1
|
Piñanez-Espejo YMG, Munévar A, Schilman PE, Zurita GA. It is hot and cold here: the role of thermotolerance in the ability of spiders to colonize tree plantations in the southern Atlantic Forest. Oecologia 2024; 204:789-804. [PMID: 38561554 DOI: 10.1007/s00442-024-05529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Worldwide, with the decline of natural habitats, species with reduced niche breadth (specialists) are at greater risk of extinction as they cannot colonise or persist in disturbed habitat types. However, the role of thermal tolerance as a critical trait in understanding changes in species diversity in disturbed habitats, e.g., due to forest replacement by tree plantations, is still understudied. To examine the role of thermal tolerance on the responses of specialist and generalist species to habitat disturbances, we measured and compared local temperature throughout the year and thermotolerance traits [upper (CTmax) and lower (CTmin) thermal limits] of the most abundant species of spiders from different guilds inhabiting pine tree plantations and native Atlantic Forests in South America. Following the thermal adaptation hypothesis, we predicted that generalist species would show a wider thermal tolerance range (i.e., lower CTmin and higher CTmax) than forest specialist species. As expected, generalist species showed significantly higher CTmax and lower CTmin values than specialist species with wider thermal tolerance ranges than forest specialist species. These differences are more marked in orb weavers than in aerial hunter spiders. Our study supports the specialisation disturbance and thermal hypotheses. It highlights that habitat-specialist species are more vulnerable to environmental changes associated with vegetation structure and microclimatic conditions. Moreover, thermal tolerance is a key response trait to explain the Atlantic Forest spider's ability (or inability) to colonise and persist in human-productive land uses.
Collapse
Affiliation(s)
- Yolanda M G Piñanez-Espejo
- IBS-Instituto de Biología Subtropical (UNaM-CONICET), Puerto Iguazú, Misiones, Argentina.
- Facultad de Ciencias Forestales, Universidad Nacional de Misiones, Puerto Iguazú, Misiones, Argentina.
| | - Ana Munévar
- IBS-Instituto de Biología Subtropical (UNaM-CONICET), Puerto Iguazú, Misiones, Argentina
- Facultad de Ciencias Forestales, Universidad Nacional de Misiones, Puerto Iguazú, Misiones, Argentina
| | - Pablo E Schilman
- Laboratorio de Ecofisiología de Insectos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- CONICET-Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina.
| | - Gustavo Andrés Zurita
- IBS-Instituto de Biología Subtropical (UNaM-CONICET), Puerto Iguazú, Misiones, Argentina.
- Facultad de Ciencias Forestales, Universidad Nacional de Misiones, Puerto Iguazú, Misiones, Argentina.
| |
Collapse
|
2
|
Ma LJ, Cao LJ, Chen JC, Tang MQ, Song W, Yang FY, Shen XJ, Ren YJ, Yang Q, Li H, Hoffmann AA, Wei SJ. Rapid and Repeated Climate Adaptation Involving Chromosome Inversions following Invasion of an Insect. Mol Biol Evol 2024; 41:msae044. [PMID: 38401527 PMCID: PMC10924284 DOI: 10.1093/molbev/msae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.
Collapse
Affiliation(s)
- Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng-Qing Tang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fang-Yuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ya-Jing Ren
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiong Yang
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ary Anthony Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
3
|
van Heerwaarden B, Sgrò C, Kellermann VM. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity. Proc Biol Sci 2024; 291:20232700. [PMID: 38320612 PMCID: PMC10846935 DOI: 10.1098/rspb.2023.2700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Mounting evidence suggests that ectotherms are already living close to their upper physiological thermal limits. Phenotypic plasticity has been proposed to reduce the impact of climate change in the short-term providing time for adaptation, but the tolerance-plasticity trade-off hypothesis predicts organisms with higher tolerance have lower plasticity. Empirical evidence is mixed, which may be driven by methodological issues such as statistical artefacts, nonlinear reaction norms, threshold shifts or selection. Here, we examine whether threshold shifts (organisms with higher tolerance require stronger treatments to induce maximum plastic responses) influence tolerance-plasticity trade-offs in hardening capacity for desiccation tolerance and critical thermal maximum (CTMAX) across Drosophila species with varying distributions/sensitivity to desiccation/heat stress. We found evidence for threshold shifts in both traits; species with higher heat/desiccation tolerance required longer hardening treatments to induce maximum hardening responses. Species with higher heat tolerance also showed reductions in hardening capacity at higher developmental acclimation temperatures. Trade-off patterns differed depending on the hardening treatment used and the developmental temperature flies were exposed to. Based on these findings, studies that do not consider threshold shifts, or that estimate plasticity under a narrow set of environments, will have a limited ability to assess trade-off patterns and differences in plasticity across species/populations more broadly.
Collapse
Affiliation(s)
| | - Carla Sgrò
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Vanessa M. Kellermann
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
- School of Agriculture Biomedicine and Environment, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|
4
|
Fanara JJ, Sassi PL, Goenaga J, Hasson E. Genetic basis and repeatability for desiccation resistance in Drosophila melanogaster (Diptera: Drosophilidae). Genetica 2024; 152:1-9. [PMID: 38102503 DOI: 10.1007/s10709-023-00201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Dehydration is a stress factor for organisms inhabiting natural habitats where water is scarce. Thus, it may be expected that species facing arid environments will develop mechanisms that maximize resistance to desiccation. Insects are excellent models for studying the effects of dehydration as well as the mechanisms and processes that prevent water loss since the effect of desiccation is greater due to the higher area/volume ratio than larger animals. Even though physiological and behavioral mechanisms to cope with desiccation are being understood, the genetic basis underlying the mechanisms related to variation in desiccation resistance and the context-dependent effect remain unsolved. Here we analyze the genetic bases of desiccation resistance in Drosophila melanogaster and identify candidate genes that underlie trait variation. Our quantitative genetic analysis of desiccation resistance revealed sexual dimorphism and extensive genetic variation. The phenotype-genotype association analyses (GWAS) identified 71 candidate genes responsible for total phenotypic variation in desiccation resistance. Half of these candidate genes were sex-specific suggesting that the genetic architecture underlying this adaptive trait differs between males and females. Moreover, the public availability of desiccation data analyzed on the same lines but in a different lab allows us to investigate the reliability and repeatability of results obtained in independent screens. Our survey indicates a pervasive micro-environment lab-dependent effect since we did not detect overlap in the sets of genes affecting desiccation resistance identified between labs.
