly relevant factors by classifying them into four categories: the nature of the traits responding to selection, the mechanisms determining the expression of these traits, mechanisms of reproductive interference and the ecological background. We highlight previously underappreciated ways in which these factors may influence the relative likelihoods of RCD and local extinction. By doing so, we also identify questions and future directions that will increase our holistic understanding of the outcomes of reproductive interference.
Collapse
|
19
|
Tedjou AN, Kamgang B, Yougang AP, Wilson-Bahun TA, Njiokou F, Wondji CS. Patterns of Ecological Adaptation of Aedes aegypti and Aedes albopictus and Stegomyia Indices Highlight the Potential Risk of Arbovirus Transmission in Yaoundé, the Capital City of Cameroon. Pathogens 2020; 9:pathogens9060491. [PMID: 32575721 PMCID: PMC7350347 DOI: 10.3390/pathogens9060491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
The dynamic of arbovirus vectors such as Aedes aegypti and Ae. albopictus remains poorly understood in large cities in central Africa. Here, we compared the larval ecology, geographical distribution and degree of infestation of Ae. aegypti and Ae. albopictus in Yaoundé, the capital city of Cameroon, and estimated their Stegomyia indices revealing a significant potential risk of arbovirus transmission. An entomological survey was conducted in April-May 2018 in a cluster of houses randomly selected. Each selected house was inspected, the number of inhabitants was recorded, and potential and positive containers for Aedes were characterized. Stegomyia and pupae-based indices were estimated. Overall, 447 houses and 954 containers were inspected comprising 10,801 immature stages of Aedes with 84.95% of Ae. albopictus and 15.05% of Ae. aegypti. Both species bred mainly in discarded tanks and used tyres, associated with turbid water and the presence of plant debris inside containers. Aedes albopictus was the most prevalent species in almost all neighbourhoods. The house index, Breteau index, and container index were higher for Ae. albopictus (38.26%, 71.81%, and 29.61%) compared to those of Ae. aegypti (25.73%, 40.93%, and 16.88%). These indices are high compared to the thresholds established by Pan American Health Organization and World Health Organization, which suggests a high potential risk of arbovirus transmission.
Collapse
Affiliation(s)
- Armel N. Tedjou
- Department of Medical Entomology, Centre for Research in Infectious Diseases, 15391 Yaoundé, Cameroon; (A.P.Y.); (T.A.W.-B.); (C.S.W.)
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, 812 Yaoundé, Cameroon;
- Correspondence: (A.N.T.); (B.K.)
| | - Basile Kamgang
- Department of Medical Entomology, Centre for Research in Infectious Diseases, 15391 Yaoundé, Cameroon; (A.P.Y.); (T.A.W.-B.); (C.S.W.)
- Correspondence: (A.N.T.); (B.K.)
| | - Aurélie P. Yougang
- Department of Medical Entomology, Centre for Research in Infectious Diseases, 15391 Yaoundé, Cameroon; (A.P.Y.); (T.A.W.-B.); (C.S.W.)
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, 812 Yaoundé, Cameroon;
| | - Theodel A. Wilson-Bahun
- Department of Medical Entomology, Centre for Research in Infectious Diseases, 15391 Yaoundé, Cameroon; (A.P.Y.); (T.A.W.-B.); (C.S.W.)
- Department of Animal Biology and Physiology, Faculty of Sciences and Technology, Marien Ngouabi University, Brazzaville, Congo
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, 812 Yaoundé, Cameroon;
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases, 15391 Yaoundé, Cameroon; (A.P.Y.); (T.A.W.-B.); (C.S.W.)
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
20
|
The Asian tiger mosquito in Brazil: Observations on biology and ecological interactions since its first detection in 1986. Acta Trop 2020; 205:105386. [PMID: 32027837 DOI: 10.1016/j.actatropica.2020.105386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
Abstract
Aedes (Stegomyia) albopictus is a mosquito originating from the Asian continent, which was detected in the Americas in 1985 and Brazil in 1986. Due to its rapid expansion throughout Brazil, this species has already been reported in 26 of the 27 federative units of Brazil. In this review, we evaluate some of the biological, epidemiological and ecological characteristics of Ae. albopictus through critical analysis of their importance in the pathogen transmission dynamics, since its first record in the country. We show that immature forms of this species are frequently found in artificial breeding sites whereas females exhibit anthropophilic behavior despite its eclecticism on blood feeding. In addition, Ae. albopictus shows advantages in interspecific competition with Ae. aegypti for both immature and adult stages. Taking together, these aspects as well as its vector competence indicate that Ae. albopictus could act as a bridge vector between sylvatic and urban pathogen transmission cycles. We conclude by pointing to the need of continuous surveillance of Ae. albopictus in Brazil and raise several questions that still need to be answered.
Collapse
|
21
|
Parker C, Ramirez D, Connelly CR. State-wide survey of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Florida. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:210-215. [PMID: 31729793 DOI: 10.1111/jvec.12351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/10/2019] [Indexed: 06/10/2023]
Abstract
Aedes aegypti and Aedes albopictus are invasive mosquito species with geographic ranges that have oscillated within Florida since their presence was first documented. Local transmission of dengue, chikungunya, and Zika viruses serves as evidence of the public health importance of these two species. It is important to have detailed knowledge of their distribution to aid in mosquito control efforts and understand the risk of arbovirus transmission to humans. Through a partnership involving the University of Florida Institute of Food and Agricultural Sciences Cooperative Extension Service and the Florida Medical Entomology Laboratory; the Florida Department of Health; and mosquito control agencies throughout Florida, a container mosquito surveillance program involving all life stages was launched in the summer of 2016 to detect the presence of Ae. aegypti and Ae. albopictus. Results from this survey were mapped to provide a picture of the current known distribution of Ae. aegypti and Ae. albopictus in Florida. Aedes aegypti and/or Ae. albopictus were detected in the 56 counties that were part of the survey. Only Aedes albopictus was detected in 26 counties, primarily in the panhandle region of Florida. The results of this work underscore the importance of maintaining container mosquito surveillance in a state where chikungunya, dengue, and Zika viruses are present and where there is continued risk for exotic arbovirus introductions.