Collapse
Affiliation(s)
- Juan Jose Fanara
- Laboratorio de Evolución, Departamento de Ecología Genética y Evolución, Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Buenos Aires, Argentina.
| | - Paola Lorena Sassi
- Grupo de Ecología Integrativa de Fauna Silvestre, Instituto Argentino de Investigaciones de Zonas Áridas, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Julieta Goenaga
- Quality Control & NIR Scientist, Biomar Group, Aarhus, Denmark
| | - Esteban Hasson
- Laboratorio de Evolución, Departamento de Ecología Genética y Evolución, Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Buenos Aires, Argentina
| |
Collapse
|
5
|
de Jong M, van Rensburg AJ, Whiteford S, Yung CJ, Beaumont M, Jiggins C, Bridle J. Rapid evolution of novel biotic interactions in the UK Brown Argus butterfly uses genomic variation from across its geographical range. Mol Ecol 2023; 32:5742-5756. [PMID: 37800849 DOI: 10.1111/mec.17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Understanding the rate and extent to which populations can adapt to novel environments at their ecological margins is fundamental to predicting the persistence of biological communities during ongoing and rapid global change. Recent range expansion in response to climate change in the UK butterfly Aricia agestis is associated with the evolution of novel interactions with a larval food plant, and the loss of its ability to use an ancestral host species. Using ddRAD analysis of 61,210 variable SNPs from 261 females from throughout the UK range of this species, we identify genomic regions at multiple chromosomes that are associated with evolutionary responses, and their association with demographic history and ecological variation. Gene flow appears widespread throughout the range, despite the apparently fragmented nature of the habitats used by this species. Patterns of haplotype variation between selected and neutral genomic regions suggest that evolution associated with climate adaptation is polygenic, resulting from the independent spread of alleles throughout the established range of this species, rather than the colonization of pre-adapted genotypes from coastal populations. These data suggest that rapid responses to climate change do not depend on the availability of pre-adapted genotypes. Instead, the evolution of novel forms of biotic interaction in A. agestis has occurred during range expansion, through the assembly of novel genotypes from alleles from multiple localities.
Collapse
Affiliation(s)
- Maaike de Jong
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Alexandra Jansen van Rensburg
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Samuel Whiteford
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Carl J Yung
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Chris Jiggins
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
6
|
Corley RB, Dawson W, Bishop TR. A simple method to account for thermal boundary layers during the estimation of CTmax in small ectotherms. J Therm Biol 2023; 116:103673. [PMID: 37527565 DOI: 10.1016/j.jtherbio.2023.103673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
As temperatures rise, understanding how ectotherms will become impacted by thermal stress is of critical importance. In this context, many researchers quantify critical temperatures - these are the upper (CTmax) and lower (CTmin) thermal limits at which organisms can no longer function. Most studies estimate CTs using bath-based methods where organisms are submerged within a set thermal environment. Plate-based methods (i.e. hot plates), however, offer huge opportunity for automation and are readily available in many lab settings. Plates, however, generate a unidirectional thermal boundary layer above their surface which means that the temperatures experienced by organisms of different sizes is different. This boundary layer effect can bias estimates of critical temperatures. Here, we test the hypothesis that biases in critical temperature estimation on hot plates are driven by organism height. We also quantify the composition of the boundary layer in order to correct for these biases. We assayed four differently sized species of UK ants for their CTmax in dry baths (with no boundary layer) and on hot plates (with a boundary layer). We found that hot plates overestimated the CTmax values of the different ants, and that this overestimate was larger for taller species. By statistically modelling the thickness of the thermal boundary layer, and combining with estimates of species height, we were able to correct this overestimation and eliminate methodological differences. Our study provides two main findings. First, we provide evidence that organism height is positively related to the bias present in plate-based estimates of CTmax. Second, we show that a relatively simple statistical model can correct for this bias. By using simple corrections for boundary layer effects, as we have done here, researchers could open up a new possibility space in the design and implementation of thermal tolerance assays using plates rather than restrictive dry or water baths.
Collapse
Affiliation(s)
| | - Will Dawson
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Tom R Bishop
- School of Biosciences, Cardiff University, Cardiff, UK; Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
7
|
De Araujo LI, Karsten M, Terblanche JS. Flight-reproduction trade-offs are weak in a field cage experiment across multiple Drosophila species. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100060. [PMID: 37292492 PMCID: PMC10244903 DOI: 10.1016/j.cris.2023.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Flight-reproduction trade-offs, such that more mobile individuals sacrifice reproductive output (e.g., fecundity) or incur fitness costs, are well-studied in a handful of wing-dimorphic model systems. However, these trade-offs have not been systematically assessed across reproduction-related traits and taxa in wing monomorphic species despite having broad implications for the ecology and evolution of pterygote insect species. Here we therefore determined the prevalence, magnitude and direction of flight-reproduction trade-offs on several fitness-related traits in a semi-field setting by comparing disperser and resident flies from repeated releases of five wild-caught, laboratory-reared Drosophila species, and explicitly controlling for a suite of potential confounding effects (maternal effects, recent thermal history) and potential morphological covariates (wing-loading, body mass). We found almost no systematic differences in reproductive output (egg production), reproductive fitness (offspring survival), or longevity between flying (disperser) and resident flies in our replicated releases, even if adjusting for potential morphological variation. After correction for false discovery rates, none of the five species showed evidence of a significant fitness trade-off associated with increased flight (sustained, simulated voluntary field dispersal). Our results therefore suggest that flight-reproduction trade-offs are not as common as might have been expected when assessed systematically across species and under the relatively standardized conditions and field setting employed here, at least not in the genus Drosophila. The magnitude and direction of potential dispersal- or flight-induced trade-offs, and the conditions that promote them, clearly require closer scrutiny. We argue that flight or dispersal is either genuinely cheaper than expected, or the costs manifest differently than those assessed here. Lost opportunities (i.e., time spent on mate-finding, mating or foraging) or nutrient-poor conditions could promote fitness costs to dispersal in our study system and that could be explored in future.
Collapse
|
8
|
Drais MI, Rossini L, Turco S, Faluschi A, Mazzaglia A. Modelling germination and mycelium growth rates of Monostichella coryli under constant temperature conditions. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Santos MA, Antunes MA, Grandela A, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. Past history shapes evolution of reproductive success in a global warming scenario. J Therm Biol 2023; 112:103478. [PMID: 36796921 DOI: 10.1016/j.jtherbio.2023.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Adaptive evolution is critical for animal populations to thrive in the fast-changing natural environments. Ectotherms are particularly vulnerable to global warming and, although their limited coping ability has been suggested, few real-time evolution experiments have directly accessed their evolutionary potential. Here, we report a long-term experimental evolution study addressing the evolution of Drosophila thermal reaction norms, after ∼30 generations under different dynamic thermal regimes: fluctuating (daily variation between 15 and 21 °C) or warming (daily fluctuation with increases in both thermal mean and variance across generations). We analyzed the evolutionary dynamics of Drosophila subobscura populations as a function of the thermally variable environments in which they evolved and their distinct background. Our results showed clear differences between the historically differentiated populations: high latitude D. subobscura populations responded to selection, improving their reproductive success at higher temperatures whereas their low latitude counterparts did not. This suggests population variation in the amount of genetic variation available for thermal adaptation, an aspect that needs to be considered to allow for better predictions of future climate change responses. Our results highlight the complex nature of thermal responses in face of environmental heterogeneity and emphasize the importance of considering inter-population variation in thermal evolution studies.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta A Antunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Afonso Grandela
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mauro Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Spain
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
10
|
Chown SL, Janion-Scheepers C, Marshall A, Aitkenhead IJ, Hallas R, Amy Liu WP, Phillips LM. Indigenous and introduced Collembola differ in desiccation resistance but not its plasticity in response to temperature. CURRENT RESEARCH IN INSECT SCIENCE 2022; 3:100051. [PMID: 36591563 PMCID: PMC9800180 DOI: 10.1016/j.cris.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Biological invasions have significant ecological and economic impacts. Much attention is therefore focussed on predicting establishment and invasion success. Trait-based approaches are showing much promise, but are mostly restricted to investigations of plants. Although the application of these approaches to animals is growing rapidly, it is rare for arthropods and restricted mostly to investigations of thermal tolerance. Here we study the extent to which desiccation tolerance and its phenotypic plasticity differ between introduced (nine species) and indigenous (seven species) Collembola, specifically testing predictions of the 'ideal weed' and 'phenotypic plasticity' hypotheses of invasion biology. We do so on the F2 generation of adults in a full factorial design across two temperatures, to elicit desiccation responses, for the phenotypic plasticity trials. We also determine whether basal desiccation resistance responds to thermal laboratory natural selection. We first show experimentally that acclimation to different temperatures elicits changes to cuticular structure and function that are typically associated with water balance, justifying our experimental approach. Our main findings reveal that basal desiccation resistance differs, on average, between the indigenous and introduced species, but that this difference is weaker at higher temperatures, and is driven by particular taxa, as revealed by phylogenetic generalised least squares approaches. By contrast, the extent or form of phenotypic plasticity does not differ between the two groups, with a 'hotter is better' response being most common. Beneficial acclimation is characteristic of only a single species. Laboratory natural selection had little influence on desiccation resistance over 8-12 generations, suggesting that environmental filtering rather than adaptation to new environments may be an important factor influencing Collembola invasions.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| | - Charlene Janion-Scheepers
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Angus Marshall
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Ian J Aitkenhead
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Rebecca Hallas
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| | - WP Amy Liu
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Laura M Phillips
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| |
Collapse
|
11
|
Minnaar IA, Hui C, Clusella-Trullas S. Jack, master or both? The invasive ladybird Harmonia axyridis performs better than a native coccinellid despite divergent trait plasticity. NEOBIOTA 2022. [DOI: 10.3897/neobiota.77.91402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasticity of performance traits can promote the success of biological invasions and therefore, precisely estimating trait reaction norms can help to predict the establishment and persistence of introduced species in novel habitats. Most studies focus only on a reduced set of traits and rarely include trait variability that may be vital to predicting establishment success. Here, using a split-brood full-sib design, we acclimated the globally invasive ladybird Harmonia axyridis and a native co-occurring and competing species Cheilomenes lunata to cold, medium and warm temperature regimes, and measured critical thermal limits, life-history traits, and starvation resistance. We used the conceptual framework of “Jack, Master or both” to test predictions regarding performance differences of these two species. The native C. lunata had a higher thermal plasticity of starvation resistance and a higher upper thermal tolerance than H. axyridis. By contrast, H. axyridis had a higher performance than C. lunata for preoviposition period, fecundity and adult emergence from pupae. We combined trait responses, transport duration and propagule pressure to predict the size of the populations established in a novel site following cold, medium and warm scenarios. Although C. lunata initially had a higher performance than the invasive species during transport, more individuals of H. axyridis survived in all simulated environments due to the combined life-history responses, and in particular, higher fecundity. Despite an increased starvation mortality in the warm scenario, given a sufficient propagule size, H. axyridis successfully established. This study underscores how the combination and plasticity of multiple performance traits can strongly influence establishment potential of species introduced into novel environments.
Collapse
|
12
|
Wan X, Holyoak M, Yan C, Le Maho Y, Dirzo R, Krebs CJ, Stenseth NC, Zhang Z. Broad-scale climate variation drives the dynamics of animal populations: a global multi-taxa analysis. Biol Rev Camb Philos Soc 2022; 97:2174-2194. [PMID: 35942895 DOI: 10.1111/brv.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
Climate is a major extrinsic factor affecting the population dynamics of many organisms. The Broad-Scale Climate Hypothesis (BSCH) was proposed by Elton to explain the large-scale synchronous population cycles of animals, but the extent of support and whether it differs among taxa and geographical regions is unclear. We reviewed publications examining the relationship between the population dynamics of multiple taxa worldwide and the two most commonly used broad-scale climate indices, El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). Our review and synthesis (based on 561 species from 221 papers) reveals that population changes of mammals, birds and insects are strongly affected by major oceanic shifts or irregular oceanic changes, particularly in ENSO- and NAO-influenced regions (Pacific and Atlantic, respectively), providing clear evidence supporting Elton's BSCH. Mammal and insect populations tended to increase during positive ENSO phases. Bird populations tended to increase in positive NAO phases. Some species showed dual associations with both positive and negative phases of the same climate index (ENSO or NAO). These findings indicate that some taxa or regions are more or less vulnerable to climate fluctuations and that some geographical areas show multiple weather effects related to ENSO or NAO phases. Beyond confirming that animal populations are influenced by broad-scale climate variation, we document extensive patterns of variation among taxa and observe that the direct biotic and abiotic mechanisms for these broad-scale climate factors affecting animal populations are very poorly understood. A practical implication of our research is that changes in ENSO or NAO can be used as early signals for pest management and wildlife conservation. We advocate integrative studies at both broad and local scales to unravel the omnipresent effects of climate on animal populations to help address the challenge of conserving biodiversity in this era of accelerated climate change.
Collapse
Affiliation(s)
- Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, California, Davis, 95616, USA
| | - Chuan Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yvon Le Maho
- Institut Pluridisciplinaire Hubert Curien (IPHC), Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67000, France.,Centre Scientifique de Monaco, Monaco, 98000, Monaco
| | - Rodolfo Dirzo
- Department of Biology and Woods Institute for the Environment, Stanford University, Stanford, California, 94305, USA
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Steyn VM, Mitchell KA, Nyamukondiwa C, Terblanche JS. Understanding costs and benefits of thermal plasticity for pest management: insights from the integration of laboratory, semi-field and field assessments of Ceratitis capitata (Diptera: Tephritidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:458-468. [PMID: 35535735 DOI: 10.1017/s0007485321000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The relative costs and benefits of thermal acclimation for manipulating field performance of pest insects depend upon a number of factors including which traits are affected and how persistent any trait changes are in different environments. By assessing plastic trait responses of Ceratitis capitata (Mediterranean fruit fly) across three distinct operational environments (laboratory, semi-field, and field), we examined the influence of different thermal acclimation regimes (cool, intermediate [or handling control], and warm) on thermal tolerance traits (chill-coma recovery, heat-knockdown time, critical thermal minimum and critical thermal maximum) and flight performance (mark-release-recapture). Under laboratory conditions, thermal acclimation altered thermal limits in a relatively predictable manner and there was a generally positive effect across all traits assessed, although some traits responded more strongly. By contrast, dispersal-related performance yielded strongly contrasting results depending on the specific operational environment assessed. In semi-field conditions, warm- or cold-acclimated flies were recaptured more often than the control group at cooler ambient conditions suggesting an overall stimulatory influence of thermal variability on low-temperature dispersal. Under field conditions, a different pattern was identified: colder flies were recaptured more in warmer field conditions relative to other treatment groups. This study highlights the trait- and context-specific nature of how thermal acclimation influences traits of thermal performance and tolerance. Consequently, laboratory and semi-field assessments of dispersal may not provide results that extend into the field setting despite the apparent continuum of environmental complexity among them (laboratory < semi-field < field).