Collapse
Affiliation(s)
- Casey Parker
- University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, 200 9th Street SE, Vero Beach, FL 32962, U.S.A
| | - Daviela Ramirez
- University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, 200 9th Street SE, Vero Beach, FL 32962, U.S.A
| | - C Roxanne Connelly
- University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, 200 9th Street SE, Vero Beach, FL 32962, U.S.A
- Centers for Disease Control and Prevention, Division of Vector Borne Diseases, 3156 Rampart Road, Ft. Collins, CO 80521, U.S.A
| |
Collapse
|
22
|
Lwande OW, Obanda V, Lindström A, Ahlm C, Evander M, Näslund J, Bucht G. Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. Vector Borne Zoonotic Dis 2019; 20:71-81. [PMID: 31556813 PMCID: PMC7041325 DOI: 10.1089/vbz.2019.2486] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction: Two species of Aedes (Ae.) mosquitoes (Ae. aegypti and Ae. albopictus) are primary vectors for emerging arboviruses that are a significant threat to public health and economic burden worldwide. Distribution of these vectors and the associated arboviruses, such as dengue virus, chikungunya virus, yellow fever virus, and Zika virus, was for a long time restricted by geographical, ecological, and biological factors. Presently, arbovirus emergence and dispersion are more rapid and geographically widespread, largely due to expansion of the range for these two mosquitoes that have exploited the global transportation network, land perturbation, and failure to contain the mosquito population coupled with enhanced vector competence. Ae. aegypti and Ae. albopictus may also sustain transmission between humans without having to depend on their natural reservoir forest cycles due to arthropod adaptation to urbanization. Currently, there is no single strategy that is adequate to control these vectors, especially when managing arbovirus outbreaks. Objective: This review aimed at presenting the characteristics and abilities of Ae. aegypti and Ae. albopictus, which can drive a global public health risk, and suggests strategies for prevention and control. Methods: This review presents the geographic range, reproduction and ecology, vector competence, genetic evolution, and biological and chemical control of these two mosquito species and how they have changed and developed over time combined with factors that may drive pandemics and mitigation measures. Conclusion: We suggest that more efforts should be geared toward the development of a concerted multidisciplinary approach.
Collapse
Affiliation(s)
- Olivia Wesula Lwande
- Virology Section, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Consortium for Epidemiology and Ecology (CEER-Africa), Nairobi, Kenya.,Arctic Research Centre at Umeå University, Sweden University, Umeå, Sweden
| | - Vincent Obanda
- Consortium for Epidemiology and Ecology (CEER-Africa), Nairobi, Kenya.,Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | | | - Clas Ahlm
- Arctic Research Centre at Umeå University, Sweden University, Umeå, Sweden.,Infection and Immunology Section, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Virology Section, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Arctic Research Centre at Umeå University, Sweden University, Umeå, Sweden
| | - Jonas Näslund
- Swedish Defence Research Agency, CBRN, Defence and Security, Umeå, Sweden
| | - Göran Bucht
- Swedish Defence Research Agency, CBRN, Defence and Security, Umeå, Sweden
| |
Collapse
|
23
|
Brelsfoard CL, Mains JW, Mulligan S, Cornel A, Holeman J, Kluh S, Leal A, Hribar LJ, Morales H, Posey T, Dobson SL. Aedes aegypti Males as Vehicles for Insecticide Delivery. INSECTS 2019; 10:insects10080230. [PMID: 31374806 PMCID: PMC6722502 DOI: 10.3390/insects10080230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/02/2022]
Abstract
Aedes aegypti continues to spread globally and remains a challenge to control, in part due to its ‘cryptic behavior’ in that it often deposits eggs (oviposits) in larval habitats that are difficult to find and treat using traditional methods. Auto-dissemination strategies target these cryptic breeding sites by employing mosquitoes to deliver lethal doses of insecticide. This report describes the initial field trials of an application known as Autodissemination Augmented by Males (ADAM), utilizing A. aegypti males dusted with pyriproxyfen (PPF). Findings presented here are drawn from both caged and field trial studies. Together, these trials examined for the ability of A. aegypti males to disseminate PPF and to impact field populations. PPF-dusted males were able to effectively deliver lethal doses of PPF to oviposition sites under the conditions tested. Results from field trials in Florida and California demonstrated reduced A. aegypti populations in treated areas, compared to areas where PPF-treated males were not released. These results indicate that the release of PPF-dusted A. aegypti males can impact A. aegypti populations as measured by both reduced larval survival and lower numbers of adult female A. aegypti. We propose the ADAM approach as an addition to existing mosquito control techniques targeting A. aegypti and other mosquitoes that utilize cryptic larval habitats.