Collapse
Affiliation(s)
- Vernon M Steyn
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Katherine A Mitchell
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Casper Nyamukondiwa
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
14
|
Sinclair BJ, Sørensen JG, Terblanche JS. Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:441-450. [PMID: 35346401 DOI: 10.1017/s0007485321000791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insects are mass-reared for release for biocontrol including the sterile insect technique. Insects are usually reared at temperatures that maximize the number of animals produced, are chilled for handling and transport, and released into the field, where temperatures may be considerably different to those experienced previously. Insect thermal biology is phenotypically plastic (i.e. flexible), which means that there may exist opportunities to increase the performance of these programmes by modifying the temperature regimes during rearing, handling, and release. Here we synthesize the literature on thermal plasticity in relation to the opportunities to reduce temperature-related damage and increase the performance of released insects. We summarize how and why temperature affects insect biology, and the types of plasticity shown by insects. We specifically identify aspects of the production chain that might lead to mismatches between the thermal acclimation of the insect and the temperatures it is exposed to, and identify ways to harness physiological plasticity to reduce that potential mismatch. We address some of the practical (especially engineering) challenges to implementing some of the best-supported thermal regimes to maximize performance (e.g. fluctuating thermal regimes), and acknowledge that a focus only on thermal performance may lead to unwanted trade-offs with other traits that contribute to the success of the programme. Together, it appears that thermal physiological plasticity is well-enough understood to allow its implementation in release programmes.
Collapse
Affiliation(s)
- Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6G 1L3
| | | | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
15
|
Cavender-Bares J, Schneider FD, Santos MJ, Armstrong A, Carnaval A, Dahlin KM, Fatoyinbo L, Hurtt GC, Schimel D, Townsend PA, Ustin SL, Wang Z, Wilson AM. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat Ecol Evol 2022; 6:506-519. [PMID: 35332280 DOI: 10.1038/s41559-022-01702-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/10/2022] [Indexed: 12/31/2022]
Abstract
Remote sensing has transformed the monitoring of life on Earth by revealing spatial and temporal dimensions of biological diversity through structural, compositional and functional measurements of ecosystems. Yet, many aspects of Earth's biodiversity are not directly quantified by reflected or emitted photons. Inclusive integration of remote sensing with field-based ecology and evolution is needed to fully understand and preserve Earth's biodiversity. In this Perspective, we argue that multiple data types are necessary for almost all draft targets set by the Convention on Biological Diversity. We examine five key topics in biodiversity science that can be advanced by integrating remote sensing with in situ data collection from field sampling, experiments and laboratory studies to benefit conservation. Lowering the barriers for bringing these approaches together will require global-scale collaboration.
Collapse
Affiliation(s)
| | - Fabian D Schneider
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Amanda Armstrong
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Ana Carnaval
- Department of Biology, Ph.D. Program in Biology, City University of New York and The Graduate Center of CUNY, New York City, NY, USA
| | - Kyla M Dahlin
- Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA
| | - Lola Fatoyinbo
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - George C Hurtt
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | - David Schimel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, Univ. of Wisconsin-Madison, Madison, WI, USA
| | - Susan L Ustin
- Department of Land, Air and Water Resources and the John Muir Institute of the Environment, University of California, Davis, CA, USA
| | - Zhihui Wang
- Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, China
| | - Adam M Wilson
- Department of Geography, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
16
|
Bujan J, Ollier S, Villalta I, Devers S, Cerdá X, Amor F, Dahbi A, Bertelsmeier C, Boulay R. Can thermoregulatory traits and evolutionary history predict climatic niches of thermal specialists? DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Jelena Bujan
- Department of Ecology and Evolution, Biophore University of Lausanne Lausanne Switzerland
| | - Sébastien Ollier
- Department of Ecology, Systematics and Evolution University Paris‐Saclay CNRS AgroParisTech Orsay France
| | - Irene Villalta
- Institute of Insect Biology University François Rabelais of Tours Tours France
| | - Séverine Devers
- Institute of Insect Biology University François Rabelais of Tours Tours France
| | - Xim Cerdá
- Department of Ecology, Systematics and Evolution University Paris‐Saclay CNRS AgroParisTech Orsay France
- Estación Biológica de Doñana CSIC Sevilla Spain
| | | | - Abdallah Dahbi
- Department of Biology Polydisciplinary Faculty of Safi Cadi Ayyad University Safi Morocco
| | - Cleo Bertelsmeier
- Department of Ecology and Evolution, Biophore University of Lausanne Lausanne Switzerland
| | - Raphaël Boulay
- Institute of Insect Biology University François Rabelais of Tours Tours France
| |
Collapse
|
17
|
Duffy GA, Kuyucu AC, Hoskins JL, Hay EM, Chown SL. Adequate sample sizes for improved accuracy of thermal trait estimates. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Grant A. Duffy
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Arda C. Kuyucu
- Department of Biology Hacettepe University Ankara Turkey
| | | | - Eleanor M. Hay
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Steven L. Chown
- School of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
18
|
Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. No evidence for short-term evolutionary response to a warming environment in Drosophila. Evolution 2021; 75:2816-2829. [PMID: 34617283 DOI: 10.1111/evo.14366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Adaptive evolution is key in mediating responses to global warming and may sometimes be the only solution for species to survive. Such evolution will expectedly lead to changes in the populations' thermal reaction norm and improve their ability to cope with stressful conditions. Conversely, evolutionary constraints might limit the adaptive response. Here, we test these expectations by performing a real-time evolution experiment in historically differentiated Drosophila subobscura populations. We address the phenotypic change after nine generations of evolution in a daily fluctuating environment with average constant temperature, or in a warming environment with increasing average and amplitude temperature across generations. Our results showed that (1) evolution under a global warming scenario does not lead to a noticeable change in the thermal response; (2) historical background appears to be affecting responses under the warming environment, particularly at higher temperatures; and (3) thermal reaction norms are trait dependent: although lifelong exposure to low temperature decreases fecundity and productivity but not viability, high temperature causes negative transgenerational effects on productivity and viability, even with high fecundity. These findings in such an emblematic organism for thermal adaptation studies raise concerns about the short-term efficiency of adaptive responses to the current rising temperatures.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro, Aveiro, Portugal, 3810-193
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro, Aveiro, Portugal, 3810-193
| | - Mauro Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Bellaterra, Spain, 08193
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016
| |
Collapse
|
19
|
Carneiro AP, Soares CHL, Pagliosa PR. Does the environmental condition affect the tolerance of the bivalve Anomalocardia flexuosa to different intensities and durations of marine heatwaves? MARINE POLLUTION BULLETIN 2021; 168:112410. [PMID: 33971451 DOI: 10.1016/j.marpolbul.2021.112410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Populations of the clam Anomalocardia flexuosa, subjected to different pollution conditions, were experimentally exposed to marine heatwaves of actual and future intensities and varying durations. We measured physiological and biochemical biomarkers and survival rates of the species under simulated heatwave events of 7 and 11 days. We observed that both the response of A. flexuosa to heatwaves and its baseline values of biomarkers were distinct between populations, demonstrating that the previous exposure to contaminants negatively interferes with the thermal tolerance of this bivalve. The duration and intensities of heatwaves here tested represent a considerable challenge for the survival of coastal bivalves. Our results suggest that the predicted increase in the ocean's average temperature and the frequency and intensity of marine heatwaves, as well as urbanization and increasing occupation of coastal regions, are factors that synergistically make A. flexuosa increasingly vulnerable over the decades.
Collapse
Affiliation(s)
- Alessandra Paula Carneiro
- Universidade Federal de Santa Catarina, Coordenadoria Especial de Oceanografia, Laboratório de Biodiversidade Costeira, Florianópolis, SC, Brazil.
| | - Carlos Henrique Lemos Soares
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Laboratório de Ecotoxicologia, Florianópolis, SC, Brazil
| | - Paulo Roberto Pagliosa
- Universidade Federal de Santa Catarina, Coordenadoria Especial de Oceanografia, Laboratório de Biodiversidade Costeira, Florianópolis, SC, Brazil
| |
Collapse
|
20
|
Dongmo MAK, Hanna R, Smith TB, Fiaboe KKM, Fomena A, Bonebrake TC. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats. Biol Open 2021; 10:238117. [PMID: 34416009 PMCID: PMC8053492 DOI: 10.1242/bio.058619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023] Open
Abstract
Thermal adaptation to habitat variability can determine species vulnerability to environmental change. For example, physiological tolerance to naturally low thermal variation in tropical forests species may alter their vulnerability to climate change impacts, compared with open habitat species. However, the extent to which habitat-specific differences in tolerance derive from within-generation versus across-generation ecological or evolutionary processes are not well characterized. Here we studied thermal tolerance limits of a Central African butterfly (Bicyclus dorothea) across two habitats in Cameroon: a thermally stable tropical forest and the more variable ecotone between rainforest and savanna. Second generation individuals originating from the ecotone, reared under conditions common to both populations, exhibited higher upper thermal limits (CTmax) than individuals originating from forest (∼3°C greater). Lower thermal limits (CTmin) were also slightly lower for the ecotone populations (∼1°C). Our results are suggestive of local adaptation driving habitat-specific differences in thermal tolerance (especially CTmax) that hold across generations. Such habitat-specific thermal limits may be widespread for tropical ectotherms and could affect species vulnerability to environmental change. However, microclimate and within-generation developmental processes (e.g. plasticity) will mediate these differences, and determining the fitness consequences of thermal variation for ecotone and rainforest species will require continued study of both within-generation and across-generation eco-evolutionary processes. This article has an associated First Person interview with the first author of the paper. Summary: The thermal tolerance of Bicyclus dorothea is habitat-specific with higher CTmax in ecotone populations compared to their forest counterparts, while CTmin was relatively similar across habitats.
Collapse
Affiliation(s)
- Michel A K Dongmo
- International Institute of Tropical Agriculture (IITA), PO Box 2008 (Messa), Yaoundé-Cameroon, Yaoundé, Cameroon.,Laboratory of Parasitology and Ecology, Faculty of Science, University of Yaoundé I PO Box 812, Yaoundé-Cameroon.,Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Rachid Hanna
- International Institute of Tropical Agriculture (IITA), PO Box 2008 (Messa), Yaoundé-Cameroon, Yaoundé, Cameroon
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology and Institute of Environment and Sustainability, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - K K M Fiaboe
- International Institute of Tropical Agriculture (IITA), PO Box 2008 (Messa), Yaoundé-Cameroon, Yaoundé, Cameroon
| | - Abraham Fomena
- Laboratory of Parasitology and Ecology, Faculty of Science, University of Yaoundé I PO Box 812, Yaoundé-Cameroon
| | - Timothy C Bonebrake
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Liu WPA, Phillips LM, Terblanche JS, Janion-Scheepers C, Chown SL. An unusually diverse genus of Collembola in the Cape Floristic Region characterised by substantial desiccation tolerance. Oecologia 2021; 195:873-885. [PMID: 33792777 DOI: 10.1007/s00442-021-04896-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Trait-environment interactions have contributed to the remarkable plant radiations in the Cape Floristic Region (CFR) of southern Africa. Whether such interactions have also resulted in the diversification of the invertebrate fauna, independently of direct associations with plants is, however, not clear. One candidate where this may be the case is the unusually diverse Collembola genus Seira. Including 89 species in the CFR, many of which are localised habitat specialists, this genus includes many species inhabiting the warm, dry fynbos shrubland-a habitat atypical of usually desiccation-sensitive Collembola. Here, we investigate whether desiccation tolerance may have contributed to the considerable diversity of Seira in the CFR. First, we demonstrate, by measuring vapour pressure deficits (VPD) of the species' microhabitats (fynbos shrubland and moister Afrotemperate Forests), that the fynbos shrublands are dry environments (mean ± S.E. maximum VPD 5.2 ± 0.1 kPa) compared with the Afrotemperate Forest patches (0.3 ± 0.02 kPa) during the summer activity period of Seira. Then we show that Seira species living in these shrublands are more desiccation tolerant (mean ± S.E. survival time at 76% relative humidity: 74.3 ± 3.3 h) than their congeners in the cooler, moister Afrotemperate Forests (34.3 ± 2.8 h), and compared with Collembola species globally (3.7 ± 0.2 h). These results, and a previous demonstration of pronounced thermal tolerance in the fynbos shrubland species, suggest that the diversity of Seira in the CFR is at least partly due to pronounced desiccation and thermal tolerance, which has enabled species in the genus to exploit the hot and dry habitats of the CFR.