Collapse
Affiliation(s)
| | - James W Mains
- MosquitoMate, Inc., 2520 Regency Rd., Lexington, KY 40503, USA
| | - Steve Mulligan
- Consolidated Mosquito Abatement District, 2425 Floral Ave., Selma, CA 93662, USA
| | - Anthony Cornel
- Department of Entomology and Nematology, University of California, Davis; Davis, CA 95616, USA
| | - Jodi Holeman
- Consolidated Mosquito Abatement District, 2425 Floral Ave., Selma, CA 93662, USA
| | - Susanne Kluh
- Greater Los Angeles Vector Control District, 12545 Florence Ave., Santa Fe Springs, CA 90670, USA
| | - Andrea Leal
- Florida Keys Mosquito Control District, 18 Aquamarine Drive, Key West, FL 33040, USA
| | - Lawrence J Hribar
- Florida Keys Mosquito Control District, 18 Aquamarine Drive, Key West, FL 33040, USA
| | - Harold Morales
- Greater Los Angeles Vector Control District, 12545 Florence Ave., Santa Fe Springs, CA 90670, USA
| | - Tanya Posey
- Greater Los Angeles Vector Control District, 12545 Florence Ave., Santa Fe Springs, CA 90670, USA
| | - Stephen L Dobson
- MosquitoMate, Inc., 2520 Regency Rd., Lexington, KY 40503, USA
- Entomology Department, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
24
|
Paton RS, Bonsall MB. The ecological and epidemiological consequences of reproductive interference between the vectors Aedes aegypti and Aedes albopictus. J R Soc Interface 2019; 16:20190270. [PMID: 31362626 DOI: 10.1098/rsif.2019.0270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Vector ecology is integral to understanding the transmission of vector-borne diseases, with processes such as reproduction and competition pivotal in determining vector presence and abundance. The arbovirus vectors Aedes aegypti and Aedes albopictus compete as larvae, but this mechanism is insufficient to explain patterns of coexistence and exclusion. Inviable interspecies matings-known as reproductive interference-is another candidate mechanism. Here, we analyse mathematical models of mosquito population dynamics and epidemiology which include two Aedes-specific features of reproductive interference. First, as these mosquitoes use hosts to find mates, reproductive interference will only occur if the same host is visited. Host choice will, in turn, be determined by behavioural responses to host availability. Second, females can become sterilized after mis-mating with heterospecifics. We find that a species with an affinity for a shared host will suffer more from reproductive interference than a less selective competitor. Costs from reproductive interference can be 'traded-off' against costs from larval competition, leading to competitive outcomes that are difficult to predict from empirical evidence. Sterilizations of a self-limiting species can counterintuitively lead to higher densities than a competitor suffering less sterilization. We identify that behavioural responses and reproductive interference mediate a concomitant relationship between vector ecological dynamics and epidemiology. Competitors with opposite behavioural responses can maintain disease where human hosts are rare, due to vector coexistence facilitated by a reduced cost from reproductive interference. Our work elucidates the relative roles of the competitive mechanisms governing Aedes populations and the associated epidemiological consequences.
Collapse
Affiliation(s)
- Robert S Paton
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.,Balliol College, Broad Street, Oxford OX1 3BJ, UK
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.,St Peter's College, New Inn Hall Street, Oxford OX1 2DL, UK
| |
Collapse
|
25
|
Kauffman EB, Kramer LD. Zika Virus Mosquito Vectors: Competence, Biology, and Vector Control. J Infect Dis 2019; 216:S976-S990. [PMID: 29267910 DOI: 10.1093/infdis/jix405] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) (Flaviviridae, Flavivirus) has become one of the most medically important mosquito-borne viruses because of its ability to cause microcephaly in utero and Guillain-Barré syndrome in adults. This virus emerged from its sylvatic cycle in Africa to cause an outbreak in Yap, Federated States of Micronesia in 2007, French Polynesia in 2014, and most recently South America in 2015. The rapid expansion of ZIKV in the Americas largely has been due to the biology and behavior of its vector, Aedes aegypti. Other arboviruses transmitted by Ae. aegypti include the 2 flaviviruses dengue virus and yellow fever virus and the alphavirus chikungunya virus, which are also (re)emerging viruses in the Americas. This mosquito vector is highly domesticated, living in close association with humans in urban households. Its eggs are desiccation resistant, and the larvae develop rapidly in subtropical and tropical environments. Climate warming is facilitating range expansion of Ae. aegypti, adding to the threat this mosquito poses to human health, especially in light of the difficulty controlling it. Aedes albopictus, another highly invasive arbovirus vector that has only been implicated in one country (Gabon), is an important vector of ZIKV, but because of its wide geographic distribution may become a more important vector in the future. This article discusses the historical background of ZIKV and the biology and ecology of these 2 vectors.
Collapse
Affiliation(s)
- Elizabeth B Kauffman
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Albany
| | - Laura D Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Albany.,School of Public Health, State University of New York, Albany
| |
Collapse
|
26
|
Tedjou AN, Kamgang B, Yougang AP, Njiokou F, Wondji CS. Update on the geographical distribution and prevalence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae), two major arbovirus vectors in Cameroon. PLoS Negl Trop Dis 2019; 13:e0007137. [PMID: 30883552 PMCID: PMC6438584 DOI: 10.1371/journal.pntd.0007137] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/28/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction Arboviral diseases including dengue are increasingly spreading in the tropical/subtropical world including Africa. Updated knowledge on the distribution and abundance of the major vectors Aedes aegypti and Aedes albopictus constitutes crucial surveillance action to prepare African countries such as Cameroon for potential arbovirus outbreaks. Here, we present a nationwide survey in Cameroon to assess the current geographical distribution and prevalence of both vectors including a genetic diversity profiling of Ae. albopictus (invasive species) using mitochondrial DNA. Methods Immature stages of Aedes were collected between March and August 2017 in 29 localities across Cameroon following north-south and east-west transects. Larvae and pupae were collected from several containers in each location, reared to adult and morphologically identified. Genetic diversity of Ae. albopictus from 16 locations were analysed using Cytochrome Oxidase I gene (COI). Results In total, 30,381 immature stages of Aedes with an average of 646.40±414.21 per location were identified across the country comprising 69.3% of Ae. albopictus and 30.7% of Ae. aegypti. Analysis revealed that Ae. aegypti is still distributed nation widely whereas Ae. albopictus is limited to the southern part, around 6°4’N. However, Ae. albopictus is the most prevalent species in all southern locations where both species are sympatric except in Douala where Ae. aegypti is predominant. This suggests that factors such as climate, vegetation, and building density impact the distribution of both species in Cameroon. Mitochondrial DNA analysis revealed a low genetic diversity in Ae. albopictus populations with a major common haplotype resulting in low haplotype diversity ranging from 0.13 to 0.65 and 0.35 for the total sample. Similarly, low nucleotide diversity was also reported varying from 0.0000 to 0.0017 with an overall index of 0.0008. This low genetic polymorphism is consistent with the recent introduction of Ae. albopictus in Cameroon. Conclusion This updated distribution of arbovirus vectors across Cameroon will help in planning vector control programme against possible outbreak of arbovirus related diseases in the country. Aedes albopictus and Ae. aegypti are the most important arbovirus vectors worldwide. Ae. albopictus, native of Asia, was recorded for the first time in early 2000s in Cameroon, central Africa. Previous studies performed a decade ago in Cameroon showed that Ae. albopictus has a geographical distribution limited to the south under 6°N. Whereas the native species Ae. aegypti was present across the country. To update our knowledge in this regards, a nationwide survey was performed in Cameroon to assess the current geographical distribution and prevalence of both vectors including a genetic diversity profiling of Ae. albopictus (invasive species) using mitochondrial DNA. Analysis revealed that Ae. aegypti is still distributed nation widely whereas Ae. albopictus is limited to the southern part, around 6°4’N. However, Ae. albopictus is the most prevalent species in all southern locations where both species are sympatric except in Douala where Ae. aegypti is predominant. This suggests that factors such as climate, vegetation and building density impact the distribution of both species in Cameroon. Mitochondrial DNA analysis revealed a low genetic diversity in Ae. albopictus populations with a major common haplotype detected in almost all locations. This study provides the relevant data that can be helpful to establish the vector surveillance of epidemic arbovirus vectors across the country.
Collapse
Affiliation(s)
- Armel N. Tedjou
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- * E-mail:
| | - Aurélie P. Yougang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
27
|
Juliano SA, Yee DA, Alto BW, Reiskind MH. Papers From a Workshop on Mosquito Ecology and Evolution Inspired by the Career of L. Philip Lounibos. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:299-302. [PMID: 30668777 DOI: 10.1093/jme/tjy146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Steven A Juliano
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Donald A Yee
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS
| | - Barry W Alto
- Department of Entomology & Nematology, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL
| | - Michael H Reiskind
- Department of Plant Pathology and Entomology, North Carolina State University, Raleigh, NC
| |
Collapse
|
28
|
Otto SP. Adaptation, speciation and extinction in the Anthropocene. Proc Biol Sci 2018; 285:20182047. [PMID: 30429309 PMCID: PMC6253383 DOI: 10.1098/rspb.2018.2047] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022] Open
Abstract
Humans have dramatically altered the planet over the course of a century, from the acidity of our oceans to the fragmentation of our landscapes and the temperature of our climate. Species find themselves in novel environments, within communities assembled from never before encountered mixtures of invasives and natives. The speed with which the biotic and abiotic environment of species has changed has already altered the evolutionary trajectory of species, a trend that promises to escalate. In this article, I reflect upon this altered course of evolution. Human activities have reshaped selection pressures, favouring individuals that better survive in our built landscapes, that avoid our hunting and fishing, and that best tolerate the species that we have introduced. Human-altered selection pressures have also modified how organisms live and move through the landscape, and even the nature of reproduction and genome structure. Humans are also shaping selection pressures at the species level, and I discuss how species traits are affecting both extinction and speciation rates in the Anthropocene.
Collapse
Affiliation(s)
- Sarah P Otto
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
29
|
Murray HL, Pruszynski CA, Leal AL, Hribar LJ. Establishment of Aedes albopictus (Diptera: Culicidae) in the Florida Keys, 2001-2017. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1607-1612. [PMID: 29939298 DOI: 10.1093/jme/tjy102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 06/08/2023]
Abstract
The presence of Aedes albopictus (Skuse) was first reported in the Florida Keys in 1993. Despite extensive surveillance, the Florida Keys Mosquito Control District (FKMCD) only collected specimens occasionally on a few islands, some years finding no evidence of the invasive species. In 2013-2017, FKMCD witnessed a sudden increase in population size and geographic extent of Ae. albopictus. Samples of Ae. albopictus have now been identified on 30 different islands in the Florida Keys. Three islands in particular (Key Largo, Big Pine Key, and Stock Island) have produced multiple positive samples during at least 4 of the last 5 yr, suggesting establishment of the invasive species. FKMCD continues to monitor Ae. albopictus throughout the Keys and make extensive efforts to reduce population abundance and geographic extent of this disease vector.