Collapse
Affiliation(s)
- W P Amy Liu
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
| | - Laura M Phillips
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, 7602, South Africa
| | - Charlene Janion-Scheepers
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.,Iziko South African Museum, Cape Town, 8001, South Africa
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| |
Collapse
|
22
|
Geange SR, Arnold PA, Catling AA, Coast O, Cook AM, Gowland KM, Leigh A, Notarnicola RF, Posch BC, Venn SE, Zhu L, Nicotra AB. The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. THE NEW PHYTOLOGIST 2021; 229:2497-2513. [PMID: 33124040 DOI: 10.1111/nph.17052] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/25/2020] [Indexed: 05/09/2023]
Abstract
Understanding plant thermal tolerance is fundamental to predicting impacts of extreme temperature events that are increasing in frequency and intensity across the globe. Extremes, not averages, drive species evolution, determine survival and increase crop performance. To better prioritize agricultural and natural systems research, it is crucial to evaluate how researchers are assessing the capacity of plants to tolerate extreme events. We conducted a systematic review to determine how plant thermal tolerance research is distributed across wild and domesticated plants, growth forms and biomes, and to identify crucial knowledge gaps. Our review shows that most thermal tolerance research examines cold tolerance of cultivated species; c. 5% of articles consider both heat and cold tolerance. Plants of extreme environments are understudied, and techniques widely applied in cultivated systems are largely unused in natural systems. Lastly, we find that lack of standardized methods and metrics compromises the potential for mechanistic insight. Our review provides an entry point for those new to the methods used in plant thermal tolerance research and bridges often disparate ecological and agricultural perspectives for the more experienced. We present a considered agenda of thermal tolerance research priorities to stimulate efficient, reliable and repeatable research across the spectrum of plant thermal tolerance.
Collapse
Affiliation(s)
- Sonya R Geange
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
- Department of Biological Sciences, University of Bergen, Bergen, 5008, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, 5008, Norway
| | - Pieter A Arnold
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Alexandra A Catling
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Onoriode Coast
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent,, ME4 4TB, UK
| | - Alicia M Cook
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Kelli M Gowland
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Andrea Leigh
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Rocco F Notarnicola
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Bradley C Posch
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Susanna E Venn
- School of Life and Environmental Sciences, Deakin University, Melbourne, Vic., 3125, Australia
| | - Lingling Zhu
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Adrienne B Nicotra
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
23
|
Rodgers EM, Franklin CE, Noble DWA. Diving in hot water: a meta-analytic review of how diving vertebrate ectotherms will fare in a warmer world. J Exp Biol 2021; 224:224/Suppl_1/jeb228213. [PMID: 33627460 DOI: 10.1242/jeb.228213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Diving ectothermic vertebrates are an important component of many aquatic ecosystems, but the threat of climate warming is particularly salient to this group. Dive durations typically decrease as water temperatures rise; yet, we lack an understanding of whether this trend is apparent in all diving ectotherms and how this group will fare under climate warming. We compiled data from 27 studies on 20 ectothermic vertebrate species to quantify the effect of temperature on dive durations. Using meta-analytic approaches, we show that, on average, dive durations decreased by 11% with every 1°C increase in water temperature. Larger increases in temperature (e.g. +3°C versus +8-9°C) exerted stronger effects on dive durations. Although species that respire bimodally are projected to be more resilient to the effects of temperature on dive durations than purely aerial breathers, we found no significant difference between these groups. Body mass had a weak impact on mean dive durations, with smaller divers being impacted by temperature more strongly. Few studies have examined thermal phenotypic plasticity (N=4) in diving ectotherms, and all report limited plasticity. Average water temperatures in marine and freshwater habitats are projected to increase between 1.5 and 4°C in the next century, and our data suggest that this magnitude of warming could translate to substantial decreases in dive durations, by approximately 16-44%. Together, these data shed light on an overlooked threat to diving ectothermic vertebrates and suggest that time available for underwater activities, such as predator avoidance and foraging, may be shortened under future warming.
Collapse
Affiliation(s)
- Essie M Rodgers
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, 4072 Queensland, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
24
|
Marguerite NT, Bernard J, Harrison DA, Harris D, Cooper RL. Effect of Temperature on Heart Rate for Phaenicia sericata and Drosophila melanogaster with Altered Expression of the TrpA1 Receptors. INSECTS 2021; 12:38. [PMID: 33418937 PMCID: PMC7825143 DOI: 10.3390/insects12010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022]
Abstract
The transient receptor potential (TrpA-ankyrin) receptor has been linked to pathological conditions in cardiac function in mammals. To better understand the function of the TrpA1 in regulation of the heart, a Drosophila melanogaster model was used to express TrpA1 in heart and body wall muscles. Heartbeat of in intact larvae as well as hearts in situ, devoid of hormonal and neural input, indicate that strong over-expression of TrpA1 in larvae at 30 or 37 °C stopped the heart from beating, but in a diastolic state. Cardiac function recovered upon cooling after short exposure to high temperature. Parental control larvae (UAS-TrpA1) increased heart rate transiently at 30 and 37 °C but slowed at 37 °C within 3 min for in-situ preparations, while in-vivo larvae maintained a constant heart rate. The in-situ preparations maintained an elevated rate at 30 °C. The heartbeat in the TrpA1-expressing strains could not be revived at 37 °C with serotonin. Thus, TrpA1 activation may have allowed enough Ca2+ influx to activate K(Ca) channels into a form of diastolic stasis. TrpA1 activation in body wall muscle confirmed a depolarization of membrane. In contrast, blowfly Phaenicia sericata larvae increased heartbeat at 30 and 37 °C, demonstrating greater cardiac thermotolerance.
Collapse
Affiliation(s)
- Nicole T. Marguerite
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | - Jate Bernard
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | - Douglas A. Harrison
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | | | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| |
Collapse
|
25
|
Moyen NE, Crane RL, Somero GN, Denny MW. A single heat-stress bout induces rapid and prolonged heat acclimation in the California mussel, Mytilus californianus. Proc Biol Sci 2020; 287:20202561. [PMID: 33290677 DOI: 10.1098/rspb.2020.2561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Climate change is not only causing steady increases in average global temperatures but also increasing the frequency with which extreme heating events occur. These extreme events may be pivotal in determining the ability of organisms to persist in their current habitats. Thus, it is important to understand how quickly an organism's heat tolerance can be gained and lost relative to the frequency with which extreme heating events occur in the field. We show that the California mussel, Mytilus californianus-a sessile intertidal species that experiences extreme temperature fluctuations and cannot behaviourally thermoregulate-can quickly (in 24-48 h) acquire improved heat tolerance after exposure to a single sublethal heat-stress bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up to three weeks without further exposure to elevated temperatures. This adaptive response improved survival rates by approximately 75% under extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings in an ecological context, we evaluated 4 years of mussel body temperatures recorded in the field. The majority (approx. 64%) of consecutive heat-stress bouts were separated by 24-48 h, but several consecutive heat bouts were separated by as much as 22 days. Thus, the ability of M. californianus to maintain improved heat tolerance for up to three weeks after a single sublethal heat-stress bout significantly improves their probability of survival, as approximately 33% of consecutive heat events are separated by 3-22 days. As a sessile animal, mussels likely evolved the capability to rapidly gain and slowly lose heat tolerance to survive the intermittent, and often unpredictable, heat events in the intertidal zone. This adaptive strategy will likely prove beneficial under the extreme heat events predicted with climate change.