Collapse
Affiliation(s)
| | | | - Andrea L Leal
- Florida Keys Mosquito Control District, Marathon, FL
| | | |
Collapse
|
30
|
Zohdy S, Morse WC, Mathias D, Ashby V, Lessard S. Detection of Aedes (Stegomyia) aegypti (Diptera: Culicidae) Populations in Southern Alabama Following a 26-yr Absence and Public Perceptions of the Threat of Zika Virus. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1319-1324. [PMID: 29659928 DOI: 10.1093/jme/tjy050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 06/08/2023]
Abstract
With the establishment of Zika virus in the Americas, an accurate understanding of the geographic range of its primary vector, Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae), is vital to assessing transmission risk. In an article published in June 2016, Hahn and colleagues compiled county-level records in the United States for the presence of Ae. aegypti and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) reported between January 1995 and March 2016. Despite ecological suitability for both mosquito species along the Gulf Coast, Ae. aegypti was not reported in Alabama during the time interval, a result consistent with research suggesting that interactions between these two species often result in displacement of Ae. aegypti. Herein, we report the detection of Ae. aegypti populations in Mobile, Alabama, after a 26-yr absence and present findings on human perceptions of Zika virus relevant to transmission. It is unclear whether the specimens (69 out of 1074) represent a recent re-introduction or belong to a previously undetected remnant population. Sequencing of mtDNA from identified Ae. aegypti matched closest to a specimen collected in Kerala, India. A survey of residents in the surveillance area suggests high encounter rates with mosquitoes in and around homes. Despite high self-reported knowledge about Zika virus, the survey revealed gaps in knowledge regarding its transmission cycle and relative degrees of vulnerability to serious illness among segments of the human population. These findings highlight the importance of continued surveillance, vector control, and public-health education in Gulf Coast states, as well as the potential threat of Ae. Aegypti-transmitted pathogens in southern Alabama.
Collapse
Affiliation(s)
- Sarah Zohdy
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL
- College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Wayde C Morse
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL
| | - Derrick Mathias
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL
| | - Victoria Ashby
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL
| | - Sarah Lessard
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL
| |
Collapse
|
31
|
Lounibos LP, Juliano SA. Where Vectors Collide: The Importance of Mechanisms Shaping the Realized Niche for Modeling Ranges of Invasive Aedes Mosquitoes. Biol Invasions 2018; 20:1913-1929. [PMID: 30220875 PMCID: PMC6133263 DOI: 10.1007/s10530-018-1674-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
Abstract
The vector mosquitoes Aedes aegypti (L.), native to Africa, and Aedes albopictus (Skuse), native to Asia, are widespread invasives whose spatial distributions frequently overlap. Predictive models of their distributions are typically correlative rather than mechanistic, and based on only abiotic variables describing putative environmental requirements despite extensive evidence of competitive interactions leading to displacements. Here we review putative roles of competition contributing to distribution changes where the two species meet. The strongest evidence for competitive displacements comes from multiple examples of habitat segregation where the two species co-occur and massive reductions in the range and abundance of A. aegypti attributable to A. albopictus invasions in the southeastern U.S.A. and Bermuda (U.K). We summarize evidence to support the primacy of asymmetric reproductive interference, or satyrization, and larval resource competition, both favoring A. albopictus, as displacement mechanisms. Where evidence of satyrization or interspecific resource competition is weak, differences in local environments or alternative ecologies or behaviors of these Aedes spp. may explain local variation in the outcomes of invasions. Predictive distribution modeling for both these major disease vectors needs to incorporate species interactions between them as an important process that is likely to limit their realized niches and future distributions. Experimental tests of satyrization and resource competition are needed across the broad ranges of these species, as are models that incorporate both reproductive interference and resource competition to evaluate interaction strengths and mechanisms. These vectors exemplify how fundamental principles of community ecology may influence distributions of invasive species.
Collapse
Affiliation(s)
- L Philip Lounibos
- Florida Medical Entomology Laboratory, University of Florida, 200 9 St SE, Vero Beach FL 32962
| | - Steven A Juliano
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790-4120, USA
| |
Collapse
|
32
|
van Baaren J, Candolin U. Plasticity in a changing world: behavioural responses to human perturbations. CURRENT OPINION IN INSECT SCIENCE 2018; 27:21-25. [PMID: 30025630 DOI: 10.1016/j.cois.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Most insect species are affected by Human Induced Rapid Environmental Changes (HIREC). Multiple responses to HIREC are observed in insects, such as modifications of their morphology, physiology, behavioural strategies or phenology. Most of the responses involve phenotypic plasticity rather than genetic evolution. Here, we review the involvement of behavioural plasticity in foraging, reproduction, habitat choice and dispersal; and how behavioural plasticity modifies social behaviour and inter-specific interactions. Although important, behavioural plasticity is rarely sufficient to cope with HIREC. An increasing number of studies find species to respond maladaptively or insufficiently to various anthropogenic disturbances, and less often is large degree of plasticity linked to success.
Collapse
Affiliation(s)
- Joan van Baaren
- UMR-CNRS 6553 ECOBIO, Université de Rennes, Campus de Beaulieu, Avenue du Gal Leclerc, 35042 Rennes cedex, France.