Collapse
Affiliation(s)
- Nicole E Moyen
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Rachel L Crane
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - George N Somero
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark W Denny
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
van Bergen E, Dallas T, DiLeo MF, Kahilainen A, Mattila ALK, Luoto M, Saastamoinen M. The effect of summer drought on the predictability of local extinctions in a butterfly metapopulation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:1503-1511. [PMID: 32298001 DOI: 10.1111/cobi.13515] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The ecological impacts of extreme climatic events on population dynamics and community composition are profound and predominantly negative. Using extensive data of an ecological model system, we tested whether predictions from ecological models remain robust when environmental conditions are outside the bounds of observation. We observed a 10-fold demographic decline of the Glanville fritillary butterfly (Melitaea cinxia) metapopulation on the Åland islands, Finland in the summer of 2018 and used climatic and satellite data to demonstrate that this year was an anomaly with low climatic water balance values and low vegetation productivity indices across Åland. Population growth rates were strongly associated with spatiotemporal variation in climatic water balance. Covariates shown previously to affect the extinction probability of local populations in this metapopulation were less informative when populations were exposed to severe drought during the summer months. Our results highlight the unpredictable responses of natural populations to extreme climatic events.
Collapse
Affiliation(s)
- Erik van Bergen
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Tad Dallas
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, U.S.A
| | - Michelle F DiLeo
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Aapo Kahilainen
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Anniina L K Mattila
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Miska Luoto
- Department of Geoscience and Geography, University of Helsinki, Helsinki, 00560, Finland
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00790, Finland
| |
Collapse
|
27
|
Braschler B, Duffy GA, Nortje E, Kritzinger-Klopper S, du Plessis D, Karenyi N, Leihy RI, Chown SL. Realised rather than fundamental thermal niches predict site occupancy: Implications for climate change forecasting. J Anim Ecol 2020; 89:2863-2875. [PMID: 32981063 DOI: 10.1111/1365-2656.13358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
Thermal performance traits are regularly used to make forecasts of the responses of ectotherms to anthropogenic environmental change, but such forecasts do not always differentiate between fundamental and realised thermal niches. Here we determine the relative extents to which variation in the fundamental and realised thermal niches accounts for current variation in species abundance and occupancy and assess the effects of niche-choice on future-climate response estimations. We investigated microclimate and macroclimate temperatures alongside abundance, occupancy, critical thermal limits and foraging activity of 52 ant species (accounting for >95% individuals collected) from a regional assemblage from across the Western Cape Province, South Africa, between 2003 and 2014. Capability of a species to occupy sites experiencing the most extreme temperatures, coupled with breadth of realised niche, explained most deviance in occupancy (up to 75%), while foraging temperature range and body mass explained up to 50.5% of observed variation in mean species abundance. When realised niches are used to forecast responses to climate change, large positive and negative effects among species are predicted under future conditions, in contrast to the forecasts of minimal impacts on all species that are indicated by fundamental niche predictions.
Collapse
Affiliation(s)
- Brigitte Braschler
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa.,Section of Conservation Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Grant A Duffy
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Erika Nortje
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Suzaan Kritzinger-Klopper
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Dorette du Plessis
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Natasha Karenyi
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Rachel I Leihy
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Steven L Chown
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa.,School of Biological Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
28
|
Constant and fluctuating temperature acclimations have similar effects on phenotypic plasticity in springtails. J Therm Biol 2020; 93:102690. [DOI: 10.1016/j.jtherbio.2020.102690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 11/21/2022]
|
29
|
Terblanche JS, Hoffmann AA. Validating measurements of acclimation for climate change adaptation. CURRENT OPINION IN INSECT SCIENCE 2020; 41:7-16. [PMID: 32570175 DOI: 10.1016/j.cois.2020.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Acclimation and other forms of plasticity that can increase stress resistance feature strongly in discussions surrounding climate change impacts or vulnerability projections of insects and other ectotherms. There is interest in compiling databases for assessing the adequacy of acclimation for dealing with climate change. Here, we argue that the nature of acclimation is context dependent and therefore that estimates summarised across studies, especially those that have assayed stress using diverse methods, are limited in their utility when applied as a standardized metric or to a single general context such as average climate warming. Moreover, the dynamic nature of tolerances and acclimation drives important variation that is quickly obscured through many summary statistics or even in effect size analyses; retaining a strong focus on the temporal-level, population-level and treatment-level variance in forecasting climate change impacts on insects is essential. We summarise recent developments within the context of climate change and propose how future studies might validate the role of acclimation by integration across field studies and mechanistic modelling. Despite arguments to the contrary, to date no studies have convincingly demonstrated an important role for acclimation in recent climate change adaptation of insects. Paramount to these discussions is i) developing a strong conceptual framework for acclimation in the focal trait(s), ii) obtaining novel empirical data dissecting the fitness benefits and consequences of acclimation across diverse contexts and timescales, with iii) better coverage of under-represented geographic regions and taxa.
Collapse
Affiliation(s)
- John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, South Africa.
| | - Ary A Hoffmann
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, South Africa; Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Marshall KE, Gotthard K, Williams CM. Evolutionary impacts of winter climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2020; 41:54-62. [PMID: 32711362 DOI: 10.1016/j.cois.2020.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Overwintering is a serious challenge for insects, and winters are rapidly changing as climate shifts. The capacity for phenotypic plasticity and evolutionary adaptation will determine which species profit or suffer from these changes. Here we discuss current knowledge on the potential and evidence for evolution in winter-relevant traits among insect species and populations. We conclude that the best evidence for evolutionary shifts in response to changing winters remain those related to changes in phenology, but all evidence points to cold hardiness as also having the potential to evolve in response to climate change. Predicting future population sizes and ranges relies on understanding to what extent evolution in winter-related traits is possible, and remains a serious challenge.
Collapse
Affiliation(s)
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | | |
Collapse
|
31
|
Kellermann V, McEvey SF, Sgrò CM, Hoffmann AA. Phenotypic Plasticity for Desiccation Resistance, Climate Change, and Future Species Distributions: Will Plasticity Have Much Impact? Am Nat 2020; 196:306-315. [PMID: 32814000 DOI: 10.1086/710006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWhile species distribution models (SDMs) are widely used to predict the vulnerability of species to climate change, they do not explicitly indicate the extent to which plastic responses ameliorate climate change impacts. Here we use data on plastic responses of 32 species of Drosophila to desiccation stress to suggest that basal resistance, rather than adult hardening, is relatively more important in determining species differences in desiccation resistance and sensitivity to climate change. We go on to show, using the semimechanistic SDM CLIMEX, that the inclusion of plasticity has some impact on current species distributions and future vulnerability for widespread species but has little impact on the distribution of arguably more vulnerable tropically restricted species.