| | - Ulrika Candolin
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| |
Collapse
|
33
|
Ayllón T, Câmara DCP, Morone FC, Gonçalves LDS, Saito Monteiro de Barros F, Brasil P, Carvalho MS, Honório NA. Dispersion and oviposition of Aedes albopictus in a Brazilian slum: Initial evidence of Asian tiger mosquito domiciliation in urban environments. PLoS One 2018; 13:e0195014. [PMID: 29684029 PMCID: PMC5912725 DOI: 10.1371/journal.pone.0195014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/16/2018] [Indexed: 11/26/2022] Open
Abstract
Aedes albopictus, originally considered as a secondary vector for arbovirus transmission, especially in areas where this species co-exist with Aedes aegypti, has been described in most regions of the world. Dispersion and domiciliation of Ae. albopictus in a complex of densely urbanized slums in Rio de Janeiro, Southeastern Brazil, was evidenced. In this study, we tested the hypotheses that 1) Ae. albopictus distribution in urban slums is negatively related to distance from vegetation, and 2) these vectors have taken on a domestic life style with a portion of the population feeding, ovipositing, and resting indoors. To do this, we developed an integrated surveillance proposal, aiming to detect the presence and abundance of Aedes mosquitoes. The study, based on a febrile syndrome surveillance system in a cohort of infants living in the slum complex, was performed on a weekly basis between February 2014 and April 2017. A total of 8,418 adult mosquitoes (3,052 Ae. aegypti, 44 Ae. albopictus, 16 Ae. scapularis, 4 Ae. fluviatilis and 5,302 Culex quinquefasciatus) were collected by direct aspiration and 46,047 Aedes spp. eggs were collected by oviposition traps. The Asian tiger mosquito, Ae. albopictus, was aspirated in its adult form (n = 44), and immature forms of this species (n = 12) were identified from the eggs collected by the ovitraps. In most collection sites, co-occurrence of Ae. aegypti and Ae. albopictus was observed. Key-sites, such as junkyards, thrift stores, factories, tire repair shops and garages, had the higher abundance of Ae. albopictus, followed by schools and households. We collected Ae. albopictus at up to 400 meters to the nearest vegetation cover. The log transformed (n+1) number of females Ae. albopictus captured at each collection point was inversely related to the distance to the nearest vegetation border. These results show that Ae. albopictus, a competent vector for important arboviruses and more commonly found in areas with higher vegetation coverage, is present and spread in neglected and densely urbanized areas, being collected at a long distance from the typical encounter areas for this species. Besides, as Ae. albopictus can easily move between sylvatic and urban environment, the entomological monitoring of Ae. albopictus should be an integral part of mosquito surveillance and control. Finally, key-sites, characterized by high human influx and presence of potential Aedes breeding sites, should be included in entomological monitoring.
Collapse
Affiliation(s)
- Tania Ayllón
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro, Brasil
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Rio de Janeiro, Brasil
| | - Daniel Cardoso Portela Câmara
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Rio de Janeiro, Brasil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Rio de Janeiro, Brasil
| | | | | | | | - Patrícia Brasil
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro, Brasil
| | | | - Nildimar Alves Honório
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Rio de Janeiro, Brasil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Rio de Janeiro, Brasil
| |
Collapse
|
34
|
Duvall LB, Basrur NS, Molina H, McMeniman CJ, Vosshall LB. A Peptide Signaling System that Rapidly Enforces Paternity in the Aedes aegypti Mosquito. Curr Biol 2017; 27:3734-3742.e5. [PMID: 29174895 DOI: 10.1016/j.cub.2017.10.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/19/2017] [Accepted: 10/31/2017] [Indexed: 12/01/2022]
Abstract
Female Aedes aegypti mosquitoes typically mate only once with one male in their lifetime, a behavior known as "monandry" [1]. This single mating event provisions the female with sufficient sperm to fertilize the >500 eggs she will produce during her ∼4- to 6-week lifespan in the laboratory [2]. Successful mating induces lifetime refractoriness to subsequent insemination by other males, enforcing the paternity of the first male [3-5]. Ae. aegypti mate in flight near human hosts [6], and females become refractory to remating within seconds [1, 3, 4], suggesting the existence of a rapid mechanism to prevent female remating. In this study, we implicate HP-I, an Aedes- and male-specific peptide transferred to females [7], and its cognate receptor in the female, NPYLR1 [8], in rapid enforcement of paternity. HP-I mutant males were ineffective in enforcing paternity when a second male was given access to the female within 1 hr. NPYLR1 mutant females produced mixed paternity offspring at high frequency, indicating acceptance of multiple mates. Synthetic HP-I injected into wild-type, but not NPYLR1 mutant, virgins reduced successful matings. Asian tiger mosquito (Ae. albopictus) HP-I peptides potently activated Ae. aegypti NPYLR1. Invasive Ae. albopictus males are known to copulate with and effectively sterilize Ae. aegypti females by causing them to reject future mates [9]. Cross-species transfer of sperm and active seminal fluid proteins including HP-I may contribute to this phenomenon. This signaling system promotes rapid paternity enforcement within Ae. aegypti but may promote local extinction in areas where they compete with Ae. albopictus.
Collapse
Affiliation(s)
- Laura B Duvall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Nipun S Basrur
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Conor J McMeniman
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA.