Collapse
|
32
|
Phillips LM, Aitkenhead I, Janion-Scheepers C, King CK, McGeoch MA, Nielsen UN, Terauds A, Liu WPA, Chown SL. Basal tolerance but not plasticity gives invasive springtails the advantage in an assemblage setting. CONSERVATION PHYSIOLOGY 2020; 8:coaa049. [PMID: 32577288 PMCID: PMC7294889 DOI: 10.1093/conphys/coaa049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
As global climates change, alien species are anticipated to have a growing advantage relative to their indigenous counterparts, mediated through consistent trait differences between the groups. These insights have largely been developed based on interspecific comparisons using multiple species examined from different locations. Whether such consistent physiological trait differences are present within assemblages is not well understood, especially for animals. Yet, it is at the assemblage level that interactions play out. Here, we examine whether physiological trait differences observed at the interspecific level are also applicable to assemblages. We focus on the Collembola, an important component of the soil fauna characterized by invasions globally, and five traits related to fitness: critical thermal maximum, minimum and range, desiccation resistance and egg development rate. We test the predictions that the alien component of a local assemblage has greater basal physiological tolerances or higher rates, and more pronounced phenotypic plasticity than the indigenous component. Basal critical thermal maximum, thermal tolerance range, desiccation resistance, optimum temperature for egg development, the rate of development at that optimum and the upper temperature limiting egg hatching success are all significantly higher, on average, for the alien than the indigenous components of the assemblage. Outcomes for critical thermal minimum are variable. No significant differences in phenotypic plasticity exist between the alien and indigenous components of the assemblage. These results are consistent with previous interspecific studies investigating basal thermal tolerance limits and development rates and their phenotypic plasticity, in arthropods, but are inconsistent with results from previous work on desiccation resistance. Thus, for the Collembola, the anticipated advantage of alien over indigenous species under warming and drying is likely to be manifest in local assemblages, globally.
Collapse
Affiliation(s)
- Laura M Phillips
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Ian Aitkenhead
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Charlene Janion-Scheepers
- Iziko South African Museum, Cape Town 8001, South Africa
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Catherine K King
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, 203 Channel Highway, Kingston, Tasmania 7050, Australia
| | - Melodie A McGeoch
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Aleks Terauds
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, 203 Channel Highway, Kingston, Tasmania 7050, Australia
| | - W P Amy Liu
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
33
|
Liu WPA, Phillips LM, Terblanche JS, Janion‐Scheepers C, Chown SL. Strangers in a strange land: Globally unusual thermal tolerance in Collembola from the Cape Floristic Region. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- W. P. Amy Liu
- School of Biological Sciences Monash University Melbourne VIC Australia
| | - Laura M. Phillips
- School of Biological Sciences Monash University Melbourne VIC Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology Stellenbosch University Matieland South Africa
| | - Charlene Janion‐Scheepers
- Department of Biological Sciences University of Cape Town Cape Town South Africa
- Iziko South African Museum Rondebosch South Africa
| | - Steven L. Chown
- School of Biological Sciences Monash University Melbourne VIC Australia
| |
Collapse
|
34
|
Tonione MA, Cho SM, Richmond G, Irian C, Tsutsui ND. Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant, Prenolepis imparis. Ecol Evol 2020; 10:4749-4761. [PMID: 32551058 PMCID: PMC7297759 DOI: 10.1002/ece3.6229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 01/17/2023] Open
Abstract
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short-term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short-term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short-term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill-coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short-term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill-coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high-elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high-temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations.
Collapse
Affiliation(s)
- Maria Adelena Tonione
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
| | - So Mi Cho
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
- Present address:
Department of Preventive MedicineYonsei University College of MedicineSeoulKorea
| | - Gary Richmond
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
- Present address:
Department of Family Health Care NursingUCSF School of NursingSan FranciscoCAUSA
| | - Christian Irian
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
| |
Collapse
|
35
|
Simões P, Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M. Beneficial developmental acclimation in reproductive performance under cold but not heat stress. J Therm Biol 2020; 90:102580. [DOI: 10.1016/j.jtherbio.2020.102580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
|
36
|
Hangartner S, Lasne C, Sgrò CM, Connallon T, Monro K. Genetic covariances promote climatic adaptation in Australian
Drosophila
*. Evolution 2019; 74:326-337. [DOI: 10.1111/evo.13831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Sandra Hangartner
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Clementine Lasne
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
- Centre for Geometric Biology Monash University Melbourne Victoria 3800 Australia
| |
Collapse
|
37
|
Stillman JH. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology (Bethesda) 2019; 34:86-100. [DOI: 10.1152/physiol.00040.2018] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A consequence of climate change is the increased frequency and severity of extreme heat waves. This is occurring now as most of the warmest summers and most intense heat waves ever recorded have been during the past decade. In this review, I describe the ways in which animals and human populations are likely to respond to increased extreme heat, suggest how to study those responses, and reflect on the importance of those studies for countering the devastating impacts of climate change.
Collapse
Affiliation(s)
- Jonathon H. Stillman
- Estuary and Ocean Science Center and Department of Biology, San Francisco State University, San Francisco, California
| |
Collapse
|
38
|
Chirgwin E, Marshall DJ, Sgrò CM, Monro K. How does parental environment influence the potential for adaptation to global change? Proc Biol Sci 2018; 285:20181374. [PMID: 30209227 PMCID: PMC6158540 DOI: 10.1098/rspb.2018.1374] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/23/2018] [Indexed: 02/01/2023] Open
Abstract
Parental environments are regularly shown to alter the mean fitness of offspring, but their impacts on the genetic variation for fitness, which predicts adaptive capacity and is also measured on offspring, are unclear. Consequently, how parental environments mediate adaptation to environmental stressors, like those accompanying global change, is largely unknown. Here, using an ecologically important marine tubeworm in a quantitative-genetic breeding design, we tested how parental exposure to projected ocean warming alters the mean survival, and genetic variation for survival, of offspring during their most vulnerable life stage under current and projected temperatures. Offspring survival was higher when parent and offspring temperatures matched. Across offspring temperatures, parental exposure to warming altered the distribution of additive genetic variance for survival, making it covary across current and projected temperatures in a way that may aid adaptation to future warming. Parental exposure to warming also amplified nonadditive genetic variance for survival, suggesting that compatibilities between parental genomes may grow increasingly important under future warming. Our study shows that parental environments potentially have broader-ranging effects on adaptive capacity than currently appreciated, not only mitigating the negative impacts of global change but also reshaping the raw fuel for evolutionary responses to it.
Collapse
Affiliation(s)
- Evatt Chirgwin
- Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Keyne Monro
- Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
39
|
HUEY RB, BUCKLEY LB, DU W. Biological buffers and the impacts of climate change. Integr Zool 2018; 13:349-354. [DOI: 10.1111/1749-4877.12321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Weiguo DU
- Institute of Zoology, Chinese Academy of Sciences; China
| |
Collapse
|