| |
Collapse
|
35
|
Male origin determines satyrization potential of Aedes aegypti by invasive Aedes albopictus. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1565-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
de Oliveira S, Villela DAM, Dias FBS, Moreira LA, Maciel de Freitas R. How does competition among wild type mosquitoes influence the performance of Aedes aegypti and dissemination of Wolbachia pipientis? PLoS Negl Trop Dis 2017; 11:e0005947. [PMID: 28991902 PMCID: PMC5648260 DOI: 10.1371/journal.pntd.0005947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/19/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Wolbachia has been deployed in several countries to reduce transmission of dengue, Zika and chikungunya viruses. During releases, Wolbachia-infected females are likely to lay their eggs in local available breeding sites, which might already be colonized by local Aedes sp. mosquitoes. Therefore, there is an urgent need to estimate the deleterious effects of intra and interspecific larval competition on mosquito life history traits, especially on the duration of larval development time, larval mortality and adult size. METHODOLOGY/PRINCIPAL FINDINGS Three different mosquito populations were used: Ae. aegypti infected with Wolbachia (wMelBr strain), wild Ae. aegypti and wild Ae. albopictus. A total of 21 treatments explored intra and interspecific larval competition with varying larval densities, species proportions and food levels. Each treatment had eight replicates with two distinct food levels: 0.25 or 0.50 g of Chitosan and fallen avocado leaves. Overall, overcrowding reduced fitness correlates of the three populations. Ae. albopictus larvae presented lower larval mortality, shorter development time to adult and smaller wing sizes than Ae. aegypti. The presence of Wolbachia had a slight positive effect on larval biology, since infected individuals had higher survivorship than uninfected Ae. aegypti larvae. CONCLUSIONS/SIGNIFICANCE In all treatments, Ae. albopictus outperformed both wild Ae. aegypti and the Wolbachia-infected group in larval competition, irrespective of larval density and the amount of food resources. The major force that can slow down Wolbachia invasion is the population density of wild mosquitoes. Given that Ae. aegypti currently dominates in Rio, in comparison with Ae. albopictus frequency, additional attention must be given to the population density of Ae. aegypti during releases to increase the likelihood of Wolbachia invasion.
Collapse
Affiliation(s)
- Suellen de Oliveira
- Fundação Oswaldo Cruz, Fiocruz-RJ, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, Brazil
| | | | | | - Luciano Andrade Moreira
- Fundação Oswaldo Cruz, Fiocruz-MG, Instituto René Rachou, Mosquitos vetores: Endossimbiontes e Interação Patógeno-Vetor, Rio de Janeiro, Brazil
| | - Rafael Maciel de Freitas
- Fundação Oswaldo Cruz, Fiocruz-RJ, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Grether GF, Peiman KS, Tobias JA, Robinson BW. Causes and Consequences of Behavioral Interference between Species. Trends Ecol Evol 2017; 32:760-772. [PMID: 28797610 DOI: 10.1016/j.tree.2017.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022]
Abstract
Behavioral interference between species, such as territorial aggression, courtship, and mating, is widespread in animals. While aggressive and reproductive forms of interspecific interference have generally been studied separately, their many parallels and connections warrant a unified conceptual approach. Substantial evidence exists that aggressive and reproductive interference have pervasive effects on species coexistence, range limits, and evolutionary processes, including divergent and convergent forms of character displacement. Alien species invasions and climate change-induced range shifts result in novel interspecific interactions, heightening the importance of predicting the consequences of species interactions, and behavioral interference is a fundamental but neglected part of the equation. Here, we outline priorities for further theoretical and empirical research on the ecological and evolutionary consequences of behavioral interference.
Collapse
Affiliation(s)
- Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA 90095, USA.
| | - Kathryn S Peiman
- Department of Biology, Carleton University, Ottawa, ONT, K1S 5B6, Canada
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Beren W Robinson
- Department of Integrative Biology, University of Guelph, ONT, N1G 2W1, Canada
| |
Collapse
|
38
|
Abstract
The displacement of a species from a habitat by actions of another is the most severe outcome of interspecific interactions. This review focuses on recent developments in the understanding of (a) ecological mechanisms that lead to displacements, (b) how outcomes of interspecific interactions are affected by the context of where and when they occur, and (c) impacts of displacements. Displacements are likely to escalate as their primary initiating factors-the spread of non-native species and environmental change-continue at unprecedented rates. Displacements typically result from interactions of multiple mechanisms, not all of which involve direct competition. Various biotic and abiotic factors mediate these mechanisms, so variable outcomes occur when the same species interact in different environments. Though replacement of one species by another has particular relevance to pest management and conservation biology, the cascading effects that displacements have in managed and natural systems are critical to understand.
Collapse
Affiliation(s)
- Yulin Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China;
| | - Stuart R Reitz
- Department of Crop and Soil Sciences, Malheur County Extension, Oregon State University, Ontario, Oregon 97914;
| |
Collapse
|
39
|
Lounibos LP, Kramer LD. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus. J Infect Dis 2016; 214:S453-S458. [PMID: 27920173 PMCID: PMC5137242 DOI: 10.1093/infdis/jiw285] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this review, we highlight biological characteristics of Aedes aegypti and Aedes albopictus, 2 invasive mosquito species and primary vectors of chikungunya virus (CHIKV), that set the tone of these species' invasiveness, vector competence, and vectorial capacity (VC). The invasiveness of both species, as well as their public health threats as vectors, is enhanced by preference for human blood. Vector competence, characterized by the efficiency of an ingested arbovirus to replicate and become infectious in the mosquito, depends largely on vector and virus genetics, and most A. aegypti and A. albopictus populations thus far tested confer vector competence for CHIKV. VC, an entomological analog of the pathogen's basic reproductive rate (R0), is epidemiologically more important than vector competence but less frequently measured, owing to challenges in obtaining valid estimates of parameters such as vector survivorship and host feeding rates. Understanding the complexities of these factors will be pivotal in curbing CHIKV transmission.
Collapse
Affiliation(s)
| | - Laura D Kramer
- Arbovirus Laboratories, Wadsworth Center, New York State Department of Health
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany
| |
Collapse
|
40
|
Lounibos LP, Bargielowski I, Carrasquilla MC, Nishimura N. Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Peninsular Florida Two Decades After Competitive Displacements. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1385-1390. [PMID: 27493253 DOI: 10.1093/jme/tjw122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/13/2016] [Indexed: 05/26/2023]
Abstract
The spread of Aedes albopictus (Skuse) eastward in the mid-1980s from its initial establishment in Houston, TX, was associated with rapid declines and local disappearances of Aedes aegypti (L.) in Gulf Coast states and Florida where annual larval surveillance during the early 1990s described temporal and spatial patterns of competitive displacements in cemeteries and tire shops. Approximately 20 yr later in 2013-2014, we re-visited former collection sites and sampled aquatic immatures of these two species from tire shops in 10 cities on State Route 441 and from 9 cemeteries from Lakeland to Miami in southwest Florida. In the recent samples Ae. aegypti was recovered from three central Florida cities where it had not been detected in 1994, but its northern limit on Rte. 441, Apopka, did not change. Other evidence, such as trends at a few cemeteries, suggested a moderate resurgence of this species since 1994. Cage experiments that exposed female progeny of Ae. aegypti from recent Florida collection sites to interspecific mating by Ae. albopictus males showed that females from coexistence sites had evolved resistance to cross-mating, but Ae. aegypti from sites with no Ae. albopictus were relatively susceptible to satyrization. Habitat classifications of collection sites were reduced by principal component (PC) analysis to four variables that accounted for > 99% of variances; PCs with strong positive loadings for tree cover and ground vegetation were associated with collection sites yielding only Ae. albopictus Within the coexistence range of the two species, the numbers of Ae. aegypti among total Aedes collected were strongly correlated in stepwise logistic regression models with two habitat-derived PCs, distance from the coast, and annual rainfall and mean maximum temperatures at the nearest weather station. Subtle increases in the range of Ae. aegypti since its previous displacements are interpreted in the context of the evolution of resistance to mating interference, realized versus fundamental niches of the two species, and persisting competition with Ae. albopictus.
Collapse
Affiliation(s)
- L Philip Lounibos
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St SE Vero Beach, FL 32962 (; ; ; ) and
| | - Irka Bargielowski
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St SE Vero Beach, FL 32962 (; ; ; ) and
| | - María Cristina Carrasquilla
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St SE Vero Beach, FL 32962 (; ; ; ) and
| | - Naoya Nishimura
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St SE Vero Beach, FL 32962 (; ; ; ) and
| |
Collapse
|
41
|
Fader JE. The Importance of Interspecific Interactions on the Present Range of the Invasive Mosquito Aedes albopictus (Diptera: Culicidae) and Persistence of Resident Container Species in the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:992-1001. [PMID: 27354436 DOI: 10.1093/jme/tjw095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/14/2016] [Indexed: 06/06/2023]
Abstract
Aedes albopictus (Skuse) established in the United States over 30 yr ago and quickly spread throughout the entire eastern half of the country. It has recently spread into western regions and projected climate change scenarios suggest continued expansion to the west and north. Aedes albopictus has had major impacts on, and been impacted by, a diverse array of resident mosquito species. Laying eggs at the edges of small, water-holding containers, hatched larvae develop within these containers feeding on detritus-based resources. Under limited resource conditions, Ae. albopictus has been shown to be a superior competitor to essentially all native and resident species in the United States. Adult males also mate interspecifically with at least one resident species with significant negative impacts on reproductive output for susceptible females. Despite these strong interference effects on sympatric species, competitor outcomes have been highly variable, ranging from outright local exclusion by Ae. albopictus, to apparent exclusion of Ae. albopictus in the presence of the same species. Context-dependent mechanisms that alter the relative strengths of inter- and intraspecific competition, as well as rapid evolution of satyrization-resistant females, may help explain these patterns of variable coexistence. Although there is a large body of research on interspecific interactions of Ae. albopictus in the United States, there remain substantial gaps in our understanding of the most important species interactions. Addressing these gaps is important in predicting the future distribution of this species and understanding consequences for resident species, including humans, that interact with this highly invasive mosquito.
Collapse
Affiliation(s)
- Joseph E Fader
- Nicholas School of the Environment, Duke University, 450 Research Dr, Durham, NC 27708
| |
Collapse
|
42
|
Hopperstad KA, Reiskind MH. Recent Changes in the Local Distribution of Aedes aegypti (Diptera: Culicidae) in South Florida, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:836-842. [PMID: 27113103 DOI: 10.1093/jme/tjw050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Disease transmission is directly tied to the spatial distribution of disease vectors. The distribution of Aedes aegypti (L.) in the United States has diminished since the introduction of Aedes albopictus (Skuse) in the 1980s. However, Ae. aegypti persists in some urban areas, particularly in south Florida. The pattern of habitat segregation of these two species is well documented, but the consistency of this phenomenon over time is unknown. To examine the dynamics of the local distributions of these two species, we studied the spatial pattern of Ae. aegypti and Ae. albopictus over time at a fine landscape scale in Palm Beach County, FL. We compared patterns from 2006-2007 with their distributions in 2013, taking into account abiotic factors of microclimate and land cover. We found evidence for a local shift in Ae. aegypti distribution, but could not attribute this to changes in measured abiotic factors. Alternatively, the interaction between Ae. aegypti and Ae. albopictus that initially resulted Ae. aegypti decline may be being attenuated through natural selection. This study confirms the importance of monitoring the changing ranges of these two important vector species.
Collapse
Affiliation(s)
- K A Hopperstad
- Department of Entomology, North Carolina State University, 100 Derieux Pl., 2301 Gardner Hall, Raleigh, NC 27695 (; ), and
| | - M H Reiskind
- Department of Entomology, North Carolina State University, 100 Derieux Pl., 2301 Gardner Hall, Raleigh, NC 27695 (; ), and
| |
Collapse
|